informacje



Pokazywanie postów oznaczonych etykietą chemia organiczna. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą chemia organiczna. Pokaż wszystkie posty

środa, 14 października 2015

Tajemnice czerni czyli bardzo długie nazwy

Będąc ostatnio w sklepie przeglądałem różne płyny i proszki do płukania tkanin, szukając czegoś do usuwania zafarbowania, bowiem po nieopatrznym wrzuceniu wraz z bielizną czarnych skarpet, okazało się, że wszystkie rzeczy zabarwiły się na kolor szaro-niebieski. Oczywiście zaglądałem na składy bo nie chodziło mi po prostu o wybielacz. Niestety składy środków czyszczących są zwykle nadmiernie ogólnikowe. Nawet mi, jako chemikowi, skład "10% anionowe środki powierzchniowo czynne, 10% kationowe środki czynne, 10% niejonowe środki czynne" nic właściwie nie mówi. Dlatego też w pewnym zdumieniem odczytałem skład środka mającego przywracać czarny kolor, gdzie nie tylko podano główne składniki, ale w dodatku podano ich pełne nazwy chemiczne. A były to nazwy tak długie i skomplikowane, że ledwie się zmieściły. Osobę nie zorientowaną takie nazwy mogą przerazić. Zaś chemika zaciekawić.

Nazwy te to:
* 4-amino-6-[5-(5-chloro-2,6-difluoropirymidyno-4-ylamino)-2-sulfonianofenyloazo]-5-hydroky-3-{4-[2-(sulfonianooksy)etylosulfonylo]fenyloazo} naftaleno-2,7-disulfonian litu-sodu-wodoru
* 7-(4,6-dichloro-1,3,5-triazyn-2-yloamino-4-hydroksy-3-{4-[2(sulfonianoksy)etylsulfonylo] fenyloazo} naftaleno-2-sulfonian disodu;
* kwas 5-naftaleno-disulfonowy,2-[2-8[[4-chloro-6[[4-[[2-(sulfooksy)etylo]sulfonylo]fenylo]amino-1,3,5-triazin-2-yl]amino]-1-hydroksy-3,6-disulfo-2-naftalenylo]diazenylo]-, sól sodowa(1:5)
Zaś aby je prawidłowo odczytać należy dowiedzieć się coś niecoś na temat tego jak właściwie tworzone są nazwy związków chemicznych.

Nazewnictwo związków organicznych podporządkowane jest zasadzie opisania związków tak, aby możliwe było dysponując samą nazwą rozrysować strukturę cząsteczki. Najczęściej używany sposób traktuje strukturę cząsteczki hierarhicznie, to jest wyróżnia pewien rdzeń do którego przyczepione są podstawniki, do tych mogą być dołączone inne poboczne podstawniki zależnie od stopnia rozgałęzienia. Nazwa wymienia więc kolejno podstawniki podczepione do rdzenia, najczęściej w kolejności alfabetycznej aby na końcu przejść do nazwy rdzenia i zakończyć końcówką specyficzną dla grupy funkcyjnej. Podstawnikom przypisywane są liczbowe określenia miejsca w którym są dołączone do rdzenia, liczone począwszy od grupy funkcyjnej rdzenia. Najbardziej optymalna zasada jest taka, aby zaczynać liczenie podstawników od takiego miejsca, aby przypisane im liczby były jak najmniejsze.

Nazwy podstawników są zwykle tworzone od nazw związków z jakich można by je otrzymać. Podstawnik -CH3, będący metanem bez jednego wodoru, to metyl, podstawnik -CH2-CH3 będący etanem bez jednego wodoru to etyl. Czasem nazwy podstawników pochodzą od innej niż zwykle używana nazwy związku wyjściowego, podstawnik będący benzenem bez jednego wodoru to nie benzenyl tylko fenyl. Pewne grupy mają swoje stałe nazwy, przykładowo złożona z pięciu węgli grupa którą można by nazwać dimetyloprolylową, jest nazywana tert-amylową, zaś grupa utworzona z etenu to grupa winylowa.

Zacznijmy więc od najprostszych przypadków:
Rdzeniem cząsteczki jest dwuwęglowy łańcuch etanu. Do niego podłączone są dwa podstawniki - chlorowy i hydroksylowy. Ten drugi można uznać za grupę funkcyjną zaś sam związek za pochodną alkoholu etylowego. Licząc od węgla przy którym jest grupa -OH, chlor jest połączony z drugim, stąd też nazwa 2-chloroetanol. Następny przykład:
Tutaj sytuację możemy potraktować dwojako - albo uznamy, że to nadal pochodna etanolu, tylko że z dodaną grupą metylową -CH3, albo uznamy że to pochodna propanolu. W tym pierwszym przypadku zaczniemy nazwę od podstawnika zaczynającego się na literę wcześniejszą w alfabecie, będzie to 2-chloro-2-metyloetanol. Zwykle jednak w takich sytuacjach preferuje się przedłużenie rdzenia czyli potraktowanie metylu jako dalszej części łańcucha. Związek będzie wtedy pochodną propanolu i nazywać się będzie 2-chloropropanol.
Oba sposoby opisu są w zasadzie równoważne bo z obu można wywnioskować poprawną strukturę, preferowany jest jednak ten drugi, bowiem skutkuje prostszą nazwą. Różnice w sposobie opisu powodują, że często związek na wiele synonimów nazwy.

Tutaj znów sytuację można różnie opisywać. Możemy na przykład uznać, że jest to pochodna etanu, z chlorem przy jednym węglu, dwoma metylami przy drugim i grupą fenylową przy tymże. Wtedy nazwa będzie brzmiała 1-chloro-2,2-dimetylo-2-fenyloetan. Możemy uznać jedną z grup metylowych za przedłużenie łańcucha, tak że będzie to pochodna propanu o nazwie 1-chloro-2-metylo-2-fenylopropan. Ale możemy też uznać, że dwie grupy metylowe i łączący je węgiel to główny rdzeń, wtedy związek będzie się nazywał 2-chlorometylo-2-fenylopropan. Ja preferowałbym tą drugą ale w internecie związek częściej występuje pod tą ostatnią.

Kolejny przypadek zawiera podstawniki połączone przez różne miejsca:
Tą cząsteczkę można opisać na dwa sposoby - albo jako pochodną chlorobenzenu albo jako pochodną kwasu benzoesowego. W tym pierwszym przypadku grupa złożona z kwasu benzoesowego będzie grupą 3-karboksyfenolową albowiem dla tego podstawnika grupą funkcyjną od której liczone są miejsca jest grupa karboksylowa. Podstawnik jest podłączony przez węgiel od którego grupa ta jest przy trzecim stąd nazwa całego podstawnika 3-karboksyfenylowy. Licząc w rdzeniu od chloru, grupa ta znajduje się na drugim miejscu, stąd aby nie pomieszać cyferek, trzeba dodać nawias w którym mieścić się będzie nazwa całej grupy, stąd zapis: 2-(3-karboksyfenlo)-chlorobenzen.
Możemy też potraktować cząsteczkę jak pochodną kwasu benzoesowego, wówczas nazwa będzie brzmiała kwas 3-(2-chlorofenylo)-benzoesowy. Ta druga wersja jest częściej używana.

A teraz podstawnik z podstawnikiem z podstawnikiem:
I trzy możliwości - albo to pochodna chlorobenzenu, albo fenolu albo kwasu benzoesowego. Dla pierwszej wersji nazwa brzmi: 2-{4-[2-(2-karboksylofenylo)fenoksylo]}-metylenochlorobenzen bo jest to chlorobenzen do którego w miejscu 2 podłączono przez mostek metylenowy -CH2- fenol, łączony przez pozycję 4 wobec grupy hydroksylowej i sam mający przy pozycji 2 grupę karboksyfenylową, połączoną przez węgiel w pozycji 2. I tu widać ten hierarchiczny opis.
Dla drugiej opcji będzie to 4-(2-chlorofenylometyleno)-2-(2-karboksyfenylo)-fenol. Dla trzeciej kwas 2-{2-[4-(2-chlorofenylometyleno)-fenoksy]}-benzoesowy. Ta druga wersja jest preferowana bo jest w niej mniej nawiasów.

