piątek, 29 marca 2013

Miareczkowanie kompleksometryczne z PAN

Dawno już nie wrzucałem nowych filmów z laboratorium - zaległość niniejszym nadrabiam.

Podczas zajęć ze spektrofotometrii jednym z elementów ćwiczenia dotyczącego oznaczania miedzi obok kobaltu, było miareczkowanie roztworów wzorcowych, aby określić dokładnie ich stężenie. Ponieważ zmiany koloru zachodziły bardzo wyraźnie, nie omieszkałem utrwalić tego na filmie, który podam niżej.
Zanim jednak go obejrzycie, muszę objaśnić coś na temat samej metodyki takiego oznaczania.

Miareczkowanie to jedna z najprostszych technik analizy ilościowej. Zasadniczo polega na przeprowadzaniu reakcji między roztworem składnika jaki mamy oznaczać, nazywanego analitem, i roztworem substancji, która z nim reaguje, nazywanym titrantem. W miarę dodawania tej substancji, ilość naszego badanego składnika maleje, aż do całkowitego zaniku. Jeśli będziemy wiedzieli jaka objętość roztworu titranta była potrzebna do osiągnięcia tego punktu i będziemy dokładnie znali jego stężenie, to wiedząc w jakim stosunku ze sobą reagują będziemy mogli wyliczyć ilość analitu w badanym roztworze z całkiem przyzwoitą dokładnością.
Teraz jedynym problemem jest to, jak wyznaczyć punkt całkowitego przereagowania. W technikach alkacymetrycznych, gdzie oznaczane są kwasy lub zasady przy pomocy zobojętniającego je titranta, używa się wskaźników pH, które zmieniają barwę ze zmianami odczynu. Na przykład bezbarwna w kwasach fenoloftaleina, w zasadach staje się malinowa, a oranż metylowy z żółtego staje się pomarańczowy. W technikach redoksymetrycznych, gdzie badana substancja jest utleniana lub redukowana, wskaźnik zmienia barwę ulegając którejś z tych reakcji.
W przypadku kompleksometrii analizowana substancja tworzy z dodawanym związkiem kompleks - połączenie jonowe z przeniesieniem pary elektronowej. Substancją tą są zwykle sole metali, a związkiem kompleksującym cząsteczka zawierająca wolne pary elektronowe - a więc posiadająca tlen, azot lub siarkę. Najbardziej popularnym takim związkiem jest EDTA - kwas etylenodiaminotetraoctowy.
Tworzy on z kationami metali bardzo trwałe kompleksy połączone przez kilka wiązań - chelaty - łącząc się w stosunku 1:1. Jest jednak niestety bezbarwny i dlatego aby móc wyłapać punkt końcowy, należy użyć odpowiedniego wskaźnika. Pomysł działania takich wskaźników opiera się na prostej zasadzie - związek  tworzący silniejszy kompleks wypiera ten słabszy. Jeśli nasz wskaźnik będzie tworzył z oznaczanym metalem zabarwiony kompleks, a wolny będzie bezbarwny lub zabarwiony całkiem inaczej, to po dodaniu EDTA do roztworu analitu ze wskaźnikiem i jego wyparciu, roztwór zmienia kolor. Jeden taki przypadek już omawiałem - gdy podczas badania wody mineralnej miareczkowałem wapń z czernią eriochromową, zmieniającą kolor z fioletowego na ziebieski.

Jak rzecz się miała w tym przypadku?
Wskaźnikiem był 1-(2-pirydyloazo)-2-naftol. Ten prosty związek azowy ma silne, pomarańczowe zabarwienie:
Po dodaniu kilku kropli do lekko zasadowego (bufor octanowy) roztworu soli miedzi zmienił jednak barwę podczas tworzenia kompleksu. Instrukcja podawała, że powinien być ciemnoróżowy, zaś w punkcie końcowym zmienić barwę na żółtą, ale rzecz wyglądała w naszym przypadku nieco inaczej, zresztą sami zobaczcie:

Całkiem ładny fiolet zamienił się w zieleń.

poniedziałek, 25 marca 2013

Kiedyś w laboratorium (24.)

