informacje



Pokazywanie postów oznaczonych etykietą kryształy. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą kryształy. Pokaż wszystkie posty

piątek, 24 stycznia 2014

Ostatnio w laboratorium (37.)

W postępach syntetycznych dotarłem już do trzeciego z pięciu zaplanowanych ligandów, zawierającego grupę izopropylową przy pierścieniu oksazolinowym. Problemy z oczyszczeniem powodowały jednak, że otrzymałem niespełna 20 mg związku, więc będę musiał chyba powtórzyć reakcję. Oprócz widma NMR mogłem z tak małą ilością zbadać jeszcze temperaturę topnienia. Przy okazji sfotografowałem drobne kryształki związku:

Topiły się w 159 stopniach. A oto wysumulowany kształt cząsteczki:

niedziela, 19 stycznia 2014

Środki osuszające

Zimą, zamknięci w uszczelnionych przed chłodem mieszkaniach, susząc pranie na rozgrzanych kaloryferach doświadczamy niekiedy warunków iście tropikalnych, gdy nasycona wilgocią atmosfera nie pozwala schładzać się ciału. Wtedy też widzimy wilgoć spływającą z chłodnych okien i marszczące się papierowe gazety. I być może przypominamy sobie wówczas reklamy osuszaczy powietrza, które w jakiś magiczny sposób mają wyssać z powietrza wilgoć.
W jaki sposób? W sposób fizyko-chemiczny...

Skłonność substancji do wchłaniania wody obecnej w powietrzu nazywamy higroskopijnością. Aby proces taki mógł zachodzić, między wodą a materiałem wchłaniającym powinny zachodzić odpowiednio silne oddziaływania. Bardzo hydrofobowy polietylen w zasadzie nie wchłania wilgoci, zaś hydrofilowa celuloza czyni to chętnie. Sam proces chłonięcia wody odbywa się na dwa sposoby - przez osadzanie wody na powierzchni, czyli adsorpcję, albo poprzez wchłanianie do wewnątrz struktury materiału.

Głównym oddziaływaniem mającym wpływ na zdolność osuszająca materiału, są wiązania wodorowe, rozpięte między atomem posiadającego wolne pary elektronowe niemetalu w jednej cząsteczce a wodorem w drugiej. Są to dosyć luźne połączenia, raczej przyciąganie elektrostatyczne niż prawdziwe wiązania, jednak występują często i licznie, wpływając na kształt dużych cząsteczek i właściwości fizyczne substancji. Przykładem może być woda w której każda cząsteczka może tworzyć takie wiązania z trzema innymi. Co prawda ruchy termiczne już w temperaturze pokojowej na tyle silnie miotają cząstkami, że wiązania co chwila rozrywają się i tworzą na nowo, ale sumą ich efemerycznego istnienia jest istotne zwiększenie temperatury wrzenia i krzepnięcia - bez nich tlenek wodoru byłby gazem o temperaturze skraplania poniżej -50 stopni.

Jeśli stały materiał zawiera na swej powierzchni grupy z silnie elektroujemnym niemetalem o wolnych parach elektronowych, to cząsteczka wody z powietrza może zostać z nim związana. Takimi materiałami będzie na przykład celuloza lub cukier, mające w strukturze wiele grup hydroksylowych. Między tlenem takiej grupy a wodorem cząsteczki wody powstaje wiązanie. Możliwe jest też wiązanie między wodorem grupy hydroksylowej a tlenem cząsteczki wody. W podobny sposób wodę chłoną białka, gdzie mamy pod dostatkiem atomów elektroujemnych (azot, tlen).
W przypadku naturalnych włókien, ilość pochłoniętej wilgoci wpływa na ich długość - włókno nawodnione rozciąga się a wysuszone kurczy. Praktycznie wykorzystano tą własność w "domkach pogodowych" gdzie włos lub nić bawełniana owinięty wokół osi, rozciągając się lub skracając przy różnej wilgotności powietrza powoduje, że raz z domku wysuwa się figurka kobiety a raz mężczyzny z parasolem.

Nieco inny jest mechanizm wchłaniania wody przez sole nieorganiczne i materiały ceramiczne. Sól taka składa się z anionów reszty kwasowej i kationów metalu. Każdy jon wytwarza wokół siebie niewielkie pole elektryczne, do którego przyciągane są cząsteczki wody o właściwościach dipola. Zależnie od wielkości i tego na ile jest osłonięty przez inne atomy, jon przyciągnie w ten sposób od jednej do sześciu cząsteczek wody. W taki sposób zwykle rozpoczyna się rozpuszczanie soli w wodzie, tu jednak powstaje jedynie jednocząsteczkowa warstwa na samej powierzchni
Ten powierzchniowy sposób nie ma zwykle wpływu na strukturę materiału, chyba że cząsteczki wody utworzą z jonami dużo trwalszą strukturę - hydrat.
W hydracie cząsteczki wody stają się części sieci krystalicznej. Kationy metali chętnie bowiem tworzą z wodą akwakompleksy, a więc związki z przeniesieniem elektronów tlenu na puste powłoki metalu. Powstający wówczas jon kompleksowy może być bardzo trwały. Aniony z kolei mogą wiązać wodę bądź elektrostatycznie, bądź przez wiązania wodorowe jeśli są resztami kwasów tlenowych.
Hydratacja soli często zmienia jej właściwości - bezwodny siarczan miedzi jest sypkim, białym proszkiem; po nawodnieniu staje się intensywnie niebieski za sprawą powstającego jonu kompleksowego Cu[(H2O)4]2+ , piątą cząsteczkę wody wiąże reszta siarczanowa poprzez wiązanie wodorowe, stąd pełny wzór hydratu CuSO4 X 5 H2O.



Wyjątkowo dużo wody może związać krystalicznie siarczan sodu, nazywany solą glauberską. Uwodnione kryształy zwierają 10 cząsteczek wody na jeden ekwiwalent związku, co stanowi więcej niż 50% masy. Sześć cząsteczek wiąże w mało trwałym kompleksie kation sodowy, dwie wiąże reszta siarczanowa zaś dwie kolejne zawierają się w pustych przestrzeniach sieci. Podobny związek w formie przezroczystych kryształów daje węglan sodu. Bezwodny chlorek kobaltu jest intensywnie niebieski (zabarwia się nim emalię), uwodniony staje się różowy.
Małe i silnie naładowane jony na powierzchni kryształu nie tylko przyciągają kilka cząsteczek wody, ale też często ich oddziaływanie jest nadal wystarczające aby do tej warstewki dołączać kolejne, przez co materiał pokrywa się warstwą wody w której może zachodzić rozpuszczanie. Takim jonem jest jon wodorotlenkowy, w efekcie rozpuszczalne wodorotlenki jak sodu czy potasu, pozostawione na powietrzu rozpływają się w gęsty roztwór.

Wreszcie w przypadku materiałów porowatych pewną rolę pełni też kondensacja kapilarna

Osuszacze
Jak wobec powyższego działają komercyjne osuszacze powietrza?
Część urządzeń opiera się na wykraplaniu wilgoci na elemencie chłodzącym, są to urządzenia potrzebujące prądu, ja jednak zajmę się tymi bezprądowymi, opartymi na higroskopii. 
Typ jaki najczęściej spotykam to prosty pojemnik z podziurkowanym wieczkiem, do którego wsypuje się granulki, te po pewnym czasie rozpływają się zaś ilość roztworu zwiększa się do pewnego poziomu. Takie osuszacze bazują na pochłanianiu wody przez sole nieorganiczne, najczęściej przez suchy chlorek wapnia.
Związek ten chłonie wodę zamieniając się w hydrat, wiążąc w formie krystalicznej do sześciu cząsteczek wody na jeden równoważnik związku. Hydrat ten jest jednak nadal higroskopijny, chłonąc wodę na powierzchni ziaren tak silnie, że zaczyna rozpływać się "we własnym sosie" tworząc roztwór.

