informacje



Pokazywanie postów oznaczonych etykietą sole nieorganiczne. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą sole nieorganiczne. Pokaż wszystkie posty

wtorek, 6 października 2015

Chemiczne wieści (2.)

Wysokociśnieniowy osm.
Zachowanie się materiałów pod ekstremalnie wysokim ciśnieniem to dość ciekawa sprawa Ciała stałe zasadniczo uznaje się za nieściśliwe, jednak w rzeczywistości mają pewną niewielką ściśliwość, zaś poddanie ich wysokiemu ciśnieniu powoduje zbliżenie budujących je atomów, czasem powodując przemianę do nowej formy uporządkowania lub ujawnienie się nietypowych cech.

Zespół naukowców pod kierunkiem niemieckiego uniwersytetu Bayreuth dokonał ostatnio dość szczególnego odkrycia. Przy pomocy nowej komory ciśnieniowej udało się im wytworzyć najwyższe dotąd otrzymane ciśnienie statyczne - nacisk 770 GPa, czyli ciśnienie dwa razy większe niż w jądrze Ziemi. Ciśnieniu temu poddano natomiast najbardziej gęsty metal - osm - znany też z bardzo niskiej ściśliwości.
Jeśli prawie najmniej ściśliwy materiał poddano najwyższemu ciśnieniu, to chyba powinno z tego coś wyniknąć? Wbrew oczekiwaniom osm nie przyjął żadnej nowej struktury krystalicznej, jedynie atomy nieco się do siebie przybliżyły, zachowując ten sam układ co w warunkach normalnych. Zaskoczeniem okazało się natomiast coś innego - pomiędzy atomami oprócz znanych już wiązań metalicznych, utworzonych przez elektrony walencyjne, zaczęły się także pojawiać oddziaływania utworzone przez elektrony wewnętrznych powłok elektronowych, które nigdy nie biorą udziału w tworzeniu wiązań. [1]

Wcześniej znane były wyliczenia teoretyczne sugerujące możliwość tworzenia wiązań między wewnętrznymi elektronami przy dużych ciśnieniach, ale teraz taka możliwość znalazła jakieś potwierdzenie w badaniach rentgenowskich rzeczywistego materiału.

Najtrudniej topliwy materiał
Tantal, metal przejściowy podobny do cyrkonu, jest znany z wysokotopliwego węgliku, który staje się płynny dopiero w temperaturze 3880*C, podobną temperaturę topnienia ma węglik hafnu. Połączenie tych substancji daje materiał o jeszcze większej odporności na temperaturę, dla składu Ta4HfC5 topiący się dopiero przy 3990 stopniach Celsiusza. Ale fizykochemicy nie poprzestają. Nowe wyliczenia jakie właśnie opublikowano sugerują możliwość stworzenia jeszcze trwalszego materiału. Wedle symulacji mieszany węglik-azotek hafnu o optymalnym składzie HfN0,38C0,51, osiągnąć może temperaturę topnienia nawet do 4400*C.[2]
Pozostaje teraz tylko poczekać na próby uzyskania nowego materiału.

Bateria z grzybów
W poprzednim odcinku wieści mówiłem już o otrzymywaniu kwantowych kropek ze zmiksowanej kapusty, dlatego baterie do telefonów ze zwęglonych grzybów nie będą chyba aż tak zaskakujące.
Wszystko co trzeba o metodzie. Udostępnione przez University of California

Jednym z głównych komponentów baterii litowych jest grafitowa anoda, zwykle wytwarzana z syntetycznego grafitu porowatego. Jego wytworzenie w ilościach przemysłowych jest jednak nieco skomplikowane i niezbyt ekologiczne, stąd liczne próby stworzenia dobrej alternatywy. Jedną z tych prób opisuje praca badaczy z University of California.
Wzięli oni cienki plaster wycięty z owocnika grzyba, akurat w tym przypadku była to pieczarka, po czym poddali go zwęgleniu w hydroreaktorze w wysokiej temperaturze. Otrzymany zwęglony plaster dodatkowo wyżarzono uzyskując porowaty materiał złożony ze splecionych węglowych włókien zachowujących strukturę strzępek grzyba i przewodzący prąd, będący dobrym zamiennikiem grafitu. Anoda wytworzona ze zwęglonego grzyba nie potrzebuje dodatkowych lepiszczy, dobrze przyjmuje płynny elektrolit i dobrze oddziałuje z jonami. Bardzo możliwe że ze względu na strukturę będzie wytrzymywała więcej cykli ładowania.[3]

Woda orto, woda para 
Jądro atomu wodoru to proton, który jako samotna cząstka posiada szczególną właściwość jaką jest spin. W dużym uproszczeniu można przedstawić to jako wektor momentu pędu protonu, mogącego obracać się bądź w jedną lub w drugą stronę - opis kwantowy tego zjawiska jest dużo bardziej skomplikowany. Ponieważ proton jest cząstką naładowaną, jego spin powoduje powstanie małego jądrowego pola magnetycznego. W sytuacji gdy mamy cząsteczkę wodoru składającą się z dwóch atomów te jądrowe pola magnetyczne oddziałują ze sobą i możliwe stają się dwie sytuacje którym odpowiadają różne energie - wodór orto ma spiny skierowane w tą samą stronę, wodór para w przeciwną. Ta druga sytuacja jest minimalnie korzystniejsza energetycznie jednak różnica energii jest na tyle mała że w warunkach normalnych wodór posiada mieszankę cząsteczek z tych dwóch stanów z przewagą ortowodoru.

To zresztą ciekawa sytuacja - pod wpływem temperatury trwalszy parawodór przechodzi w ortowodór, natomiast przemiana w drugą stronę jest powolna bowiem utrudnia ją zabronione przejście kwantowe. W efekcie w wodorze gazowym przeważa mniej trwała energetycznie odmiana, co ma też przełożenie na skład wodoru ciekłego. W niskich temperaturach powolna przemiana ortowodoru w trwalszy parawodór ma istotne znaczenie dla przechowywania, bowiem przemiana ta przebiega z wydzielaniem ciepła. Aby więc ułatwić przechowywanie ciekłego wodoru, katalizuje się tą przemianę przy pomocy odpowiedniego dielektryka otrzymując przewagę trwalszej formy.
Wróćmy jednak do naszego newsa.

W cząsteczce wody dwa wodory znajdują się na tyle blisko siebie, że także i u nich powinna być możliwa izomeria spinowa, jednak dotychczas nie udało się tego wykryć. Cząsteczki wody oddziaływały ze sobą powodując ciągłą zmianę spinów, toteż trudno było uchwycić sygnał od populacji poszczególnych izomerów. Jak się jednak okazało, możliwe jest odizolowanie od siebie cząsteczek. Zespół badaczy z University of Suthampton otrzymał pochodną fullerenu C60 z pojedynczymi cząsteczkami wody wewnątrz węglowej kul. Tego typu połączenie stanowi kolejny przykład związków cząsteczek "połączonych acz nie związanych" jak omawiane tu kiedyś katenany.
Cząstki C60@H2O były wystarczająco odizolowane aby w niskich temperaturach możliwe było wykrycie czystych sygnałów izomerów spinowych wody i przemian jednego w drugi.
[4]

Paliwo z powietrza
Temat przeróbki dwutlenku węgla na paliwo jest aktualnie bardzo gorący, stąd też w ostatnich miesiącach ukazało się wiele doniesień dotyczących nowych sposobów takiej syntezy.
Wedle doniesień z początku sierpnia zespół z Argonne National Laboratory stworzył nowy katalizator do reakcji zamiany dwutlenku węgla i wody w metanol. Znane dotychczas katalizatory oparte o tlenki cynku i glinu zostały zmodyfikowane poprzez precyzyjne umieszczenie na powierzchni tlenku cynku klastrów czterech atomów miedzi, stanowiących centrum katalityczne do którego przyłącza się cząsteczka CO2. Materiał pozwala na przeprowadzanie reakcji w warunkach niższego ciśnienia i temperatury, co poprawia opłacalność całego procesu produkcyjnego. [5]

A co robić z metanolem?  Można go użyć jako paliwa, ale można też poddać innym procesom. Pod koniec września pojawiła się praca zespołu z ETH w Zurychu na temat nowego katalizatora umożliwiający ekonomiczny proces konwersji metanol-olefina (MTO). Metanol lub eter dimetylowy pod odpowiednim ciśnieniem może ulegać przemianie na powierzchni tlenku cynku, z wytworzeniem etenu. [6]

Mniej toksyczne wydobycie złota
Jednym ze sposobów na uzyskanie złota ze złóż w których występuje w postaci rozproszonej, jest metoda rtęciowa, w której wykorzystuje się zdolność rtęci do rozpuszczania złota i tworzenie amalgamatu, od którego może być oddzielona przez destylację. Dziś już w zasadzie się od niej odchodzi z powodu wysokiej szkodliwości, mimo to wciąż używają jej małe kopalnie w biedniejszych rejonach świata, co jest źródłem zanieczyszczeń. Szacuje się że nawet 40% rocznych emisji rtęci do środowiska pochodzi z małych kopalni Indonezji i środkowej Afryki.
Oczywiście można próbować różnych zakazów, ale trudno jest je egzekwować, tym bardziej że praca w kopalniach stanowi często jedyne źródło utrzymania najbiedniejszych. Jest też jednak ich przekleństwem - pracownicy mieszający skałę z rtęcią, wyciskający amalgamat (nawet ręcznie) a zwłaszcza pracujący przy wypalaniu amalgamatu dla usunięcia rtęci po kilku latach zaczynają chorować. Skażenie wraz z zanieczyszczonym złotem przenosi się do miast gdzie na opary rtęci narażone są rodziny złotników przetapiających surowe złoto.

Jednym z ciekawych sposobów aby sprawić, że proces stanie się mniej groźny dla tych, którzy nie chcą z niego zrezygnować, jest dostarczenie wytwórcom tanich aparatów do bezpieczniejszej destylacji.
Geochemik Marcello Veiga z kanadyjskiego Uniwersytetu Inżynierii i Górnictwa opracował przyrząd podobny do blaszanej retorty, takiej jak używane przez dawnych alchemików. Zbiornik w którym wyżarzany jest amalgamat kończy się długą opadającą rurą, której wąski koniec kończy się w zbiorniku z zimną wodą. Opary rtęci zamiast trafiać do atmosfery są skraplane a krople metalu zbierane na dnie zbiornika, dzięki czemu może być użyty ponownie. W efekcie emisje rtęci spadają o 90%, mniej jej trafia do środowiska a pracownicy są mniej narażeni na toksyczne opary[7]


---------
[1] The most incompressible metal osmium at static pressures above 750 GPa;L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov; Nature (2015); DOI: 10.1038/nature14681
[2]  Prediction of the material with highest known melting point fromab initiomolecular dynamics calculations. Qi-Jun Hong, Axel van de Walle. Physical Review B, 2015; 92 (2) DOI: 10.1103/PhysRevB.92.020104
[3] Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Brennan Campbell, Robert Ionescu, Zachary Favors, Cengiz S. Ozkan, Mihrimah Ozkan. Scientific Reports, 2015; 5: 14575 DOI: 10.1038/srep14575
[4]  Electrical detection of ortho–para conversion in fullerene-encapsulated water. Benno Meier, Salvatore Mamone, Maria Concistrè, Javier Alonso-Valdesueiro, Andrea Krachmalnicoff, Richard J. Whitby, Malcolm H. Levitt. Nature Communications, 2015; 6: 8112 DOI: 10.1038/ncomms9112

[5]   Carbon Dioxide Conversion to Methanol over Size-Selected Cu4Clusters at Low Pressures. Cong Liu, Bing Yang, Eric Tyo, Soenke Seifert, Janae DeBartolo, Bernd von Issendorff, Peter Zapol, Stefan Vajda, Larry A. Curtiss. Journal of the American Chemical Society, 2015; 137 (27): 8676 DOI: 10.1021/jacs.5b03668
[6]  Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina, Aleix Comas-Vives, Maxence Valla, Christophe Copéret, Philippe Sautet.. ACS Central Science , 2015 r.; 150807151553006 DOI: 10,1021 / acscentsci.5b00226

[7]  http://www.rsc.org/chemistryworld/2015/08/chemistry-saves-thousands-gold-miners-mercury-poisoning

czwartek, 27 sierpnia 2015

Chemiczne wieści (1.)