Skoro już przeszliśmy ten krótki kurs nazewnictwa, zajmijmy się tymi długaśnymi nazwami z doczerniacza.

4-amino-6
Pierwszy związek jest bardzo długi:
4-amino-6-[5-(5-chloro-2,6-difluoropirymidyno-4-ylamino)-2-sulfonianofenyloazo]-5-hydroksy-3-{4-[2-(sulfonianooksy)etylosulfonylo]fenyloazo} naftaleno-2,7-disulfonian litu-sodu-wodoru
jednak już z pobieżnego przejrzenia wychwycić można czym jest tutaj rdzeń do którego podczepiono podstawniki - to sama końcówka nazwy "naftaleno-2,7-disulfonian litu-sodu-wodoru". Mamy tu więc do czynienia z rozbudowaną solą sulfonową, zobojętnioną częściowo sodem a częściowo litem, z dwiema grupami sulfonowymi pochodzącymi od kwasu siarkowego w pozycjach 2 i 7. Naftalen to związek złożony z dwóch pierścieni aromatycznych połączonych bokiem i może mieć maksymalnie do ośmiu podstawników liczonych w tej kolejności:
Wiemy, że rdzeń ten zwiera już dwie grupy sulfonowe, a co z resztą? Resztą są cztery podstawniki, w tym dwa bardzo rozbudowane, pierwszy to fragment "4-amino" i jest to grupa aminowa -NH2 podłączona przy pozycji 4 a drugi zaczyna się od "6-[5-(5-chloro-" trzeci to "5-hydroksy" i jest grupą hydroksylową -OH podczepioną przy pozycji 5, czwarty zaczyna się od "3-{4-[2(sulfonianooksy". Nazwę można więc rozbić na części oznaczając je kolorami:
4-amino-6-[5-(5-chloro-2,6-difluoropirymidyno-4-ylamino)-2-sulfonianofenyloazo]-5-hydroksy-3-{4-[2-(sulfonianooksy)etylosulfonylo]fenyloazo} naftaleno-2,7-disulfonian litu-sodu-wodoru

To nadal jest zawiłe ale już widzimy jak to opanować. Teraz rozbierzmy na części podstawniki:
6-[5-(5-chloro-2,6-difluoropirymidyno-4-ylamino)-2-sulfonianofenyloazo] - tutaj mamy trzy wyraźne części. Grupa zaczyna się od pirymidyny zawierającej dwa podstawniki fluorowe w pozycjach 2 i 6 wobec azotu od którego zaczynamy liczyć i chlorowy w pozycji 5, i jest połączona przez węgiel 4 z mostkową aminą:
 Poprzez tą aminę połączona jest z węglem 5 grupy 2-sulfonianofenyloazowej:
Która poprzez grupę azową połączona jest z rdzeniem naftalenowym w pozycji 6

Drugi podstawnik:
* 3-{4-[2-(sulfonianooksy)etylosulfonylo]fenyloazo} - zaczyna się od grupy sulfonianooksylowej, czyli reszty kwasu siarkowego połączonej przez tlen -OHSO3 z grupą etylową do drugiego węgla. Grupa ta przez pierwszy węgiel etylu jest połączona z sulfonylem poprzez który w pozycji 4 łączy się z grupą fenyloazową:



a przez ugrupowanie azowe z miejscem 3 rdzenia naftalenowego. 

Po złożeniu tego do kupy otrzymujemy taki oto związek, tu w wersji soli sodowej:



Czym jest ten skomplikowany związek? Rozpuszczalną formą barwnika azowego. Grupy azowe -N=N- to silne chromofory a więc zapewniają cząsteczce kolor, podstawione wzmacniającymi efekt grupami aromatycznymi z wyciągającymi elektrony podstawnikami halogenowymi dają w efekcie silne zabarwienie. Ten konkretny związek znany jest też pod nazwą handlową Reactive Blue 225 i farbuje na kolor ciemnoniebieski

7-[4-(6-dichloro
Następny związek w składzie to także bardzo rozgałęziona sól sulfoniowa będąca pochodną naftalenu. Zaznaczmy poszczególne części:
7-(4,6-dichloro-1,3,5-triazyn-2-yloamino-4-hydroksy-3-{4-[2(sulfonianoksy)etylsulfonylo] fenyloazo} naftaleno-2-sulfonian disodu;

Rdzeniem jest naftalen, który w pozycji 4 ma dołączoną grupę hydroksylową a w pozycji 2 sulfonylową. Dwa pozostałe podstawniki są rozbudowane.
Pierwszy to pierścień 1,3,5-triazyny, związku aromatycznego w którym w sześciokątnym pierścieniu co drugi atom stanowi azot. Pierścień w dwóch miejscach podstawiony jest chlorem i poprzez węgiel w pozycji 2 połączony z aminą, a ta z naftalenem w pozycji 7. Drugi jest taki sam jak w poprzednim związku - grupa sulfoksylowa połączona przez tlen z etanem, ten z ugrupowaniem sulfonowym, to z benzenem a ten z grupą azową łączącą go z naftalenem.

Ostateczny wzór przedstawia się zatem następująco:

Związek ma też oznaczenie handlowe Orange HF SNK lub Reactive Orange FD 19969 FW, jest to zatem kolejny barwnik azowy, tym razem zapewne ciemno-pomarańczowy. Znajduje się na listach substancji niebezpiecznych w dziale substancji wywołujących podrażnienia skóry[2] [3]

kwas 5-naftaleno-disulfonowy
Ten związek będzie można już łatwiej rozszyfrować bo pewne jego elementy są podobne do poprzednich.
Zaznaczając poszczególne części, jest to: kwas 2-[2-[8-[[4-chloro-6[[4-[[2-(sulfooksy)etylo]sulfonylo]fenylo]amino-1,3,5-triazin-2-yl]amino]-1-hydroksy-3,6-disulfo-2-naftalenylo]diazenylo]-5-naftaleno-disulfonowy sól sodowa(1:5)
Cząsteczka wygląda zatem następująco:
Nazwa handlowa Reactive Red 195A [4]

I po co to wszystko?
Cóż. Czarne tkaniny szarzeją z powodu spierania lub ścierania ciemnych barwników. Dlatego omawiany doczerniacz po prostu farbuje tkaninę. Są to barwniki reaktywne, to jest wchodzące w reakcję z materiałem włókna i tworzące trwałe połączenia; reakcji ulegają włókna naturalne, dlatego preparat nie nadaje się do tkanin z włókiem całkowicie sztucznych.
 Zauważmy, że żaden z wymienionych barwników nie jest czarny. Tak na prawdę nie ma czarnych barwników, czerń oznacza, że dany przedmiot pochłonął na tyle dużo światła, iż nie jesteśmy w stanie określić jego koloru, jednak rozcieńczając czarne tusze możemy się przekonać, że zwykle są one po prostu mieszanką bardzo ciemnych brązów i błękitów (zaś brąz to bardzo ciemny odcień pomarańczy). Czarne tulipany są w rzeczywistości fioletowe, tylko dość intensywnie. Czerń można osiągnąć zatem albo używając jakiegoś barwnika w tak dużym stężeniu, że będzie pochłaniał większość światła, albo mieszankę barwników, z których każdy pochłania jakąś część spektrum.
W tym przypadku zmieszanie barwników intensywnie niebieskiego, pomarańczowego i żółtego, daje czerń. Być może gdybyśmy włożyli do prania białą tkaninę, to okazałaby się ostatecznie raczej szara, ale dla tkanin czarnych które tylko nieco spłowiały i wytarły się wystarczy przyciemnienie jasnych miejsc aby wyglądały na zdecydowanie czarniejsze.