Na zajęciach z chemii nieorganicznej mieliśmy klasyczne doświadczenie z reakcją metalicznego sodu z wodą. Kawałeczek sodu wrzucono do próbówki zawierającej wodę z fenoloftaleiną i warstewkę oleju parafinowego. Gdy kawałek sodu dotknął wody, zaczęła się burzliwa reakcja, w wyniku której fenoloftaleina zabarwiła się, a metal stopił w metaliczną kulkę wielkości łebka od szpilki. Ponieważ stopiony sód okazał się nieco lżejszy od oleju parafinowego, wypłynął i zakończył reakcję takim oto widokiem:
W większej (wręcz gigantycznej) skali polecam ten film, na którym po wojnie amerykanie niszczą kilka ton sodu z niemieckich bomb zapalających, wrzucając go do morza.


czwartek, 21 marca 2013

Otrzymywanie i skraplanie amoniaku

Tak więc jestem już na czwartym roku studiów i zaczynam przygotowywać się do czekającego mnie pisania pracy magisterskiej. Wybrałem sobie na promotora dr. Wolińską, zajmującą się syntezą asymetryczną (a dokładnie syntezą katalizatorów do tych syntez), w związku z czym możecie się spodziewać w przyszłym roku większej ilości wpisów okołosyntetycznych.
Zanim jednak dojdę do pracy w laboratorium, otrzymuję pobieżne przeszkolenie w co ważniejszych technikach, w formie przedmiotu Techniki pracy laboratoryjnej. Każdy otrzymuje jakiś temat, który następnie ma omówić teoretycznie oraz zaprezentować praktycznie. Tak się akurat trafiło, że mi dostał się temat Praca z cieczami niskowrzącymi - a tą cieczą którą miałem za zadanie pokazać, był ciekły amoniak.

Amoniak, inaczej azan, będący połączeniem azotu i wodoru, stanowi gaz o silnym, nieprzyjemnym zapachu, w mniejszych stężeniach podobnym do moczu (w dużych stężeniach poraża węch). Nic zresztą dziwnego - powstaje w wyniku rozkładu mocznika w moczu, stanowiącego sposób w jaki nasz organizm stara się wydalić nadmiar amoniaku powstającego przy rozkładzie aminokwasów. Zaburzenia tego procesu, w wyniku mutacji genetycznych, wywołują ciężkie choroby. Pod normalnym ciśnieniem w temperaturze pokojowej jest bezbarwnym gazem, dopiero w temperaturze -33 o C skrapla się do postaci bezbarwnej cieczy, silnie załamującej światło.
Jego cząsteczka ma postać trójkątnej piramidy, z trzema wodorami skierowanymi w jedną stronę azotu, za sprawą odpychania wolnej pary elektronowej. Powoduje to, że cząsteczka ma mocny moment dipolowy, podobny jak cząsteczka wody. Podobnie jak woda ulega autodysocjacji wedle równania:
 2NH3 NH4 + + NH2 -
 W efekcie ciekły amoniak może stanowić rozpuszczalnik zastępujący wodę w sytuacji, gdy rozpuszczane substancje reagują z nią. Takie też jest jego zastosowanie w laboratorium.
Inną cenną cechą jest jego skłonność do roztwarzania metali. Może się to odbywać na dwa sposoby. Gdy metal alkaliczny, na przykład sód, zostanie wrzucony do ciekłego amoniaku wraz z dodatkiem katalizatora (azotan żelaza III), reaguje z nim tworząc amidek, będący bardzo silnym reduktorem. Jego roztwór lub zawiesina w tymże samym rozpuszczalniku stanowi właściwe medium reakcyjne.
Znacznie ciekawiej przebiega reakcja gdy nie dodamy katalizatora - rozpuszczanie przebiega wówczas bardzo powoli, a roztwór przybiera intensywny, błękitny kolor. Podczas rozpuszczania następuje dysproporcjonacja - atomy metalu dzielą się na kationy, kompleksowane przez amoniak, i swobodne elektrony, natychmiast otaczane przez cząsteczki amoniaku. Takie zsolwatowane elektrony stanowią najlżejsze możliwe aniony a w odpowiednich sytuacjach mogą nawet tworzyć sole.

Trzecią korzystną właściwością amoniaku jest lotność - wystarczy lekko podnieść temperaturę aby odparował, pozostawiając suche produkty reakcji, a że wrze w bardzo niskich temperaturach, można w ten sposób uzyskać związki wrażliwe na ogrzewanie.

I to w zasadzie tyle, od strony teoretycznej. Teraz czas na praktyczną stronę ćwiczenia.
Ciekły amoniak do zastosowań laboratoryjnych można uzyskać z butli, tak przechylając ją, aby zlać ciekłą frakcję sprężonego gazu. Niestety tak się złożyło, że akurat pracownia nie miała butli na składzie, w związku z czym amoniak należało wywiązać. Najprostszym sposobem jest podziałanie stężoną zasadą na dowolną sól amonową - w moim przypadku był to chlorek amonu, nazywany salmiakiem:
NH4Cl + NaOH → NH3 + NaCl + H2O
Powstający gazowy amoniak należało skroplić w bardzo niskiej temperaturze, więc zaraz na początku dnia udałem się do pomieszczenia z butlami gazowymi, i w sposób już tu szerzej opisywany, uzyskałem skrzynkę suchego lodu:

Wsypałem do naczynia Dewara aby tak szybko nie sublimował i odważyłem 3 gramy chlorku amonu:

Które wsypałem do dwuszyjnej kolbki kształtem przypominającej serduszko. Odważyłem następnie wodorotlenek potasu w płatkach i rozpuściłem w minimalnej ilości wody aby uzyskać 50% roztwór. Gdy wreszcie zebrała się grupa, wlałem stężony ług do kolbki podłączonej do aparatury o następującym wyglądzie:

Od lewej: Kolbka reakcyjna, płuczka ze środkiem suszącym, kolbka zanurzona w łaźni z suchym lodem, chłodnica wypełniona mieszaniną suchego lodu z acetonem. Chłodnica miała formę pustego płaszcza, jak w naczyniu Dewara, w który wprowadzało się pary, i wgłębionego "palucha" do którego dodawało się mieszaniny chłodzącej. Suchy lód dodany do acetonu, mającego za zadanie  przewodzić ciepło, pozwala osiągnąć temperaturę - 78 stopni C.

Aby przyspieszyć wydzielanie gazu ogrzewałem łagodnie kolbkę dmuchawą przypominającą suszarkę, ale ogrzewającą strumień powietrza powyżej stu stopni. Zawartość kolby burzyła się:

Zaś amoniak nie chciał się skraplać. Po kwadransie zaczęliśmy sądzić, że coś mogło się nie udać, że na przykład płuczka susząca ma za dużą objętość, albo chłodnica za słabo chłodzi. Aż wreszcie po starciu gromadzącego się na kolbce szronu zauważyłem że u wylotu rurki tworzą się bąbelki - jest zatem jakaś ciecz. Potem pozostawało tylko przerwać ogrzewanie i podnieść kolbkę, aby pokazać obecnym kilka centymetrów bezbarwnej cieczy, silnie załamującej światło:

I to było to.
Dodać sodu dla pokazania wyglądu roztworu zapomnieliśmy.


sobota, 16 marca 2013

To już dwa lata

Jak to ten czas szybko leci...

Właśnie mija druga rocznica założenia bloga i zanosi się na to, że to dopiero początek. Ale na poczatek trochę statystyk:

Dotychczas opublikowałem 102 posty (nie licząc tego), komentowane 240 razy. Liczba przeglądań sięgnęła 182 700 zajrzeń. Średnia przeglądalność utrzymuje się w ostatnim czasie na poziomie 200-300 wizyt dziennie. Najpopularniejsze posty:
* Mieszaniny ogrzewające (13380)
* Anegdoty o chemikach i ich wypadkach (13145)
* Kiedyś w laboratorium... 11. (10700)
* Z cytryną czy bez? (10165)
* Kwasek śmierci i inne bzdury (9186)

Jeśli chodzi o żródła to najczęściej wchodziliście na bloga ze stron: Wykop.pl (59800), Blog de Bart (3100), Klikd.pl (1910), Facebook (1540), Czajniczek Pana Roussela (390). Większość wejść z Polski, Wielkiej Brytanii i USA. Około 2% stanowiły wejścia z urządzeń przenośnych, jak iPady i tablety.

Od czasu do czasu dostaję e-maile od czytelników, chcących się zapytać o to bądź owo. Ostatnio ktoś z USA wysłał mi zdjęcie białego proszku, z zapytaniem czy to cyjanek - odpowiedziałem "cyjanek, talk albo i soda - to może być cokolwiek". O co chodziło nie wiem. Także parę osób "w realu" wspominało że znają tą stronę.
Jeśli chodzi o sprawy bardziej prywatne - dotarłem już do czwartego roku studiów i będę przygotowywał się do rozpoczęcia realizacji pracy magisterskiej. Ostatnie problemy z zaliczeniem jednego z przedmiotów pokazały mi, że jestem jednak słabszym studentem niż to o sobie mniemałem. W kwietniu wybieram się na studencką konferencję. Żyje się.

A ja taki zapadany...


A dalsze plany? Mam kilka zaległych notek do dokończenia więc raczej pomysłów do pisania mi nie zabraknie. Ale o tym przekonacie się sami.

niedziela, 10 marca 2013

Anegdoty o chemikach i ich odkryciach

Sukces wpisu o wypadkach dawnych chemików sprawił, że postanowiłem zebrać jeszcze trochę podobnych przypadków. Tym razem jednak nie o wybuchach lecz o odkryciach, i sposobach w jakie do nich dochodzono. A te bywały osobliwe.