Postanowiłem stworzyć jeszcze jeden cykl wpisów - krótkie doniesienia ze świata chemii, jakie ostatnio wpadły mi w oko i które uznałem za najciekawsze.

Rozdzielanie światłem
Rozdział lantanowców nie jest procesem łatwym. Pierwiastki te mają bardzo podobne właściwości fizyczne i chemiczne, zbliżoną rozpuszczalność soli i powinowactwo, a na dodatek występują w mieszaninie w jednym minerale - monacycie. Zwykle rozdziela się je bądź przez wieloetapową ekstrakcję w rozpuszczalnikach organicznych, lub przez stosowanie żywic jonowymiennych. Niedawna praca pokazuje jednak jeszcze jeden ciekawy, prosty i wymagający zdecydowanie mniejszej ilości energii proces.

Badacze skupili się na rozdziale europu od itru, dwóch rzadkich pierwiastków stosowanych w elektronice, w tym w telewizorach i w świetlówkach. Itr stanowi składnik czerwonego luminoforu czyli substancji emitującej światło po naświetleniu wiązką elektronów, często domieszkowany jest europem dla zwiększenia czułości. Ich odzysk ze zużytego sprzętu jest kłopotliwy, właśnie z powodu trudnego rozdziału. Dotychczas chętnie wykorzystywano skłonność europu do redukowania się do wartościowości II, w której tworzy nierozpuszczalny siarczan, co jednak wymagało bardzo kwaśnych warunków i użycia toksycznych reduktorów.
Technika opracowana przez belgijskich badaczy jest dość prosta i nie wymaga użycia specjalnych chemikaliów. Pierwiastki mogą mieć podobne właściwości chemiczne, ale powinny mieć różne właściwości kwantowe. Elektrony na powłokach tych pierwiastków przyjmują różne stany energetyczne, co objawia się różnym widmem absorpcyjnym, pozwalającym na rozróżnienie. Te różnice powodują też, różne zachowanie się w stanie wzbudzonym.W tym konkretnym przypadku różnica dotyczyła zachowania się akwakompleksów, czyli związków kompleksowych jonów metali z cząsteczkami wody
Badacze wykonali wodny roztwór mieszaniny azotanów itru III i europu III, po czym naświetlili ultrafioletem o tak dobranym zakresie, że był on pochłaniany przez akwakompleks jonów europu. Energia pochłonięta była na tyle duża, że jedna z przyłączonych cząsteczek wody rozpadała się z wydzieleniem rodnika hydroksylowego, zaś europ III ulegał redukcji do europu II.
[Eu(H2O)n]3+ + → [Eu(H2O)n-1]2+ + H+ + OH*
Po naświetleniu, do mieszaniny wprowadzono aniony siarczanowe. Siarczan europu II jest trudno rozpuszczalny, natomiast siarczan itru III rozpuszczał się. Po odwirowaniu i oddzieleniu osadu, otrzymano sól europu oddzieloną od drugiego pierwiastka, o czystości do 98,5%. [1][2]

Kwantowe kropki z kapusty
Nietypowa substancja z nietypowego źródła.

Kwantowe kropki to jedno z najciekawszych osiągnięć nanotechnologii, które w dodatku znajduje coraz powszechniejsze zastosowanie. Stanowią szczególny przypadek stosunkowo dużego, wieloatomowego obiektu, do którego mają zastosowania prawa fizyki kwantowej.
Fizyka kwantowa traktuje cząstki elementarne, jak obiekty o dwojakiej naturze - zarazem są punktowymi, twardymi cząstkami jak i wykazują własności rozmytej fali. Im mniejszy i mniej masywny jest obiekt, tym wyraźniejsza jest ta falowość. Dla elektronów ta druga strona jego natury jest już tak wyraźna, że wygodniej jest opisywać ich zachowanie funkcjami fali, zupełnie jakby szło o opis światła czy dźwięku.
Jednym z modeli teoretycznych falo-cząstki, dość podstawowym, jest model "cząstki w pudle potencjału" czyli ograniczonej pewnymi przedziałami czy to energetycznymi czy to przestrzennymi. To ograniczenie dla ruchu elektronu, jeśli tylko ma rozmiary porównywalne z wielkością jego "fali", wpływa na to jaką może on przybierać energię. Podobnie jak dla dźwięków w rezonatorach instrumentów, pewne częstotliwości są wzmacniane, dlatego fala elektronu w takim "pudle" przebiera pewne określone stany o różnej energii.
Kropka kwantowa to po prostu bryłka materii o rozmiarach tak małych, że niewiele większych od wielkości fali elektronowej, która ponieważ elektrony nie mogą z niej wyjść, staje się dla nich trójwymiarowym pudłem potencjału. Elektrony atomów w tym materiale mogą przyjmować pewne określone stany energetyczne, całość zatem zachowuje się podobnie jak mocno powiększony atom. Mają własne widmo absorpcyjne, po naświetleniu mogą wykazywać fluorescencję, i to w bardzo dużym zakresie barw:
Kwantowe kropki z mieszanego siarczku kadmu i cynku z domieszką selenu. @ Signa Aldrich
Na zdjęciu widzicie fiolki z zawiesinami kwantowych kropek oświetlonych ultrafioletem. Materiał z którego są zrobione nie świeci w normalnych warunkach. We wszystkich fiolkach kropki zrobiono z tego samego materiału, różnią się tylko wielkością cząstki.

Gdy tylko nauczono się robić takie cząstki w większych ilościach, technolodzy zaczęli się prześcigać w wyszukiwaniu nowych ciekawych zastosowań. Już mówi się, że lampy oparte na kropkach mogą wyprzeć w przyszłości diody LED. Ponieważ mogą przenikać do żywych organizmów, wydają się ciekawym narzędziem służącym na przykład do lokalizowania ognisk chorobowych.
Większość takich kropek tworzona jest z materiałów półprzewodnikowych, soli nieorganicznych lub metali. Dlatego też ciekawa jest praca opisująca, że możliwe jest wytwarzanie ich w dużych ilościach, za surowiec wykorzystując zieloną kapustę.

Kapusta została rozdrobniona w czystej wodzie i dokładnie zmiksowana blenderem. Otrzymana zawiesina była przetwarzana w reaktorze hydrotermalnym w temperaturze 140 stopni. Otrzymana brązowa zawiesina została poddana odwirowaniu, dzięki czemu usunięto przeszkadzające duże cząstki. To co pozostało można było oddzielić w ultrawirówce na frakcje, które fluoryzowały na różne kolory.
Właściwe kropki kwantowe to nanometrowe fragmenty komórek, ziaren skrobi czy agregatów białkowych, które podczas przetwarzania uległy częściowemu zwęgleniu, z powstaniem cząstek o charakterze  węgla grafitowego.
Wydajność produkcji oceniono na 7%.[3]

Antybakteryjny kasztan
To całkiem świeże odkrycie dobrze pokazuje, że tradycyjna medycyna ludowa może mieć pewien rzeczywisty sens, o ile zostanie wsparta nowoczesną technologią.

Casanra Quave jest etnobotanikiem, a więc poszukuje związków między tradycyjną kulturą a właściwościami roślin. Stara się na podstawie przekazów ludowych zweryfikować doniesienia o leczniczych właściwościach roślin. W trakcie zbierania informacji często natykała się na doniesienia o używaniu naparu w liści kasztana jadalnego w zapaleniach skóry. Ponieważ zaś często zapalenia skóry są wywoływane zakażeniami gronkowcem, rozsądne wydawało się przetestowanie wyciągu na zakażonej skórze. Jak się okazało, choć wyciąg nie zabijał bakterii, powodował znaczące zmniejszenie uszkodzenia tkanek i podrażnień. Substancje zawarte w liściach kasztana powodowały wyłączenie systemu quorum sensing (brak jeszcze polskiego odpowiednika, ale rozsądnym byłoby "wyczuwanie zagęszczenia"), który zazwyczaj w przypadku ognisk zapalnych powoduje, że zagęszczone bakterie zaczynają wytwarzać toksyny, będące głównym czynnikiem szkodliwym. W efekcie bakterie przestały wywoływać uszkodzenia tkanek.
Efekt ten zaobserwowano nawet w przypadku najbardziej zjadliwych szczepów, także tych lekoodpornych gronkowców MRSA. Oznacza to, że choć wyciąg nie niszczy bakterie, może spowodować że zakażenie nie będzie aż tak szkodliwe, bakterie bowiem nie będą wytwarzać toksyn.