----------
* http://www.auchandirect.pl/sklep/artykuly/1171_1240_1630/99701801/Dla-Domu/Pralnia/Odplamiacze/Renowator-koloru-czarnego-Dylon-2-szt.-1-szt

[2] http://www.pis.gov.pl/userfiles/file/departament%20Higieny%20%C5%9Arodowiska%20JUPIK/chemia%20prawo/elincsk-wykaz%20substancji.pdf pozycja 404-600-07
[3]  http://www.chemindustry.com/chemicals/41146.html
[4] http://ofmpub.epa.gov/sor_internet/registry/substreg/searchandretrieve/advancedsearch/externalSearch.do?p_type=CASNO&p_value=77365-64-1

wtorek, 6 października 2015

Chemiczne wieści (2.)

Wysokociśnieniowy osm.
Zachowanie się materiałów pod ekstremalnie wysokim ciśnieniem to dość ciekawa sprawa Ciała stałe zasadniczo uznaje się za nieściśliwe, jednak w rzeczywistości mają pewną niewielką ściśliwość, zaś poddanie ich wysokiemu ciśnieniu powoduje zbliżenie budujących je atomów, czasem powodując przemianę do nowej formy uporządkowania lub ujawnienie się nietypowych cech.

Zespół naukowców pod kierunkiem niemieckiego uniwersytetu Bayreuth dokonał ostatnio dość szczególnego odkrycia. Przy pomocy nowej komory ciśnieniowej udało się im wytworzyć najwyższe dotąd otrzymane ciśnienie statyczne - nacisk 770 GPa, czyli ciśnienie dwa razy większe niż w jądrze Ziemi. Ciśnieniu temu poddano natomiast najbardziej gęsty metal - osm - znany też z bardzo niskiej ściśliwości.
Jeśli prawie najmniej ściśliwy materiał poddano najwyższemu ciśnieniu, to chyba powinno z tego coś wyniknąć? Wbrew oczekiwaniom osm nie przyjął żadnej nowej struktury krystalicznej, jedynie atomy nieco się do siebie przybliżyły, zachowując ten sam układ co w warunkach normalnych. Zaskoczeniem okazało się natomiast coś innego - pomiędzy atomami oprócz znanych już wiązań metalicznych, utworzonych przez elektrony walencyjne, zaczęły się także pojawiać oddziaływania utworzone przez elektrony wewnętrznych powłok elektronowych, które nigdy nie biorą udziału w tworzeniu wiązań. [1]

Wcześniej znane były wyliczenia teoretyczne sugerujące możliwość tworzenia wiązań między wewnętrznymi elektronami przy dużych ciśnieniach, ale teraz taka możliwość znalazła jakieś potwierdzenie w badaniach rentgenowskich rzeczywistego materiału.

Najtrudniej topliwy materiał
Tantal, metal przejściowy podobny do cyrkonu, jest znany z wysokotopliwego węgliku, który staje się płynny dopiero w temperaturze 3880*C, podobną temperaturę topnienia ma węglik hafnu. Połączenie tych substancji daje materiał o jeszcze większej odporności na temperaturę, dla składu Ta4HfC5 topiący się dopiero przy 3990 stopniach Celsiusza. Ale fizykochemicy nie poprzestają. Nowe wyliczenia jakie właśnie opublikowano sugerują możliwość stworzenia jeszcze trwalszego materiału. Wedle symulacji mieszany węglik-azotek hafnu o optymalnym składzie HfN0,38C0,51, osiągnąć może temperaturę topnienia nawet do 4400*C.[2]
Pozostaje teraz tylko poczekać na próby uzyskania nowego materiału.

Bateria z grzybów
W poprzednim odcinku wieści mówiłem już o otrzymywaniu kwantowych kropek ze zmiksowanej kapusty, dlatego baterie do telefonów ze zwęglonych grzybów nie będą chyba aż tak zaskakujące.
Wszystko co trzeba o metodzie. Udostępnione przez University of California

Jednym z głównych komponentów baterii litowych jest grafitowa anoda, zwykle wytwarzana z syntetycznego grafitu porowatego. Jego wytworzenie w ilościach przemysłowych jest jednak nieco skomplikowane i niezbyt ekologiczne, stąd liczne próby stworzenia dobrej alternatywy. Jedną z tych prób opisuje praca badaczy z University of California.
Wzięli oni cienki plaster wycięty z owocnika grzyba, akurat w tym przypadku była to pieczarka, po czym poddali go zwęgleniu w hydroreaktorze w wysokiej temperaturze. Otrzymany zwęglony plaster dodatkowo wyżarzono uzyskując porowaty materiał złożony ze splecionych węglowych włókien zachowujących strukturę strzępek grzyba i przewodzący prąd, będący dobrym zamiennikiem grafitu. Anoda wytworzona ze zwęglonego grzyba nie potrzebuje dodatkowych lepiszczy, dobrze przyjmuje płynny elektrolit i dobrze oddziałuje z jonami. Bardzo możliwe że ze względu na strukturę będzie wytrzymywała więcej cykli ładowania.[3]

Woda orto, woda para 
Jądro atomu wodoru to proton, który jako samotna cząstka posiada szczególną właściwość jaką jest spin. W dużym uproszczeniu można przedstawić to jako wektor momentu pędu protonu, mogącego obracać się bądź w jedną lub w drugą stronę - opis kwantowy tego zjawiska jest dużo bardziej skomplikowany. Ponieważ proton jest cząstką naładowaną, jego spin powoduje powstanie małego jądrowego pola magnetycznego. W sytuacji gdy mamy cząsteczkę wodoru składającą się z dwóch atomów te jądrowe pola magnetyczne oddziałują ze sobą i możliwe stają się dwie sytuacje którym odpowiadają różne energie - wodór orto ma spiny skierowane w tą samą stronę, wodór para w przeciwną. Ta druga sytuacja jest minimalnie korzystniejsza energetycznie jednak różnica energii jest na tyle mała że w warunkach normalnych wodór posiada mieszankę cząsteczek z tych dwóch stanów z przewagą ortowodoru.

To zresztą ciekawa sytuacja - pod wpływem temperatury trwalszy parawodór przechodzi w ortowodór, natomiast przemiana w drugą stronę jest powolna bowiem utrudnia ją zabronione przejście kwantowe. W efekcie w wodorze gazowym przeważa mniej trwała energetycznie odmiana, co ma też przełożenie na skład wodoru ciekłego. W niskich temperaturach powolna przemiana ortowodoru w trwalszy parawodór ma istotne znaczenie dla przechowywania, bowiem przemiana ta przebiega z wydzielaniem ciepła. Aby więc ułatwić przechowywanie ciekłego wodoru, katalizuje się tą przemianę przy pomocy odpowiedniego dielektryka otrzymując przewagę trwalszej formy.
Wróćmy jednak do naszego newsa.