Gdy grudki się rozpłyną, w pojemniku tworzy się syropowata ciecz, zaś w pochłanianiu wilgoci przeważać zaczyna inne  niż wyżej opisane zjawisko fizyczne - mianowicie równowaga między parą nasyconą a roztworem. Gdy umieścimy w pojemniku lotną ciecz, zacznie ona parować aż do momentu gdy gazowa część zbiornika osiągnie stan nasycenia.  W takim stanie para pozostaje w równowadze z cieczą, co oznacza, że tyle samo cieczy paruje co pozostaje wchłonięte przez roztwór. Jeśli nasz pojemnik nie będzie szczelny, para będzie uciekała i nie osiągnie nasycenia, zaś lotna ciecz powolutku wyschnie.
Zamknięte mieszkanie może być potraktowane jak taki pojemnik, w którym znajdują się źródła pary wodnej. Jej stężenie w powietrzu zmienia się, czasem wzrastając tak bardzo że skrapla się na chłodnych przedmiotach, zazwyczaj jednak jedynie powodując wilgotnienie materiałów za sprawą ich higroskopijności.
W zasadzie dopóki w mieszkaniu nie zapanują tropikalne warunki pełnego nasycenia parą wodną, równowaga między cieczą a parą nie jest zachowana i woda pozostawiona w szklance powoli paruje.
Inaczej będzie gdy w takim wilgotnym mieszkaniu postawimy roztwór zawierający dużo soli.
Sól niejako "rozcieńcza" wodę.
Gdy rozpatrzymy to sobie mikroskopowo, parowanie następuje gdy w granicę faz uderzy cząsteczka o wystarczającej energii. Jeśli teraz rozprowadzimy w wodzie sól, jej cząsteczki zajmą miejsce niektórych cząsteczek wody. Zatem, znów mikroskopowo patrząc, w granicą faz od dołu uderza mniejsza ilość cząsteczek, przez co roztwór jest mniej lotny (ma niższą prężność par).
Skoro tak, to do osiągnięcia stanu równowagi wystarczy zdecydowanie mniejsze nasycenie par nad roztworem. Jeśli do zamkniętego naczynia wstawimy szklankę z wodą i szklankę z roztworem soli, woda będzie parować aż osiągnie stan równowagi z czystą wodą - co będzie jednak stanem nadmiernie wilgotnym dla roztworu soli. Roztwór soli zacznie więc pochłaniać wodę a my obserwujemy, że w jednej szklance poziom opada a w drugiej rośnie.

Gdy w naszym wilgotnym mieszkaniu granulki chlorku wapnia w pochłaniaczu rozpłyną się, powstający roztwór nadal będzie pochłaniał wilgoć, coraz słabiej wraz z rozcieńczaniem. Tak powstały roztwór jest nieszkodliwy, choć może działać drażniąco. Można go odparować do sucha odzyskując środek wiążacy, po schłodzeniu gęstego roztworu wydzielają się kryształy hydratu. Roztworu bądź kryształów można użyć do odladzania przy silnych mrozach.

Inne osuszacze, mające postać saszetek i woreczków, zawierają różnego typu chłonne materiały ceramiczne i naturalne glinki, na przykład bentonit. Wchłaniają mniej wilgoci ale nie rozpływają się, dlatego można używać ich na przyklad w samochodzie.

Bardzo pospolitych środkiem chłonnym jest koloidalna krzemionka. W postaci mlecznych granulek w woreczkach jest wrzucana do butów lub umieszczana w opakowaniach leków - na przykład wewnątrz koreczków tubek z wapnem musującym.

Jest to wytrącony z roztworów krzemianów kwas krzemowy, silnie skondensowany, tak że w większości składa się w usieciowanego tlenku krzemu, na powierzchni mając wolne grupy hydroksylowe, które podobnie jak te w celulozie i w cukrze, łączą się chętnie z cząsteczkami wody. Jest to materiał wyjątkowo porowaty ze szczelinami wewnątrz ziarna, przez co faktyczna powierzchnia ziarna krzemionki jest ogromna.
Czasem dostępny jest typ zmieniający barwę zależnie od nasycenia, zwykle za sprawą dodatku chlorku kobaltu - suchy żel jest wtedy błękitny a gdy jest nasycony i przestaje pochłaniać wilgoć, staje się różowy

Z pochłaniaczy wilgoci korzystają także chemicy - niejednokrotnie ślady wilgoci przeszkadzają w reakcjach, a także utrudniają dokładne odważenie związku. Dlatego sypkie związki przechowuje się zwykle w szklanych naczyniach z grubego szkła - eksykatorach - zawierających w dolnej części sypkie osuszacze różnej mocy. Czasem jest to żel krzemionkowy, zwykle jednak używa się chlorku wapnia lub siarczan magnezu, często też nadchloran magnezu (ale ten ostrożnie bo zanieczyszczony związkami organicznymi może się zapalić) a także tlenku fosforu. Ten ostatni jest silnym pochłaniaczem wilgoci, wiąże ją przez reakcję chemiczną, tworząc kwas fosforowy.
W podobny sposób wiąże wodę tlenek wapnia, tworzący z nią stały wodorotlenek; zwykle suszy się nim niższe alkohole. Osuszacze te mogą być dodawane do płynnych cieczy organicznych aby usunąć z nich ślady wody, jeśli z nimi nie reagują. Skrajnym osuszaczem używanym do rozpuszczalników organicznych, jest metaliczny sód, reagujący z wodą z wydzieleniem wodoru - procedurę opisałem kiedyś w innym wpisie.
Szczególnym przypadkiem są sita molekularne - granulki masy ceramicznej zawierające niewielkie pory, w głąb których wcisnąć mogą się cząsteczki wody ale nie cząsteczki większych substancji. Dlatego dosyć selektywnie odciągają wodę z substancji, pozwalając osiągnąć bardzo dobre rezultaty.

piątek, 22 listopada 2013

Ostatnio w domu

Na drugim blogu pisałem na wiosnę o tym jak robi się syropek z kwiatów mniszka, bardzo podobny do miodu. Stopniowo zużywam zapasik a otwierając słoiki zauważyłem że część cukru wykrystalizowała na dnie w formie bardzo grubych kryształów. Te niestety mocno przyrosły do dna i trudno jest je oderwać bez skruszenia. Ostatnio jednak udało mi się oderwać dwa kryształki przyrosłe do ścianki i jak na takie warunki bardzo kształtne:



Ten największy ma 3 cm długości. Cukiereczek...

Duże skupiska kryształów cukru na patyczku nazywane są Candy Rock, można je stosunkowo łatwo zrobić, podstawową instrukcję macie tutaj:
Powstające pałeczki kryształów mogą posłużyć za oryginalny smakołyk. Będę musiał spróbować sam, ale na razie zajmę się syropkiem.
A tu poniżej jeszcze jeden pomysł wykorzystania dużych kryształów cukru - po pokryciu lakierem jako część biżuterii:  http://www.dezeen.com/2007/06/25/unsustainable-by-greetje-van-helmond/

niedziela, 10 listopada 2013

Skaczące kryształy

Gdy usłyszałem o skaczących kryształach, byłem bardzo zaskoczony ale i zaciekawiony. Kryształy pewnych substancji w odpowiednich warunkach deformują się na tyle gwałtownie, że są w stanie poskoczyć, niejednokrotnie na stosunkowo dużą odległość.