Sprzątając
Odkryć można też dokonywać po doświadczeniach, w trakcie mycia sprzętu i zlewania pozostałości. Przydarzyło się to w roku 1933 Ralphowi Willeyowi, który będąc studentem pracował na pół etatu w Dow Chemical Laboratory, na podrzędnym stanowisku chłopca do mycia próbówek. Za którymś razem przytrafiła mu się kolba której za nic nie mógł domyć, gdyż była od wewnątrz pokryta cienką warstwą półprzezroczystej, twardej substancji. Przekonawszy się wreszcie, że jest to materiał bardzo wytrzymały, zgłosił innemu pracownikowi, że ktoś przypadkiem uzyskał substancję o obiecujących właściwościach. Imię tego pracownika nie jest chyba znane, zaś uważny Willey stał się znany jako odkrywa polichlorku winylidenu (PVDC).

Niemniej spektakularne było odkrycie Williama Perkina.
Już jako mały chłopiec po tym jak starszy kolega pokazał mu jakąś sztuczkę z kryształkami, zainteresował się chemią. Ucząc się w dobrej szkole i wykazując nadzwyczajny talent już jako piętnastolatek rozpoczął studia pod przewodnictwem Wilhelma Hoffmana, zostając wreszcie jego asystentem. W roku 1856 zajmował się on próbami syntezy chininy. Wiedziano z grubsza z badań stosunków pierwiastków że zawiera ona części aromatyczne i azot, toteż sprawdzano różne kombinacje, mając nadzieję że za którymś razem wyjdzie. Osiemnastoletni wówczas Perkin zajmował się utlenianiem aniliny przy pomocy chromianu potasu, niestety otrzymywana ze smoły węglowej anilina była mocno zanieczyszczona i po przeprowadzeniu reakcji otrzymał w naczyniu ciemnobrązową smołę, którą nie w sposób było usunąć.
W zasadzie produkt był do wyrzucenia, jednak gdy płukał naczynie alkoholem zauważył, że zabarwił się on na intensywnie fioletowo-różowy kolor, a zanurzona w nim szmatka zafarbowała się bardzo mocno. W tym momencie domyślił się zastosowań praktycznych i gdy tylko opanował metodę produkcji, ustaliwszy że substratem jest zanieczyszczająca anilinę toluidyna, nie czekając na opinię profesora opatentował drugi znany syntetyczny barwnik, nazwany przezeń moweiną - dowodząc przy tym, że oprócz zapału posiadał też żyłkę do interesów. Przekonał krewnych do założenia pierwszej fabryki i farbiarni i już wkrótce zarobił na niej tyle że w wieku 36 lat mógł odejść od pracy zarobkowej i zajmować się chemią wyłącznie dla własnej satysfakcji - czego mu bardzo zazdroszczę.
W późniejszych latach odkrył kilkanaście innych barwników anilinowych.
Wiktoriańska suknia barwiona moweiną

Pierwszym sztucznym barwnikiem była purpurowa fuksyna odkryta przypadkiem przez jego mentora, Wilhelma Hoffmana rok wcześniej. Nie miał on jednak takich zdolności jak jego student, i zanim opatentował ten związek, ubiegł go pewien francuz.

Bawiąc się
Zawsze po skończeniu ćwiczeń z analityki, gdy pozostawało już tylko wylać poreakcyjne mieszanki i umyć próbówki, zwykłem byłem mieszać ze sobą różne wylewane ciecze, aby zobaczyć co się stanie. Zwykle otrzymywałem różnobarwne warstwy, czasem doprowadzałem do jakiejś barwnej reakcji, ale często też nie działo się nic szczególnego. Bawić się w laboratorium, zasadniczo, nie powinno, ale czasem zabawa może być twórcza.
Gdy w 1930 roku Carrots odkrył nowy polimer, będący produktem kondensacji kwasu dikarboksylowego i diaminy, początkowo wydawało się, że nie znajdzie zastosowania, miał bowiem dosyć niską temperaturę topnienia. Jeden z asystentów, Julian Hill, mieszając w kolbie ze świeżym, jeszcze nie skrzepłym materiałem zauważył, że gdy wyciągnął mieszadełko, na jego końcu powstało równe włókienko. Wydawało się jednak że tym sposobem nie da się otrzymać dłuższych włókiem, jednak gdy szef laboratorium był nieobecny, Hill postanowił się pobawić - na jednym końcu korytarza postawił zlewkę ze stopioną masą, zanurzył w niej bagietkę i odbiegł wyciągając kilkunastometrowe włókno cienkie jak włos. W dodatku gdy już ostygło, można było rozciągnąć je jeszcze bardziej zwiększając jego twardość i wytrzymałość.
Później okazało się, że podczas wyciągania długie cząsteczki polimeru porządkują się wzdłuż, a po rozciągnięciu powstałej nici dodatkowo splatają, dając materiał o bardzo pożądanych właściwościach. Pierwsze tego typu włókna roztapiały się w gorącej wodzie, więc trzeba było poczekać kilka lat, aż znaleziono trudnotopliwy polimer kwasu adypinowego i heksanodiaminy, nazwany Nylonem.[1]