W cząsteczce wody dwa wodory znajdują się na tyle blisko siebie, że także i u nich powinna być możliwa izomeria spinowa, jednak dotychczas nie udało się tego wykryć. Cząsteczki wody oddziaływały ze sobą powodując ciągłą zmianę spinów, toteż trudno było uchwycić sygnał od populacji poszczególnych izomerów. Jak się jednak okazało, możliwe jest odizolowanie od siebie cząsteczek. Zespół badaczy z University of Suthampton otrzymał pochodną fullerenu C60 z pojedynczymi cząsteczkami wody wewnątrz węglowej kul. Tego typu połączenie stanowi kolejny przykład związków cząsteczek "połączonych acz nie związanych" jak omawiane tu kiedyś katenany.
Cząstki C60@H2O były wystarczająco odizolowane aby w niskich temperaturach możliwe było wykrycie czystych sygnałów izomerów spinowych wody i przemian jednego w drugi.
[4]

Paliwo z powietrza
Temat przeróbki dwutlenku węgla na paliwo jest aktualnie bardzo gorący, stąd też w ostatnich miesiącach ukazało się wiele doniesień dotyczących nowych sposobów takiej syntezy.
Wedle doniesień z początku sierpnia zespół z Argonne National Laboratory stworzył nowy katalizator do reakcji zamiany dwutlenku węgla i wody w metanol. Znane dotychczas katalizatory oparte o tlenki cynku i glinu zostały zmodyfikowane poprzez precyzyjne umieszczenie na powierzchni tlenku cynku klastrów czterech atomów miedzi, stanowiących centrum katalityczne do którego przyłącza się cząsteczka CO2. Materiał pozwala na przeprowadzanie reakcji w warunkach niższego ciśnienia i temperatury, co poprawia opłacalność całego procesu produkcyjnego. [5]

A co robić z metanolem?  Można go użyć jako paliwa, ale można też poddać innym procesom. Pod koniec września pojawiła się praca zespołu z ETH w Zurychu na temat nowego katalizatora umożliwiający ekonomiczny proces konwersji metanol-olefina (MTO). Metanol lub eter dimetylowy pod odpowiednim ciśnieniem może ulegać przemianie na powierzchni tlenku cynku, z wytworzeniem etenu. [6]

Mniej toksyczne wydobycie złota
Jednym ze sposobów na uzyskanie złota ze złóż w których występuje w postaci rozproszonej, jest metoda rtęciowa, w której wykorzystuje się zdolność rtęci do rozpuszczania złota i tworzenie amalgamatu, od którego może być oddzielona przez destylację. Dziś już w zasadzie się od niej odchodzi z powodu wysokiej szkodliwości, mimo to wciąż używają jej małe kopalnie w biedniejszych rejonach świata, co jest źródłem zanieczyszczeń. Szacuje się że nawet 40% rocznych emisji rtęci do środowiska pochodzi z małych kopalni Indonezji i środkowej Afryki.
Oczywiście można próbować różnych zakazów, ale trudno jest je egzekwować, tym bardziej że praca w kopalniach stanowi często jedyne źródło utrzymania najbiedniejszych. Jest też jednak ich przekleństwem - pracownicy mieszający skałę z rtęcią, wyciskający amalgamat (nawet ręcznie) a zwłaszcza pracujący przy wypalaniu amalgamatu dla usunięcia rtęci po kilku latach zaczynają chorować. Skażenie wraz z zanieczyszczonym złotem przenosi się do miast gdzie na opary rtęci narażone są rodziny złotników przetapiających surowe złoto.

Jednym z ciekawych sposobów aby sprawić, że proces stanie się mniej groźny dla tych, którzy nie chcą z niego zrezygnować, jest dostarczenie wytwórcom tanich aparatów do bezpieczniejszej destylacji.
Geochemik Marcello Veiga z kanadyjskiego Uniwersytetu Inżynierii i Górnictwa opracował przyrząd podobny do blaszanej retorty, takiej jak używane przez dawnych alchemików. Zbiornik w którym wyżarzany jest amalgamat kończy się długą opadającą rurą, której wąski koniec kończy się w zbiorniku z zimną wodą. Opary rtęci zamiast trafiać do atmosfery są skraplane a krople metalu zbierane na dnie zbiornika, dzięki czemu może być użyty ponownie. W efekcie emisje rtęci spadają o 90%, mniej jej trafia do środowiska a pracownicy są mniej narażeni na toksyczne opary[7]


---------
[1] The most incompressible metal osmium at static pressures above 750 GPa;L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov; Nature (2015); DOI: 10.1038/nature14681
[2]  Prediction of the material with highest known melting point fromab initiomolecular dynamics calculations. Qi-Jun Hong, Axel van de Walle. Physical Review B, 2015; 92 (2) DOI: 10.1103/PhysRevB.92.020104
[3] Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Brennan Campbell, Robert Ionescu, Zachary Favors, Cengiz S. Ozkan, Mihrimah Ozkan. Scientific Reports, 2015; 5: 14575 DOI: 10.1038/srep14575
[4]  Electrical detection of ortho–para conversion in fullerene-encapsulated water. Benno Meier, Salvatore Mamone, Maria Concistrè, Javier Alonso-Valdesueiro, Andrea Krachmalnicoff, Richard J. Whitby, Malcolm H. Levitt. Nature Communications, 2015; 6: 8112 DOI: 10.1038/ncomms9112

[5]   Carbon Dioxide Conversion to Methanol over Size-Selected Cu4Clusters at Low Pressures. Cong Liu, Bing Yang, Eric Tyo, Soenke Seifert, Janae DeBartolo, Bernd von Issendorff, Peter Zapol, Stefan Vajda, Larry A. Curtiss. Journal of the American Chemical Society, 2015; 137 (27): 8676 DOI: 10.1021/jacs.5b03668
[6]  Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina, Aleix Comas-Vives, Maxence Valla, Christophe Copéret, Philippe Sautet.. ACS Central Science , 2015 r.; 150807151553006 DOI: 10,1021 / acscentsci.5b00226

[7]  http://www.rsc.org/chemistryworld/2015/08/chemistry-saves-thousands-gold-miners-mercury-poisoning

poniedziałek, 12 stycznia 2015

Chemicy i ich zatrucia

W  artykule na temat anegdot o chemikach, gdzie omawiałem ich odkrycia, wspomniałem że w odróżnieniu od słodzików czy innych dobroczynnych substancji, o tych którzy przypadkiem odkryli silną truciznę mogliśmy nie usłyszeć. Tymczasem wygląda na to, że jednak nie. Niektóre takie przypadki znanych zatruć chemików udało mi się wygrzebać.
A wszystko przez nieostrożność i odrobinę pecha...

Kropla która powali słonia
W roku 1964 grupa badaczy pod przewodnictwem Kennetha Bentley'a zajmowała się otrzymywaniem pochodnych tebainy, opiatu podobnego do morfiny, o nowych, bardziej korzystnych właściwościach leczniczych. Zasadniczo wiedzieli oni, że otrzymywane związki mogą mieć działanie na organizm, najwyraźniej jednak nie pilnowali się tak bardzo, skoro pewnego dnia jeden z nich zamieszał w dzbanku kawy szklaną bagietką, zanieczyszczoną śladami nowo otrzymanego związku. Śladowe ilości związku wystarczały, aby dziesięciu badaczy wpadło w śpiączkę. Jak się potem okazało, nowa pochodna, nazwana potem Etorfiną, jest 2 tysiące razy silniejsza od morfiny. Nie nadaje się na narkotyk bo zbyt łatwo można ją przedawkować. Znalazła zastosowanie do obezwładniania dużych zwierząt, efekt usypiania następuje bowiem bardzo szybko i równie szybko ustępuje po podaniu antidotum.[1]

Etorfina w dawce 4 mg jest używana w strzałkach do usypiania słoni.


Kapnęło
Gdy w grudniu 1936 roku chemicy IG Farben pod przewodnictwem Gerharda Schradera otrzymali nowy związek fosforoorganiczny, sądzili że będzie to tylko kolejny insektycyd, do zwalczania mszyc albo wszy. O tym że środek może się okazać skuteczną bronią wobec ludzi, przekonali się w styczniu zupełnie niechcący, gdy jednemu z asystentów kapnęła na stół jedna kropla nowego związku. Wkrótce kilku chemików doznało bólu głowy, duszności i zwężenia źrenic. Objawy osłabienia utrzymywały się u niektórych do kilku tygodni. Nowym związkiem zainteresowało się wojsko. Dziś znany jest jako środek paralityczno-drgawkowy Tabun.[2]

Niebezpieczne eksperymenty
Świetny chemik Humphry Davy, znany z wykorzystania prądu elektrycznego do wyizolowania nowych pierwiastków, u początków swej kariery naukowej zajmował się badaniem wpływu różnych gazów na organizm ludzki. To on doprowadził do tego, że wdychanie gazu rozweselającego stało się popularną rozrywką. Jako pierwszy też zauważył że gaz ten działa znieczulająco, ale inni badacze zignorowali to doniesienie. W pewnym okresie stał się nawet uzależniony od tego środka.