Oleanen
Co jednak wywoływało ten nietypowy efekt?
Tego dokładnie nie wiadomo. Technikami chromatograficznymi uzyskano z liści aktywną frakcję zawierającą około 90 związków o charakterze saponin steroidowych, spośród których najbardziej aktywne wydawały się pochodne 12-ursenu i oleanenu. Trwają badania czy za efekt odpowiada konkretny związek, czy może cała grupa.[4]

Najcieplejszy nadprzewodnik
Najnowsze odkrycie niemieckich naukowców jest dość zaskakujące. Otóż odkryli oni, że dość pospolity gaz siarkowodór, o zapachu zgniłych jaj, po zamrożeniu może stać się nadprzewodnikiem w wyjątkowo wysokiej jak na takie ciała temperaturze -70 *C (203,5 K). Dotychczasowy rekord dotyczył pewnych tlenowych związków miedzi, które stawały się nadprzewodnikami w temperaturze -135 *C, a zatem do ich chłodzenia potrzebne było skroplone powietrze. Do schładzania nowo odkrytego nadprzewodnika wystarczałby już tylko suchy lód, tańszy i łatwiej dostępny.
Jednak w odkryciu tkwi pewien haczyk - siarkowodór nabiera tak obiecujących właściwości dopiero pod dużym ciśnieniem około 200 GPa, w związku z czym raczej w najbliższym czasie nie znajdzie zastosowania.
Badanie wykazały że przy dużych ciśnieniach powyżej 90 GPa cząsteczki H2S łączą się zamieniając się w cząsteczki H3S, a zestalony gaz staje się przewodnikiem metalicznym. Odpowiednie obniżenie temperatury zamienia go w nadprzewodnik. [5]


-------
Źródła:
[1]  Bart Van den Bogaert, Daphné Havaux, Koen Binnemans and Tom Van Gerven ; Photochemical recycling of europium from Eu/Y mixtures in red lamp phosphor waste stream, Green Chem., 2015,17, 2180-2187 DOI: 10.1039/C4GC02140A
[2] http://www.scriptiebank.be/sites/default/files/webform/scriptie/Masterthesis%20DH.pdf
[3] Al-Mahmnur Alam,   Byung-Yong Park,   Zafar Khan Ghouri,   Mira Park and   Hak-Yong Kim , Synthesis of Carbon Quantum Dot from Cabbage with Down- and Up-Conversion, Green Chem., 2015,17, 3791-3797
[4] Cassandra L. Quave, James T. Lyles, Jeffery S. Kavanaugh, Kate Nelson, Corey P. Parlet, Heidi A. Crosby, Kristopher P. Heilmann, Alexander R. Horswill. Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance. PLOS ONE, 2015; 10 (8) e0136486
[5] http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14964.html A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature (2015) doi:10.1038/nature14964

poniedziałek, 15 czerwca 2015

Pytania czytelników

Od czasu do czasu dostaję pytania od czytelników bloga. Część pojawia się w komentarzach, i tam staram się na nie odpowiadać co można zobaczyć pod popularnymi postami. Część osób woli jednak drogę bardziej bezpośrednią, używając maila kontaktowego, jaki można znaleźć w opisie profilu, i odpowiedzi na te pytania nie są już powszechnie dostępne. Ponieważ zaś część pytań się powtarza, a niektóre są przecież dość ciekawe, uznałem że warto zebrać je w jednym miejscu, abym nie musiał się powtarzać


Aluminium w glinkach kosmetycznych
O tą rzecz pytano mnie już kilka razy, dlatego warto chyba odpowiedzieć publicznie.

Glina to formalnie rzecz biorąc, skała osadowa. Bardzo miękka a w stanie wilgotnym dająca się formować w rękach, ale skała. Aby osad mógł być zaliczony do glin, musi zawierać odpowiednio dużą ilość minerałów ilastych, przemieszanych z drobnym pyłem kwarcowym i skaleniowym. Tlenki żelaza i manganu nadają glinom kolor od żółtawego, przez rdzawoczerwony, brunatny, szary do ziemisto-zielonego. Glinki z małą ilością metali mogą być też białe.
Minerały ilaste, uwalniane ze skał podczas wietrzenia, wypłukiwane w formie najdrobniejszego mułu czy wywiewane przez wiatr jako kurz, stanowią grupę krzemianów warstwowych, składających się z warstw połączonych tetraedrów tlenku krzemu SiO4 i tlenku glinu AlO4. Tlenek glinu jest izomorficzny z tlenkiem krzemu i może go naśladować, włączając się w krzemianową strukturę bez zmian. Poszczególne warstwy glinokrzemianowe są połączone wiązaniami wodorowymi, częściowo jonowymi, i potrafią wchłaniać między siebie inne substancje organiczne i nieorganiczne. Duży stopień uwodnienia powoduje, że warstwy mogą się względem siebie przesuwać, przez co glina staje się plastyczna. Właśnie zawartość tego pierwiastka w glinie stała się podstawą do zastąpienia w polskiej nomenklaturze łacińskiego aluminium nazwą glin.

Struktura warstwy kaolinu:

Wśród krzemianów warstwowych, najczęściej spotykamy się z talkiem, kaolinem będącym głównym składnikiem porcelany i montmorylonitem będącym głównym składnikiem bentonitu. Gliny zawierają mieszankę różnych glinokrzemianów ale niektóre posiadają przewagę jednego, konkretnego, stąd wyróżnia się białą glinkę kaolinową, glinkę pałygorskitową i inne.

A jak jest z tym aluminium?
Aby glin mógł być uwalniany z gliny, powinien być rozpuszczalny w wodzie. A gliny nie są. Nie dość, że zupełnie nierozpuszczalny w wodzie jest tlenek glinu, to w glinokrzemianach dodatkowo stabilizuje go włączenie w sieć krzemianową
Kwestia ta była zresztą szczegółowo badana, zwłaszcza z uwagi na używanie ceramiki jako naczyń kuchennych, oraz używanie glinokrzemianów jako dodatków do żywności. Wydaje się, że w warunkach odczynu obojętnego uwalnianie glinu nie zachodzi. Dopiero warunki kwaśne są w stanie uwolnić część jonów. W pewnym badaniu stwierdzono dla kwasowości pH 3 (sok pomarańczowy) minerały uwalniały dość niskie poziomy aluminium, ale tylko z bardzo cienkiej (3,5 mikrometra) warstwy powierzchniowej, co sugeruje, że w przypadku naczyń ceramicznych po pewnym czasie powstanie wypłukana warstewka powstrzymująca dalsze uwalnianie. Najsłabsze wymywanie stwierdzono dla kaolinu i montmorylonitu[1]. Uwolnienie ilości mających jakieś znaczenie toksykologiczne, zachodzi dopiero pod wpływem mocniejszych kwasów.
Glinki kosmetyczne nie mają tak kwaśnego odczynu, więc uwalniania aluminium nie ma co się obawiać.W dodatku czyste glinki, przepłukane dla wymycia zanieczyszczeń, jak to zwykle jest z glinkami kosmetycznymi, mają raczej skłonność do pochłaniania rozpuszczalnych jonów glinu niż do uwalniania.

W obszernym raporcie na temat bezpieczeństwa glinokrzemianów i tlenków glinu używanych w kosmetyce, nie stwierdzono negatywnych skutków dla minerałów ilastych. [2]

Podobne pytanie dotyczyło spożywania glinek na odtruwanie - tutaj także nie ma niebezpieczeństwa, kwasy żołądkowe są bowiem dosyć rozcieńczone. Jedynym istotnym wpływem jaki stwierdzono, jest zmniejszone wchłanianie żelaza u osób zażywających glinę, bowiem absorbowała żelazo z treści żołądkowej.

Aluminium w szczepionkach
Ze względu na popularny post o ałunie jestem chyba brany za eksperta od aluminium, skoro dotyczy tego koleje pytanie zadawane mi dwa razy.
Jak wiadomo, w niektórych szczepionkach dziecięcych pojawiają się związki aluminium. Podobno zawartość w jednej nie przekracza norm bezpieczeństwa. A co jakby zsumować zawartość we wszystkich - czy wtedy mogłoby zajść jakieś niebezpieczeństwo?

Wodorotlenek glinu pojawia się w szczepionkach jako nośnik białek lub polisacharydów mających wywołać reakcję organizmu. Normy z reguły uważają za najwyższą dopuszczalną dawkę glinu 60 mg/ kg. masy ciała dziennie. Z badań na zwierzętach wynika też, że najniższe dawki mające negatywny wpływ na płody i rozwijające się młode (u szczurów) to 45 mg/kg masy ciała dziennie.

Spośród szczepionek w kalendarzu szczepień, glin zawierają:
- EUVAX B 0,25 mg w jednej dawce lub ENGERIX B też 0,25 mg w jednej dawce (stosowane wymiennie)
- DTP 0,7 mg na dawkę
-IPV 0,5 mg na dawkę
Jak łatwo zauważyć, całkowita zawartość w jednej dawce jest kilkadziesiąt razy mniejsza od najniższych dawek toksycznych. Nawet gdyby wstrzyknąć wszystkie wymienione w ciągu jednego dnia, to nie doszłoby do przekroczenia choćby dziesiątej części toksycznej dawki.

Toksyczność ałunu
Czytelnik pytał o bezpieczeństwo ałunu dla dzieci. Chodziło mu o sytuację gdyby dziecko znalazło kawałek ałunu z pękniętego sztyftu i polizało lub połknęło.
Ałun potasowy i amonowy mają działanie drażniące na błony śluzowe, dlatego pierwszą reakcją w razie połknięcia będą zapewne wymioty. Po polizaniu dziecko pewnie straci ochotę na kolejny liz, ałun ma bowiem bardzo cierpki, nieprzyjemny smak i działanie ściągające. W razie połknięcia najlepiej dać dziecku dużo wody do wypicia i skontaktować się z lekarzem. W razie polizania też dać wody, ale lekarz pewnie nie będzie potrzebny.
Toksyczność ostra związku jest niska - dawka śmiertelna to 6 g/kg masy ciała

Co takiego rozpuszcza DMSO?
Pewien dociekliwy czytelnik zainteresowany medycznymi zastosowaniami DMSO dopytywał mnie o kwestie tego co się w tym rozpuszcza, a co nie i czy ma on zastosowania medyczne.

Dimetylosulfotlenek, czyli w skrócie DMSO to cenny rozpuszczalnik, używany w medycynie i chemii organicznej. Wykazuje dużą skłonność do wnikania w tkanki organizmu, na tyle, że trzeba uważać przy pracy z nim bo po wchłonięciu metabolizuje do związków o zapachu czosnku. Ponieważ rozluźnia strukturę lipidową skóry, może ułatwiać wchłonięcie przezskórnie różnych substancji, w tym wielu leków, dlatego czyni się próby z wykorzystaniem do terapii bez konieczności zastrzyków. Sam w sobie ma zresztą działanie przeciwzapalne.
Bywa rozpuszczalnikiem środków na grzybicę stóp, które zwykle dość słabo przenikają przez zrogowaciały naskórek na podeszwach, może być też składnikiem maści przeciwbólowych do działania miejscowego, może rozmiękczać skórę przy twardzinie i przerastających bliznach. Robiono na ten temat badania [3]

Drugie pytanie dotyczyło możliwości rozpuszczania chondroityny przez DMSO i smarowania tym stawów jako alternatywy dla suplementacji doustnej.

Chondroityna to mukopolisacharyd będący składnikiem chrząstek stawowych i w formie siarczanu stanowiący wraz z glukozaminą jeden z czynników zapewniających lepszy poślizg. W związku z tym powstał pomysł, że jeśli zbyt mała ilość mazi stawowej i mała elastyczność chrząstek stawu powodują bóle, to zażywanie chondroityny i dostarczanie jej do organizmu, powinno leczyć bądź powstrzymywać rozwój schorzeń stawów poprzez dostarczenie organizmowi składnika do wytworzenia większej ilości mazi. Na tym też opiera się potężna gałąź przemysłu suplemenciarskiego.
Niestety w niedawno opublikowanej potężnej metaanalizie wielu badań wykazano, że w porównaniu z placebo zażywanie chondroityny lub glukozaminy lub obu tych środków razem, nie zmniejsza bólów ani innych objawów[4]
Wygląda na to, że samo dostarczenie organizmowi składników potrzebnych do wytworzenia czegośtam w którymś organie, wcale nie musi go pobudzać aby tą substancję jednak wytworzyć, zwłaszcza że niedostateczne wydzielanie tej substancji wcale nie musi być wynikiem niedoboru podstawowego składnika, może być skutkiem innych czynników, w tym genetycznych. Dlatego jeśli przyjrzycie się emitowanym obecnie reklamom takich pigułek, zauważycie że wcale nie stwierdzają one wprost, iż zażycie tego składnika powstrzyma chorobę. Zamiast tego zawierają ogólniki, typu "glukozamina jest składnikiem chrząstki stawowej" i "maź stawowa ma decydujące znaczenie w zapewnieniu elastyczności  stawu" i na koniec, że ich pigułka zawiera podwójną czy potrójną dawkę, zaś konstrukcję logiczną "skoro to jest składnikiem chrząstki a chrząstka jest potrzebna w stawach, to pomoże mi na stawy" widz musi sam sobie przeprowadzać, w czym udanie pomaga mu sugestia pokazywanego w reklamie pana którego bolą stawy, który bierze ich tabletki a potem wygląda na mniej cierpiącego.