Niechcący i błędnie
Odkryć można dokonać wykonując błędnie znany proces i niechcący prowadząc do niebezpiecznych skutków. Przykładem Karl Neumann, który pracując w laboratoriach BASF zajmował się pewnego razu sulfonowaniem naftalenu. W kolbie reakcyjnej znalazł się więc naftalen i dymiący kwas siarkowy. Zawartość kolby należało co pewien czas mieszać, a że akurat na podorędziu nie było bagietki szklanej, wbrew przepisom zaczął mieszać termometrem. Robił to na tyle intensywnie, że stłukł go a metaliczna rtęć wlała się do środka. Powstający siarczan rtęci stał się katalizatorem wywołującym przemianę części naftalenu do bezwodnika ftalowego, co wykazały analizy "zepsutej" zawartości kolby. Poprzednio stosowany proces polegał na utlenieniu naftalenu tlenem i miał niską wydajność. Teraz można było produkować bezwodnik ftalowy na tyle tanio, że można go było wykorzystać jako substrat w produkcji Indygo. Synteza Neumanna została wprowadzona przez BASF w 1897 roku.

Przez nieumyte ręce
Jedną z podstawowych zasad wpajanych początkującym adeptom pracy laboratoryjnej jest to, aby nie próbować żadnej substancji, nawet wody destylowanej, nie wdychać oparów i i niczego nie jeść, oraz dokładnie myć ręce po pracy. Ma to dość oczywiste uzasadnienie, jako że wiele substancji z którymi można się zetknąć na pracowni jest trujących lub szkodliwych, a i trudno wykluczyć zanieczyszczenie nimi miejsc i naczyń wydawałoby się bezpiecznych. Przekonałem się o tym gdy pewnego razu polizałem lejek z sączkiem szklanym, aby przekonać się o fakturze. Niestety wcześniej lejek był czyszczony stężonym kwasem a poprzedni uczeń go nie przemył, dlatego szybko poczułem pieczenie a przez kilka następnych dni nie czułem smaku na koniuszku języka.. Tak czy siak zdarzało się że chemicy o tych regułach bezpieczeństwa zapominali, a zdarzało się że przy okazji odkrywali ciekawe właściwości badanych substancji.

W roku 1878 dwaj chemicy Ira Remsen i Constantin Fahlberg pracowali nad wyodrębnianiem substancji ze smoły węglowej. Po skończonej pracy zaczęli jeść bułki przyniesione z domu jako drugie śniadanie,  zauważyli wtedy, że bułki smakowały bardzo słodko, ale z gorzkawym posmakiem. Remsen myślał nawet, że żona przez pomyłkę posypała masło cukrem, ale potem zauważył ten sam posmak na palcach. Poprzedniego dnia pracowali nad toluenosulfonamidem i nie umyli rąk. Wspólnie opisali syntezę i właściwości związku, nazywając go Sacharyną. Był to pierwszy sztuczny słodzik używany przez cukrzyków, a w czasie wojny również jako zamiennik cukru przy braku dostaw.
Po kilku latach od odkrycia obaj panowie się pokłócili, bo Fahlberg po cichu opatentował metodę syntezy w kilku krajach, nie dając nic wspólnikowi.
Bardzo podobna historia zdarzyła się w 1937 roku, gdy amerykański student chemii  Michael Sveda pracował przy produkcji leków przeciwgorączkowych opartych na sulfonamidach. Paląc papierosa przy laboratoryjnym stole na chwilkę odłożył go w miejsce, gdzie wcześniej kapnął mu jeden z roztworów. Gdy znów wziął go o ust zauważył, że ustnik stał się bardzo słodki. Wkrótce odkryty przezeń słodzik, nazwany cyklaminianem, wprowadzono jako dodatek do gorzkich leków, a potem dosładzano nim napoje.
Kolejnym słodzikiem odkrytym w ten sposób był aspartam. Jego odkrywca Schlatter, szukając leku na wrzody w roku 1965 pobrudził nim dłoń, a potem poślinił palec aby rozdzielić sklejone strony książki. Dwa lata później w identyczny sposób Karl Klaus odkrył acesulfam K.
Poczet oblizujących się chemików zamyka szwajcarski chemik Albert Hofmann, który zajmował się poszukiwaniem silnie działających leków w trujących grzybach. Pochodna kwasu lizergowego, którą stworzył w 1938 roku miała być lekiem na astmę, ale nie została wówczas zbadana. Dopiero w 1943 roku postanowił ponownie przyjrzeć się temu związkowi. Niewielka ilość zanieczyściła mu palce i podczas jedzenia dostała się na usta. Po powrocie do domu doznał uczucia niepokoju, więc położył się do łóżka i przeżył dwugodzinną wizję podobną do fantastycznego snu. Trzy dni potem świadomie zażył większą dawkę, i wracając do domu na rowerze doznał tak silnych halucynacji, że ledwie trafił. Na pamiątkę tego zdarzenia miłośnicy LSD obchodzą 19 kwietnia Dzień Roweru. Ale to już inna historia.
Karteczki nasączone LSD