Mniej znanym epizodem tych badań, było doświadczenie z wdychaniem gazu świetlnego - produktu przepuszczania pary wodnej przez żarzący się węgiel, zawierającego znaczne ilości wodoru i tlenku węgla, czyli czadu. Oba te gazy są palne i przez długi czas używano ich do latarni miejskich. Davy sprawdzał działanie gazu, nie wiedząc w jak wielkim jest niebezpieczeństwie.
Nabrał go do pęcherza i przy pomocy rurki wziął pierwszy wdech. Był wtedy sam, nie przyszło mu do głowy angażować asystenta. Po pierwszym hauście gazu poczuł duszności i ból w piersi po czym zemdlał. Torba z gazem obsunęła mu się a rurka wypadła z ust. I całe szczęście, bo drugiego wdechu mógłby nie przeżyć. Po odzyskaniu przytomności zmierzył sobie jeszcze puls i wyszedł do ogrodu gdzie zemdlał jeszcze raz. Ale po kilku dniach powtórzył doświadczenie i opisał wyniki.[3]

Równie niebezpieczny był zwyczaj Karola Scheelego aby próbować i wąchać substancji nad którymi pracował. Gdy w wieku 46 lat zmarł lekarze podejrzewali zatrucie rtęcią, sądząc jednak po liście badań i ich opisach mogła być to kombinacja zatrucia rtęcią, arsenem i kwasem fluorowodorowym.

Prezentacja
Thomas Midgley, o którym wspominałem w poprzednich wpisach (to ten który przemywał oczy rtęcią) najbardziej znany jest z dwóch odkryć - zastosowania freonów w chłodnictwie i związków ołowiu jako przeciwstukowego dodatku do benzyny. W tym ostatnim przypadku wytwarzanie i przechowywanie dodatku, którym był tetraetylenek ołowiu, było procesem bardzo niebezpiecznym. Po kilku śmiertelnych zatruciach w zakładzie Du Pont pracownicy zastrajkowali a prasa rozpisywała się na temat planów dodawania trucizny do paliwa.
Dlatego też Midgley w 1924 roku zorganizował nietypową konferencję prasową. Przekonywał na niej, że ilości związku jakie znajdą się w paliwie są mniej toksyczne niż sama benzyna, a nawet - tutaj wyjął buteleczkę z czystym tetraetylenkiem - i czysty nie jest tak trujący jak to mówią. Na dowód odkręcił buteleczkę i zaciągnął się jej oparami. Potem wylał odrobinę na ręce i rozsmarował. Tak więc widzicie państwo, nic się nie dzieje - przekonywał.
Po tej prezentacji musiał pójść na kilkumiesięczny urlop, podczas którego zmagał się z objawami ciężkiego zatrucia ołowiem.[4]

Pomimo zabezpieczeń
Czasem jednak zabezpieczenia niewiele pomogą. Gdy w 1996 roku Karen Wetterhahn pracowała nad dimetylortęcią, znajdowała się w nowoczesnym laboratorium, a podnosząc fiolkę z kroplą związku miała na rękach lateksowe rękawiczki a na twarzy zasłonę. Przypadkiem fiolka pękła podczas manipulacji a ok. 0,5 ml związku rozprysnęło się po rękawiczkach. Zgodnie z zasadami zdjęła rękawiczki i części ubioru które mogły zostać skażone i wrzuciła do pojemnika na odpady niebezpieczne. Kilka miesięcy później zaczęła doznawać objawów postępującej degradacji układu nerwowego. Jak się okazało, niewielka ilość dimetylortęci zdążyła w ciągu kilku minut przeniknąć przez rękawiczki i wniknąć w skórę. Stamtąd przedostała się do krwi a potem do mózgu, osiągając śmiertelne stężenie. Niespełna rok po wypadku badaczka zmarła z powodu ciężkiego zatrucia tym związkiem.[5]

-------
[1]  http://file.zums.ac.ir/ebook/190-Drugs%20of%20Abuse-Michael%20J.%20Ph.D.%20Kuhar-0761479449-Marshall%20Cavendish%20Corporation-2012-320-$85.pdf str.10
[2]  http://www.epidemiologyandtoxicology.org/files/Nerve_Agents_Sarin_Hx_MoAGEORGE_1_.pdf
[3] Robert Hunt, Dictionary of National Biography volume 14, Humphry Davy
[4]  http://www.psychedelicporcupine.co.uk/2010/05/thomas-midgley-jr-the-worlds-most-destructive-man/
[5] http://en.wikipedia.org/wiki/Karen_Wetterhahn

sobota, 18 października 2014

Liście jesienne

Złota jesień w pełni, wypadałoby więc napisać, skąd to przebarwianie się liści bierze się.

Podstawowym barwnikiem nadającym liściom roślin kolor, jest oczywiście chlorofil, którego zadaniem jest transformacja energii świetlnej w chemiczną, prowadząca do fotosyntezy. Jest to ciekawy związek oparty na pierścieniu pochodnej porfiryny, z przyłączonym długim łańcuchem węglowodoru i z jonem magnezu wewnątrz pierścienia, uchwyconym przez cztery azoty w mocny kompleks.
 Ponadto w roślinach występuje w dwóch odmianach, jako chlorofil a i chlorofil b różniących się bocznymi grupami i odcieniem.
Ten długi ogon dzięki lipofilowości pozwala zakotwiczyć się cząsteczce w błonie tylakoidu, właściwego reaktywnego ciałka chloroplastu. W centrum reaktywnym odpowiedzialnym za pochłanianie i przetwarzanie energii, dwie cząsteczki chlorofilu oplecione są cząsteczką specyficznego białka. Kompleksy złożone z tych białek, chlorofilu i karotenoidów, tak zwane układy antenowe, połączone z błoną i centrum reaktywnym, tworzą fotoukład, będący molekularną maszyną rozkładającą wodę na tlen i wydzielającej chemiczne nośniki energii.
Chlorofil pochłania część światła w zakresie czerwonym i fioletowo-niebieskim, stąd wypadkowy kolor zielony, dosyć chłodny. Pochłonięcie kwantu światła powoduje wzbudzenie elektronowe cząsteczki. Zwykle w chloroplastach cząsteczki pigmentu tworzą agregaty, dzięki czemu szansa że w stosie jakaś cząsteczka pochłonie kwant jest większa. Energia tego wzbudzenia przekazywana jest skokami poprzez kilka cząsteczek aż do centrum reakcyjnego, gdzie od cząsteczki chlorofilu związanej z białkiem, odrywany jest elektron. Dzięki niemu wytwarzane są protony, jedne cząsteczki są utleniane a inne redukowane, aż wreszcie po rozłożeniu wody i wydzieleniu tlenu powstaje ATP będąca chemicznym nośnikiem tej właśnie pochodzącej od światła energii, wykorzystywane przez roślinę do przerobu dwutlenku węgla na więcej rośliny.
Oczywiście upraszczam, ale tak wygląda początkowy etap fotosyntezy, i do tego roślinom potrzebne są pigmenty.