Stan krystaliczny charakteryzuje się regularnym, sieciowym ułożeniem cząstek i niejednorodnością właściwości fizycznych - na przykład wzdłuż pewnego wymiaru kryształ przewodzi prąd lepiej niż w innym, albo ogrzany wydłuża się w pewnym kierunku a w innym kurczy. Zależnie od stopnia powiązania budujących go cząstek, możemy mieć do czynienia z kryształem jonowym, złożonym z jonów soli połączonych w trwałą siatkę; z kryształem kowalencyjnym gdzie podobne do siebie atomy łączą się wiązaniami, bądź z kryształem molekularnym gdzie osobne cząsteczki związku nie są ze sobą trwale połączone, a jedynie upakowały się w przestrzeni na tyle ciasno, że tworzą ciało stałe.
Kwestia oddziaływań mechanicznych na właściwości kryształów była już dosyć dokładnie zbadana. Wiadomo że niektóre są na tyle plastyczne, że potrafią deformować się pod wpływem stale działających sił - przykładem sól kamienna która pod wpływem dużego ciśnienia nabiera skłonności do płynięcia. Inne kryształy reagują w jeszcze ciekawszy sposób - piezoelektryki pod wpływem ściskania elektryzują się z jednym ładunkiem na jednym końcu i drugim na przeciwnym. Różnice wytworzonych w ten sposób napięć potrafią być bardzo duże; kostka kryształu górskiego ściśnięta siłą 500 kN wytwarza różnicę napięć 12 tysięcy V, czego praktycznym wykorzystaniem z jakim każdy się spotkał, są zapalniczki piezoelektryczne - nacisk na przycisk deformuje grupę kryształów a różnica napięć generuje iskrę.
Piezoelektryki to substancje których komórki krystaliczne (najmniejsze stałe elementy sieci) nie mają środka symetrii a składają się z cząstek o różnym ładunku. Powoduje to że środki układu ładunków dodatnich i ujemnych nie pokrywają się ze sobą tworząc niewielki dipol. Ściskanie kryształu deformuje go, ściska komórki krystaliczne i przez zmianę ich kształtu rozsuwa środki układu ładunków - każda komórka staje się więc dipolem elektrycznym o wielkości zależnej od siły ucisku.

Sumą dipolów poszczególnych komórek jest naelektryzowanie się dwóch końców całego kryształu. Obserwuje się też efekt odwrotny - rozciąganie się kryształu pod wpływem przyłożonego ładunku. Wykorzystuje się to w zegarkach kwarcowych - piezoelektryczny kwarc pod wpływem napięcia z baterii nieco rozszerza się a potem kurczy, wydzielając mały impuls elektryczny; częstość pierwotna drgań daje 32768 impulsów na sekundę. Elektroniczne podzielniki zmniejszają ilość impulsów o połowę i po piętnastu takich podziałach pozostaje nam stały sygnał jeden impuls na sekundę


Wszystkie te efekty mechaniczne następują stopniowo, zmieniając się płynnie zależnie od przyłożonych sił. Dlatego zaskoczeniem było odkrycie silnych deformacji mechanicznych, które następują dosłownie skokowo.
Pierwszymi zaobserwowanymi skaczącymi kryształami były kryształy bromku oksytropium - leku rozkurczowego, od dawna stosowanego w medycynie. W zasadzie ciekawe że przez długi czas ta właściwość umykała badaczom, choć zapewne mogli ją obserwować podczas często stosowanego do identyfikacji testu pomiaru temperatury topnienia, efekt następuje bowiem podczas ogrzewania - niewielkie kryształki związku nagle podskakują na odległość do kilku centymetrów. Zjawisko zarejestrowano na filmie:
Kryształy przeskakują w całości lub po pęknięciu. Jaki jest mechanizm zjawiska?
Bromek oksytropium składa się z dwóch części: tricyklicznego kationu epoksyazanonyliowego połączonego przez elastyczne wiązanie estrowe z  częścią aromatyczną, zaś aniony bromkowe zobojętniają cząsteczkę; podejrzewam że dodatkową stabilizację układu zapewnia nie zaznaczone wiązanie wodorowe.

Tylko wiązanie estrowe nie jest sztywne i możliwy jest obrót jednej części cząsteczki względem drugiej, co jednak nie następuje w niskich temperaturach. W miarę wzrostu temperatury wzrasta energia drgań cząsteczki aż możliwe staje się przełamanie bariery rotacji i uzyskanie odmiennego kształtu. Powoduje to nagromadzenie się naprężeń uwalnianych jako jedno silne drgnięcie w chwili odblokowania rotacji większości cząsteczek. Kryształ wykonuje skok.[1] Zjawisko nazwano thremosalient effect co można by jak sądzę przetłumaczyć jako "efekt termosprężnujący" ("termoskokowy" źle by brzmiał, choć takie byłoby tłumaczenie dosłowne, od łacińskiego źródłosłowu saliens - skakanie, podskakiwanie).

Po tym odkryciu znaleziono inne, działające na innej zasadzie, ciekawa jest na przykład praca w której odkryto, że kryształy pewnych skomplikowanych kompleksów kompleksów metali przejściowych z perfluorowanym acetyloacetonem i ligandem będącym N-tlenkiem nitronylu, po utworzeniu wykazują skokowe ruchy polegające na podskokach i fragmentacji, trwające samoczynnie przez kilka tygodni. Źródłem okazała się reakcja eliminacji tlenu, powodująca zmiany upakowania cząstek kompleksu a co za tym idzie także deformacje kształtu kryształu.[2] Stosunkowo prostym związkiem którego kryształy ulegają podskakiwaniu jest 1,2,4,5-tetrabromobenzen.

Najciekawszy jest jednak efekt odkryty zupełnie niedawno - podskoki lub wręcz wybuchowa fragmentacja kryształy pod wpływem światła ultrafioletowego. Igiełkowate kryształki o wielkości do 1 mm odsakiwały nawet na kilkanaście centymetrów, a więc na odległość tysiące razy większą od własnej wielkości. Przy pomocy szybkiej kamery i ten efekt dało się utrwalić:

Są to kryształy stosunkowo prostego i jak sądzę łatwego do otrzymania kompleksu kobaltu [Co(NH3)5(NO2)]Cl(NO3) , zaś mechanizm powstawania tak silnych naprężeń, opiera się na jeszcze innej zasadzie. Jednym z ligandów wokół centralnego atomu kobaltu jest ligand nitrytowy NO2, który łączy się z kobaltem za pomocą wiązania koordynacyjnego poprzez azot. Ligand ten mógłby jednak równie dobrze połączyć się poprzez któryś z tlenów, tworząc nieco inny kompleks, i jak się wydaje, podczas naświetlana ultrafioletem taka przemiana właśnie następuje.
Ligand obraca się i przyłącza od innej strony co zmienia upakowanie cząstek, a ponieważ obracają się praktycznie wszystkie w krysztale, bez wytwarzania nowej fazy krystalicznej, dochodzi do nagromadzenia się naprężeń mechanicznych. Znane są dwie formy krystaliczne tego kompleksu - jedna, znana już dotychczas, o pokroju wykształconym przez dodatek inhibitora powodującego zmianę kształtu zarodka. Takie kryształy po oświetleniu ultrafioletem wyginały się, z wypukłością skierowaną w stronę źródła światła, a po kilku godzinach powracały do stanu pierwotnego.
Druga forma to kryształy otrzymane bez dodatków, mniej plastyczne, w których naprężenia nie mogły stopniowo uwalniać się w ciągłym ruchu. Mogło to nastąpić dopiero w wyskoku, do którego dochodziło na kilka sposobów - przez odłamanie końcówki, odłamanie naroży, przełamanie na pół lub podskok całego kryształu bez rozpadu
Czasem kryształ roztrzaskiwał się na kilka kawałków. Zjawisko nazwano "photosalient effect" co tłumaczyłbym jako "efekt fotosprężynujący".