Ale wróćmy do pytania - czy chondroityna rozpuszcza się w DMSO? Cóż - wedle obszernego podsumowania rozpuszczalności różnych substancji w tym rozpuszczalniku, chondroityna jest nie rozpuszczalna. Słabo rozpuszcza się chlorowodorek glukozaminy, natomiast bardzo dobrze przeciwbólowy Ibuprofen.[5]
Tak że raczej nie tędy droga.

Gdzie zbadać wodę?
Miałem też pytania o to gdzie można samemu zbadać wodę ze studni, źródła czy ujęcia.
Z tego co się orientuję, takie badania oferują jednostki Sanepidu, zbadają one zawartość metali ciężkich, czystość bakteriologiczną i własności fizyczne, jak zamulenie, obecność kwasów humusowych, zażelazienie itp. Oczywiście są to badania płatne.
Próbkę wody może pobrać wysłany pracownik, ale można ją też pobrać samemu. Warszawska stacja podaje na swojej stronie specyfikację sposobu pobierania próbek, aby nadawały się do badania.[6]


Dezodorant z podbiałem

Świadoma konsumentka zadała mi pytanie w sprawie używanego dezodorantu, który zawierał w swoim składzie podbiał pospolity. Chcąc dowiedzieć się czegoś o tym składniku, dowiedziała się że roślina zawiera uszkadzające wątrobę alkaloidy. I stąd powstało pytanie, czy taki alkaloid może wchłaniać się przez skórę?

Podbiał to cenne zioło lecznicze, lecz dopiero w ostatnich latach zorientowano się, że może zawierać alkaloidy pirolizydynowe, o działaniu hepatotoksycznym, które w wyniku zażywania dłuższym niż dwa miesiące mogą powodować toksyczną niewydolność wątroby. Ich zawartość w surowcach zbieranych w Europie jest jednak bardzo niska - w polskim badaniu stwierdzono poziomy rzędu 0,0013%[7]

W jednym badaniu na szczurach stwierdzono minimalne wchłanianie przezskórne alkaloidów żywokostu, w ilości 20 razy mniejszej niż przy podaniu doustnym. Stwierdzono też, że przy chłonięciu przeskórnym, nie dochodzi do zamiany nietoksycznego N-tlenku w toksyczną formę zredukowaną, co zwykle następowało w jelitach po spożyciu.[8] Zatem wydaje się, że kosmetyków z roślin zawierających te alkaloidy można używać bezpiecznie.

Czy to cyjanek?
Dwa lata temu czytelnik przesłał mi zdjęcie białego proszku, z pytaniem czy to cyjanek potasu. Cóż mogłem odpowiedzieć... Spektroskopu w oczach nie mam. Odpisałem, że może to być cyjanek albo soda, albo sól morska, albo cokolwiek innego bo bardzo wiele soli tak wygląda. Nie wiem o co chodziło.

----------
[1] http://www.clays.org/journal/archive/volume%2026/26-6-434.pdf
[2] http://www.ncbi.nlm.nih.gov/pubmed/12851164
[3] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460663/
[4] http://www.bmj.com/content/341/bmj.c4675
[5] http://www.gaylordchemical.com/uploads/images/pdfs/literature/102B_english.pdf
[6] http://www.wsse.waw.pl/PageContent.aspx?SubMenuID=100
[7]  https://depot.ceon.pl/bitstream/handle/123456789/1121/hp%2058%204%202012%2062.pdf?sequence=1&isAllowed=y
[8] http://www.ncbi.nlm.nih.gov/pubmed/7128756?dopt=Abstract

poniedziałek, 9 marca 2015

I grupa analityczna kationów

Podczas zajęć z chemii analitycznej starałem się robić zdjęcia każdej grupie i reakcji z każdym odczynnikiem. Różnej natury przyczyny sprawiły, że wszystkiego sfotografować się mi nie udało, ale coś tam zawsze można pokazać.

Klasyczna analiza nieorganicznych soli polega na przetestowaniu prostych reakcji dających osady o charakterystycznych właściwościach, tylko dla niektórych stosuje się dodatkowe odczynniki specyficzne. Rozpoznanie kationu opiera się na zgodności obserwowanych przemian z opisanymi w literaturze - musi powstać lub nie osad, o odpowiednim kolorze, rozpuszczający się lub nie w odpowiednim odczynniku.
 Metody te mają znaczenie przede wszystkim dydaktyczne, bo w praktyce w analizie próbek na obecność metali używa się innych metod. Wymagają ona stosunkowo dużych ilości soli (aczkolwiek dużą ilość tych reakcji można przeprowadzać na pojedynczych kroplach, dzięki czemu możliwe staje się zbadanie pojedynczych okruchów).
Zależnie od tego jak sole reagują z pewnymi podstawowymi odczynnikami, pogrupowano je i podzielono. Dziś omówię grupę I, czyli jony metali, które dają osady po dodaniu kwasu solnego.

Ag, Hg(I),Pb(II)
+ Cl-
Po dodaniu odczynnika grupowego, czyli kwasu solnego lub roztworu chlorku sodu, wszystkie kationy wytrącają się w formie białych chlorków:

Od lewej Hg22+ ,Ag+ ,Pb2+ .
Powstające chlorki srebra, ołowiu i rtęci (I) to białe, nieco kłaczkowate osady. Chlorek srebra jest światłoczuły i po pewnym czasie ciemnieje, najpierw stając się szaro-fioletowy aż w końcu czarny. Zanim to jednak nastąpi, można go odróżnić od pozostałych za sprawą ciągu reakcji - po dodaniu roztworu amoniaku rozpuszcza się, tworząc kompleks chlorku aminasrebra, po dodaniu rozcieńczonego kwasu azotowego, osad chlorku pojawia się ponownie.
Zarówno chlorek srebra jak i ołowiu mogą rozpuścić się w nadmiarze odczynnika, dlatego powinno się używać raczej rozcieńczonego. Chlorek ołowiu rozpuszcza się na gorąco, przy ochłodzeniu tworząc białe igiełkowate kryształki.
+ NH3*H2O
Po dodaniu rozcieńczonego amoniaku do roztworów, wytrącają się różne osady:
Niestety ujawnia się tu złośliwość substancji - w próbówce prawej, zawierającej sól srebra, osad powstał podczas nalewania odczynnika i po chwili się rozpuścił. Szary osad tlenku srebra jest rozpuszczalny w nadmiarze i stąd takie efekty.
W próbówce po lewej wyraźny ciemnoszary osad, o skomplikowanym składzie. W reakcji z jonami amonowymi i hydroksylowymi zamiast oczekiwanego wodorotlenku, rtęć (I) tworzy sól aminortęciową oraz rtęć metaliczną, która zabarwia osad na szaro.
+ KJ (jodek potasu)
W tym przypadku pojawiają się osady o wyraźniejszych kolorach:


Od lewej: Hg22+, Pb2+, Ag+ . Osad jodku rtęci jest zielonkawy i dosyć ciemny, zawiera prawdopodobnie domieszki metalicznej rtęci. Nadmiar odczynnika powoduje rozpuszczenie jodku rtęci (I) z równoczesną dysproporcjonacją w wyniku której do roztworu przechodzi kompleks tetrajodku rtęci (II) a wytrąca się koloid metalicznej rtęci. Taki roztwór mógłby stanowić w zasadzie odczynnik Nesslera, używany do oznaczania jonów amonowych, ale zazwyczaj otrzymuje się go inną metodą..
Jodek ołowiu jest żółty. Rozpuszcza się w wodzie na gorąco, po ochłodzeniu wykrystalizowuje w formie żółtych blaszek o połysku podobnym do płatków złota, stąd też był kiedyś używany w żółtych farbach. Rozpuszcza się też w nadmiarze odczynnika.

Jodek srebra jest lekko żółtawy, z czasem ciemnieje od światła.
+ dichromian potasu
Intensywne kolory wywołuje także reakcja z dichromianem:
Chromian srebra jest czerwonym, drobnym osadem, rozpuszczalnym w amoniaku lub rozcieńczonym kwasie azotowym. Pośrodku widzicie intensywnie żółty chromian ołowiu, dawniej używany jako pigment malarski "żółcień ołowiana" obecnie rzadko używana ze względu na toksyczność. Chromian rtęci jest ciemnobrunatny, choć podobno podczas dłuższego gotowania zmienia się w czerwony.
+AKT
AKT to często stosowana, wygodniejsza w użyciu forma siarczków. Związek organiczny, amid kwasu tiooctowego, który w środowisku kwaśny i podczas ogrzewania ulega hydrolizie z wydzieleniem siarkowodoru. Strąca siarczki z roztworów soli metali
Z badanymi solami daje odpowiednie osady:

Osad siarczku srebra jest raczej szarawy i kłaczkowaty. Z nieznanych mi przyczyn czarny siarczek ołowiu się nie wytrącił, stąd pusta próbówka. W przypadku rtęci (I) zachodzi dysproporcjonacja, strąca się osad będący mieszanką metalicznej rtęci i siarczku rtęci (II).

Oprócz wymienionych podstawowych prób, istnieją też próby charakterystyczne, na przykład reakcja soli srebra z reduktorami może spowodować powstanie lustra na ściankach próbówki. Ołów reaguje z rodizonianem potasu dając ciemnofioletowy osad. Rtęć (I) tworzy z difenylokarbazydem charakterystyczny niebiesko-fioletowy kolor; reakcja jest bardzo czuła i wykorzystuje się ją do kolorymetrycznego oznaczania śladowych ilości rtęci.

----------

czwartek, 12 lutego 2015

Wielka pomarańczowa chmura

Wiadomość jaką zobaczyłem właśnie w portalach informacyjnych jest tak nietypowa, że muszę o tym napisać.