Ale chlorofil to nie jedyny pigment w liściach. Całkiem spory udział mają też karoteny i karotenoidy, a więc cząsteczki z długim łańcuchem węglowodorowym z układem sprzężonych wiązań podwójnych. Mają kolory od żółtozielonego, przez żółty do pomarańczowego jak marchew, w której korzeniu wszakże występują. To one powodują, że kolor liści jest soczystszy i jaśniejszy - oba chlorofile same w sobie mają raczej chłodny odcień.
Dla rośliny karoteny w pewnym stopniu uzupełniają wady chlorofilu, który pochłania trochę światła czerwonego i trochę niebieskiego, zaś pomiędzy tymi zakresami zieje szeroka dziura mieszcząca w sobie światło zielone, którego w widmie słonecznym jest najwięcej.
Różne roślinne karotenoidy pochłaniają też światło z tego szerokiego zakresu:

Każdy taki barwnik po pochłonięciu kwantu światła przechodzi na krótko w stan wzbudzony. Jeśli będzie zawieszony w roztworze to albo wytraci energię poprzez ciepło, albo wypromieniuje jako światło, a wiele karotenów może też zmienić konfigurację cząsteczki.
Inaczej jest jednak, gdy karotenoid znajdzie się tuż przy cząsteczce chlorofilu w centrum reakcyjnym fotosyntezy - może wtedy nastąpić bezpromieniste przekazanie energii i jej wykorzystanie. Dzięki temu z jednej strony rośliny rośliny mogą lepiej wykorzystać energię światła, a z drugiej mogą przy pomocy wolnych karotenów chronić się przed nadmiernym naświetleniem.

Co takiego dzieje się jesienią? Drzewa i rośliny wieloletnie wycofują z liścia cenne składniki, głównie cukry i aminokwasy. Chlorofil zimą jest niepotrzebny, dlatego nie ma potrzeby dalej go produkować. Przez cały rok w liściach działają zarówno enzymy wytwarzające chlorofil jak i enzymy degradujące, zahamowanie produkcji powoduje, że te drugie z czasem, powoli, rozłożą chlorofil na cząsteczki bezbarwne. Reakcja zaczyna się od uszkodzenia białkowego kompleksu. Potem chlorofil jest odłączany od swego "ogona" przez hydrolizujący enzym chlorofilazę. Powstający chlorofilid ma nieco słabszą, ale wciąż zieloną barwę. Potem z kompleksu usuwany jest magnez, tworząc feoforbid o szarozielonkawej barwie. Na koniec ostatni enzym utlenia cząsteczkę, rozrywając pierścień, tworząc bezbarwny produkt końcowy.

Co to powoduje?
Z liści znika zieleń, i ujawniają się dotychczas niewidoczne karoteny i karotenoidy, a liście stają się żółte i pomarańczowe. To one odpowiadają za złoty kolor. W tym miejscu rodzi się więc pytanie - a skąd czerwień?

Za czerwony kolor liści odpowiadają antocyjany, barwniki, które muszą zostać specjalnie wytworzone. Jest to grupa barwników roślinnych odpowiadających za kolor wielu owoców, w tym truskawek, czarnych jagód, a także czerwonej kapusty. Zastanawiające jest natomiast, po co roślinom wytwarzać czerwony barwnik w liściach, z których właśnie wycofywane są składniki odżywcze, i których przeznaczeniem jest odpaść od rośliny.

W pewnym stopniu antocyjany są obroną rośliny przed nadmiernym nasłonecznieniem. Powstają w młodych listkach, dopiero co wychylających się z pąków, ale potem zanikają. Następnie pod koniec lata zaczynają być wytwarzane ponownie, głownie w szczytowych liściach. To dlatego u wielu drzew i krzewów liście na samym szczycie, na które pada najwięcej słońca, zaczerwieniają się na brzegach. W podobny sposób zaczerwieniają się rośliny zielne w szczycie okresu letniego.
Niemniej nie dotyczy to jesieni, gdy słońca jest już mało.
Być może w jakimś stopniu ułatwiają roślinie wycofanie pewnych składników w okresie chłodów, ale jak się wydaje głównym powodem czerwienienia jesiennych liści jest ochrona przed owadami. Jak wykazały badania na krzewach różnych odmian, te o liściach zielonych są częściej atakowane przez mszyce i inne szkodniki niż te o liściach czerwonych cały rok. Warto przy tym pamiętać, że jesienią, wiele szkodników stara się przygotować na zimę, toteż bądź składają jajeczka, bądź hibernują w warstwie liści, i robią to w pobliżu zaatakowanego drzewa. Oznacza to, że drzewa które swym kolorem odstraszyły szkodniki jesienią, będą mniej atakowane wiosną. Dlatego opłaca im się specjalnie wytworzyć czerwony barwnik, który pozostanie w liściach nawet gdy opadną.

A teraz przypomnę chromatografię, aby pokazać jak wyglądają wszystkie barwniki zawarte w liściach, gdy są jeszcze zielone:
Żółta plamka na samej górze, to karoteny. Szare pasmo poniżej to feofityny, produkt rozpadu chlorofilu, niżej są żółtawe ksantofile, następnie ciemnozielony chlorofil b i jaśniejszy chlorofil a. na samym dole ślady innych produktów rozpadu chlorofilu.

------
Źródła:
* http://en.wikipedia.org/wiki/Chlorophyll
* http://en.wikipedia.org/wiki/Photosystem
* http://en.wikipedia.org/wiki/Anthocyanin
* http://en.wikipedia.org/wiki/Autumn_leaf_color
*http://en.wikipedia.org/wiki/Chlorophyllase

czwartek, 17 kwietnia 2014

Barwniki do jaj - chemicznie ujmując

Dwa lata temu opisałem w wielkanocnym wpisie jakie są naturalne metody barwienia pisanek i jakie związki za to odpowiadają. W tym roku zatem opiszę te sztuczne barwniki.

Wprawdzie różni producenci produkują tego typu barwniki, ale jak zauważyłem, praktycznie wszyscy używają tych samych, więc opis na podstawie składu barwników które mam w domu, powinien być reprezentatywny.

Czerwony
W moim zestawie za czerwień odpowiada E 124 czyli czerwień koszenilowa. To dość skomplikowany związek:
Dwie cząsteczki pochodnych naftalenu połączone grupą azową -N=N-. Grupa ta jest silnym chromoforem, a więc ugrupowaniem nadającym barwę, a jej kolor wzmacniają duże cząsteczki aromatyczne.
Wszystkie barwniki azowe mogą wywoływać uczulenia, u osób nadwrażliwych na salicylany zwiększają objawy a u astmatyków zwiększają wydzielanie histaminy. Z tego powodu ich użycie w żywności jest coraz bardziej ograniczane a normy zawartości systematycznie obniżane.

Różowy
W niektórych zestawach kolor różowy jest otrzymywany przez dodatek amarantu czyli E-123, kolejnego barwnika azowego. Ze względu na częste doniesienia o reakcjach nadwrażliwości jest coraz rzadziej używany w przemyśle spożywczym, podbarwia kawior, galaretki w proszku i napoje alkoholowe. Jest podejrzewany o rakotwórczość ale nie potwierdzono tego u ludzi.


Żółty
W moim zestawie znajdują się dwa żółte barwniki. Pierwszy to żółcień pomarańczowa czyli E 110 o kolorze bliższym pomarańczy, także będąca barwnikiem azowym:
Podobnie jak inne tego typu związki może wywoływać uczulenia i pokrzywki, u nadwrażliwych na salicylany daje reakcję. Jest podejrzewana o rakotwórczość ale nie wykazano tego u ludzi, mimo tego wiele krajów jej nie stosuje. Używa się jej do podbarwiania słodyczy i żywności która musi być podgrzewana, jednak coraz rzadkiej. Kiedyś była często stosowana do dożółcania margaryny.
Znalazłem informację, że stężone roztwory wodne przybierają w pewnych temperaturach formę ciekłego kryształu.