Autorzy artykułu na temat odkrycia przypuszczają, że może przydać się w maszynach molekularnych lub, po opanowaniu, w materiałach w rodzaju sztucznych mięśni.[3] Osobiście obstawiałbym jednak że w zestawieniu z kryształami piezoelektrycznymi mógłby służyć go generowania pojedynczych silnych impulsów, na przykład w pewnych typach czujników.
--------
ResearchBlogging.org [1] Skoko Ž, Zamir S, Naumov P, & Bernstein J (2010). The thermosalient phenomenon. "Jumping crystals" and crystal chemistry of the anticholinergic agent oxitropium bromide. Journal of the American Chemical Society, 132 (40), 14191-202 PMID: 20860383 
[2] Ovcharenko VI, Fokin SV, Fursova EY, Kuznetsova OV, Tretyakov EV, Romanenko GV, & Bogomyakov AS (2011). "Jumping crystals": oxygen-evolving metal-nitroxide complexes. Inorganic chemistry, 50 (10), 4307-12 PMID: 21491890
[3]  Prof. Panče Naumov, Dr. Subash Chandra Sahoo, Dr. Boris A. Zakharov, Prof. Elena V. Boldyreva (2013). Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping (The Photosalient Effect) Angewandte Chemie International Edition DOI: 10.1002/anie.201303757
 [To swoją drogą dosyć dziwna praca. We wstępie autorzy odnoszą się do tego iż dotychczas samoczynne ruchy obserwowano w przyrodzie ożywionej, a więc u zwierząt i u roślin, zaś efekt fotosprężynujący jest ciekawym przykładem ruchów w przyrodzie nieożywionej. Ten fragment został opatrzony aż ośmioma przypisami do prac i książek na temat ruchów w świecie zwierzęcym i przypadkowych prac na temat ruchów roślin. Nie wiem na ile zgadza się to z przyjętymi zwyczajami, ale wygląda mi na sposób zwiększenia objętości bibliografii, aby - kto wie? - całość lepiej wyglądała]

niedziela, 20 października 2013

Salmiak

Dwa wspomnienia i trochę historii.

Na pierwszym roku studiów jednym z przedmiotów było laboratorium chemii nieorganicznej. Robiliśmy tam różne podstawowe doświadczenia, jak strącanie osadów, spalanie magnezu i sprawdzanie czy na pewno na zimno nie reaguje z wodą (reagował) reakcje redoks itp. Jednym z nich było sprawdzenie reakcji kwasu solnego i amoniaku.
Oba roztwory umieściłem w małych zleweczkach i nakryłem zlewką dużą. Po chwili z jednej z nich zaczął się unosić biały dym:

który z czasem wypełnił całą zlewkę:
Dym wychodził zapewne ze zleweczki z amoniakiem, ale nie jestem pewien. Skąd wziął się ten dym?
Zarówno roztwór amoniaku jak i kwas solny chętnie uwalniają opary lotnych związków w nich rozpuszczonych - a więc gazowy amoniak i gazowy chlorowodór, te reagują ze sobą dając drobne cząstki stałej soli - chlorku amonu nazywanego salmiakiem:
 NH 3 + HClNH 4 Cl

Cząstki są tak drobne że tworzą dym podobny do mgły. Dawniej zresztą mieszanie par tych dwóch związków było sposobem na wytworzenie sztucznego dymu, z czego jednak zrezygnowano z powodu działania drażniącego oczy.

Salmiak jest jedną z najstarszych znanych soli nieorganicznych, pierwszą solą amoniakalną i jednym z pierwszych związków wytwarzanych sztucznie. Występuje naturalnie ale w dość specyficznych warunkach, łatwo bowiem rozkłada się z wydzieleniem lotnego amoniaku i dobrze rozpuszcza w wodzie; zazwyczaj spotyka się go w pobliżu otworów którymi ulatują gorące gazy wulkaniczne, ale też w miejscach wylotu spalin z podziemnych pożarów węgla i torfu czy wewnętrznych pożarów hałd kopalnianych. W mniejszych ilościach powstaje w pobliżu złóż guana powstającego z ptasich odchodów.
Pierwsze informacje na jego temat pochodzą z Egiptu a konkretnie z oazy Siwa, gdzie w starożytności stała znana i często odwiedzana świątynia Ammona. Greccy pisarze opisują iż w pobliżu świątyni, w miejscu gdzie wielbłądy licznych pielgrzymów oddawały mocz w zasoloną ziemię, krystalizowała biała sól o właściwościach ściągających, nazywana Solą Ammona czyli sal ammonicum. Popularna nazwa salmiak jest więc skrótem. Był używany w medycynie jako środek moczopędny, odkażający i przeczyszczający, zewnętrznie jako składnik maści. Alchemicy widzieli w nim pierwiastek lotności, bowiem przy ogrzewaniu sublimował zaś opary po ochłodzeniu ponownie zamieniały się w stałe cząstki w formie już tu pokazanego dymu. W zasadzie nie jest to typowa sublimacja - wprawdzie w parach występuje gazowy związek, ale składają się one głównie ze związków składowych, a więc amoniaku i chlorowodoru, po ochłodzeniu natychmiast reagujących ze sobą.

Otrzymywano na dużą skalę już na początku średniowiecza z popiołu po spaleniu suszonych odchodów krowy, lub wykrystalizowując z ługu mieszaniny soli i starej uryny. W mieszaninie z ałunem był stosowany w zaprawach farbiarskich. Mniej więcej w XV wieku pokazano, że po zmieszaniu z wapnem wydziela ostre opary, łatwo rozpuszczające się w wodzie. W XVIII wieku nauczono się go otrzymywać z produktów suchej destylacji szczątków zwierzęcych, takich jak rogi, kopyta czy skóry, łapiąc opary w wodzie i zakwaszając ją kwasem solnym.
Sam roztwór przed zakwaszeniem, będący w zasadzie wodą amoniakalną, był używany jako odplamiacz. Z suchych oparów krystalizował w tym procesie węglan amonu, zwany z tego powodu "solą rogu jeleniego" i używany jako pierwszy spulchniacz do pieczywa (dziś jest to "amoniak do ciast") oraz składnik soli trzeźwiących.
Współcześnie chlorek amonu jest używany w metaloplastyce jako składnik pasty oczyszczającej powierzchnię metalu przed lutowaniem, lub metalową formę przed odlewem, zwykle ma postać małych kostek lub stanowi warstewkę pokrywającą laseczkę lutu cynowego. Jego użycie opiera się na fakcie, że podczas rozkładu w wysokiej temperaturze reaguje z tlenkami na powierzchni metalu, przeprowadzając je w stosunkowo dobrze lotne w tych temperaturach chlorki, dzięki temu lutowane powierzchnie są czyste i stop będzie dobrze do nich przylegał.
W mniejszym stopniu używa się go jako dodatku spożywczego (jako E510), głównie do ciast i chleba, ułatwia bowiem wyrośnięcie ciasta drożdżowego. W krajach skandynawskich popularnym smakołykiem są cukierki Salmiakki, będące zagęszczonym wyciągiem z korzenia lukrecji zmieszanym z salmiakiem, który przełamuje intensywnie słodki smak lekko ostrym, słonawym posmakiem, wywołującym przejściowe wrażenie utraty smaku. Nie miałem okazji próbować więc dokładniej nie opiszę. Związek bywa też składnikiem syropów na kaszel, jest bowiem wykrztuśny.

Reakcja pomiędzy oparami prowadząca do powstania salmiaku staje się też przyczyną często spotykanego w laboratoriach zjawiska powstawania białego osadu na szkle. Butelki ze stężonymi kwasami i zasadami często są przechowywane z przeszklonym dygestorium z mechaniczną wentylacją zasysającą opary na zewnątrz pomieszczenia. Nocą jednak wyciąg zazwyczaj jest wyłączany, toteż z butelek wody amoniakalnej i kwasu solnego mogą przez drobne nieszczelności ulatniać się opary. Po pewnym czasie wszystkie szyby dygestorium pokryte są białym, mączystym osadem.
O tym jak dalece zajść może ten proces przekonałem się niedawno, gdy szukając opakowania żelu krzemionkowego otworzyłem jedną z szafek, znajdując tak takie oto cudo:

Naczynie z wodą amoniakalną obrosło porowatą masą białych kryształków, przypominającą szron. Ponieważ w tej samej szafce stała butelka ze stężonym kwasem solnym łatwo się było domyśleć przebiegu procesu - w dawno nieotwieranej szafce na butelce amoniaku powstawał salmiak, przez który jednak nadal przesączały się opary z wnętrza naczynia, dlatego małe kryształki mogły powoli narastać tworząc skupiska podobne do białego mchu.

