poniedziałek, 12 sierpnia 2019

Wody i ich minerały

Jaka woda mineralna zawiera najwięcej selenu, a jaka wapnia? I czy właściwie warto jest je pić?

   Woda mineralna, wedle dziś uznawanej definicji, to woda wydobywana z ujęć podziemnych, która jest naturalnie czystsza od zwykłej wody pitnej, oraz ma określony, stabilny skład. Nie będzie więc wodą mineralną ta uzdatniana, która płynie w naszych kranach, choć niekiedy parametry obu wód są podobne. Dawniej, na potrzeby działalności zakładów wodoleczniczych stosowano definicję, uznającą za wodę mineralną tylko taką, która ma powyżej 1g/l składników rozpuszczonych. Zawężało to ilość wód mineralnych do około 30.
   Dziś wodą mineralną może więc zostać w zasadzie każda woda głębinowa o niezmiennym składzie i czystości, stąd też namnożyło się ich nam na rynku na prawdę sporo (ponad 130), i trudno zdecydować jaką wybrać.

Czy wody mineralne mogą być potraktowane jako dobre suplementy składników mineralnych? Niespecjalnie. Mimo wszystko w popularnych wodach składników mineralnych nie jest zbyt wiele. Wprawdzie najbardziej nawapniona woda mineralna, zawiera w litrze 1/4 zalecanej dziennej dawki Ca, ale przy spożyciu doustnym wchłanialność soli wapnia wynosi do 30%. Biorąc pod uwagę znaczne rozcieńczenie, próba uzupełnienia dobowej dawki wodą mineralną może być trudna, oraz prowadzić może do zwiększonego wypłukania tychże minerałów z moczem. Wody mineralne są najwyżej jednym z dodatkowych źródeł, ale główne zapotrzebowanie powinna zaspokajać po prostu żywność dobrej jakości i odpowiednio zróżnicowana.

Na podstawie kilku różnych źródeł postanowiłem podsumować informacje o tym, jaka woda zawiera najwięcej różnych jonów.

Wapń
Pierwiastek dość rozpowszechniony i w praktycznie każdej wodzie mineralnej jest obecny. Najwięcej z tych, które znalazłem, jest go w trudnej do zdobycia litewskiej wodzie Vytatuas, bo ponad 500 mg/l. Jest to woda generalnie dość słona, zawierająca przede wszystkim chlorek sodu. Z wód krajowych, łatwiej dostępnych w sklepach, najwięcej wapnia jest w Muszynie Minerale (456 mg/l), Kryniczance (436 mg/l) i Galicjance (415 mg/l)

Sód
Najczęściej występuje jako chlorek i wodorowęglan, stąd najwięcej jest go w wodach bardzo słonych i alkalicznych. Najzasobniejsza jest woda uzdrowiskowa Magdalena, zawierająca 8g/l Na. Następne w kolejce są wody Zuber (6,1g/l), Szczawa II (5,1) Szczawa I (4,8) Franciszek (3,8); z łatwiej dostępnych Wysowianka (0,39 g/l) czy Słotwinka (0,29g/l)
Jeśli chodzi o wody niskosodowe, zwykle bardzo mało sodu mają wody źródlane,  na przykład Górska Natura podaje na etykiecie tylko 1 mg/l co jest chyba najniższą jeszcze podawaną wartością, niewiele więcej podaje Dobrowianka (2 mg/l) i Primavera (2,4 mg/l)

Potas
Ma właściwości podobne do sodu i zwykle występuje wraz z nim w różnej proporcji, nie będzie więc zaskoczeniem, że najzasobniejsza w ten pierwiastek jest woda Zuber (288 mg/l). Następne w rankingu to Szczawa I (208 mg/l), Hanna (104), Franciszek (90), a z szerzej dostępnych, słodkich Wielka Pieniawa (64), Polanicka Zdrój (38).

Magnez
Ze względu na podobieństwo do wapnia i niekiedy występowanie z nim w skałach, zwykle towarzyszy mu w alkalicznych szczawach, jednak wodą zawierającą go najwięcej jest u nas Zuber, która po prostu zawiera najwięcej wszystkiego, przez co jest wodą uzdrowiskową trudną do przełknięcia. Zawiera 363 mg/l magnezu. Następna w kolejce to nie taka łatwa do znalezienia woda Muszyńskie Zdroje, zawierająca 292 mg/l, oraz pojawiająca się w sklepach
Słotwinka (244 mg/l). Z wód bardziej popularnych, obfitym źródłem jest Muszynianka (135 mg/l) i Galicjanka (90 mg/l).

