informacje



Pokazywanie postów oznaczonych etykietą wieści. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą wieści. Pokaż wszystkie posty

sobota, 7 listopada 2015

Chemiczne wieści (3.)

Tlen na komecie
Misja Rosetta badająca kometę 67/P Churymov-Gerasimenko budzi dziś mniejsze zainteresowanie, zwłaszcza od czasu nieszczęśliwie przedwczesnego końca lądownika, niemniej instrumenty sondy wciąż wysyłają ciekawe dane. Najnowsza publikacja Nature donosi o wykryciu w gazach wytryskujących z powierzchni jądra kometarnego molekularnego tlenu.

Jednym z instrumentów badawczych sondy jest spektrometr masowy ROSINA-DFMS. Przyrząd ten jonizuje gazy i wykrywa masy składających się nań cząsteczek, wykorzystując skłonność jonów do ruchu w polu elektrycznym z prędkością zależną od stosunku masy do ładunku. Dzięki temu możliwa jest szybka identyfikacja składu.
Dzięki niemu wiadomo było, że większość składu gazów emitowanych przez jądro kometarne (do 95%) stanowiła para wodna oraz tlenek i dwutlenek węgla. Bardziej interesujące okazały się składniki stanowiące resztę. Głównym okazał się być cząsteczkowy tlen, po nim elementarna siarka i metanol, ponadto ślady tlenków azotu i hydrazyny.

Skąd jednak tlen na komecie?
Jego zawartość porównano ze stężeniem dwutlenku węgla, tlenku i pary wodnej, wykazując że tylko w tym trzecim przypadku zachodzi wyraźna korelacja stężeń. Jeśli stężenia tlenu są powiązane ze stężeniami wody, to widocznie gazy te uwalniane są razem. Najprawdopodobniej promieniowanie ultrafioletowe wywołuje radiolizę lodu wodnego na powierzchni komety, powodując powstanie tlenu, który miesza się z lodem i wraz z nim sublimuje. Zachodzenie takiej reakcji potwierdzono zresztą eksperymentalnie. [1]

Fraktalne trójkąty
Fraktale to struktury samopodobne. Matematycznie ujmując, strukturę opisuje pewien prosty algorytm, którego nieskończone iteracje tworzą coraz mniejsze elementy, zachowujące podobieństwo do całości. Ta prostota sprawiająca, że rozległy i wydawałoby się skomplikowany wzór da się wywieść z kilku powtarzanych wciąż reguł sprawia, że struktury fraktalne bardzo często pojawiają się w przyrodzie, jako podstawa dla na przykład organizacji kolonii, układu żyłkowania liści, rozkładu pierzastych listków paproci czy form krystalicznych.

Jednym z pierwszych opisanych matematycznie fraktali, jest trójkąt Sierpińskiego. Ten polski matematyk zaproponował w 1915 roku figurę, otrzymaną wedle następującego algorytmu:
- Weź trójkąt równoboczny i łącząc środki boków podziel go na cztery mniejsze trójkąty
- Usuń trójkąt w środku
- Podziel w taki sam sposób trójkąty które pozostały
- Usuń trójkąciki po środku
- Powtórz operację w nieskończoność.

Wydawałoby się że w takiej sytuacji nic na z tego trójkąta powinno nie pozostać, w rzeczywistości jednak, ponieważ operujemy tutaj matematycznie na figurach teoretycznych, po nieskończonych podziałach i usuwaniach trójkątów otrzymamy zbiór punktów matematycznych o charakterystycznym, stałym układzie, który powtarza się w kolejnych powiększeniach w dowolnym miejscu tego trójkąta. Pole takiej figury jest zerowe.

Później wymyślono jeszcze inne podobne figury, jak dywan Sierpińskiego oparty o kwadraty, czy też bardziej dziś znane drzewkowate fraktale używane do tworzenia pięknych grafik komputerowych.

Ale co to ma wspólnego z chemią?  Otóż chemicy od dawna zastanawiali się nad produkcją materiałów o strukturze fraktalnej. Jednym z rozwiązań są dendrymery, czyli cząsteczki o wielu rozgałęzieniach, które rozgałęziają się na mniejsze rozgałęzienia a te na jeszcze mniejsze i tak dalej dopóki tylko atomy gałązek jeszcze się w kolejnej warstwie mieszczą. Cząsteczki takie mają formę kulek, których modele przypominają nieco skonfundowanego jeża. Ta oparta jest o etylenodiaminę i amid kwasu propanowego:
Dendrymery bada się obecnie intensywnie pod kątem użycia jako nośniki leków, zewnętrzna warstwa gałązek tworzy bowiem powłoczkę z małymi porami, lecz wewnątrz pojawiają się znaczne, puste przestrzenie w których umieścić można pewną ilość potrzebnej substancji, jaką należy przetransportować w organizmie w pewne określone miejsca.
Tym ciekawsze są próby stworzenia płaskiej cząsteczki o strukturze Trójkąta Sierpińskiego.