Odstawiłem ją z powrotem. Niech rośnie.

sobota, 19 stycznia 2013

Sól na lód

Temat bardzo zimowy a w pewnym stopniu wiążący się z wcześniejszym wpisem o mieszaninach ogrzewających i krystalizacji. Teraz bowiem będzie nie tylko o topieniu lodu ale i dla równowagi o mieszaninach ochładzających.
Ziarenko soli drogowej w wytopionej przez siebie jamce
Gdy zimą chodniki, drogi, ulice i resztę świata pokrywa śnieg, w miejscach bardziej zdeptanych przeradzający się w lód lub śniegowe błoto, doprawdy bardzo trudno jest się poruszać. Ślizgawica na chodnikach to jeszcze pół biedy, ale na drogach jest nie do pomyślenia. Więc trzeba ten lód rozpuścić. Więc trzeba go posypać solą. Ale dlaczego solą i dlaczego sam piasek nie wystarczy, nie każdy wie.

Topnienie lodu jest przemianą fazową. Faza stała zamienia się bądź to w fazę ciekłą bądź to gazową. Zależy to akurat od warunków - w niskich temperaturach lód może parować w suchym powietrzu, przez co teoretycznie da się wysuszyć pranie na mrozie (tylko kto by tyle czekał?). To w jaki sposób i w jakich warunkach przebiegają przemiany z fazy do fazy, określają równowagi fazowe.
Na to jaka faza, lub układ faz jest akurat trwały, wpływają głównie takie czynniki jak temperatura i ciśnienie - w wysokiej temperaturze lód topnieje, ale pod wysokim ciśnieniem może ponownie zamarznąć. To zrozumiałe. Tak samo jak zrozumiałe jest, że skład substancji wpływa na przebieg równowag - przykładowo woda morska zamarza w zdecydowanie niższej temperaturze.
Teraz na chwilkę się zastanówmy - morze zaczyna zamarzać i na jego powierzchni pojawia się lód. Dla wody w oceanach następuje to w temperaturze -1,9° C. A teraz powiedzmy że temperatura nieco rośnie, do -0,5° C. Pamiętamy że lód topi się w temperaturze 0 stopni. Jest jeszcze za zimno więc - myślimy sobie - lód powinien pozostawać. Tymczasem lód się topi.

Znana nam temperatura topnienia lodu - 0° C -  nie jest niczym innym jak temperaturą ustalenia się pewnej równowagi fazowej. W tej temperaturze lód i woda znajdują się w równowadze. Dostarczanie energii zmniejsza ilość fazy stałej, zaś jej odbieranie zmniejsza ilość fazy ciekłej, i tak to trwa aż do zaniku jednej z nich - czyli całkowitego stopienia lub całkowitego zamarznięcia. Tyle tylko, że jest to temperatura równowagi dla faz: Lód/woda. Natomiast w morzu lub w kubku ze słoną wodą mamy do czynienia z fazami: Lód/słona woda - a to już całkiem inna sytuacja.

Ogólnie rzecz biorąc substancje rozpuszczone w wodzie obniżają temperaturę jej topnienia - chyba że same krzepną w wyższych od wody temperaturach. Dla przykładu 40% roztwór alkoholu zamarza przy ok. -35-40° C (czysty etanol zamarza dopiero przy -114). Równowagi fazowe przesuwają się zatem w stronę niższych temperatur. Dla układu lód/nasycony roztwór soli temperatura równowagi to ok. -20° C. Skoro tak, łatwo jest już chyba domyśleć się co zachodzi na naszych chodnikach.
Gdy posypiemy lód solą, jej część rozpuści się od samego zetknięcia. Powstanie roztwór soli, który stykając się z lodem stworzy nasz układ. W takim układzie lód może trwale przebywać w zetknięciu z roztworem w temperaturze -18 czy -20 stopni. Jeśli zatem jest -11 czy -5 to dla takiego układu jest za ciepło. Lód będzie się rozpuszczał, uwalniając chodniki i drogi ze swych węgorzych okowów. Dla bardziej rozcieńczonych roztworów takie błoto może jednak zamarzać już przy mniejszych mrozach.
Pojawia się tu jednak szczególne zjawisko - gdy lód się rozpuszcza, cała mieszanka zaczyna wyraźnie się ochładzać. Dla odpowiednich mieszanek soli z lodem spadek temperatury może sięgać -20 czy -22 stopni, co wykorzystuje się niekiedy do chłodzenia. Jeśli więc mieszanka ochładza się aż do temperatury w której mimo to krzepnie, to dlaczego chodnik posypany solą nie zamarza ponownie po chwili?
A no dlatego, że przecież jest za ciepło. Gdybyśmy naszą chłodzącą mieszankę dobrze odizolowali, to miałaby szansę zamarznąć od samego swojego chłodzenia, ale przecież wciąż jest w kontakcie z za ciepłym otoczeniem. Dlatego nie osiąga tego stanu i cały lód topi się. Wszystko to dobrze działa do momentu, gdy mrozy nie są jeszcze zbyt silne, gdy jednak przekraczają tą temperaturę graniczną, zwykła sól nie wystarcza.
Dlaczego jednak taka mieszanina ochładza się?

Lód, topiąc się, pobiera na ten proces dosyć dużo ciepła, wystarczająco aby ochłodzić całość do niskiej temperatury. Tego typu mieszanki są niekiedy używane do chłodzenia. Dla mieszaniny lody i soli w stosunku 2/1 minimalna temperatura to ok. -20 stopni. Dla mieszanki uwodnionego chlorku wapnia z lodem w ilości 1/0,8 można osiągnąć do -40 stopni. Aby osiągać jeszcze niższe temperatury należy użyć suchego lodu, pozwalającego otrzymać temperatury aż do -78 stopni (z acetonem). W mieszance z eterem dietylowym pozwala na osiągnięcie -100 stopni. Dla jeszcze niższych temperatur używa się ciekłego azotu.
Jeżeli temperatura równowagowa innych soli z lodem jest jeszcze niższa niż dla soli kuchennej, to znaczy, że nadają się i one do odladzania. I faktycznie - chlorek wapnia i magnezu są używane do odladzania podczas silnych mrozów. Jeśli zastosuje się związki bezwodne to podczas rozpuszczania będą wytwarzały dość dużo ciepła, jak to już objaśniałem przy mieszaninach ogrzewających, dając dodatkową korzyść.
Jednak wymienione sole, w odróżnieniu od chlorku sodu, są droższe. Chlorek sodu bądź wydobywa się z kopalń, bądź wyodrębnia z zasolonych wód, że zaś w kraju mamy całkiem przyzwoite złoża, jest to materiał tani - Kłodawa sprzedaje ją za 220-280 zł za tonę netto, oferty które znalazłem podawały ceny rzędu 1500-1800 zł/t dla chlorku wapnia i 2200-2500 zł/t dla chlorku magnezu. Dlatego tego typu środki stosuje się u nas głównie w przypadku silnych mrozów.

Używanie soli do odmrażania ma jednak dość istotne wady - po rozpuszczeniu śniegu pozostaje roztwór solanki, który wnika z podłoże. Zasolenie gleby w miastach jest często tak duże, że nic większego od miniaturowych krzaczków nie chce tam rosnąć. Sól wnikająca w drobne pory betonu i asfaltu osłabia ich strukturę gdy w suchszym okresie zaczyna krystalizować, rozsadzając pory. W przypadku betonu prowadzi to do powstawania odprysków i "łuszczenia się" wierzchniej warstwy. W przypadku asfaltu sprzyja pękaniu. Wnikając w elementy żelazobetonu przyspiesza korozję prętów zbrojeniowych, osłabiając konstrukcje. Z tego samego powodu szkodzi samochodom. Pozostawia także osady na nawierzchni i na butach, a wnikając w skórę buta sprzyja jej pękaniu. W dodatku drogowcy sypią sól bardzo hojnie, czasem wręcz można mieć wrażenie, że wolą posypać niż zgarnąć śnieg. Dlatego od dawna szuka się jej zastępstw.