Dla porównania wody rozprowadzane przez wodociągi są zwykle miękkie lub lekko twarde i nie zawierają zbyt wiele magnezu. Z kilku badań które przeglądałem, najbardziej w magnez obfitowała woda z ujęcia w Dąbrowie Górniczej, zawierająca 48 mg/l. [d]


Fluorki
Obecność w wodzie fluorków zwykle wiąże się ze złożami fluorytu i fluoroapatytu, ale może też wynikać z obecności niektórych turmalinów. Zwykle pojawiają się w ujęciach podgórskich, z uwagi na bliskie podchodzenie pod powierzchnię skał magmowych - i tutaj w badaniu z 2010 najwyższą zawartość fluorków miała Długopolanka (1,5 mg/l).
Fluorki  mogą jednak pojawiać się na niżu w związku z obecnością w podłożu osadów polodowcowych z odseparowaną frakcją ciężkich minerałów, lub przenikaniem wód głębinowych. Chyba ta przyczyna spowodowała, że łatwo dostępną wodą mineralną o drugiej najwyższej zawartości fluorków, jest Augustowianka (1 mg/l - około 30% dziennej dawki). Jest to woda czerpana z dość dużej głębokości (450 m), lekko słonawa, zawierająca też chlorki sodu, wapnia i magnezu.  Z innych łatwo dostępnych wód Polanica Zdrój zawiera o połowę mniej fluoru - 0,5 mg/l, podobnie Staropolanka i woda zdrojowa Henryk, kilkanaście wód zawiera 0,3-0,1 mg/l, a wiele innych w ogóle go nie wymienia.

Dla porównania są rejony, w których ze względu na minerały fluoru w glebie, zawartość fluorków w wodzie wodociągowej z ujęć lokalnych także osiąga spore wartości. W Toruniu dawniej czynne były ujęcia tzw. "studni kredowych" ujmujących wody z warstwy kredy, zawierające nawet 1,5 mg F w litrze; aktualnie toruńska kranówka zawiera 0,2-0,4 mg/l.[f] Wysokie poziomy fluoru związanego ze złożami osadów, notuje się w studniach na Żuławach. Wynika to zapewne z warstwy osadów z okresu Permu, w miejscu dawnej zatoki morskiej. Pomiędzy złożami soli i gipsu znaleziono skupiska fluorytu. W studniach głębinowych z okolic Malborka fluorków było nawet 3,5 mg/l.[g] Podwyższone poziomy notuje się też w Tczewie, Gdańsku, Sieradzu, i w okolicy Kalisza.

Siarczany
Obecność w wodzie siarczanów zwykle wiąże się ze złożami gipsu. Uzupełniają one nieorganiczną siarkę, ale ze względu na działanie osmotyczne, przy stężeniach przekraczających 1g/l zaczynają działać przeczyszczająco. Najwięcej zawiera ich litewska woda Vytatuas (989 mg/l), a z krajowych Solannova (472), czy MagneVita (192). Z szerzej dostępnych stosunkowo sporo zawiera ich Polanicka Zdrój (100 mg/l), Polaris (88 mg/l [p]) i Selenka (85 mg/l).

Lit
Pierwiastek ten ma właściwości podobne do innych metali alkalicznych, jak sód czy potas, toteż często im towarzyszy. Dlatego wodami mineralnymi o największej jego zawartości są zwykle wody silnie zmineralizowane, słone. Króluje tu wybitnie słona woda Zuber (18,5 mg/l), dalej Szczawa II (14,5), Szczawa I (11,6) i nieco bardziej znośna Franciszek (5,2). Z wód łatwo dostępnych, słodkich, stosunkowo dużo litu zawiera Piwniczanka (0,6 mg/l) i Galicjanka (0,2).
Nie ma zbyt wielu informacji o zawartości litu w wodach wodociągowych, z którymi można by porównać te wyniki. Zwykle się go nie bada.