Drugi barwnik to tartrazyna, czyli E 102, mająca dość ciekawą budowę:
Jest to także barwnik azowy z grupami aromatycznymi, ale także pierścieniem diazolowym. Charakteryzuje się dużą siłą barwiącą. Pojawia się w szerokiej gamie produktów, zwłaszcza napojach i słodyczach, choć w ostatnich latach jest wycofywania. Używa się jej też w kosmetykach i jako barwnika do wełny.
Może wywoływać te same problemy zdrowotne jak i pozostałe barwniki azowe - pokrzywki, uczulenia, nadwrażliwość itp ale też migreny. Wydaje się, że u pewnych ludzi występuje specyficzna nadwrażliwość konkretnie na tą substancję, także u tych którzy nie wykazują objawów na inne barwniki azowe.
Z tego co czytałem, niektóre zestawy zawierają jeszcze żółć chinolinową czyli E 104, także barwnik azowy, inne też kurkuminę.

Niebieski
Niebieskim barwnikiem jest tu błękit brylantowy, czyli E 133, nie jest to tym razem barwnik azowy:
Jednak grupy sulfonowe przy pierścieniach aromatycznych powodują, że także może wywoływać nadwrażliwość. Uważany jednak za bezpieczny z powodu bardzo nikłego wchłaniania. Jest często stosowany w napojach i słodyczach.

Możliwy do stosowania jest też indygokarmin E 132, pochodna pigmentu indygo (tego od dżinsów), kiedyś o nim pisałem. Nie jest barwnikiem azowym, nie wywołuje uczuleń i należy do najmniej szkodliwych substancji barwiących, jest bowiem bardzo szybko wydalany - na tyle szybko, że może zabarwić mocz na niebiesko.
Nie wiem natomiast czy w zestawach używa się czerni brylantowej - barwnika o intensywnym, niebiesko-fioletowym kolorze

Zielony
Mój zestaw nie zawierał żadnego specyficznego barwnika zielonego. Zielony był zapewne otrzymany ze zmieszania błękitu brylantowego i tartrazyny. W zasadzie możliwe jest użycie w niektórych zestawach E140 czyli chlorofilu lub lepiej rozpuszczalnej E 141 czyli chlorofiliny miedziowej, barwników pochodzenia naturalnego które spotykałem w zestawach barwników spożywczych do deserów.

Jak zatem widzicie, barwniki do jaj to kawał chemii. Czy wobec tego są groźne? Raczej nie - nie wnikają do wnętrza jajka, lecz pozostają związane w skorupce - a tą zdejmujemy i wyrzucamy. Jeśli zaś ktoś ma obawy to powinien od teraz pamiętać, by niezużytych barwników do jaj nie używać do innych rzeczy - a już parę razy czytałem o barwieniu nimi domowych ciast i lukrów, które się przecież spożywa w całości.

Post scriptum:
Znalazłem wynik ciekawego badania - analitycy ze Zgierza przebadali w 2009 roku komercyjne zestawy do barwienia przy pomocy chromatografii cienkowarstwowej. Wykazali, że na 9 przebadanych zestawów, trzy nie zawierały deklarowanych barwników, bądź zawierały w śladowych ilościach, a głównymi składnikami barwiącymi były barwniki do wełny, niedopuszczone do barwienia żywości. Opis badań jest dosyć przystępny:
http://zgierz.impib.pl/images/pdf/181.pdf

środa, 2 kwietnia 2014

Nietypowe minerały

Kilka przykładów minerałów, które zdecydowanie wyróżniają się spośród reszty.


Arkanit
Minerał zawiera w sumie dosyć pospolite pierwiastki, jest to bowiem po prostu krystaliczny siarczan potasu, jest jednak minerałem rzadkim - znajduje się go na terenach hydrotermalnych, na przykład w Lacjum we Włoszech, w pobliżu złóż guano ale też w jaskiniach. Po raz pierwszy opisany jako kryształy na drewnianych podkładach toru wagoników w nieczynnej kopalni, został znaleziony w zaledwie kilku jaskiniach na świecie.
Jego nazwa bierze się z łacińskiego Arcanum co oznacza tajemnicę i nawiązuje zapewne do nie zbyt chętnego pojawiania się na powierzchni. Nazwa ta spodobała się fantastom, i pojawia się w kilku grach komputerowych, jako magiczny, cenny materiał.
Graczy jednak zapewne nie ucieszy wiadomość, że w jaskiniach arkanit powstaje z odparowywania nietoperzego moczu.

Urycyt
Innym minerałem którego powstanie wiąże się z moczem zwierzęcym, jest urycyt, czyli po prostu krystaliczny mocznik. Występuje w jaskiniach suchego klimatu





Karpatyt
Minerał organiczny stanowiący naturalną formę koronenu - węglowodoru aromatycznego w formie pierścienia złożonego z pierścieni benzenowych.

Po raz pierwszy opisany na Ukrainie, znany też ze Słowacji, został nazwany od gór Karpat. Ma postać żółtych igieł i dość wyraźnie świeci w ultrafiolecie na jasno niebiesko.
Sam węglowodór budzi zainteresowanie chemików ze względu na skłonność do samoorganizacji w kolumny ustawionych na płask cząsteczek, jak stos talerzy, co może znaleźć zastosowanie w chemii supramolekularnej.


Minerały płonących hałd
Zapłon skały płonnej wewnątrz pokopalnianej hałdy wywołuje powstanie specyficznych warunków, przypominających tereny wulkaniczne, zaś w miejscach gdzie z wnętrza hałdy wydobywają się gorące gazy, może dochodzić do krystalizacji nietypowych minerałów.
Hałdy zawierające siarczki mogą w ten sposób wytworzyć siarkę rodzimą, te powęglowe także  minerały amoniaku, jak siarczan glinowo-amonowy czyli Czermigit, stanowiący naturalną formę ałunu amonowego. Bardzo nietypowym minerałem jest Kladnoit, znaleziony po raz pierwszy w czeskim Kladnie, stanowiący skrystalizowany ftalimid, ważny odczynik w chemii organicznej. Ma postać przezroczystych płatków:
Towarzyszy mu niekiedy Hoelit, czyli 9,10 antrachinon, związek stanowiący prekursor barwników alizarynowych:


Ponieważ łatwo zamienia się w formę fenolową może stanowić dobry reduktor. Jest też używany w przemysłowej produkcji wody utlenionej. Jako minerał przybiera postać żółtych igieł:

Podobny minerał tworzy acetamid, czyli amid kwasu octowego.


Abelsonit
Jedyny minerał porfiryny.

Porfiryny to ważna grupa związków zawierający obszerny pierścień z czterech cząsteczek pirolu, skierowanych atomami azotu do środka. Pierścień chętnie tworzy kompleksy z atomami metalu, co ma znaczenie dla właściwości związku - porfiryna kompleksująca żelazo to hem, stanowiący aktywnie przenoszącą tlen częścią hemoglobiny we krwi. Chloryna kompleksująca magnez to chlorofil, zielony barwnik roślin. A Abelsonit to krystaliczny kompleks z niklem:
Porfiryny są na tyle trwałe, że często pozostają nierozłożone w pozostałościach po rozpadzie materii roślinnej. Wykrywa się je w torfie, węglu a zwłaszcza w ropie i asfalcie. Częściowo shydrolizowany chlorofil może rozpuszczać się w wodzie i w zetknięciu z solami niklu tworzyć ten specyficzny minerał. Ma postać czerwonych lub pomarańczowych igieł.

Mellit
Mellit nazywany jest też miodowym kamieniem. Ma postać charakterystycznych kryształków powstających w pobliżu złóż węgla brunatnego. Nietypowy jest jego skład - to sól glinowa kwasu melitowego, będącego pochodną benzenu z kwasową grupą karboksylową przy każdym węglu:
Diomignit
Jedyny dotychczas uznany płynny minerał. Ma postać mikroskopijnych płynnych inkluzji wewnątrz kryształów spodumenu i berylu, chemicznie rzecz biorąc to tetraboran litu.

czwartek, 20 marca 2014

Połączone acz nie powiązane

Chemia organiczna jest dziedziną tak obszerną, że można z niej czerpać niemal w nieskończoność.
Toteż i czerpię.