Wspomniane chlorki wapnia i magnezu są dobrymi alternatywami - są mniej korozyjne i zużywa się ich mniej, co przekłada się na mniejsze stężenie w glebie. Niestety również pozostawiają osady i mimo to nadal wzbogacają ziemię w chlorki. stąd też szybko pojawiły się pomysły zastąpienia chlorków zupełnie innymi solami, znacznie mniej szkodliwymi dla środowiska. Próbowano tutaj stosować preparaty na bazie mocznika, wykazujące działanie do -10 stopni, te jednak dla odmiany mogłyby wywołać przenawożenie gleb, a ponadto zbytnio zalkalizować środowisko.Bardzo ciekawym pomysłem jest preparat Safecoat produkowany z melasy. Przy produkcji białego cukru, po wykrystalizowaniu go z zalkalizowanego zagęszczonego soku, pozostaje odpadowa melasa. Oczyszczone frakcje znajdują zastosowanie w browarnictwie, zaś z pozostałym szlamem, zawierającym chlorek wapnia i inne sole oraz różne substancje organiczne, nie bardzo jest co robić. Amerykanie wpadli na pomysł aby zmieszać te melasowe odpady z solą i wysypywać na drogi; testuje się ten system w niektórych miejscach [1], podobno rezultaty są nie najgorsze. Byłoby bardo ciekawie wprowadzić to u nas - produkuje się u nas bardzo dużo cukru, a melasy eksportujemy do innych krajów najwięcej w europie, z pewnością więc materiał powinien być wyjątkowo tani.
 Ciekawym pomysłem są sole prostych kwasów organicznych - octowego i mrówkowego - które łatwo utleniają się i są rozkładane w środowisku. Najpowszechniejszy jest tu octan wapniowo-magnezowy (CMA) powstający przez rozpuszczenie dolomitu w kwasie octowym. Nie zawiera jonów chlorkowych i nie jest tak agresywny korozyjnie; działa do temperatury -12° C, a więc jest prawie tak dobry jak zwykła sól. Stosowanie ogranicza niestety cena - jest prawie 20 razy droższy, głównie z powodu kosztów produkcji kwasu octowego. Mniej stosowany jest octan potasu (KAc), także mało agresywny i niestety drogi, ale mający tą zaletę, że działa dobrze aż do -26° C, w mieszance z mocznikiem jest używany do odladzania pasów startowych lotnisk. W Finlandii stosuje się do tego mrówczanu potasu, w dodatku zalecając używać go na drogach przebiegających przez cenne przyrodniczo obszary i rezerwaty, łatwo bowiem rozkłada się, nawet w niskich temperaturach, a więc nie zanieczyszcza środowiska. Nie znalazłem niestety informacji do jakich temperatur działa, ale musi być dobry skoro sprawdza się w Finlandii.
Wszystkie te alternatywy są niestety droższe, być może postępy biotechnologii pozwolą taniej produkować kwas octowy i mrówkowy na skalę przemysłową, co zmniejszy koszty. Stosunkowo nie najgorszym zastępstwem może być popiół drzewny lub powęglowy, choć działa głównie przez polepszenie przyczepności. No i można jeszcze sypać piaskiem.

Z własnych doświadczeń na ośnieżonym parapecie wynikło mi, że pewne słabe właściwości topienia ma kwasek cytrynowy a nawet cukier puder.

Zajmę się tu jeszcze jedną kwestią, która mnie zafrapowała, gdy szukałem jak to jest z dostępem do tych alternatyw. Często natykałem się na artykuły wychwalające Ekologiczną Sól Drogową , mającą być bardziej wydajną i nieszkodliwą, testowaną w wielu częściach kraju a nawet uznawaną przez ministerstwo ochrony środowiska za bezpieczny zamiennik*. Rzecz oczywista zacząłem szukać składu ale nic nie znalazłem, niektóre artykuły stwierdzały wręcz że skład jest zastrzeżony i opatentowany i dlatego producent nie chce go zdradzać. W zamian za to znalazłem długą listę korzyści, niektóre wydawały się wątpliwe (na przykład pisanie, że zwykła sól przestaje działać przy -6 stopniach) ale pozostałe całkiem uzasadnione. Niektóre artykuły marketingowe wspominają tylko, że nie jest to chlorek wapnia ani potasu. Tylko w kilku miejscach jest wspomniane, że zawiera magnez i potas. Więc może to po prostu mieszanka chlorków tych pierwiastków? Niestety znajduję i takie reklamy, w których twierdzi się, że sól nie zawiera chlorku magnezu. No cóż, zajrzałem więc na jednego z oficjalnych blogów firny, i tam jak byk znajduję ogłoszenia o sprzedaży przez tego samego dostawcę... technicznego chlorku magnezu. Lista zalet przy odladzaniu identyczna.
Zaglądam więc na informację techniczną[2]. Składu brak, tylko wzmianka o obniżonej zawartości "związków chlorku" i informacja że jest biodegradowalna co nie jest zbyt zręcznym określeniem** Przy okazji podano takie dane techniczne, jak masa cząsteczkowa (92,21 g/mol) temperaturę topnienia (708° C) i wrzenia (1412° C) na podstawie których, zaglądając do tablic chemicznych, mogę zidentyfikować związek jako stary, dobrze znany chlorek magnezu.
No to się wyjaśniło. Pozostaje tylko pytanie po co robić marketingową tajemnicę ze składu, skoro można się go domyśleć? Skoro podobno jest zastrzeżony i opatentowany, to można to robić, ale skoro chlorek magnezu już jest używany do tego celu przez różne firmy, obawa o ukradzenie pomysłu na jaką powołuje się producent, jest płonna jak musztarda po obiedzie


------
* Jedynym dokumentem na ten temat jaki znalazłem, była interpelacja poselska, w odpowiedzi na którą ministerstwo stwierdziło, że wykorzystanie ESD leży w gestii zarządcy drogi. To chyba nie to samo co poparcie przez ministerstwo.
** Biodegradacja to rozkład w środowisku związków organicznych. Nie dotyczy soli nieorganicznych i nie jest to to samo co nieszkodliwość.

http://en.wikipedia.org/wiki/De-ice
http://de.wikipedia.org/wiki/Schmelzpunkterniedrigung
http://en.wikipedia.org/wiki/Calcium_Magnesium_Acetate
[1] http://news.bbc.co.uk/local/wiltshire/hi/people_and_places/newsid_9185000/9185244.stm
[2]  Informacja techniczna: Ekologiczna Sól Drogowa

piątek, 21 grudnia 2012

Mieszaniny ogrzewające

Bezpośrednią inspiracją do artykułu, była informacja prasowa o tym, jak to polskie wojsko wprowadziło do wyposażenia "bezpłomieniowy palnik", ogrzewający racje żywnościowe za pomocą pewnej reakcji chemicznej.  Tego typu zestawy znane są już na świecie, jednak u nas jest to traktowane jak rewolucja. Relacjonująca sprawę prasa ustrzeliła przy tym takiego oto babola:

W urządzeniu zachodzi reakcja chemiczna, która podnosi temperaturę.Saszetki nasączone są m.in. węglanem sodu, proszkiem glinu i sodą kolcynowaną.[1]

Soda... jaka? Zapewne redaktorom chodziło o sodę kalcynowaną, tym samym jednak błąd jaki popełnili jest podwójny, gdyż soda kalcynowana, to inaczej węglan sodu. Nieco później opisując skład racji żywnościowych podają błędną nazwę słodzika "xyliton" zamiast "ksylitol" co tylko potwierdza, że dziennikarze nie przywiązują wielkiej wagi do nazw chemicznych, wychodząc z założenia że jakby co, to i tak nikt z czytelników nie zauważy.
 Abstrahując jednak od tych gaf, sama idea mieszanin ogrzewających i podgrzewaczy chemicznych, jest o tyle ciekawa, że warta szerszego omówienia na blogu takim jak ten.

Podczas wojny w warunkach polowych, ale też często podczas podróży po bezdrożach, wypraw wysokogórskich i w warunkach ekstremalnych, ciepły posiłek przyda się bardzo, nie zawsze jednak głodny osobnik może sobie pozwolić na zapalenie małej butli z gazem, czy choćby prymusa. Czasem może w tym przeszkadzać chęć niezdradzania swej pozycji* , czasem warunki atmosferyczne jak silny wiatr i deszcz, a czasem niezbyt właściwe do kucharzenia miejsce, jak ciasny schron czy kabina pojazdu. Stąd też pomysł, aby podgrzewać jedzenie w jakiś inny sposób. Gdy dostępny jest prąd, wystarczy grzałka elektryczna lub mikrofalówka, gdy zaś dostępu do sieci nie ma, zdawać się trzeba na takie właśnie wynalazki.