Jod
Jod ma właściwości chemiczne podobne do chloru, więc często występuje w wodach słonych. Z tych, których skład sprawdzałem, najwięcej ma go woda Dziedzilla (4,4 mg/l) i Szczawa II (3,0 mg/l), nieco mniej Szczawa I i Hanna (2,5 mg/l), Franciszek (2,2 mg/l). Są to wody zdrojowe, czasami spotykane w sklepach w małych buteleczkach.

Selen
Selen jest pierwiastkiem rzadkim i potrzebnym organizmowi w śladowych ilościach. Chemicznie jest najbardziej podobny do siarki, stąd występuje w wodach siarczkowych i siarczanowych, często też żelazistych, wynikających z kontaktu ze złożami pirytu.
W analizie z 1999 roku stwierdzono, że najwięcej selenu zawierały wody Cristal (0,514 ug/l = 0,0005 mg/l), Krynica Zdrój niegazowana (0,5 ug/l), Nałęczowianka niegazowana (0,498) Muszynianka niegazowana (0,495), Multi Vita (0,460) i Kryniczanka (0,450).  W wodach gazowanych zwykle było go mniej niż w niegazowanych, być może z powodu występowania części pierwiastka w lotnych formach. Podczas standardowych oznaczeń próbkę się odgazowuje, więc im więcej gazu miała woda, tym większe były różnice między wersją gazowaną i niegazowaną.[s]
Obecnością selenu chwali się woda z Wieńca Zdroju, o chwytliwej nazwie Selenka, choć trudno powiedzieć, czy jest w ten pierwiastek jakoś wyjątkowo zasobna. Podawana na etykiecie wartość <0,02 mg/l to tylko granica oznaczalności metody, pod nią mieszczą się wszystkie podane wcześniej wyniki zawartości, a także maksymalna dopuszczalna zawartość dla wód pitnych (0,01 mg/l). Miejsce w rankingu mogłyby ustalić dokładne wyniki analizy, ale tej nigdzie nie da się znaleźć.

Inne rzadkie
W teście popularnych wód na zlecenie UOKiK z 2012 roku[u] zbadano też niektóre rzadsze pierwiastki, w tym rad i radon.W żadnej z wód radioaktywność nie przekraczała norm, choć szczególnie duża była w Staropolance 2000 - całkowita dawka przy trwającym rok codziennym uzupełnianiu płynów tylko tą wodą wyniosłaby 0,175 mSv/r  - przy czym producent zalecał dzienną dawkę wody 1l, co obniżało skumulowane narażenie do 0,088 mSv/r. Żadna z wód nie przekraczała też norm dla zawartości uranu ale największe stężenie wykazano dla Ustronianki (1,2 ug/l).

------
* http://www.wodamineralna.netmark.pl/ - ranking wód bazujący na informacjach z etykiet
* Łukasz J. Krzych i inni, CHARAKTERYSTYKA WÓD BUTELKOWANYCH DOSTĘPNYCH
W SPRZEDAŻY W WOJEWÓDZTWIE ŚLĄSKIM, ROCZN. PZH 2010, 61, Nr 1, 37 - 43

[d] D. Bodzek i inni, Zawartość wapnia i magnezu w wybranych wodach i osadach ściekowych Górnego Śląska, Ochrona Środowiska, 4(71) 1998

[f]  http://www.wodociagi.torun.com.pl/index.php?lang=PL&m=faq
[g] Halina Łazarz i inni, Fluor w wodach podziemnych wschodniej części Żuław Wiślanych, Kwartalnik Geologiczny, I. 31, nr 1. 1987 r., Str. 69 - 82
[p] Anna Pasternakiewicz i inni,  Badania zawartości wybranych anionów nieorganicznych
w wodach mineralnych i źródlanych – pod kątem bezpieczeństwa zdrowotnego wody, Probl Hig Epidemiol 2014, 95(3): 788-793
[s] Masłowska J., Ocena zawartości selenu w naturalnych wodach mineralnych dostępnych na rynku w Polsce, Żywność 3 (20) 1999
[u] https://www.bankier.pl/static/att/90000/2467072_Wybrwody.pdf

środa, 7 sierpnia 2019

Ostatnio w laboratorium (70.)