Z pewnością ze szkoły przypominacie sobie że atomy w cząsteczkach mogą być powiązane na trzy podstawowe sposoby - wiązaniami kowalencyjnymi, jonowymi i koordynacyjnymi. Zapewne mówiono tam także o wiązaniach wodorowych, zazwyczaj słabych i pomiędzy różnymi cząsteczkami, choć niekiedy na tyle silnych aby można było uznać powiązane cząsteczki za jeden związek. Oprócz tego istnieje kilka typów słabych wiązań, znanych tylko specjalistom, jak wiązania międzyhalogenowe, oddziaływania Pi-kation i tym podobne.
Jest jednak pewien typ szczególny - związek dwóch cząsteczek, nie związanych żadnym wiązaniem, a mimo to połączonych nierozerwalnie.

Łańcuch
Katenany to związki złożone z pierścieni makrocyklicznych, splecionych ze sobą niczym ogniwa łańcucha. Bez rozrywania prawdziwych wiązań któregoś z pierścieni nie da się oddzielić jednego od drugiego. Najprostsza forma to dwa pierścienie:
[1]


Istnieją oczywiście inne formy, na przykład cząsteczki z wielu połączonych liniowo pierścieni, czyli polikatenany, mające postać łańcucha.
Inny typ nieoficjalnie nazywany pretzelanami, to cząsteczka w której dwa pierścienie połączone są zarówno normalnie jak i przez przeplot:

[2]




Kolejny typ to katenany "kajdankowe" w którym pierścień jednej części jest połączony z dwoma pierścieniami drugiej:



[3]




Pierwsze syntezy takich układów opierały się na przeprowadzaniu reakcji zamknięcia pierścienia w mieszaninie cząsteczek pierścieniowych i liniowych. Z czystej statystyki wynikało, że raz na jakiś czas podłużna cząsteczka wchodzi w otwór pierścienia, i wobec tego czasem może dojść do zamknięcia jej w pierścień w takim położeniu. Wydajność reakcji była tak niska (rzędu 0,0001%) że aby wydzielić rozsądną ilość produktu, przeprowadzono ją w zbiorniku wielkości wanny. Poza potwierdzeniem, że takie związki mogą istnieć, nie pozwalało to na dalsze badania.
Bardziej pomocne okazały się reakcje, w których reagujące cząsteczki były ustawione przed zamknięciem pierścienia przez utworzenie kompleksu, przykładem taka reakcja w której dwie cząsteczki pochodnej fenantroliny z grupami fenolowymi złożono w kompleks z solami miedzi. Geometria kompleksu wymagała aby cząsteczki ustawiły się pod kątem, częściowo zazębiając boczne grupy. W takim ustawieniu można było zamienić je w pierścieniowe etery:
Zmiana warunków usuwająca wiążący atom metalu powodowała oddzielenie splecionych ogniw. W niektórych przypadkach wykorzystanie takich oddziaływań ustawiających cząsteczki przez spierścienieniem pozwala osiągnąć wydajność do 90%

Pierścienie mogą obracać się względem siebie, zwykle w niskich temperaturach ruch jest zablokowany, lecz zmiana warunków uruchamia ruch. Niejednokrotnie geometria powoduje że jeden pierścień obraca się wobec drugiego tylko w jedną stronę. Stąd pomysły zastosowania w maszynach molekularnych.

Turbinka
Drugi typ mechanicznych powiązań, to rotaksany, przywodzące na myśl oś koła przewleczoną przez piastę. Ich cząsteczki składają się z pierścienia nawleczonego na cząstkę podłużną, zawierającą na końcach grupy tak duże, iż pierścień nie może się przez nie przesunąć. I znów bez rozrywania pierścienia lub odrywania końcowych grup nie da się składowych jednostek oderwać od siebie.





Jeśli chodzi o syntezę, to jest tutaj kilka podejść - jedna wersja to nanizanie dziąki oddziaływaniom pierścienia na niedomkniętą oś, po czym zablokowanie drugiego końca. Inna metoda to przewleczenie przez pierścień swobodnej osi i dosztukowanie dużych grup na końcówkach. Kolejna to wykorzystanie zmian wielkości pierścienia w różnych warunkach - miesza się ze sobą podobną do hantli oś i pierścienie, po czym na przykład ogrzewa, pierścień przybiera konformację w której może wsunąć się na oś; po ochłodzeniu kurczy się i już nie może się uwolnić. Można też zamykać pierścień na osi, przytrzymując go za pomocą oddziaływań. Ostatni typ to sprzęganie połówek osi w kompleksie z pierścieniem:

Często oś główna zawiera ugrupowania oddziałujące z pierścieniem w sposób zależny od warunków, przez co przy ich zmianie przesuwa się z jednego położenia w drugie.

 Stąd bardzo obiecujące zastosowanie rotaksanów jako nanoczujników. Inny pomysł to ochrona wrażliwych barwników - w wielu z nich blaknięcie jest wywoływane przez atak utleniaczy na reaktywne ugrupowanie chromofora. Nanizany pierścień przesłania tą część zwiększając trwałość koloru.

Węzeł pierścieni
Kolejny interesujący typ to połączenie przynajmniej trzech pierścieni, spełniających zasady węzła Boromeuszy. Taki układ polega na tym, że z trzech pierścieni dwa nie są ze sobą splecione ani połączone, ponieważ jednak splatają się z trzecim, bez rozrywania go nie mogą być oderwane. Otrzymano kilka takich przykładów, tworząc pierścienie z cząsteczek liniowych ułożonych w przestrzeni za pomocą kompleksowania sześciu atomów metalu:


Pierścienie można połączyć na kilka różnych sposobów, czasem łącząc katenany i węzły, tu znalazłem jeszcze dwa ciekawe:
[4]

Nazwa bierze się od elementu na herbie rodu Boromeuszy, przedstawiającego trzy splecione w taki sposób pierścienia, zapewne naramienniki. Podobny kształt znany jest z rzeźbień i sztuki przedchrześcijańskiej Skandynawii, przedstawiając trzy splecione trójkąty. Uznając ich związek z rytuałami pogrzebowymi współcześni badacze nazwali go vallknuta to jest węzeł umarłych, zaś niekiedy neopoganie uznają go za symbol wiary, choć właściwie nie bardzo wiadomo co znaczył.

Czy da się stworzyć coś jeszcze? Z pewnością tak, zresztą wyobraźnia przestrzenna chemików potrafi wyprodukować na prawdę dziwaczne pomysły, które nieraz z samej tylko ciekawości są realizowane. Ja na przykład wymyśliłem sobie połączenie "pułapka na małpy" - jedna część w kształcie czaszy z otworem, wewnątrz cząsteczka podłużna, wystająca poza otwór, wewnątrz posiadająca zgrubienie większe niż otwór czaszy. Nazwa bierze się z indyjskich pułapek na małpy robionych ze skorup lub glinianych garnków, w których kładziono smakowity orzech. Małpa wsuwała łapę w wąski otwór, zaciskała pięść na orzechu i nie mogła jej ze środka wyjąć nie wyrzucając orzeszka. Jak donosili podróżnicy małpa mocowała się tak długo aż jej nie pochwycono.
Może kiedyś coś takiego zsyntetyzuję?
-----------
*http://www.org-chem.org/yuuki/catenane/catenane_en.html

[1] Patent  Anticancer agent EP 1724265 A1
[2]  Yi Liu , Scott A. Vignon , Xiyun Zhang , K. N. Houk and J. Fraser Stoddart, Conformational diastereoisomerism in a chiral pretzelane, DOI: 10.1039/B507679J (Communication) Chem. Commun., 2005, 3927-3929
[3]  http://www.xtl.ox.ac.uk/diamond-annual-review.html
[4]  David B. Amabilino and Lluïsa Pérez-García, Topology in molecules inspired, seen and represented, DOI: 10.1039/B806114A (Tutorial Review) Chem. Soc. Rev., 2009, 38, 1562-1571