informacje



Pokazywanie postów oznaczonych etykietą wieści. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą wieści. Pokaż wszystkie posty

sobota, 14 października 2017

Chemiczne wieści (12.)

Zjonizowane białko najsilniejszym kwasem
Kwasami w ujęciu Brønsteda są substancje, które w reakcji z zasadą odszczepiają proton tworząc anion. Najbardziej znaną skalą określającą ich moc jest skala pH opierająca się o stężenie jonów hydroniowych, które powstają w wyniku reakcji kwasu z wodą. Im większe jest stężenie tych jonów, tym niższa jest cyfra określająca kwaśność roztworu (ujemna skala logarytmiczna). W szczególnych przypadkach dla bardzo silnych kwasów przyjmuje wartości ujemne.
Jak łatwo zauważyć po przeanalizowaniu definicji, skala ta w pewnych przypadkach staje się niewygodna czy wręcz niefizyczna. Trudno zastosować ją na przykład do ciekłych substancji pozbawionych wody jak na przykład 100% kwas siarkowy, bo brak w nich jonów hydroniowych. Jest też problematyczna w roztworach tak bardzo stężonych, że molowo jest w nich więcej kwasu niż wody. Dlatego do tych innych substancji stosuje się inne skale, oparte najczęściej o wartość pKa zależną od stężeń jonów, bądź o energię reakcji oderwania protonu. W ten sposób możemy porównywać kwasowość na przykład stałych, ciekłych i gazowych węglowodorów, stwierdzając, że acetylen jest kwaśniejszy od metanu i łatwiej będzie tworzył sole.

No i niedawno wykryto specyficzną substancję, dla której entalpia deprotonacji jest tak wysoka, że musi to być najsilniejszy kwas organiczny.

Cytochrom c to enzym stanowiący ważny element oddychania komórkowego, ma też udział w procesie apaptozy, dlatego jest intensywnie badany. Składa się on z białka złożonego ze 104 aminokwasów połączonych z cząsteczką hemu. Ostatnie odkrycie dotyczy jednak nie samego cytochromu lecz jego wersji silnie sprotonowanej. W odpowiednich warunkach można dodać cząsteczce dodatkowych atomów wodoru. Na przykład grupy aminowe białka mogą przyjąć wodór, zamieniając się w dodatnio naładowane grupy amoniowe. Tak nawodorowane cząsteczki będą też oczywiście chętnie oddawać nadmiarowe protony, aby przejść do stanu pierwotnego. Im mocniej uwodorniona jest cząsteczka, tym chętniej oddaje proton, to jest staje się coraz mocniejszym kwasem.

Zespół naukowców z Australii badał powstawanie jonów białkowych w spektrometrze mas. Roztwór białka został rozpylony w silnym polu elektrycznym wewnątrz komory. Ponieważ takie same ładunki odpychają się, małe kropelki rozdzielały się na jeszcze mniejsze, ż na koniec powstała chmura kropelek z pojedynczymi cząsteczkami białka. Ta technika nazywana elektrosprejem pozwala na otrzymanie widma mas całych cząsteczek.
Do roztworu dodano jednak pewien prekursor chętnie w takich warunkach oddający protony. W efekcie powstały cząsteczki uwodornione w ekstremalnym stopniu, zawierające nawet 30 dodatkowych wodorów i ładunek elektryczny 30+. Gdy otrzymamy już chmurę jonów, możemy próbować poddawać je reakcjom z różnymi związkami o znanej energii uwodornienia. Wykrycie kationów pochodnych od tych dodatkowych substancji, cięższych o jeden wodór, umożliwia wyznaczenie energii reakcji. W tym przypadku cząsteczka naładowana do 30+ oddawała proton z energią 130 kJ/mol. Jest to tak duża wartość, że zjonizowany cytochrom protonował azot, czy gazy szlachetne[1]