Pierwszym takim doniesieniem była obserwacja struktur w pewnym stopniu podobnych do tego fraktala w agregatach DNA na odpowiednim podłożu. Fragmenty DNA ukształtowane w formie molekularnych płytek łączyły się końcami tworząc wzór, który badano mikroskopem sił atomowych.[2]
W zeszłym roku dwaj badacze z UMCS przedstawili symulacje, pokazujące że struktury Trójkąta Sierpińskiego powinny powstawać w warstwach zawierających sztywne cząsteczki organiczne zgięte pod odpowiednim kątem i łączące się na obu końcach za pośrednictwem jonów metalu, jako wynik spontanicznej samoorganizacji.[3]
Pomysł ten okazał się chyba bardzo obiecujący, skoro wyraźnie opierają się na nim najnowsze doniesienia. Najpierw podano informację o tym, że kompleksy terpirydyny z jonami miedzi tworzą struktury stanowiące fragment trójkąta Sierpińskiego.[4] W marcu pojawiła się praca chińskich chemików opisujących tworzenie się rozległych płatów fraktalnego wzoru w wyniku osadzania na powierzchni srebra dwóch podstawowych "cegiełek" - pochodnej terfenylu, z trzema pierścieniami benzenowymi połączonymi wiązaniem w zagiętą cząsteczkę i dwoma atomami bromu na końcach; oraz pochodnej kwaterfenylu zawierającej jeden pierścień benzenu więcej. Cząsteczki te łączyły się ze sobą przez oddziaływania między bromem a wodorem.[5]
Najnowsza praca opisuje płaty kompleksów dwunitrylu terfenylu z niklem na powierzchni srebra, w których pojawiają się płaty wzoru Trójkąta Sierpińskiego. [6]


Barwnik z ery jurajskiej
Skamieniałości dawnych zwierząt i roślin w większości wyglądają jak specyficznie ukształtowana skała, są szare, białe, niekiedy opalizują jak perła. Dlatego zachowanie się pewnych barwników sprzed milionów lat stanowi ciekawy przypadek. Tak jest ze skamieniałościami wymarłych jurajskich alg Solenopora o wapiennych skorupkach, które tworzyły gąbczaste kolonie, z czasem kamieniejące, z przerastającymi rocznymi warstwami. W przypadku niektórych okazów daje się zauważyć wyraźne różowe zabarwienie, będące najwyraźniej pozostałościami pierwotnego pigmentu. W niedawno opublikowanej pracy zbadano właściwości tego barwnika, stwierdzając że to bardzo nietypowa substancja.

Barwnik otrzymany ze skamielin Solenopora jurassica sprzed około 150 milionów lat, składa się z dwóch fragmentów węglowodorowych, stanowiących najwyraźniej nie znaną pochodną antybiotyku klostrubiny A (clostrubin A) i połączonych przez atom boru ugrupowaniem spiroboranowym. Związki organiczne zawierające bor są w naturze ogółem dosyć rzadkie.
Klostrubina jest antybiotykiem wykazującym aktywność przeciwko wielu szczepom odpornych drobnoustrojów i dlatego wzbudza duże nadzieje. Jest substancją poznaną całkiem niedawno, wyizolowaną w zeszłym roku z bakterii z rodzaju Clostridium.  Duże podobieństwo struktur nowego antybiotyku i cząsteczki skamieniałego barwnika, nazwanego borolitochromem (czyli dosłownie borowym barwnikiem kamieni) jest o tyle ciekawe, że dotyczy różnych grup organizmów. Najwyraźniej geny odpowiedzialne za syntezę od dawna krążą w ekosystemie, gdzieniegdzie ujawniając się wyraźnie.
[7]
Borolitochrom i skała z której go otrzymano.