Badanie zawartości fosforanów przy pomocy testu z błękitem molibdenowym:
   Na potrzeby chemików stworzono wiele prostych testów pewnych właściwości, ułatwiających im przygotowywanie odczynników i pomiar. Na przykład papierki wskaźnikowe różnego typu, od kwasowo-zasadowych, przez wykrywające utleniacze (papierki jodoskrobiowe), siarkowodór (papierki ołowiowe), czy nawet testy paskowe do wykrywania witamin, narkotyków albo hormonów, nieraz z całkiem przyzwoitą dokładnością.
   Przykładem mogą być gotowe zestawy w próbówkach, do oznaczeń kolorymetrycznych - próbkę dodaje się do próbówki, w której jest już odczynnik, do tego dodaje się inne, zakręca, miesza i wykonuje pomiar. Parę takich zestawów mieliśmy w laboratorium, jako dodatek do jednego ze spektrofotometrów, mającego w oprogramowaniu gotową metodę oznaczania, z wpisaną zależnością stężenia od nasycenia koloru, bez potrzeby tworzenia krzywej kalibracyjnej.
   Zestaw generalnie służył do badania wody lub ścieków, ewentualnie roztworów z niezbyt dużą ilością zanieczyszczeń organicznych. Sądziłem, że raczej zestaw się za bardzo nie przyda, najwyżej czasem zbadamy wodę używaną w zakładzie. Aż pojawił się problem.

   Należało w miarę szybko oznaczyć w pewnym surowcu roślinnym zawartość fosforu. Przepatrzyłem odczynniki. Soli baru, używanych do wytrącania i oznaczania fosforanów grawimetrycznie, nie było. Wzorce do ICP też nie miały tego niemetalu. Postanowiłem trochę zaimprowizować, i zastosować test na fosforany w wodzie, który w swoim składzie zawierał odczynnik molibdenianowy.
  Próbka została spalona w piecu elektrycznym do białego popiołu. Ten rozpuszczony w kwasie solnym. Po przesączeniu od frakcji popiołu nierozpuszczalnego w kwasie otrzymałem roztwór do badań.
  Test jest dość czuły ale ma pewien wąski zakres w którym daje miarodajne wyniki, należało więc rozcieńczyć. Pierwsze rozcieńczenie przesączu do 250 ml dało roztwór wciąż zbyt stężony. Rozcieńczenie go w stosunku 1:10 trochę poprawiło sytuację, ale nadal było to poza zakresem dokładnej oznaczalności. Dopiero kolejne rozcieńczenie dało roztwór, którego stężenie mieściło się w zakresie testu.

   Związkiem barwnym powstającym w tej reakcji, był błękit molibdenowy. dość ciekawy związek nieorganiczny, będący rozbudowanym anionem, tworzonym przez aniony molibdenianowe z jednym jonem innego pierwiastka. Musi to być anion tlenkowy o tetraedrycznym układzie tlenów wokół centralnego atomu, zwykle reakcję wywołuje jon ortofosforanowy, krzemianowy, arsenianowy V i germanianowy.
W roztworze wodnym aniony molibdenianu VI tworzą z dodatkowym jonem strukturę klatkową, w której człony molibdenianowe zamykają w sobie anion obcy. Powstaje tak zwana struktura Keggina.

Struktura Keggina dla fosforowolframianu
Jon ten jest jeszcze bezbarwny. Pod wpływem środków redukujących dodawanych do mieszaniny - może to być kwas askorbinowy lub chlorek cyny - następuje redukcja jednego lub dwóch atomów molibdenu na niższy stopień utlenienia, bez zmiany samej struktury jonu. W wyniku tego między atomami o różnym utlenieniu zachodzą przejścia elektronowe, skutkujące pochłanianiem światła i pojawianiem się koloru.

Reakcja ta może więc albo wykrywać aniony tworzące z molibdenianem barwny związek, albo przy użyciu roztworu gotowego anionu fosforomolibdenianowego wykrywać obecność i ilość związków redukujących. W niektórych przypadkach anion bywa używany jako reduktor, w syntezie organicznej czy przy farbowaniu tkanin. W takim zastosowaniu fosforomolibdenian amonu stanowi jeden z roztworów używanych w histologii przy trójkolorowym barwieniu Massona - tkanki traktuje się kolejno hematoksyliną żelazową, zabarwiającą na ciemno jądra komórkowe, fuksyna zabarwia różowo acydofilne elementy, w tym składniki cytoplazmy, komórki mięśniowe i kolagen. Fosforomolibdenian usuwa fuksynę z kolagenu, który jest ostatecznie zabarwiany błękitem anilinowym.
Podobny błękitny kolor daje analog wolframianowy.