Nad ranem w zakładach chemicznych na obrzeżach miasta Igualada, w Hiszpanii (region autonomiczny Katalonia) doszło do nietypowego wypadku - prawdopodobnie pomyłka przy przenoszeniu chemikaliów z pojemnika do pojemnika doprowadziła do eksplozji i wytworzenia wielkiej pomarańczowej chmury, która rozeszła się nisko nad miastem. Wygląda to doprawdy apokaliptycznie:


Sądząc po tym jak rozchodzi się chmura, w okolicy musi występować inwersja temperatur - powietrze w warstwie nad ziemią jest chłodniejsze niż warstwy wyższe. Ponieważ powietrze cieplejsze ma mniejsza gęstość, zaś unoszenie oparów polega na wypieraniu mniej gęstego powietrza nad bardziej gęste, chłodniejsze, inwersja temperatur powoduje że wszelkie dymy i opary zatrzymują się na pewnej wysokości, tam gdzie przebiega granica między masami powietrza, nie mogąc unieść się wyżej w ciepłym powietrzu górnej warstwy. Właśnie to zjawisko powoduje powstawanie smogu nad miastami, który wieczorem obejmuje warstwę kilkudziesięciu metrów przy powierzchni, nad którą sięgają szczyty wieżowców. Jest szczególnie dotkliwe gdy miasto znajduje się w kotlinie między wzgórzami a wiatr jest słaby - czego przykładem choćby strasznie zasmożony Kraków.

W przypadku  Igualady na zdjęciach widać podobną sytuację:


Ale czemu piszę o tym na blogu chemicznym?
Jak podają media, do wypadku doszło po zmieszaniu kwasu azotowego z chlorkiem żelaza. W takiej sytuacji dla chemika oczywiste powinno być, że gazem jest dwutlenek azotu, będący bardzo toksycznym gazem.
Kwas azotowy, będący utleniaczem, reaguje z chlorkiem żelaza II będącym reduktorem. Żelazo II utlenia się do żelaza III, część jonów azotanowych V redukuje się do tlenku azotu II, stąd proste równanie:
3 FeCl2 +  10 HNO3 → 3 Fe(NO3)3 + 2 H2O + NO + 6 HCl
Tlenek azotu II jest gazem bardzo nietrwałym - w zasadzie jest to obojętny rodnik z jednym niesparowanym elektronem Natychmiast więc po zmieszaniu z powietrzem reaguje z tlenem i utlenia się do dwutlenku azotu:
2 NO + O
2
→ 2 NO
2
Który jednak nadal jest gazem bezbarwnym.
Ten jednak w takiej formie nadal nie jest gazem trwałym - bardzo chętnie zamienia się w dimer, nazywany tetratlenkiem diazotu IV, i to właśnie ten gaz ma pomarańczowo-brunatny kolor:
2 NO
2
is in equilibrium with N
2
O
4
Równanie zawiera charakterystyczny znak przeciwnie skierowanych strzałek. Oznacza to, że mamy do czynienia z pewną równowagą. Im niższa temperatura, tym chętniej związek występuje w formie dimeru, im wyższa tym łatwiej rozpada się na monomer i tym więcej jest w nim formy pojedynczej, co pięknie pokazuje ten przykład:
Tlenek Azotu IV w różnych temperaturach. Od lewej: +50 °C, +35 °C,+ 25 °C, 0 C, -196 °C
Równowaga między tymi formami chętnie jest prezentowana w szkołach, tutaj bowiem zależność równowagi od temperatury widać naocznie.

Zatem po zmieszaniu chemikaliów zaszły trzy reakcje jedna po drugiej, a uwolniony gaz wypłynął nad miasto. I tak oto powstała brązowa chmura.
Czy jest groźna?
Dwutlenek azotu stanowi gaz toksyczny, duszący i podrażniający błony śluzowe. Wiąże się to z faktem, iż rozpuszczając się w wodzie tworzy mieszaninę kwasów azotowego V i azotowego III, i właśnie następowanie tego procesu w wilgoci naszych oczu i płuc powoduje szkodliwe skutki.
Miejmy nadzieję że wiatr z czasem rozwieje chmurę. Na razie najnowsze zdjęcia pokazują jak powoli rozpełza się na okolicę:

Najlepszą sytuacją byłoby rozwianie oparu przez wiatr. Mocniejszy deszcz też byłby dobry bo szybko oczyściłby atmosferę a kwasy by się rozcieńczyły. Najgorsza byłaby mgła albo mżawka, wtedy powstawałyby małe bardzo kwaśne kropelki opadające na ziemię i działające korozyjnie i podrażniająco.

Postsciptum
Pomarańczowa chmura ostatecznie została rozwiana, poza podrażnieniami oczu nie wywołała większych szkód. Wedle ostatnich oświadczeń firmy chemicznej, do wypadku doszło gdy kwas azotowy został wlany do kilkuset litrowego pojemnika z kwasem mrówkowym. Kwas mrówkowy także jest reduktorem, a reakcja między tymi substancjami powoduje wydzielenie dużej ilości ciepła, dwutlenku węgla i tlenków azotu.
 Dokładnie identyczny przypadek zdarzył się w 1988 roku we Włoszech, gdzie kwas azotowy wlano do cysterny zawierającej kwas mrówkowy, będący zapewne pozostałością środka czyszczącego. W tamtym przypadku zawory cysterny zakręcono. Wzrost temperatury i wydzielanie się gazów spowodowały eksplozję, która rozsadziła cysternę i odrzuciła na dużą odległość fragmenty konstrukcji. Wybuch i poparzenie gorącym kwasem spowodowały śmierć jednej osoby i poranienie 10 pracowników. Szczątki cysterny uszkodziły kilka budynków a fala uderzeniowa wybiła szyby w promieniu trzystu metrów. Uwolniona chmura tlenków azotu rozprzestrzeniła się po okolicy, udało się ją jednak częściowo zneutralizować kurtyną wodną i zepchnąć nad morze przy pomocy helikoptera.[1]

-------
[1] http://www.factsonline.nl/free-example/10257/chemical-accident-in-italy-with-nitric-acid

poniedziałek, 9 lutego 2015

Odkamieniacze

Zdarzyła mi się kiedyś taka historia ze strasznie zatwardziałym czajnikiem.

Czajnik elektryczny to jedno z urządzeń, które w pokoju akademika stanowią absolutną podstawę bytu, będąc równie niezbędnym jak lodówka. W tym przypadku chodziło o jeden czajnik używany do herbat, kaszek, kisielków i zupek przez sześć osób, w którym w związku z intensywnym wykorzystaniem nagromadziło się z czasem dość dużo ciemnożółtego kamienia. Odpadający od ścianek i grzejnej spirali kamień tak długo pozostawał poza naszą uwagą, dopóki podczas nalewania nie puściło luźno osadzone sitko przy dzióbku, przez co kilka nieestetycznych skorupek wpadło do herbaty jednemu z nas.
- No to trzeba chyba w końcu to wyczyścić - powiedział ktoś zaglądając do zaskorupiałego wnętrza, i delikatnie tonem swej wypowiedzi sugerując, że powinien to być ktoś z nas.
- Lepiej kupić odkamieniacz - zaproponował ktoś inny.
- A po co odkamieniacz. Nasypie się kwasku cytrynowego i zostawi na jakiś czas - wtrąciłem.
- A zadziała tak jak odkamieniacz?
- Chyba z połowa odkamieniaczy to kwasek cytrynowy z dodatkami - odpowiedziałem mądrząc się i podpierając autorytetem studenta chemii. Spróbowali i zadziałało tak jak sądziłem.

Ale po co teraz to tutaj opowiadam? A no po to aby mieć dobry pretekst do opowiedzenia o co chodzi w odkamienianiu i czym są właściwie sklepowe odkamieniacze. A z rozmów w ludźmi wynikało mi, że wielu nie wie czym jest ten kamień, dlatego też sądzą że do jego usunięcia trzeba koniecznie używać specjalnych odkamieniaczy, mających specjalną właściwość odkamieniania i że zwykły kwasek nie wystarcza.

Kamień kotłowy stanowi stały, nierozpuszczalny osad mineralny, utworzony z soli zawartych w wodzie. Najczęściej są to sole wapnia i magnezu w formie węglanów. Związki te nie są rozpuszczalne w wodzie, chyba że towarzyszy im dwutlenek węgla. Ten, rozpuszczając się w wodzie tworzy lekko kwaśny roztwór z przewagą jonów wodorowęglanowych. W tym roztworze rozpuszczać się mogą minerały wapnia, przez co powstaje rozpuszczalny wodorowęglan.

Jako że wapń i magnez są w naturze pospolite, ich wodorowęglany stanowią stałą domieszkę w wodach powierzchniowych i podziemnych. Wraz z wodą trafiały dawniej do kotłów parowych, zaś obecnie do naszych czajników. Pod wpływem wysokiej temperatury wodorowęglany rozpadają się wydzielając dwutlenek węgla a stały węglan osiada na najgorętszych częściach, to jest ściankach i dnie lub na spirali grzejnej, tworząc kruchą lecz twardą warstewkę. Dodatkowo w materiale tej warstewki chętnie osadzają się inne metale, zwykle żelazo, które w formie małych domieszek magnetytu podbarwia osad na żółtobrązowo.
Kamień ten ma tą właściwość, że niezbyt dobrze przewodzi ciepło. Sprawność kotła, grzałki, rekuperatora czy czajnika spada wraz z narastaniem warstwy, co odbija się na ilości paliwa czy prądu potrzebnych do zagrzania wody. Co gorsza kamień może doprowadzać do przegrzewania się elementów grzejnych i ich szybszego zepsucia. W niektórych przypadkach odkładanie się w cienkich przewodach lub filtrach może doprowadzać do ich zatkania. Dlatego dobrze jest go usuwać.
Skrajny przypadek kamienia zarastającego od wewnątrz rurę doprowadzającą wodę

Czym można usuwać kamień? W jego skład wchodzą węglany podobnie jak w kredzie, dlatego też podobnie jak ona rozpuszczać się będzie w kwasach. Zatem aby go usunąć należy po prostu potraktować nasz czajnik czymś kwaśnym.
W większości przypadków najzupełniej wystarczy ocet lub sok z cytryny, ewentualnie kilka łyżeczek kwasku cytrynowego w szklance wody. Naczynie zostawić z kwasem na godzinę lub kilka aż większość osadu się rozpuści, potem wylać, przepłukać, dla pozbycia się kwaśnego posmaku można zagotować nieco czystej wody i też wylać. Nie trzeba być chemikiem aby takie rzeczy znać.

Skoro jednak ludzie mimo to sięgają po odkamieniacze, dobrze by było rozpatrzeć co też takiego zawierają, tym bardziej że jak widzę z przeglądu internetu, przypadkowe napicie się wody z takim środkiem nie jest wcale takie rzadkie.

Kwas cytrynowy - z prostego przejrzenia ofert wynika, że jakieś 30% odkamieniaczy to albo sam kwas cytrynowy albo kwas z dodatkami, chodzi zwłaszcza o środki reklamowane jako ekologiczne . Tymi dodatkami może być kwas winowy lub mlekowy, rzadziej jabłkowy czy maleinowy, które pomagają w rozpuszczaniu przez tworzenie związków z kationami. Nie jest trujący, ale może podrażniać oczy i usta.
Kwas amidosulfonowy - preparaty bez kwasu cytrynowego z reguły zawierają ten właśnie składnik, w wielu przypadkach pojawia się mieszanka obu kwasów, są to na przykład preparaty Izo czy Kamyk. Jest to pochodna kwasu siarkowego, z jedną grupą hydroksylową zastąpioną cząsteczką amoniaku. Ma postać białego, drobnokrystalicznego proszku słabo rozpuszczalnego w wodzie. Rozpuszczając się dysocjuje jak średnio mocny kwas. W odróżnieniu od kwasów mineralnych jak azotowy czy solny ma tą zaletę, że nie jest płynem, zatem może być sprzedawany w saszetkach. Ponadto nie jest higroskopijny i na sucho nie ma właściwości żrących. Nie jest też trujący ale podobnie jak inne kwasy podrażnia oczy i usta. W razie wypicia roztworu należy popić go większą ilością wody, nie wywoływać wymiotów.