Ile atomów tworzy metal?
Wraz z przyjęciem i potwierdzeniem atomowej teorii budowy materii, chemicy i fizycy o bardziej filozoficznym zacięciu zaczęli zastanawiać się nad w sumie dość oczywistym pytaniem - ile potrzeba atomów bądź cząsteczek, aby z materii utworzyć materiał? Pojedynczy atom węgla ma inne właściwości niż choćby najmniejszy diament, trudno jest jednak wskazać moment, gdy następuje to przejście. Jest to swoisty odpowiednik "paradoksu łysego" - dwa stany skrajne, to jest łysina i pełne owłosienie, są od siebie bardzo wyraźnie różne; zarazem jednak jeśli osobie o pełnym owłosieniu zaczną pojedynczo wypadać włosy, trudno będzie nam wyznaczyć dokładną granicę od kiedy można już mówić o łysinie a kiedy jeszcze jest to tylko przerzedzenie włosów.
Ostatnie badania klastrów atomów metali pokazują jednak, że granicę naszej niepewności można w dużym stopniu zawęzić.

Metale to substancje stałe charakteryzujące się obecnością swobodnych elektronów poruszających się po sieci krystalicznej i tworzących wspólną, dużą chmurę elektronową. Właśnie dlatego metale dobrze przewodzą ciepło i elektryczność oraz odbijają światło ze srebrzystym, metalicznym połyskiem. Odpowiednio duże skupiska atomów metali też będą tworzyły swoją chmurę elektronową ale już pozostałe właściwości metaliczne niekoniecznie mogą być realizowane. Bardzo małe klastry zachowują się jak cząsteczki jakiegoś związku, często wykazując dość nieoczekiwane właściwości, przykładowo klastry 13 atomów glinu zachowują się jakby były atomem halogenku, mogąc oddawać elektrony i tworzyć aniony.

Fińscy chemicy z Uniwersytetu Jyväskylä badali takie właśnie graniczne klastry atomów złota, sprawdzając w jaki sposób reagują ze światłem. Klastry małe, mniejsze niż 102 atomy, zachowywały się jak cząsteczki. Pod wpływem fotonów przybierały pewne stany energetyczne obejmujące cały klaster, a wypromieniowanie i rozproszenie energii następowało stosunkowo (jak na atomową skalę) wolno. Grupy powyżej 144 atomów zachowywały się tak jak makroskopowe kawałki metalu, to jest szybko rozpraszały energię padającego światła, odbijały je zgodnie z prawem odbicia od lustra i nie przyjmowały ogólnoklastrowych stanów energetycznych.
Różnica była dość drastyczna - klastry większe o 42 atomy rozpraszały energię fotonów 100 razy szybciej. Natomiast klastry o wielkościach pośrednich wykazywały pośrednie własności, szybko zmieniające się z dodawaniem kolejnych atomów.
Tym samym w pewnym stopniu możliwe staje się wyznaczenie granicy między światem praw kwantowych a światem zjawisk fizyki klasycznej.[8]

-------------------
Źródła:
[1] A Bieler et al, Nature, 2015, DOI: 10.1038/nature15707
[2] Paul W K Rothemund, Nick Papadakis, Erik Winfree; Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2004 Dec 7;2(12):e424. Epub 2004 Dec 7. [Open Acces]
[3] D. Nieckarz, P. Szabelski; Simulation of the self-assembly of simple molecular bricks into Sierpiński triangleChem. Commun., 2014,50, 6843-6845
[4] Rajarshi S. et al.;  One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality. Angew Chem Int Ed Engl 2014 Nov 11;53(45):12182-5.
[5] Shang J. et al.; Assembling molecular Sierpiński triangle fractals, Nature Chemistry 7, 389–393
On-surface construction of a metal–organic Sierpiński triangle, Chem. Commun., 2015,51, 14164-14166
[7] Klaus Wolkenstein et al. Structure and Absolute Configuration of Jurassic Polyketide-Derived Spiroborate Pigments Obtained from Microgram Quantities, J. Am. Chem. Soc., 2015, 137 (42), pp 13460–13463 (2015).[Open Access]
[8] Mustalhi S. et al.; Molecule-like Photodynamics of Au102(pMBA)44 Nanocluster, ACS Nano, 2015, 9 (3), pp 2328–2335

wtorek, 6 października 2015

Chemiczne wieści (2.)

Wysokociśnieniowy osm.
Zachowanie się materiałów pod ekstremalnie wysokim ciśnieniem to dość ciekawa sprawa Ciała stałe zasadniczo uznaje się za nieściśliwe, jednak w rzeczywistości mają pewną niewielką ściśliwość, zaś poddanie ich wysokiemu ciśnieniu powoduje zbliżenie budujących je atomów, czasem powodując przemianę do nowej formy uporządkowania lub ujawnienie się nietypowych cech.