Te przypadki dotyczyły dobrych stron odkrywanych związków. Jak łatwo się domyśleć o chemikach odkrywających silne trucizny nie mogliśmy usłyszeć, bo nie było by komu ogłosić tego odkrycia.

Bo za długo leżało
Bywa że nowe substancje odkrywane są podczas porządkowania stołu laboratoryjnego, w trakcie sprawdzania starych próbówek i kolb z czymś zapomnianym. Bo przecież niektóre reakcje zachodzą bardzo powoli, i tylko zapominalskość chemika może sprawić, że da on substancjom odpowiednio dużo czasu.

W 1839 roku berliński aptekarz Eduard Simon zajmował się badaniem storaksu - aromatycznej żywicy Ambrowca balsamicznego, o właściwościach odkażających, stanowiącej składnik kadzideł. Próbując uzyskać bardziej aromatyczne składniki przeprowadził destylację z parą wodną i otrzymał oleistą ciecz, którą nazwał styrolem. Zebrał ją do buteleczki, odłożył na półkę i zajął się innymi sprawami. Po kilku dniach okazało się że zawartość butelki zgęstniała do formy twardej galarety, którą nazwał styroloksydem. Kilka lat później podobną substancję uzyskano bez dostępu powietrza. Wreszcie Berthelod stwierdził że w obu przypadkach powstaje ta sama substancja, zaś procesem nie jest utlenianie lecz łączenie cząsteczek w długie łańcuchy. Tak powstające tworzywo sztuczne nazwano polistyrenem. Najpospolitszym jego zastosowaniem jest produkcja styropianu.
Podobna jest historia polichlorku winylu. Chlorek winylu, czyli chlorek etenu, jako pierwszy otrzymał Regnault w 1835 roku. Powstałą lotną ciecz zamknął w buteleczce i położył na parapecie. Gdy po kilku dniach sobie o niej przypomniał znalazł tam brązową, elastyczną masę. Minęło jednak kilka dekad i odkrycia popadło w zapomnienie aż w 1872 roku powtórzyła się w laboratorium Eugena Baumana. Otrzymawszy większą ilość stwierdził, że masa jest podobna do galalitu i gdyby można ją było otrzymywać w dużych ilościach, byłaby dobrą masą plastyczną. Pierwszy zakład produkcji PCW wyglądał osobliwie - na dużym placu ustawiano obszerne butle wypełnione chlorkiem winylu i zostawiano na kilka dni aby świeciło na nie słońce. Potem butle rozbijano a bryły tworzywa przetapiano. Nie był to za bardzo ekonomiczny sposób, więc dopiero wynalezienie katalizatorów polimeryzacji pozwoliło wprowadzić nowy materiał na szeroki rynek.

We śnie
Och, jakże bym tak chciał. Zdrzemnąć się gdzieś a pomysły same przychodzą do głowy. Próbuję zatem drzemek w różnych porach, ale jak na razie bez skutku.
Najbardziej znanym chemikiem, którego sny do czegoś się przydały, był August Kekule - ale nie zrodziły się one z próżni.