Kwas ten jest też składnikiem płynów czyszczących i usuwających rdzę, a więc płynów do toalet i powierzchni metalowych. W odróżnieniu od kwasów mineralnych zmieszany z wybielaczami nie powoduje wydzielania chloru.

Kwas metanosulfonowy - rzadziej używana inna pochodna kwasu siarkowego, ma postać gęstego płynu stąd zwykle jest używany w środkach płynnych.

W preparatach płynnych do odkamieniania powierzchni lub maszyn często stosowane są też silne kwasy mineralne, fosforowy i azotowy. Niektóre środki do usuwania kamienia z ekspresów do kawy czy zmywarek zawierają dodatkowo tajemniczo brzmiący kwas etidronowy. Jest to pochodna kwasu fosforowego, jednak jej dodatek nie ma na celu zwiększenie kwaśności; ma właściwości chelatujące, to jest tworzy z jonami metali kompleksy, co niejako usuwa wolne jony z roztworu. Usuwanie jonów uwalnianych z osadu powoduje przyspieszenie rozpuszczania. Dodatkowo środek kompleksujący usuwa jony żelaza, pomagając zmywać także rdzawe zacieki.
Oprócz wymienionych kwasów, środki takie zawierają też często detergenty aby usuwać tłuste zabrudzenia, mogą zawierać wybielacze, zwłaszcza środki do ekspresów, preparaty do powierzchni metalowych mogą zawierać inhibitory korozji; niektóre płynne środki są zabarwiane, aby można było się zorientować, czy wypłukało się pozostałości. Z reguły na opakowaniach pojawiają się informacje do jakich powierzchni nie należy ich stosować - na przykład płyny do czyszczenia armatury z kwasem azotowym i fosforowym mogą reagować z metalem, więc wlewanie ich do garnków czy ekspresów może nie być dobrym pomysłem.

W wielu urządzeniach stosowane są dodatkowo środki zapobiegające osadzaniu kamienia, w większości przypadków są to preparaty zmiękczające wodę, to jest tworzące z jonami wapnia i magnezu rozpuszczalne, nie odkładające się połączenia. W ich skład mogą wchodzić polifosforany i fosfoniany takie jak wyżej wymieniony kwas etidronowy, mogą to być kwasy polikarboksylowe, mogą to być wymieniacze jonów w formie bardzo drobnego proszku jak zeolity czy żywice jonowymienne które wchłaniają wapń. Spotkałem też środki zawierające węglan sodu, mające chyba powodować wytrącanie się wapnia w formie koloidu w roztworze a nie jako osad na powierzchniach.
Odkładaniu kamienia zapobiega też zmiękczanie wody - wiele osób używa dzbanków z filtrem zmiękczającym, zawierającym żywicę jonowymienną, i używają jej do robienia kawy i herbaty. Posiadacze filtrów membranowych mogą też użyć nienamineralizowanej wody.

Zwrócę jeszcze uwagę na osad powstający na wannach i umywalkach z powodu używania mydła. Mydło to sodowa lub potasowa sól kwasów tłuszczowych, zwykle kwasu stearynowego i laurynowego. W twardej wodzie następuje wymiana jonów. Powstające mydła wapniowe i magnezowe są trudno rozpuszczalne, mają bardziej mazistą konsystencję (są zresztą składnikami suchych smarów) i osadzają się na powierzchniach. Na mydlanej warstewce może potem dodatkowo osadzać się kamień.
Osad taki można zmyć kombinacją kwasu i detergentów. Kwasy takie jak ocet czy sok z cytryny zamieniają mydło, będące solą kwasu tłuszczowego, w tenże kwas w formie swobodnej. Kwasy tłuszczowe są tłustymi maziami* które dają się zmywać detergentem.

Mam nadzieję że nieco rozjaśniłem w głowach.

-------
* Pouczające będzie tu doświadczenie w którym najpierw smarujemy talerz mydłem, a potem posypujemy kwaskiem lub polewamy octem - talerz zrobi się tłusty w dotyku, jak gdyby posmarowano go masłem.

sobota, 30 sierpnia 2014

Chemiczne mezalianse

Jak uczono was w szkołach, ostatnia po prawej kolumna układu okresowego, to pierwiastki nazywane gazami szlachetnymi. Nazwa ta zaś wynika stąd, że nie tworzą one związków chemicznych z innymi pierwiastkami.
Tylko, że akurat to ostatnie, to nie do końca prawda.

Pierwsze gazy szlachetne odkryto w kosmosie.
Obserwując widmo korony słonecznej podczas zaćmienia w roku 1868 roku, chemicy Janssen i Lockyer zauważyli nietypową żółtą linię emisyjną, której nie dało się przyporządkować żadnym znanym wówczas pierwiastkom. Ponieważ już wówczas zdawano sobie sprawę, że każdy pierwiastek po pobudzeniu świeci światłem zawierającym inny zestaw linii, było oczywistym wnioskiem że ta obserwowana, odpowiada obecności nowego pierwiastka.
Od greckiej nazwy słońca ów kosmiczny pierwiastek nazwano Helium, ponieważ zaś nie odnaleziono go na ziemi, długi czas sądzono, że występuje tylko w gwiazdach. Było tak do czasu, gdy pewien geolog stwierdził jego obecność w gazach uwięzionych w zastygłej lawie wulkanicznej. Zaczęto więc sprawdzać pod tym kątem gazy uwalniane z różnych minerałów, aż 12 marca 1895 roku William Ramsay wydzielił go rozpuszczając w kwasie Clevelit - rudę uranu i pierwiastków ziem rzadkich.

Nieco wcześniej dokonano jednak innej zastanawiającej obserwacji - lord Cavendish zauważył pod koniec XVIII wieku, że azot otrzymany z powietrza zawiera niewielką ilość niereaktywnej substancji. Przeprowadzał amatorsko próby łączenia azotu z tlenem w obecności iskier elektrycznych, i po wyłapaniu powstających tlenków azotu w wodzie pozostała mu niewielka objętość gazu. W zasadzie przez długi czas nikt nie zwracał na to uwagi, dopóki postępy w wyznaczaniu masy atomowej pierwiastków nie ujawniły tajemniczej niezgodności - masa atomowa azotu otrzymanego drogą syntezy chemicznej była nieco niższa, niż azotu otrzymanego z powietrza, drogą usuwania kolejnych składników.
Zwykle produkcję azotu z powietrza przeprowadzano w ten sposób, iż najpierw przepuszczano powietrze nad rozżarzonymi opiłkami żelaza, które zabierało z niego Tlen, stanowiący piątą część objętości. Potem przeprowadzano pozostałość przez stężony roztwór zasady, aby wyłapać cały dwutlenek węgla. Na końcu gaz osuszano, otrzymując niereaktywną pozostałość, uznawaną za czysty azot.

Jeśli jednak azot z powietrza był cięższy od tego z minerałów, to wobec obserwacji Cavendisha nasuwał się dość oczywisty wniosek - azot z powietrza nie jest czysty, i zawiera domieszki równie niereaktywne jak on sam. Ramsay zaproponował dla tej substancji nazwę Argon, od greckiego argos, czyli leniwy. Należało go zatem wydzielić. W 1894 roku wraz z lordem Rayleygh'em przepuścił powietrze nad rozżarzoną miedzią, usuwając cały tlen. Pozostałość wpuścił do naczynia z płonącym magnezem. Magnez miał tak wysoką temperaturę ognia, że pochłaniał ślady tlenu, pary wodnej, dwutlenku węgla i wreszcie łączył się bezpośrednio z azotem atmosferycznym. Po przepuszczeniu kilka razy tej samej pozostałości otrzymał wreszcie gaz stanowiący 1% objętości powietrza, który nie reagował z magnezem a widmo światła po wzbudzeniu wyładowaniami elektrycznymi wykazywało oprócz śladów azotu obecność jeszcze nie opisanych, nowych linii emisyjnych. Był to zatem czysty argon. O rok późniejsze wykrycie helu w rudach uranu było związane z próbą znalezienia argonu w formie mineralnej.

Ramsay nie spoczął jednak na laurach - opisując nowy pierwiastek stwierdził, że ma właściwości podobne do Helu a w układzie okresowym należy umieścić go na prawo od wszystkich pozostałych, oraz że pod nim pojawia się wobec tego nowa kolumna, która dobrze pasuje do odstępu między ostatnią i pierwszą kolumną układu. Zatem prawdopodobnie musiały istnieć jeszcze inne pierwiastki, o podobnych właściwościach fizycznych, to jest będące niereaktywnymi gazami, i co wydawało się najbardziej prawdopodobne, występujące także w powietrzu, w śladowych ilościach.

Niedługo wcześniej polscy chemicy Karol Olszewski i Zygmunt Wróblewski dokonali skroplenia powietrza i innych gazów. Udało im się też skroplić i zestalić świeżo odkryty argon, który okazał się skraplać w temperaturze niższej niż azot. Nasuwało to na myśl pomysł, aby próbować wydzielić te pierwiastki przez destylację z powietrza.
Wraz z swym asystentem Morrisem Traversem zbudował w swej pracowni ogromną aparaturę do skraplania, uruchamiając ją na początku 1898 roku. Drugim równolegle prowadzonym eksperymentem było oczyszczane argonu otrzymanego drogą chemiczną, a więc najpierw pochłaniając tlen nad rozgrzaną miedzią a potem azot nad płonącym magnezem; po poddaniu tej procedurze 1930 litrów powietrza otrzymali 18 litrów argonu, co wydawało się rozsądną ilością.
W jednym z pierwszych doświadczeń ochładzali oni argon aż do skroplenia, stwierdzając że po wykropleniu 14 litrów pozostało im 50 mililitrów gazowej pozostałości. Badania spektralne wykazały pojawienie się w widmie linii emisyjnych, których nie obserwowano w innych pierwiastkach. Przy okazji zwrócono uwagę na intensywny, czerwono-pomarańczowy kolor światła wzbudzonego elektrycznością gazu.