Zespół naukowców pod kierunkiem niemieckiego uniwersytetu Bayreuth dokonał ostatnio dość szczególnego odkrycia. Przy pomocy nowej komory ciśnieniowej udało się im wytworzyć najwyższe dotąd otrzymane ciśnienie statyczne - nacisk 770 GPa, czyli ciśnienie dwa razy większe niż w jądrze Ziemi. Ciśnieniu temu poddano natomiast najbardziej gęsty metal - osm - znany też z bardzo niskiej ściśliwości.
Jeśli prawie najmniej ściśliwy materiał poddano najwyższemu ciśnieniu, to chyba powinno z tego coś wyniknąć? Wbrew oczekiwaniom osm nie przyjął żadnej nowej struktury krystalicznej, jedynie atomy nieco się do siebie przybliżyły, zachowując ten sam układ co w warunkach normalnych. Zaskoczeniem okazało się natomiast coś innego - pomiędzy atomami oprócz znanych już wiązań metalicznych, utworzonych przez elektrony walencyjne, zaczęły się także pojawiać oddziaływania utworzone przez elektrony wewnętrznych powłok elektronowych, które nigdy nie biorą udziału w tworzeniu wiązań. [1]

Wcześniej znane były wyliczenia teoretyczne sugerujące możliwość tworzenia wiązań między wewnętrznymi elektronami przy dużych ciśnieniach, ale teraz taka możliwość znalazła jakieś potwierdzenie w badaniach rentgenowskich rzeczywistego materiału.

Najtrudniej topliwy materiał
Tantal, metal przejściowy podobny do cyrkonu, jest znany z wysokotopliwego węgliku, który staje się płynny dopiero w temperaturze 3880*C, podobną temperaturę topnienia ma węglik hafnu. Połączenie tych substancji daje materiał o jeszcze większej odporności na temperaturę, dla składu Ta4HfC5 topiący się dopiero przy 3990 stopniach Celsiusza. Ale fizykochemicy nie poprzestają. Nowe wyliczenia jakie właśnie opublikowano sugerują możliwość stworzenia jeszcze trwalszego materiału. Wedle symulacji mieszany węglik-azotek hafnu o optymalnym składzie HfN0,38C0,51, osiągnąć może temperaturę topnienia nawet do 4400*C.[2]
Pozostaje teraz tylko poczekać na próby uzyskania nowego materiału.

Bateria z grzybów
W poprzednim odcinku wieści mówiłem już o otrzymywaniu kwantowych kropek ze zmiksowanej kapusty, dlatego baterie do telefonów ze zwęglonych grzybów nie będą chyba aż tak zaskakujące.
Wszystko co trzeba o metodzie. Udostępnione przez University of California

Jednym z głównych komponentów baterii litowych jest grafitowa anoda, zwykle wytwarzana z syntetycznego grafitu porowatego. Jego wytworzenie w ilościach przemysłowych jest jednak nieco skomplikowane i niezbyt ekologiczne, stąd liczne próby stworzenia dobrej alternatywy. Jedną z tych prób opisuje praca badaczy z University of California.
Wzięli oni cienki plaster wycięty z owocnika grzyba, akurat w tym przypadku była to pieczarka, po czym poddali go zwęgleniu w hydroreaktorze w wysokiej temperaturze. Otrzymany zwęglony plaster dodatkowo wyżarzono uzyskując porowaty materiał złożony ze splecionych węglowych włókien zachowujących strukturę strzępek grzyba i przewodzący prąd, będący dobrym zamiennikiem grafitu. Anoda wytworzona ze zwęglonego grzyba nie potrzebuje dodatkowych lepiszczy, dobrze przyjmuje płynny elektrolit i dobrze oddziałuje z jonami. Bardzo możliwe że ze względu na strukturę będzie wytrzymywała więcej cykli ładowania.[3]

Woda orto, woda para 
Jądro atomu wodoru to proton, który jako samotna cząstka posiada szczególną właściwość jaką jest spin. W dużym uproszczeniu można przedstawić to jako wektor momentu pędu protonu, mogącego obracać się bądź w jedną lub w drugą stronę - opis kwantowy tego zjawiska jest dużo bardziej skomplikowany. Ponieważ proton jest cząstką naładowaną, jego spin powoduje powstanie małego jądrowego pola magnetycznego. W sytuacji gdy mamy cząsteczkę wodoru składającą się z dwóch atomów te jądrowe pola magnetyczne oddziałują ze sobą i możliwe stają się dwie sytuacje którym odpowiadają różne energie - wodór orto ma spiny skierowane w tą samą stronę, wodór para w przeciwną. Ta druga sytuacja jest minimalnie korzystniejsza energetycznie jednak różnica energii jest na tyle mała że w warunkach normalnych wodór posiada mieszankę cząsteczek z tych dwóch stanów z przewagą ortowodoru.