Najdłuższy acen
Aceny to węglowodory aromatyczne złożone z liniowo ułożonych sześciokątnych pierścieni, połączonych jednym bokiem. Najprostszy acen to naftalem złożony z dwóch pierścieni. Trzy zawiera antracen, cztery tetracen, pięć pentacen. Tych pierwszych kilka związków występuje naturalnie, i izolowano je głównie ze smoły pogazowej, niektóre znalazły zastosowanie jako składniki barwników, leków czy organicznych półprzewodników.
Od dawna trwały prace mające syntetycznie stworzyć jeszcze dłuższe cząsteczki. Heksacen po raz pierwszy wykryto w 1939 roku ale dopiero później wymyślono wydajne metody syntezy. Siedmiopierścieniowy heptacen otrzymano dopiero w 2006 roku, okta i nonacen w 2010 roku. W tym roku natomiast udało się otrzymać dziesięciopierścieniowy dekacen.[2] Zrobiono mu nawet "zdjęcie" przy pomocy mikroskopii tunelowej:
@ TU Dresden

Długie aceny stają się nietrwałe. Rezonans orbitali na tak długiej cząsteczce powoduje pojawianie się reaktywnych struktur rodnikowych, dlatego  zazwyczaj udawało się otrzymywać aceny odpowiednio podstawione.

Ultralekkie aluminium?
Badacze z Rosji donieśli ostatnio o możliwości stworzenia formy glinu o nietypowych właściwościach. Metastabilna, ultralekka forma tego metalu miałaby gęstość zaledwie 0,61 g/cm3, co oznacza, że pływałaby po wodzie i była niewiele cięższa od litu. Odkrycia dokonano metodami obliczeniowymi, więc jest to raczej możliwa struktura niż faktycznie otrzymanie takiego metalu fizycznie. Trudno powiedzieć czy rzeczywiście da się taką odmianę otrzymać.
W zaproponowanej strukturze cztery atomy glinu tworzą małe czworościany, trochę podobne do tych ze struktury białego fosforu, które łączyłyby się poprzez każdy z atomów z czterema innymi takimi czworościanami. Ze względu na geometrię czworościanów ich układ w komórce elementarnej odpowiadałby strukturze diamentu, co nadawałoby metalowi wytrzymałość. Niska gęstość wynika wówczas stąd, że w diamentopodobnej strukturze pojawiają się niewypełnione luki rozmiaru kilku atomów. [3]

-----
[1] William A. Donald et al.  Highly Charged Protein Ions: The Strongest Organic Acids to Date, Angew. Chem. Int. Ed. Volume 56, Issue 29 July 10, 2017 Pages 8522–8526
[2] https://tu-dresden.de/tu-dresden/newsportal/news/wissenschaftler-der-tu-dresden-und-des-ciqus-entwickeln-decacen-das-laengste-acen-das-je-hergestellt-wurde?set_language=en
[3]  Iliya V. Getmanskii, Vitaliy V. Koval, Ruslan M. Minyaev, Alexander I. Boldyrev, Vladimir Isaak Minkin. Supertetrahedral Aluminum - a New Allotropic Ultra-Light Crystalline Form of Aluminum. The Journal of Physical Chemistry C, 2017;

niedziela, 9 lipca 2017

Chemiczne wieści (11.)

Dwie wody
Woda to jedna z najprostszych substancji na naszej planecie, złożona z jednych z najlżejszych pierwiastków - i paradoksalnie właśnie dlatego skomplikowana. Duża elektroujemność tlenu w połączeniu z faktem że wodór ma najmniejszy atom z wszystkich pierwiastków powodują, że po spolaryzowaniu wiązania atomy wodoru stają się bardzo skoncentrowanymi punktami dodatniego ładunku. Między nimi a pełnymi elektronów bardzo elektroujemnymi niemetalami mogą powstawać słabe oddziaływania elektrostatyczne, to jest wiązania wodorowe. Ze względu na budowę, cząsteczka wody może utworzyć aż cztery takie połączenia, z czego skwapliwie korzysta.
Tworzenie się takich oddziaływań między cząsteczkami wody, które w przeciętnych temperaturach mimo wszystko szybko się zrywają, na tyle "skleja" cząsteczki, że woda wykazuje anomalnie wysoką temperaturę wrzenia i krzepnięcia. W przypadku pozostałych niemetali obowiązuje prosta zasada - im lżejszy główny atom tym niższe są te graniczne temperatury. Siarczek wodoru, mający dwa razy cięższy atom centralny, jest już gazem o niskiej temperaturze wrzenia. Gdyby zasada obowiązywała do końca, woda byłaby gazem o temperaturze skraplania około -100 stopni.