W XIX wieku chemia organiczna dopiero raczkowała. Pierwsze syntezy związków organicznych z tych nieorganicznych to lata 20. Pierwsze reakcje na takich związkach zaczęto stosować niedługo później. Jedną z rzeczy jakie nurtowały chemików, była budowa materii - coś co odróżniało jedną substancję od drugiej. W zasadzie jedynym po czym, oprócz ich właściwości fizycznych, rozróżniano między substancjami, był stosunek wagowy składowych pierwiastków. Metan składał się z węgla i wodoru w stosunku 1:4, etan z tego samego, ale w stosunku 1:3 a butan w stosunku 2:5.
Teoria atomowa Daltona pchnęła sprawę do przodu - jeśli pierwiastki składają się z jednakowych cząstek, to związki są różnego rodzaju mieszaninami, w których atomy pierwiastków łączą się ze sobą w różnych kombinacjach. Odkrycie, że różne substancje mogą posiadać ten sam stosunek ilościowy pierwiastków zaciemniło obraz. Wyglądało na to, że różnicą jest nie ilość a sposób łączenia atomów, co siłą rzeczy nasuwało myśl o jakiejś strukturze - tylko jakiej? W powyższych przykładach ze stosunków ilościowych wynikałoby, ze w jednym związku atom węgla łączy się z wodorem przez cztery wiązania, w drugim przez trzy a w kolejnym w bardziej skomplikowany sposób.
Kekule 1857 roku ogłosił, że jego zdaniem liczba możliwych wiązań dla danego pierwiastka jest stała i dla węgla wynosi 4. Rodziło to oczywiste problemy z przypisaniem wszystkim połączeniom odpowiednich atomów i sprawiło że miał się nad czym zastanawiać. Zastanawiał się aż do znużenia. I tak oto, znużony, wracał do domu omnibusem i zdrzemnął się na jednym z siedzeń, gdy przyśniły mu się atomy:
Zatonąłem w marzeniach i przed moimi oczami zaczęły krążyć atomy. Zawsze widziałem te małe twory w ruchu. Teraz widziałem, jak dwa mniejsze łączą się ze sobą w pary, jak większe otaczają dwa mniejsze, a jeszcze większe utrzymywały to wszystko w zawrotnym tańcu. Widziałem, jak większe atomy tworzyły łańcuch, wciągając mniejsze, ale tylko na końcach łańcucha[2]
Obudzony przez konduktora miał gotowe rozwiązanie - ilości wiązań i stosunki będą zachowane, jeśli uznamy, że węgle łączą się same ze sobą tworząc łańcuchy. Tłumaczyło to też stosunki ilościowe w kolejnych, coraz cięższych alkanach, mogąc wywieść je z reguły 2N+2 wskazującej że atomów wodoru jest o dwa więcej niż dwukrotność liczby atomów węgla. Teoria była rozwijana i stosowana do coraz większej ilości związków. Uzupełniono ją, uznając możliwość tworzenia podwójnych wiązań. Aż nasz chemik zajął się próbą ustalenia, wedle tych zasad, struktury benzenu. I poległ.
W przypadku benzenu stosunek ilościowy wynosił 1:1, czyli tyle samo węgla co wodoru. Z badań reakcji podstawienia było wiadomo że zawiera sześć węgli i nijak nie dało się ich połączyć zgodnie z zasadami. Cztery wiązania podwójne się nie mieściły a próby izomerów z bocznymi łańcuchami też nie dawały efektów. I byłby się być może Kekule załamał, gdyby nie drugi sen, jaki naszedł go przed płonącym kominkiem:

Znowu atomy harcowały przed moimi oczami. Tym razem mniejsze grupy trzymały się skromnie z tyłu. Moje duchowe oko, wyostrzone przez powtarzające się podobne wizje, rozróżniło teraz większe twory o różnorodnym kształcie. Długie szeregi, kilkakrotnie ściśle ze sobą złączone, wszystko w ruchu, wijące się wężowato i skręcające się. Patrzę, co się stało? Jeden z węży chwycił swój własny ogon i szyderczo kręcił się przed moimi oczami. Obudziłem się jak rażony piorunem i resztę nocy spędziłem na rozpracowywaniu wniosków z tej hipotezy.[b]
No tak. Jeśli założyć trzy wiązania podwójne i pierścieniową budowę, to wszystko się zgadza.

Czy zatem Kekule miał proroczy sen? Cóż, co do samej opowieści wysnuwane są wątpliwości - chemik opisał je w luźnym przemówieniu z okazji 25 rocznicy swych odkryć, przed tą datą brak poświadczeń. Niewykluczone, że przypisanie snom rozwiązania mogło zasłaniać fakt, że założenia obu teorii zostały dobrane arbitralnie, na zasadzie "tak musi być bo pasuje" i dopiero do nich dołączono poświadczenia doświadczalne. Inni wskazują, że sugestie pierścieniowej budowy tego związku wysnuwano już wcześniej, nie ogłaszając ich jednak jako oficjalnej teorii.
Sen Kekulego bywał zresztą w rozmaity sposób interpretowany - w okresie popularności analizy sennej psycholog Mitserlich uznał że nagłe przebudzenie było wywołane zaniepokojeniem, to z kolei poczuciem utraty władzy; że zaś wedle klasycznej psychoanalizy marzenia senne mają związek ze strefą seksualną, długi wąż gryzący swój ogon został więc przezeń uznany za penisa, nie mogącego podążać, a sen za wyraz frustracji i pożądania, niezaspokojonego po śmierci żony.[3] W taki sposób każdą rzecz można sprowadzić do seksu.
Alternatywne struktury C6H6