To zresztą ciekawa sytuacja - pod wpływem temperatury trwalszy parawodór przechodzi w ortowodór, natomiast przemiana w drugą stronę jest powolna bowiem utrudnia ją zabronione przejście kwantowe. W efekcie w wodorze gazowym przeważa mniej trwała energetycznie odmiana, co ma też przełożenie na skład wodoru ciekłego. W niskich temperaturach powolna przemiana ortowodoru w trwalszy parawodór ma istotne znaczenie dla przechowywania, bowiem przemiana ta przebiega z wydzielaniem ciepła. Aby więc ułatwić przechowywanie ciekłego wodoru, katalizuje się tą przemianę przy pomocy odpowiedniego dielektryka otrzymując przewagę trwalszej formy.
Wróćmy jednak do naszego newsa.

W cząsteczce wody dwa wodory znajdują się na tyle blisko siebie, że także i u nich powinna być możliwa izomeria spinowa, jednak dotychczas nie udało się tego wykryć. Cząsteczki wody oddziaływały ze sobą powodując ciągłą zmianę spinów, toteż trudno było uchwycić sygnał od populacji poszczególnych izomerów. Jak się jednak okazało, możliwe jest odizolowanie od siebie cząsteczek. Zespół badaczy z University of Suthampton otrzymał pochodną fullerenu C60 z pojedynczymi cząsteczkami wody wewnątrz węglowej kul. Tego typu połączenie stanowi kolejny przykład związków cząsteczek "połączonych acz nie związanych" jak omawiane tu kiedyś katenany.
Cząstki C60@H2O były wystarczająco odizolowane aby w niskich temperaturach możliwe było wykrycie czystych sygnałów izomerów spinowych wody i przemian jednego w drugi.
[4]

Paliwo z powietrza
Temat przeróbki dwutlenku węgla na paliwo jest aktualnie bardzo gorący, stąd też w ostatnich miesiącach ukazało się wiele doniesień dotyczących nowych sposobów takiej syntezy.
Wedle doniesień z początku sierpnia zespół z Argonne National Laboratory stworzył nowy katalizator do reakcji zamiany dwutlenku węgla i wody w metanol. Znane dotychczas katalizatory oparte o tlenki cynku i glinu zostały zmodyfikowane poprzez precyzyjne umieszczenie na powierzchni tlenku cynku klastrów czterech atomów miedzi, stanowiących centrum katalityczne do którego przyłącza się cząsteczka CO2. Materiał pozwala na przeprowadzanie reakcji w warunkach niższego ciśnienia i temperatury, co poprawia opłacalność całego procesu produkcyjnego. [5]

A co robić z metanolem?  Można go użyć jako paliwa, ale można też poddać innym procesom. Pod koniec września pojawiła się praca zespołu z ETH w Zurychu na temat nowego katalizatora umożliwiający ekonomiczny proces konwersji metanol-olefina (MTO). Metanol lub eter dimetylowy pod odpowiednim ciśnieniem może ulegać przemianie na powierzchni tlenku cynku, z wytworzeniem etenu. [6]

Mniej toksyczne wydobycie złota
Jednym ze sposobów na uzyskanie złota ze złóż w których występuje w postaci rozproszonej, jest metoda rtęciowa, w której wykorzystuje się zdolność rtęci do rozpuszczania złota i tworzenie amalgamatu, od którego może być oddzielona przez destylację. Dziś już w zasadzie się od niej odchodzi z powodu wysokiej szkodliwości, mimo to wciąż używają jej małe kopalnie w biedniejszych rejonach świata, co jest źródłem zanieczyszczeń. Szacuje się że nawet 40% rocznych emisji rtęci do środowiska pochodzi z małych kopalni Indonezji i środkowej Afryki.
Oczywiście można próbować różnych zakazów, ale trudno jest je egzekwować, tym bardziej że praca w kopalniach stanowi często jedyne źródło utrzymania najbiedniejszych. Jest też jednak ich przekleństwem - pracownicy mieszający skałę z rtęcią, wyciskający amalgamat (nawet ręcznie) a zwłaszcza pracujący przy wypalaniu amalgamatu dla usunięcia rtęci po kilku latach zaczynają chorować. Skażenie wraz z zanieczyszczonym złotem przenosi się do miast gdzie na opary rtęci narażone są rodziny złotników przetapiających surowe złoto.