Po wyznaczeniu masy i gęstości tej pozostałości w maju 1898 roku ogłosił wykrycie nowego pierwiastka, nazwanego neonem, był bowiem nowy. [1]
Równocześnie trwał dalej eksperyment ze skraplaniem powietrza. Po wykropleniu odpowiedniej ilości, powoli ogrzewano zbiornik, zbierając kilka frakcji zawierających tlen, azot i argon, Najcięższa frakcja zawierała gaz o charakterystycznym widmie, nazwany kryptonem od greckiego słowa "ukryty". Po zbadaniu jego właściwości zgłoszono jego odkrycie na początku czerwca 1898 roku

Po oczyszczeniu ostatniej frakcji badacze otrzymali jeszcze jeszcze jeden gaz, nazwany ksenonem, od greckiego słowa "obcy" lub "dziwny". Zgłoszenie odkrycia nastąpiło we wrześniu tego samego roku. Na sam koniec badacze stwierdzili jeszcze, że po oddzieleniu od ogromnej ilości ciekłego powietrza wszystkich poznanych gazów, otrzymali niewielką pozostałość, która okazała się być helem, potwierdzając tym samym jego obecność w powietrzu.[2]

Odkrycie trzech nowych pierwiastków w ciągu kilku miesięcy, odkrycie argonu stanowiącego 1% objętości powietrza i odkrycie na ziemi znanego z kosmosu helu, to całkiem niezłe osiągnięcie. Nic więc dziwnego że w 1904 roku William Ramsay zostaje uhonorowany Nagrodą Nobla. W późniejszym okresie włączył się też w badania "emanacji" czyli gazów powstających przy rozkładzie pierwiastków promieniotwórczych, wykazując iż gazy wydzielane przez uran, rad i tor zawierają ten sam gazowy pierwiastek, dziś znany jako radon.

Wszystkie helowce są gazami o niskiej temperaturze wrzenia, bezbarwnymi i pozbawionymi zapachu. Nie tworzą cząsteczek tak jak inne gazy, zaś bardzo słabe oddziaływania wzajemne atomów powodują, że właściwościami bardzo zbliżają się do gazu doskonałego. Hel jest drugim najlżejszym pierwiastkiem po wodorze, stąd wykorzystanie do napełniania balonów. Ma też najniższą temperaturę wrzenia wynoszącą 4 kelwiny, i pod normalnym ciśnieniem nie krzepnie przy dalszym ochładzaniu, zamiast tego przyjmując stan nadciekły, w którym zanika lepkość a pewne efekty kwantowe stają się zauważalne w dużej skali.
Na skalę przemysłową hel otrzymuje się z gazu ziemnego któremu towarzyszy; jednym z miejsc gdzie jest produkowany jest zakład przetwarzania gazu w Odolanowie.
Neon jest używany w lampach neonowych, dając intensywne, czerwone światło, bywa używany jako chłodziwo. Ma bardzo wąski zakres płynności - skrapla się przy 27 K a krzepnie przy 25 K.
Argon jest używany głównie do wytworzenia atmosfery obojętnej przy spawaniu i hutnictwie, w żarówkach i lampach iskrowych, a dzięki niskiej przewodności cieplnej także do gazowej izolacji na przykład w szczelnych oknach. Spośród wszystkich gazów szlachetnych jest najtańszy, otrzymuje się go z powierza.
Krypton jest często używany w oświetleniu - to nim najczęściej napełnia się neony, dające białe światło, którego kolor łatwo zmienić malując szklaną rurę.
Ksenon jest używany w lampach błyskowych dających jasne, białoniebieskie światło, ma też ciekawe zastosowania medyczne - jako środek do znieczulenia, a nawet środek dopingujący (w mieszance z tlenem wywołuje w organizmie reakcję podobną do tej wywołanej przebywaniem na dużej wysokości, stymulując zwiększoną produkcję czerwonych krwinek).
Radon jest szkodliwym, promieniotwórczym gazem zbierającym się w piwnicach i przedostającym się do wody, co już kiedyś opisałem.


I tak oto odkryto po kolei wszystkie helowce, przekonując się że są bardzo niereaktywne. Gdy zaś stworzono teorię powstawania wiązań, mówiącą między innymi, że atomy tworzą wiązania dążąc do oktetu elektronowego na ostatniej powłoce, dla wszystkich było jasne ze posiadające taki układ helowce nie mają po co wiązać się z innymi pierwiastkami. I chyba tylko tym przekonaniem można tłumaczyć brak badań w tym kierunku, oraz zaskoczenie, że jest to jednak możliwe.

W 1962 roku amerykański chemik Neil Bartlett zajmujący się chemią fluoru, przygotował sześciofluorek platyny, stabilny i lotny związek z platyną na +6 stopniu utlenienia, najwyższym możliwym i bardzo niestabilnym. Platyna w tym związku bardzo chętnie dąży do tego aby zredukować się do niższych stopni, a więc aby pobrać skądś elektron. Cząsteczka z której sześciofluorek zabrałby elektron, uległaby więc utlenieniu, dlatego sześciofluorek platyny jest mocnym utleniaczem.
O tym jak mocnym, Bartlett przekonał się badając czerwony osad zbierający się na dnie kolb z mieszaniną badanego związku i powietrza. Nie była to zredukowana forma związku, lecz sól w której sześciofluorek platyny stanowił anion, zaś kationem była cząsteczka tlenu, z której zabrano jeden elektron bez rozrywania wiązania. Tlen został utleniony.
Z badań jonizacji pod wpływem pola elektrycznego było wiadomo że utlenienie cząsteczki tlenu wymagało bardzo dużej energii 1175 kJ/mol, co wskazywało na siłę nowego utleniacza. Wyniki takich badań jonizacji były już znane i stabelaryzowane, toteż gdy Bartlett zaglądał do literatury aby znaleźć tą wartość, zauważył obok w tabeli pozycję o podobnej wartości. Energia jonizacji ksenonu wynosiła 1170 kJ/mol, a więc była nawet niższa niż dla cząsteczki tlenu. Jeśli reakcja z tlenem zachodziła tak łatwo - pomyślał badacz - to może mogłaby zajść z ksenonem? Oczywiście dobrze wiedział, że gazy szlachetne są szlachetne i związków nie tworzą, jeśli jednak udałoby się zjonizować ksenon, to mógłby mimo wszystko utworzyć jakieś połączenie.
Pożyczył od kolegów próbkę ksenonu i umieścił w butli szklanej. W drugiej umieścił gazowy sześcioplatynian i obie butle połączył rurką przedzieloną przesłoną. Gdy obie butle były napełnione, wyciągnął przesłonę, umożliwiając obu gazom mieszanie się. Jak sam potem opisywał, reakcja zachodziła "pięknie" - w pobliżu łączenia w ciągu kilkunastu sekund zaczął się zbierać żółty osad.

O ile sama reakcja zachodziła łatwo, to największą trudność sprawiło Bartlettowi przekonanie kolegów że otrzymał niemożliwy związek. Spotykał się z niedowierzaniem i podejrzeniem pomyłki, ponieważ jednak doświadczenie udawało się powtórzyć a z rozkładu krystalicznego związku powstawał ksenon, musiano uznać że związek gazu szlachetnego jest faktem. Gdy w czerwcu 1963 roku opublikował pracę na ten temat, inni chemicy ochoczo rzucili się na poszukiwanie innych takich związków, których dotychczas nie badano.
Już we wrześniu doniesiono o tworzeniu się czterofluorku ksenonu w mieszaninie obu gazów podgrzewanej do wysokich temperatur, w październiku wykryto jeszcze dwufluorek, który powstawał tak łatwo, iż reakcja zachodziła w suchej szklanej bańce z mieszanką gazów, po wystawieniu na słońce. Co ciekawsze, reakcję taką próbowano przeprowadzić 50 lat wcześniej, gdy szlachetność pierwiastka nie była jeszcze ugruntowana. Usiłowano wtedy zainicjować reakcję iskrą elektryczną, ale o wystawieniu na słońce nikt nie pomyślał i żadnej reakcji nie zaobserwowano.

Obecnie chemia ksenonu jest dość szeroka. W reakcji z tlenem w odpowiednich warunkach tworzy trójtlenek. Ten po rozpuszczeniu w wodzie daje kwas ksenonowy, którego sole stanowią bardzo silne utleniacze. Z kwasu można uzyskać czterotlenek ksenonu, nietypowy związek z ksenonem na +8 stopniu utlenienia, gdzie w tworzenie wiązań zaangażowane są wszystkie elektrony oktetu. Swoistą ironią wobec dawnych chemików jest jon czteroksenonozłota - połączenie  dwóch pierwiastków nazywanych szlachetnymi z powodu niereaktywności.

Mniej obszerna jest chemia lżejszego gazu szlachetnego, kryptonu. Już w 1963 udało się zsyntetyzować dwufluorek poddając działaniu iskry elektrycznej mieszaninę gazów. Jest to bardzo silny utleniacz i środek fluoryzujący. Może tworzyć połączenia z azotem, ale mniej trwałe, na przykład HCN-Kr. Udało się też otrzymać czterofluorek, ale bardzo nietrwały, rozkładający się powyżej -70 st. C.

Dość mało poznana jest chemia radonu - wiadomo że w temperaturze pokojowej reaguje z fluorem, ulegając z czasem samorozkładowi pod wpływem własnego promieniowania. Ze względu na krótki czas półtrwania izotopów radonu i problemy wywołane przez jego promieniotwórczość nie zbadano dużej ilości połączeń - znane są większe fluorki, potwierdzono trójtlenek, podejrzewa się tworzenie kwasu radonowego. W sumie szkoda, bo może udałoby się stworzyć chemiczny pochłaniacz tego szkodliwego gazu.

Im bardziej w górę układu okresowego tym większa jest energia jonizacji gazów szlachetnych. Dla argonu udało się otrzymać tylko jeden związek, wodorofluorek, trwały poniżej 40 kelwinów. A pozostałe helowce? Dla Helu i Neonu związków jak na razie nie otrzymano. Znane są jedynie pewne jony, mające pewną trwałość w stanach wzbudzonych, lecz nie zaliczane formalnie do związków z powodu ładunku. Takim przypadkiem jest jon wodorku helu HeH+, możliwy do wytworzenia w próżni i stosunkowo trwały tylko w stanie wzbudzonym. Bardzo łatwo się rozpada, a jego skłonność do oddawania protonu jest tak duża, że formalnie rzecz biorąc stanowi najsilniejszy znany kwas z wyliczoną wartością pK=63. Efekty elektronowe uniemożliwiają tworzenie cząsteczek He2.


Jak właściwie jest z tymi gazami szlachetnymi - reguła oktetu nie działa skoro mogą tworzyć związki? Działa, ale nie jest jedyna. Wszystkie atomy tworząc połączenia dążą do stanu najbardziej stabilnego energetycznie. Jednym z tych stanów, najłatwiejszym do osiągnięcia, jest oktet elektronowy. Jeśli jednak atom zawierający oktet zostanie zjonizowany mocnym utleniaczem, będzie musiał dążyć do innego stanu.
Związki gazów szlachetnych należą w tym przypadku do grupy związków hiperwalencyjnych, to jest zawierających więcej elektronów niż orbitali. Na przykład w difluorku ksenonu uznaje się że wszystkie trzy atomy połączone są wspólnym wiązaniem trójcentrowym czteroelektronowym, w którym dwa elektrony są niewiążące a dwa wiążące. Taki układ ma niższą energię niż dwa wiązania kowalencyjne lub jonowe.