Mozołem i pracą
Ale nie zawsze proces odkrywczy wygląda tak ładnie jak to przedstawiałem. Niestety z reguły odkrycie jest końcem długiego procesu, i nawet olśnienie stanowi jedynie początek pracy. Dobitnie przekonał się o tym Paul Ehrlich, twórca chemioterapii. Zgodnie z opracowaną przez siebie teorią "magicznej kuli" wedle której lekiem na określoną chorobę bakteryjną ma być substancja, zatrzymująca ważne procesy w organizmach bakterii i tylko ich, zaczął poszukiwać leku na syfilis.
Wiedział że Atoksyl, lek na śpiączkowe zapalenie mózgu, może też poprawiać stan chorych na syfilis, jednak dopiero w niebezpiecznych dawkach. Uznał zatem że należy znaleźć taką organiczną pochodną arsenu, jaka będzie silnie toksyczna dla prątków kiły, a słabo dla człowieka. Zaczął więc po kolei syntezować - pochodne aminokwasów, kwasów karboksylowych, fenoli, aldehydów itd. Trudno sobie wyobrazić nakład pracy, podczas której tworzył po kilka nowych związków na miesiąc i sprawdzał właściwości. I po kolei stwierdzał, że związki te się nie nadają. Pewną nadzieję dawała arsenofenyloglicyna, zsyntetyzowana jako substancja nr. 418, nawet była testowana w Afryce, ale nie dawała pełnego wyleczenia. Aż wreszcie po czterech latach pracy, w roku 1909 stwierdził, że tym idealnym związkiem jest substancja nr. 606, znana później jako Salwarsan. Paradoksalnie rok wcześniej Erhlich dostał nagrodę Nobla za całkiem inne odkrycia dotyczące surowic odpornościowych.

Serendipity
Skąd biorą się takie szczęśliwe przypadki, nazywane przez anglików "serendipity"? A no stąd, że wszędzie dzieje się wszytko. Jeśli jakieś zdarzenie, proces chemiczny, jest możliwe, to kiedyś musi zaistnieć. Rzecz jednak nie w tym, że pewne zdarzenia mają miejsce, lecz w tym, aby zauważyć je i zrozumieć znaczenie.
W końcu niezamierzona synteza ciekawego związku nie mogła przydarzyć się każdej osobie, a tylko tej, które zajmuje się określonymi procesami - a ta ma większe szanse dostrzec coś ciekawego w tym, co ktoś inny uznałby za nieudany wynik. Jak zauważył trafnie Pauster, któremu podobne przypadki się przydarzały: "Szczęście sprzyja przygotowanym umysłom". Jules H. Comroe opisał przypadkowe odkrycia znacznie dosadniej: "To szukanie igły w stogu siana i odnalezienie córki rolnika". Czego też życzę czytelnikom...
-------
[1]  http://articles.chicagotribune.com/1996-02-04/news/9602040105_1_nylon-du-pont-mr-hill
[2]  http://pl.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz
[3]  http://www.sgipt.org/th_schul/pa/kek/pak_kek0.htm

poniedziałek, 4 marca 2013

Dziś w laboratorium (23.)

Dziś w laboratorium w ramach seminarium magisterskiego prezentowałem grupie przebieg wywiązywania i skraplania amoniaku. Aby tego dokonać należało użyć dość dużej ilości suchego lodu, ten zas szybko sublimował i należało go przetrzymać w naczyniu Dewara. Gdy po wyjęciu kostki zajrzałem do srebrzystego wnętrza, nie mogłem się powstrzymać przed zrobieniem zdjęcia:

Naczynie Dewara jest właściwie szklaną powłoczką. To jak szklana butelka której ścianki są wewnątrz puste, a w tej przestrzeni panuje techniczna próżnia. Ciepło słabo rozchodzi się w próżni, właściwie tylko przez promieniowanie podczerwone - a te z kolei jest odbijane przez srebrzystą powłoczkę. Zatem naczynie dobrze izoluje swe wnętrze od zmian temperatury, o czym mógł się przekonać każdy użytkownik termosu, będącego przecież domowym naczyniem Dewara.

Opis skraplania amoniaku (i zdjęcia) oraz po co mieliśmy to robić dodam za parę dni, jak tylko mi się zechce.