Jednym z ciekawych sposobów aby sprawić, że proces stanie się mniej groźny dla tych, którzy nie chcą z niego zrezygnować, jest dostarczenie wytwórcom tanich aparatów do bezpieczniejszej destylacji.
Geochemik Marcello Veiga z kanadyjskiego Uniwersytetu Inżynierii i Górnictwa opracował przyrząd podobny do blaszanej retorty, takiej jak używane przez dawnych alchemików. Zbiornik w którym wyżarzany jest amalgamat kończy się długą opadającą rurą, której wąski koniec kończy się w zbiorniku z zimną wodą. Opary rtęci zamiast trafiać do atmosfery są skraplane a krople metalu zbierane na dnie zbiornika, dzięki czemu może być użyty ponownie. W efekcie emisje rtęci spadają o 90%, mniej jej trafia do środowiska a pracownicy są mniej narażeni na toksyczne opary[7]


---------
[1] The most incompressible metal osmium at static pressures above 750 GPa;L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov; Nature (2015); DOI: 10.1038/nature14681
[2]  Prediction of the material with highest known melting point fromab initiomolecular dynamics calculations. Qi-Jun Hong, Axel van de Walle. Physical Review B, 2015; 92 (2) DOI: 10.1103/PhysRevB.92.020104
[3] Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Brennan Campbell, Robert Ionescu, Zachary Favors, Cengiz S. Ozkan, Mihrimah Ozkan. Scientific Reports, 2015; 5: 14575 DOI: 10.1038/srep14575
[4]  Electrical detection of ortho–para conversion in fullerene-encapsulated water. Benno Meier, Salvatore Mamone, Maria Concistrè, Javier Alonso-Valdesueiro, Andrea Krachmalnicoff, Richard J. Whitby, Malcolm H. Levitt. Nature Communications, 2015; 6: 8112 DOI: 10.1038/ncomms9112

[5]   Carbon Dioxide Conversion to Methanol over Size-Selected Cu4Clusters at Low Pressures. Cong Liu, Bing Yang, Eric Tyo, Soenke Seifert, Janae DeBartolo, Bernd von Issendorff, Peter Zapol, Stefan Vajda, Larry A. Curtiss. Journal of the American Chemical Society, 2015; 137 (27): 8676 DOI: 10.1021/jacs.5b03668
[6]  Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina, Aleix Comas-Vives, Maxence Valla, Christophe Copéret, Philippe Sautet.. ACS Central Science , 2015 r.; 150807151553006 DOI: 10,1021 / acscentsci.5b00226

[7]  http://www.rsc.org/chemistryworld/2015/08/chemistry-saves-thousands-gold-miners-mercury-poisoning

czwartek, 27 sierpnia 2015

Chemiczne wieści (1.)

Postanowiłem stworzyć jeszcze jeden cykl wpisów - krótkie doniesienia ze świata chemii, jakie ostatnio wpadły mi w oko i które uznałem za najciekawsze.

Rozdzielanie światłem
Rozdział lantanowców nie jest procesem łatwym. Pierwiastki te mają bardzo podobne właściwości fizyczne i chemiczne, zbliżoną rozpuszczalność soli i powinowactwo, a na dodatek występują w mieszaninie w jednym minerale - monacycie. Zwykle rozdziela się je bądź przez wieloetapową ekstrakcję w rozpuszczalnikach organicznych, lub przez stosowanie żywic jonowymiennych. Niedawna praca pokazuje jednak jeszcze jeden ciekawy, prosty i wymagający zdecydowanie mniejszej ilości energii proces.

Badacze skupili się na rozdziale europu od itru, dwóch rzadkich pierwiastków stosowanych w elektronice, w tym w telewizorach i w świetlówkach. Itr stanowi składnik czerwonego luminoforu czyli substancji emitującej światło po naświetleniu wiązką elektronów, często domieszkowany jest europem dla zwiększenia czułości. Ich odzysk ze zużytego sprzętu jest kłopotliwy, właśnie z powodu trudnego rozdziału. Dotychczas chętnie wykorzystywano skłonność europu do redukowania się do wartościowości II, w której tworzy nierozpuszczalny siarczan, co jednak wymagało bardzo kwaśnych warunków i użycia toksycznych reduktorów.
Technika opracowana przez belgijskich badaczy jest dość prosta i nie wymaga użycia specjalnych chemikaliów. Pierwiastki mogą mieć podobne właściwości chemiczne, ale powinny mieć różne właściwości kwantowe. Elektrony na powłokach tych pierwiastków przyjmują różne stany energetyczne, co objawia się różnym widmem absorpcyjnym, pozwalającym na rozróżnienie. Te różnice powodują też, różne zachowanie się w stanie wzbudzonym.W tym konkretnym przypadku różnica dotyczyła zachowania się akwakompleksów, czyli związków kompleksowych jonów metali z cząsteczkami wody
Badacze wykonali wodny roztwór mieszaniny azotanów itru III i europu III, po czym naświetlili ultrafioletem o tak dobranym zakresie, że był on pochłaniany przez akwakompleks jonów europu. Energia pochłonięta była na tyle duża, że jedna z przyłączonych cząsteczek wody rozpadała się z wydzieleniem rodnika hydroksylowego, zaś europ III ulegał redukcji do europu II.
[Eu(H2O)n]3+ + → [Eu(H2O)n-1]2+ + H+ + OH*
Po naświetleniu, do mieszaniny wprowadzono aniony siarczanowe. Siarczan europu II jest trudno rozpuszczalny, natomiast siarczan itru III rozpuszczał się. Po odwirowaniu i oddzieleniu osadu, otrzymano sól europu oddzieloną od drugiego pierwiastka, o czystości do 98,5%. [1][2]