-----
[1]  On the Companions of Argon. Proceedings of the Royal Society of London 63 (1): 437–440.
[2]  William Ramsay , Morris W. Travers (1898). "On a New Constituent of Atmospheric Air". Proceedings of the Royal Society of London 63 (1): 405–408


*http://en.wikipedia.org/wiki/Noble_gas
*http://en.wikipedia.org/wiki/Noble_gas_compound
*http://en.wikipedia.org/wiki/Helium_hydride_ion
* http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/bartlettnoblegases.html
* http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1904/ramsay-lecture.html

czwartek, 7 sierpnia 2014

Kwas co ma gaz

W letnie, upalne dni, najchętniej nic byśmy nie robili, tylko leżeli w cieniu i popijali coś chłodnego. Na przykład wodę. Taką gazowaną, z bąbelkami i szczypiącym, kwaśnym posmaku. I być może czasem zastanowi nas, jaki to gaz i jaki kwas...

Dwutlenek węgla jest bezbarwnym i w zasadzie bezwonnym gazem cięższym od powietrza, stanowiącym stale niewielki procent składu atmosfery. Został odkryty dosyć wcześnie - już w XVII wieku van Helmont zauważył, że jeśli masa popiołu po spaleniu węgla jest znacząco mniejsza od pierwotnej masy, to reszta musi ulegać zamianie w formę gazową. Ówcześni identyfikowali go z flogistonem - pierwiastkiem palności - i dalej się tą sprawą nie zajmowano. Dopiero w 1750 roku szkocki lekarz Joseph Black, znany też z badań nad ciepłem utajonym, poddał badaniom gaz powstający z potraktowania wapienia kwasem, stwierdzając, że jest różny od powietrza, ciężki i duszący, oraz że wytrąca osad z roztworu wapna gaszonego. Korzystając z tej ostatniej reakcji, stwierdził że występuje normalnie w powietrzu i w większych ilościach w tchnieniu zwierząt i ludzi. Późniejsi badacze doszli do tego, że gaz jest połączeniem tlenu i węgla i że reakcję czasem można odwrócić (przy spalaniu magnezu w dwutlenku węgla powstaje sadza), jednak dla nas istotniejsze jest odkrycie Josepha Priestly'a, trochę teologa a trochę przyrodnika-hobbysty, który badając przebieg fermentacji w miejscowym browarze, zainteresował się "zastałym powietrzem" - warstwą gazową nad fermentującą kadzią, uważaną za pracowników za niezdrową i od której zdychały myszy jeśli dostały się pod jej wpływ.
Wytwarzanie wody sodowej - rysunek Priestley'a z 1772 roku

Eksperymentując, umieścił nad kadzią miskę z wodą, chcąc sprawdzić rozpuszczalność tego gazu. Po zlaniu musującego roztworu stwierdził, że woda nabrała przyjemnego, lekko kwaśnego posmaku, a nawet dał go spróbować znajomym, twierdząc że to orzeźwiający napój bez alkoholu. Kilka lat później opisał go w artykule, dodając przepis na sztuczne otrzymanie - po zwilżeniu kredy kwasem siarkowym, powstający gaz przeprowadzał rurką do wody i po przepuszczeniu większej ilości otrzymywał napój, który uważał za bardzo podobny do naturalnych wód mineralnych i polecał na szkorbut. W zasadzie jednak nie traktował odkrycia inaczej jak ciekawostki i nie sądził, że znajdzie zastosowanie. Tymczasem producenci wód mineralnych powinni mu postawić pomnik - odkrycie, że zwykła woda staje się smacznym napojem po rozpuszczeniu w niej pospolitego gazu, do dziś przynosi im ogromne zyski.
Pierwszym, który wpadł na to, że jest to znakomity pomysł na interes, był niejako Jacob Schweppe, który w roku 1783 założył firmę Schweppes, istniejącą zresztą do dziś, produkując wody gazowane mające naśladować wody mineralne z naturalnych źródeł. Nieco później dla polepszenia smaku, do nagazowanej wody zaczęto dodawać nieco sody oczyszczonej, tworząc napój nazywany odtąd wodą sodową. I tak zaczął się przemysł napojów gazowanych.

Szybko jednak chemicy zaczęli się zastanawiać, dlaczego po rozpuszczeniu gazu, woda staje się kwaśna. Musi powstawać jakiś kwas - uznali - i nazwali go kwasem węglowym. W polskiej nomenklaturze dwutlenek węgla zaczął być z tego powodu nazywany niedokwasem węglowym. Taki też stan rzeczy trwał przez długi czas, aż zaczęły się problemy z wyizolowaniem czy choćby wykryciem tego kwasu w wodzie. Badania absorpcji w podczerwieni nie wykryły aby występował w choćby najbardziej nasyconych roztworach. W zamian za to wykrywano jony węglanowe i wodorowęglanowe, stąd też powstała koncepcja wedle której kwas węglowy nie istnieje. Jeszcze ja w technikum byłem upominany aby nie zapisywać jego cząsteczki w równaniu rozpuszczania dwutlenku węgla.


Jest to w pewnym stopniu podobna sytuacja jak z "wodorotlenkiem amonu". Rozpuszczenie amoniaku w wodzie da nam roztwór o zasadowym odczynie, toteż postulowano powstawanie w wodzie wodorotlenku amonu i przez długi czas zapisywano go w ten sposób. Dopiero potem dokładne badania wykazały, że cząsteczka taka nie powstaje - woda wymienia się protonem z amoniakiem, i tworzy się osobny jon wodorotlenkowy i osobny amonowy pozostające w równowadze. Wydawało się zatem, że tu jest podobnie - dwutlenek łączy się z wodą biorąc tlen i wodór do utworzenia jonu wodorowęglanowego, a pozostawiając wolny kation wodorowy; wodorowęglan dysocjuje dalej do anionu węglanowego, zaś kwas węglowy się nie tworzy. I wszystko było w porządku aż nie odkryto, że pogłoski o jego śmierci są mocno przesadzone.

Aby otrzymać czysty i stabilny kwas węglowy, należało zastosować dość specyficzne warunki - mieszaninę wody i dwutlenku węgla zamrożono i umieszczono pod niskim ciśnieniem, po czym napromieniowano - promieniowanie pozwoliło na połączenie dwóch różnych cząsteczek bez ogrzewania. Następnie zastosowano sublimację wody pod niskim ciśnieniem, otrzymując czysty, suchy związek.
Jak się okazało, bezwodny kwas węglowy jest dosyć trwały - obliczenia teoretyczne pokazały że czas połowicznego rozkładu to ponad sto tysięcy lat, ale śladowe ilości wody przyśpieszają ten rozkład gwałtownie, nawet milion razy[1].
Udało się także otrzymać gazowy kwas węglowy, trwały do temperatury -30 stopni, który w takiej fazie chętnie tworzy trwalszy dimer[2]

Skoro kwas ten istnieje, to jak jest z jego obecnością w wodzie mineralnej?
Gdy tylko zaczynamy nasycać wodę dwutlenkiem węgla, zaczyna on być hydratowany. W takiej formie każda cząsteczka tlenku zostaje otoczona cząsteczkami wody, lecz nie następuje pomiędzy nimi reakcja. Ilość rozpuszczającego się w ten sposób gazu zależy od ciśnienia - im wyższe, tym lepsza rozpuszczalność. W takiej formie występuje około 99% rozpuszczonego w wodzie związku.

Część jednak reaguje z wodą dając jako produkt przejściowy kwas węglowy:
CO2 + H2O → H2CO3
Jak wykazały badania, związek ten bardzo szybko i łatwo odszczepia jeden proton, przechodząc w jon wodorowęglanowy. Stała równowagi pokazuje, że kwas ten jest nawet mocniejszy od cytrynowego. Silne przesunięcie równowagi w stronę wodorowęglanów powoduje jednak, że niemal natychmiast prawie cały powstający kwas węglowy zamienia się w tą formę:
H2CO3 is in equilibrium with HCO3 + H+

Jon wodorowęglanowy może ulegać dalszej dysocjacji, rozpadając się na jon węglanowy:
 HCO3 is in equilibrium with CO32− + H+
Jednak reakcja ta następuje powoli, i zaczyna nabierać znaczenia w warunkach silnie zasadowych.

Wszystkie te procesy są procesami równowagowymi, toteż zachodzą równocześnie w obie strony, choć z różną szybkością, a obserwowany stan jest wypadkową różnie szybkich równoczesnych reakcji. Można to porównać do szeregu naczyń do których woda może wpływać i wypływać, aż zależnie od szybkości wypływu i dopływu stabilizuje się na pewnym poziomie.
Gdy zaczniemy wprowadzać dwutlenek węgla do wody, będzie to czynił niechętnie, jednak gdy się rozpuści większość będzie występować w formie zhydratowanej. Z tej ilości pewna część będzie zamieniać się w kwas węglowy. Ten ma dwie możliwe drogi rozpadu - albo zamieni się z powrotem w dwutlenek węgla, co czyni chętnie, albo w wodorowęglan, co czyni równie szybko. To że w ogóle występuje w roztworze jest wynikiem tego, że wszystkie procesy są pewnymi równowagami odwracalnych reakcji - większe ciśnienie gazu naprodukuje więcej kwasu węglowego który natychmiast rozpada się w wodorowęglan; obniżenie ciśnienia powoduje rozpad obecnego kwasu węglowego ale jest on odtwarzany z wodorowęglanów.
Pod ciśnieniem atmosferycznym w wodzie pozostającej w kontakcie z dwutlenkiem węgla, może się rozpuścić ok. 0,1 mmol, z czego 1% przechodzi w wodorowęglan a 0,01% w kwas węglowy. Jonów węglanowych powstają niewykrywalne ilości. Roztwór taki ma pH=5,6 zatem jest lekko kwaskowaty. Pod ciśnieniem ok. 1-2 atmosfer, jakie to ciśnienia są stosowane w butelkowanej wodzie mineralnej, rozpuszcza się 8,5 mmol gazu, z czego 1% ma postać wodorowęglanu i niemal tyle samo formę kwasu węglowego. Roztwór taki ma pH =3,5 a więc podobne do soku pomarańczowego.

Co więc z tego wynika ostatecznie? Większość rozpuszczonego dwutlenku węgla występuje w wodzie w formie zhydratowanej obojętnej cząsteczki, a z pozostałej części większość w formie wodorowęglanów. A kwas? Występuje ale jako dynamiczna faza przejściowa - nieustannie tworzy się i rozpada istniejąc w ilościach tak niewielkich, że nieistotnych dla określenia kwasowości i trudnych do wykrycia. Ale jest.
------
* http://en.wikipedia.org/wiki/Carbonic_acid
* http://de.wikipedia.org/wiki/Kohlens%C3%A4ure
* http://en.wikipedia.org/wiki/Carbonated_water
* http://en.wikipedia.org/wiki/Joseph_Priestley

[1] Thomas Loerting, Christofer Tautermann, Romano T. Kroemer, Ingrid Kohl , Andreas Hallbrucker , Erwin Mayer. and Klaus R. Liedl,  On the Surprising Kinetic Stability of Carbonic Acid (H2CO3), Angewandte Chemie International Edition Volume 39, Issue 5, pages 891–894, March 3, 2000
[2] Hinrich Grothe et al.,  Spectroscopic Observation of Matrix-Isolated Carbonic Acid Trapped from the Gas Phase, Angewandte Chemie International Edition Volume 50, Issue 8, pages 1939–1943, February 18, 2011