Każdy taki zestaw zasadniczo działa tak samo - jedzenie w zamkniętych opakowaniach wsadza się do woreczka lub kubełka i dolewa wody do zewnętrznego płaszcza. Pod wpływem wody substancja w tymże płaszczu czy woreczku zaczyna wydzielać na tyle dużo ciepła, aby móc zagotować wodę i podgrzać jedzenie wystarczająco, aby móc uzyskać gorący posiłek. Zestawy tego typu od dawna są znane w wojsku na zachodzie (np. MRE). Awaryjne podgrzewacze można także kupić w odpowiednich firmach, jako zestaw dla turystów. Zastanawia jednak, jakie to reakcje mogą wytworzyć aż tyle ciepła?

Na początek powiem może coś ogółem na temat ciepła w reakcjach chemicznych. Każda przemiana chemiczna, polegająca na zrywaniu lub powstawaniu wiązań chemicznych, albo zmianie ich konformacji, jest w istocie przemianą energetyczną - jedne cząsteczki wydzielają energię zaś inne ją pobierają, podlegając zmianom tak, aby dotrzeć do stanu termodynamicznie najtrwalszego w danych warunkach. Czasem  reakcje przebiegają samorzutnie, czasem należy im w reagowaniu pomagać dostarczając energię. Ogólna zasada mówi, że energia nigdy nie ginie - może jedynie uciekać z układu lub ulegać zamianie na inną formę. Całkowita zawartość ciepła w danym układzie, to entalpia. Jej zmiany podczas reakcji  objawiają się tym, że układ bądź pobiera bądź oddaje ciepło do otoczenia. Jeśli reakcja jest odwracalna, to ilość energii, jaką należy dostarczyć, aby zaszła w jedną stronę, jest równa ilości wydzielającej się gdy biegnie w drugą stronę, i to nie zależnie od tego jaką drogą się to odbywa.
Nam akurat zależy na oddawaniu, dlatego należy poszukać takich reakcji, których substraty są otrzymywane przy zużyciu dużej ilości ciepła. Taką wysoce energochłonną reakcją jest rozkład wapieni.
Węglan wapnia występuje w przyrodzie bardzo często, zaś otrzymywany z niego tlenek wapnia - czyli wapno palone - jest bardzo przydatny do tynkowania czy wytwarzania zaprawy wapiennej. Niestety, aby dokonać przemiany wapieni w wapno należy wypalać je w temperaturze 800 stopni przez kilka godzin. Na wypalenie tony wapna z ok. 1,7-2 t wapienia, potrzeba ok.4-5 kubików drewna opałowego w specjalnych piecach[2], a w stosach jak to robiono dawniej, z pewnością jeszcze więcej. Otrzymany tlenek wapnia chętnie łączy się z wodą dając wodorotlenek (wapno gaszone) i wydzielając bardzo dużo ciepła. W zasadzie więc, sprowadza się to do takiej reakcji:
CaO + H2is in equilibrium with Ca(OH)2
Na każdy mol reagującego tlenku, czyli 65 g, wydziela się 63 kcal ciepła, mniej więcej tyle co spalenie 6 g propanu. Podczas gaszenia wapna temperatura mieszaniny może przekraczać 100 stopni C, co wystarcza do podgrzania niedużej porcji. Tego typu podgrzewacze były stosowane podczas I wojny światowej. Znacznie jednak większą ilość ciepła można uzyskać podczas przyspieszonego utleniania metali.
Jeśli mamy do czynienia z metalem reaktywnym, to stan metaliczny jest dla niego nietrwały. Aby wytopić taki metal z rudy, należy przy pomocy dużej ilości ciepła rozłożyć jego związki, głównie tlenki lub siarczki. Skoro tak, to zgodnie z tym co powiedziałem, przemiana odwrotna powinna przebiegać z wydzielaniem ciepła. I rzeczywiście - gdyby dokładnie rzecz zmierzyć okazałoby się, że żelazo rdzewiejąc odrobinkę się grzeje, jednak powolność procesu powoduje, że ilość ciepła wydzielanego w jednostce czasu, jest niewielka. Gdybyśmy mogli przyspieszyć ten proces, żelazo wyraźnie grzałoby się. Spektakularnym tego przykładem są "zimne ognie" gdzie w spalającej się masie utleniane żelazo rozgrzewa się do temperatury białego żaru.
Chemiczne ogrzewacze używane w wojsku bazują właśnie na tej właściwości aktywnych metali.

Najczęściej zestawy takie zawierają mieszankę pyłu magnezowego, opiłków żelaza, soli kuchennej i innych dodatków, zależnie od producenta. Po dodaniu wody do takiej mieszanki, rozpuszczamy sól tworząc elektrolit. W tym elektrolicie zawieszone są dwa różne metale - żelazo i magnez - toteż cały układ staje się czymś w rodzaju zmielonego ogniwa galwanicznego.
Potencjał standardowy układu metal/kationy jest dla żelaza wyższy, niż dla magnezu, przez co w tak stworzonym układzie żelazo staje się dodatnią katodą, zaś magnez ujemną anodą. W takim układzie to metal anody jest utleniany, zgodnie z reakcją:
Mg + 2 H2OMg(OH)2 + H2 
Wprawdzie reakcja sproszkowanego metalu z wodą zachodzi i bez tego, ale dosyć wolno. Stworzenie ogniwa w tak wybitnie sprzyjających warunkach powoduje, że metal może całkowicie przereagować w ciągu kilkunastu minut, po czym reakcja zostaje przerwana a zestaw trzyma ciepło stopniowo się ochładzając. Ilość ciepła wydzielanego podczas reakcji to 351 kJ/mol, zatem prawie sześć razy więcej niż przy gaszeniu wapna. Właśnie tego typu mieszaniny są używane w wojskowych zestawach.
Nieco wolniejsza reakcja, pozwalająca trzymać ciepło przez kilka godzin, bazuje na utlenieniu żelaza. Tutaj drugą elektrodę stanowi grafit. Mieszanina grafitu, opiłków żelaza i minerałów ilastych pomagających utrzymać ciepło, po zwilżeniu wodą rozgrzewa się zależnie od składu do 30-50 stopni. Tego typu zestawy używane są we wkładkach do butów i rozgrzewających kompresach.
Zestaw polskiej armii bazuje zapewne na podobnej reakcji, z wykorzystaniem tańszego glinu i tej nieszczęsnej sody. Nie sądzę aby użyto tam wodorotlenku sodu, bo wówczas w razie pęknięcia torby, mieszanina mogłaby popatrzyć nie tylko termicznie. Mieszaniny tego typu już istnieją, więc nie wiem co to za wielka innowacja.
Mieszaniny oparte na utlenianiu metali mają jednak jedną podstawową wadę - podczas reakcji wydzielają dosyć dużo wodoru, więc siłą rzeczy palenie papierosów podczas nagrzewania zestawu niewskazane. Wlanie do worków zbyt dużej ilości wody może wywołać wykipienie. No i zestaw można użyć tylko jeden raz. Wad tych pozbawione są mieszaniny, że tak powiem "hydratacyjne", niewydzielające wodoru (hydrogen-free ration heater - HRH). Aby jednak objaśnić, na czym polega ich działanie znów zboczę w dygresję.