Kwantowe kropki z kapusty
Nietypowa substancja z nietypowego źródła.

Kwantowe kropki to jedno z najciekawszych osiągnięć nanotechnologii, które w dodatku znajduje coraz powszechniejsze zastosowanie. Stanowią szczególny przypadek stosunkowo dużego, wieloatomowego obiektu, do którego mają zastosowania prawa fizyki kwantowej.
Fizyka kwantowa traktuje cząstki elementarne, jak obiekty o dwojakiej naturze - zarazem są punktowymi, twardymi cząstkami jak i wykazują własności rozmytej fali. Im mniejszy i mniej masywny jest obiekt, tym wyraźniejsza jest ta falowość. Dla elektronów ta druga strona jego natury jest już tak wyraźna, że wygodniej jest opisywać ich zachowanie funkcjami fali, zupełnie jakby szło o opis światła czy dźwięku.
Jednym z modeli teoretycznych falo-cząstki, dość podstawowym, jest model "cząstki w pudle potencjału" czyli ograniczonej pewnymi przedziałami czy to energetycznymi czy to przestrzennymi. To ograniczenie dla ruchu elektronu, jeśli tylko ma rozmiary porównywalne z wielkością jego "fali", wpływa na to jaką może on przybierać energię. Podobnie jak dla dźwięków w rezonatorach instrumentów, pewne częstotliwości są wzmacniane, dlatego fala elektronu w takim "pudle" przebiera pewne określone stany o różnej energii.
Kropka kwantowa to po prostu bryłka materii o rozmiarach tak małych, że niewiele większych od wielkości fali elektronowej, która ponieważ elektrony nie mogą z niej wyjść, staje się dla nich trójwymiarowym pudłem potencjału. Elektrony atomów w tym materiale mogą przyjmować pewne określone stany energetyczne, całość zatem zachowuje się podobnie jak mocno powiększony atom. Mają własne widmo absorpcyjne, po naświetleniu mogą wykazywać fluorescencję, i to w bardzo dużym zakresie barw:
Kwantowe kropki z mieszanego siarczku kadmu i cynku z domieszką selenu. @ Signa Aldrich
Na zdjęciu widzicie fiolki z zawiesinami kwantowych kropek oświetlonych ultrafioletem. Materiał z którego są zrobione nie świeci w normalnych warunkach. We wszystkich fiolkach kropki zrobiono z tego samego materiału, różnią się tylko wielkością cząstki.

Gdy tylko nauczono się robić takie cząstki w większych ilościach, technolodzy zaczęli się prześcigać w wyszukiwaniu nowych ciekawych zastosowań. Już mówi się, że lampy oparte na kropkach mogą wyprzeć w przyszłości diody LED. Ponieważ mogą przenikać do żywych organizmów, wydają się ciekawym narzędziem służącym na przykład do lokalizowania ognisk chorobowych.
Większość takich kropek tworzona jest z materiałów półprzewodnikowych, soli nieorganicznych lub metali. Dlatego też ciekawa jest praca opisująca, że możliwe jest wytwarzanie ich w dużych ilościach, za surowiec wykorzystując zieloną kapustę.

Kapusta została rozdrobniona w czystej wodzie i dokładnie zmiksowana blenderem. Otrzymana zawiesina była przetwarzana w reaktorze hydrotermalnym w temperaturze 140 stopni. Otrzymana brązowa zawiesina została poddana odwirowaniu, dzięki czemu usunięto przeszkadzające duże cząstki. To co pozostało można było oddzielić w ultrawirówce na frakcje, które fluoryzowały na różne kolory.
Właściwe kropki kwantowe to nanometrowe fragmenty komórek, ziaren skrobi czy agregatów białkowych, które podczas przetwarzania uległy częściowemu zwęgleniu, z powstaniem cząstek o charakterze  węgla grafitowego.
Wydajność produkcji oceniono na 7%.[3]

Antybakteryjny kasztan
To całkiem świeże odkrycie dobrze pokazuje, że tradycyjna medycyna ludowa może mieć pewien rzeczywisty sens, o ile zostanie wsparta nowoczesną technologią.

Casanra Quave jest etnobotanikiem, a więc poszukuje związków między tradycyjną kulturą a właściwościami roślin. Stara się na podstawie przekazów ludowych zweryfikować doniesienia o leczniczych właściwościach roślin. W trakcie zbierania informacji często natykała się na doniesienia o używaniu naparu w liści kasztana jadalnego w zapaleniach skóry. Ponieważ zaś często zapalenia skóry są wywoływane zakażeniami gronkowcem, rozsądne wydawało się przetestowanie wyciągu na zakażonej skórze. Jak się okazało, choć wyciąg nie zabijał bakterii, powodował znaczące zmniejszenie uszkodzenia tkanek i podrażnień. Substancje zawarte w liściach kasztana powodowały wyłączenie systemu quorum sensing (brak jeszcze polskiego odpowiednika, ale rozsądnym byłoby "wyczuwanie zagęszczenia"), który zazwyczaj w przypadku ognisk zapalnych powoduje, że zagęszczone bakterie zaczynają wytwarzać toksyny, będące głównym czynnikiem szkodliwym. W efekcie bakterie przestały wywoływać uszkodzenia tkanek.
Efekt ten zaobserwowano nawet w przypadku najbardziej zjadliwych szczepów, także tych lekoodpornych gronkowców MRSA. Oznacza to, że choć wyciąg nie niszczy bakterie, może spowodować że zakażenie nie będzie aż tak szkodliwe, bakterie bowiem nie będą wytwarzać toksyn.

Oleanen
Co jednak wywoływało ten nietypowy efekt?
Tego dokładnie nie wiadomo. Technikami chromatograficznymi uzyskano z liści aktywną frakcję zawierającą około 90 związków o charakterze saponin steroidowych, spośród których najbardziej aktywne wydawały się pochodne 12-ursenu i oleanenu. Trwają badania czy za efekt odpowiada konkretny związek, czy może cała grupa.[4]

Najcieplejszy nadprzewodnik
Najnowsze odkrycie niemieckich naukowców jest dość zaskakujące. Otóż odkryli oni, że dość pospolity gaz siarkowodór, o zapachu zgniłych jaj, po zamrożeniu może stać się nadprzewodnikiem w wyjątkowo wysokiej jak na takie ciała temperaturze -70 *C (203,5 K). Dotychczasowy rekord dotyczył pewnych tlenowych związków miedzi, które stawały się nadprzewodnikami w temperaturze -135 *C, a zatem do ich chłodzenia potrzebne było skroplone powietrze. Do schładzania nowo odkrytego nadprzewodnika wystarczałby już tylko suchy lód, tańszy i łatwiej dostępny.
Jednak w odkryciu tkwi pewien haczyk - siarkowodór nabiera tak obiecujących właściwości dopiero pod dużym ciśnieniem około 200 GPa, w związku z czym raczej w najbliższym czasie nie znajdzie zastosowania.
Badanie wykazały że przy dużych ciśnieniach powyżej 90 GPa cząsteczki H2S łączą się zamieniając się w cząsteczki H3S, a zestalony gaz staje się przewodnikiem metalicznym. Odpowiednie obniżenie temperatury zamienia go w nadprzewodnik. [5]


-------
Źródła:
[1]  Bart Van den Bogaert, Daphné Havaux, Koen Binnemans and Tom Van Gerven ; Photochemical recycling of europium from Eu/Y mixtures in red lamp phosphor waste stream, Green Chem., 2015,17, 2180-2187 DOI: 10.1039/C4GC02140A
[2] http://www.scriptiebank.be/sites/default/files/webform/scriptie/Masterthesis%20DH.pdf
[3] Al-Mahmnur Alam,   Byung-Yong Park,   Zafar Khan Ghouri,   Mira Park and   Hak-Yong Kim , Synthesis of Carbon Quantum Dot from Cabbage with Down- and Up-Conversion, Green Chem., 2015,17, 3791-3797
[4] Cassandra L. Quave, James T. Lyles, Jeffery S. Kavanaugh, Kate Nelson, Corey P. Parlet, Heidi A. Crosby, Kristopher P. Heilmann, Alexander R. Horswill. Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance. PLOS ONE, 2015; 10 (8) e0136486
[5] http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14964.html A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature (2015) doi:10.1038/nature14964