Jak to już tłumaczyłem, sposób w jaki zazwyczaj w nauce szkolnej rozpisuje się dysocjację soli nie jest dokładny, gdyż przedstawia go jakby zachodził w próżni a nie w wodzie. W rzeczywistości bowiem, rozpuszczana substancja zawsze jakoś oddziałuje z cząsteczkami rozpuszczalnika za sprawą powstającego między nimi oddziaływania, czy to sił Londona, czy Van deer Walsa czy też w przypadku jonów, oddziaływania elektrostatycznego. Te oddziaływania dosłownie wyrywają cząstki z fazy stałej, co jednak nie może odbyć się bez kosztów - na każdą pracę potrzebna jest energia. Może to być energia cieplna czy w pewnym stopniu mechaniczna, co tłumaczy skuteczność mieszania i podgrzewania w rozpuszczaniu substancji. Cząstki ciała stałego są utrzymywane w fazie przez silne oddziaływania - i podobnież mogą to być oddziaływania międzycząsteczkowe dla kryształów molekularnych, wiązania wodorowe czy oddziaływania jonowe. Takim oddziaływaniom odpowiada pewna wartość energii, jaką należy przekazać cząstce, aby mogła wyrwać się do roztworu.

Zarazem, gdy cząstka rozpuszczona wyrwie się (a w zasadzie już w trakcie) zostaje otoczona przez cząsteczki rozpuszczalnika. Siły przyciągające mają to do siebie, ze układ przyciągających się ciał pobiera energię, gdy się je odrywa i wydziela gdy pozwala się im zbliżyć. Tak samo jest z grawitacją - aby rzucić kamień w górę należy się trochę wysilić, lecz spadając kamień uderzy o ziemię z taką samą siłą jak ta, z jaką go rzuciliśmy, może jedynie ostrzejszym kantem. W przypadku jonów rozpuszczających się w wodzie jej cząsteczki, będące dipolami, są przyciągane elektrostatycznie przez ładunek jonu i przez analogię "spadając" na jon w polu elektrostatycznym, wydzielają pewną energię. Jeśli energia sieci krystalicznej jest większa od energii hydratacji, to brakująca jej ilość zostanie wzięta z energii cieplnej wody - roztwór taki ochładza się, niejednokrotnie dość znacznie (rozpuszczanie lodu i soli w stężonym roztworze daje temperaturę do -35 C).
W przeciwnym przypadku, gdy energia hydratacji jest większa, zostaje ona wydzielona, a nasz roztwór ociepla się.
W nieutleniających mieszaninach ogrzewających używa się soli o wysokiej energii hydratacji, na przykład bezwodnego chlorku glinu czy chlorku wapnia. Zestaw taki można poddać recyklingowi po prostu odparowując roztwór do sucha. Znalazłem też zestawy oparte na wodorotlenkach metali alkalicznych - wodorotlenek sodu i potasu bardzo silnie nagrzewają roztwór podczas rozpuszczania, przy nieumiejętnym rozpuszczaniu nawet do wrzenia. Ciepło rozpuszczenia zasady potasowej jest prawie takie samo jak gaszenia wapna. Takie zestawy są bardzo niebezpieczne ze względu na powstające żrące ługi, jednak te, które znalazłem stosują tu sprytną sztuczkę - w zestawie oprócz wodorotlenku jest jeszcze substancja kwaśna, jak sądzę stały kwas organiczny, więc po rozpuszczeniu zasady następuje jej zobojętnienie, które zresztą też powoduje wydzielenie pewnej ilości energii[3]

Jest jeszcze jedna grupa ogrzewaczy chemicznych, które właściwie należałoby nazwać fizycznymi, czy też krystalitowymi. Wiecie już, że zrywając wiązania w krysztale wydatkujemy na to pewną energię. Jeśli połączycie to z zasadą, iż proces odwrotny wywoła taki sam, ale przeciwny do kierunku skutek energetyczny, to łatwo będzie się domyśleć, że krystalizacja substancji, która rozpuszczana pochłaniała energię, będzie przebiegała z wydzieleniem tejże. Po prostu energia wydzielająca się podczas tworzenia sieci krystalicznej jest wtedy większa od zużywanej na oderwanie od jonu zsolwatowanych cząsteczek wody. Jednak, aby powstające ciepło podwyższyło temperaturę w możliwie krótkim czasie, krystalizacja musi przebiegać szybko - stąd wykorzystanie substancji dających roztwory przechłodzone.
Oziębiając roztwór soli zmniejszamy rozpuszczalność, co dla stężonych roztworów musi się skończyć wydzieleniem nadmiaru substancji. Jednak zorganizowanie się bezładnych cząsteczek substancji w uporządkowany kryształ jest samo w sobie mało prawdopodobne, toteż jeśli roztwór jest bardzo czysty to mimo oziębiania nie wytworzą się w nim zarodki krystalizacji na tyle duże i liczne, aby proces zaczął zachodzić samorzutnie. W efekcie bardzo czyste roztwory soli można przechładzać bez krystalizacji, podobnie jak bardzo czystą wodę można przechłodzić do temperatur ujemnych bez zamarzania. Małe zaburzenie tej nietrwałej równowagi, poprzez dodanie stałej substancji, zanieczyszczeń, materiału porowatego czy nawet silne wytrząsanie, wywołuje bardzo szybką krystalizację, niejednokrotnie wywołujące skrzepnięcie roztworu w kilkanaście sekund.
Jeśli więc uda się nam to zrobić z roztworem substancji, wydzielającej ciepło podczas krystalizacji, to otrzymamy bardzo dobrą fizyczną grzałkę. Tego typu urządzenia, mające postać woreczków lub buteleczek, mają od bardzo dawna zastosowanie jako samogrzejące kompresy czy ogrzewacze do rąk. Taki pojemnik zanurza się w gorącej wodzie aż kryształy wewnątrz całkowicie się rozpuszczą, po cym odstawia w chłodne miejsce. Chcąc ich użyć wstrząsa się nimi lub w inny sposób wywołuje krystalizację - kryształy w krótkim czasie zarastają pojemnik, który robi się bardzo ciepły. Przykład takiej krystalizacji:
To na prawdę nie jest przyspieszony film.
A jakie sole mogą dawać taki efekt? Najczęściej używa się tiosiarczanu sodu - krystalizacja stężonego roztworu może podnieść temperaturę z 25 do 50-55 stopni C. Jest to znany odczynnik chemiczny, dawniej też utrwalacz fotograficzny. Jednak zdecydowanie łatwiej dostępny jest octan sodu, który można przygotować roztwarzając sodę oczyszczoną w occie spożywczym. Tu temperatura może się podnieść do 40-50 stopni C, więc przy odrobinie chęci można sobie samemu skonstruować takie ogrzewacze do rękawiczek (nie omieszkam spróbować).
Dostępne w handlu kompresy oparte na tej zasadzie mają postać szczelnie zamkniętych woreczków. Zapoczątkowanie reakcji odbywa się w ciekawy sposób - wewnątrz woreczka znajduje się kawałeczek wklęsłego metalu. Naciskając na niego możemy go niejako wywrócić na drugą stronę czyli odgiąć. Odbywa się to bardzo szybkim szarpnięciem. Wprawdzie nie znalazłem dokładnego opisu, ale podejrzewam że wibracje przy powierzchni metalu są na tyle silne, że wywołują miejscową kawitację w roztworze - między węzłami fal dźwiękowych na moment ciśnienie spada na tyle, aby roztwór mógł na chwilkę odparować, przez co powstaje trochę zarodków i dalej proces przebiega samoistnie. Po wykorzystaniu woreczek z kryształami odgrzewa się w gorącej wodzie do rozpuszczenia, zostawia gdzieś do ochłodzenia i można go znów wykorzystać.

-------
* Czytelnicy Potopu być może przypomną sobie jak to podczas oblężenia Jasnej Góry, oblegani strzelali nocą do Szwedów gdy tylko zobaczyli płomienie, świadczące o tym, że ktoś chciał sobie zrobić kolację.

[1] http://www.rp.pl/artykul/962780.html?print=tak&p=0
[2] http://www.lhoist.pl/html/firma/historia/lhoist_bukowa.html
[3] http://nsrdec.natick.army.mil/media/fact/food/hrh.htm
http://www.mreinfo.com/us/mre/frh.html
http://www.thestreet.com/story/10689212/1/alumifuel-power-inc-provides-update-on-its-flameless-ration-heater-initiatives.html