Z faktu tworzenia takich wiązań wynika też kilka innych nietypowych własności, lecz szczegóły molekularne nie zostały jeszcze do końca poznane. Najnowsza publikacja dorzuca jedno ciekawe rozwiązanie, i zarazem nową zagadkę - otóż jak się okazuje pewne zachowania bardzo wyziębionej wody daje się wytłumaczyć przy założeniu, że tak na prawdę mamy do czynienia z mieszaniną dwóch różnych wód.

Oprócz kilkunastu odmian krystalicznych lodu, znamy też formy amorficzne, otrzymane przez bardzo szybkie schłodzenie wody, co nie pozwala cząsteczkom uporządkować się w kryształy. Zależnie od warunków przeprowadzenia procesu, można otrzymać dwie fazy szkliste różniące się gęstością, z różnym upakowaniem. Podczas badań przemian fazowych tych form stwierdzono, że podczas topnienia zamieniają się w ciecz, której właściwości zależą od tego z jakiej formy amorficznego lodu powstała.
Dla ciał szklistych, a więc nieuporządkowanych, nie ma właściwie klasycznego topnienia. Zwiększanie temperatury powoduje mięknięcie materiału następujące w pewnym przedziale, w wyniku którego najpierw otrzymuje się ciało bardzo plastyczne, mogące pod wpływem sił płynąć, a potem dopiero ciecz.
W przypadku amorficznego lodu stwierdzono, że na powierzchni ogrzewanych bryłek pojawia się faza płynna, mogąca występować w dwóch formach: wysokiej gęstości i niskiej gęstości. Fazy te są metastabilne w danych warunkach. Mowa o temperaturach rzędu 100 K czyli -170 C, znacznie poniżej temperatur zamarzania. W tak niskiej temperaturze powstająca ciecz pozostaje płynna, bo brakuje dodatkowej energii potrzebnej na uporządkowanie cząsteczek w krystaliczny lód.

Powstałe dwie fazy wody mogą przechodzić jedna w drugą ale istnieje pomiędzy nimi granica. W obserwowanym przypadku w cienkiej warstwie na powierzchni lodu szklistego istniały osobne domeny jednej z faz. Fazy różnią się gęstością i lepkością. Sądzi się, że może to wytłumaczyć niektóre nietypowe własności przechłodzonej wody - nieliniowa zmiana parametrów fizycznych to wynik powstawania wskutek fluktuacji obszarów zawierających w istocie dwie różne fazy ciekłe.[1]

Spirala hydratacyjna
Cząsteczki wody z powodu silnego momentu dipolowego zwykły otaczać rozpuszczane cząsteczki przylegającą powłoką hydratacyjną. Niedawne badania rentgenowskie cząsteczek DNA pokazały, że na łańcuchu powłoka ta przybiera ciekawą formę. Podstawowe domeny DNA to zasady purynowe, między którymi oddziaływania łączą nici, następnie cukier deoksyryboza i dalej reszta fosforanowa. Nici są skręcone w helisę, to jest formę przypominającą skręconą drabinę. Ponieważ cząstki deoksyrybozy są przestrzennie dość duże, w modelu DNA pojawiają się dwie szczeliny skręcone tak samo jak nici.

No i otóż jak stwierdzono, w wyniku hydratacji w tą szczelinę wchodzą cząsteczki wody tworząc spiralną strukturę, która podobnie jak samo DNA jest chiralna, ale zarazem na tyle trwałą że da się ją zaobserwować spektroskopowo.
Ma to o tyle znaczenie, że pewne leki (ale też toksyny) działają poprzez przyłączanie się do łańcucha DNA. Jeśli woda tworzy wyraźną strukturę w samym rowku helisy, to zbliżające się cząsteczki muszą ją wypychać. Uwzględniając ten efekt można zaprojektować cząsteczki łatwiej wpasowujące się w szczelinę.[2]

Oszacować czas zbrodni
Po opuszczeniu ciała, krew podlega różnego rodzaju przemianom chemicznym i fizycznym. Najpierw krzepnie i wysycha, następnie pod wpływem tlenu, światła i wilgoci pewne składniki mogą ulegać rozkładowi. Bardzo stara plama krwi może wyglądać jak złożona z brudu, mieć kolor brązowy, brudnożółty czy nawet zielonkawy. Jak niedawno odkryto powolne zachodzenie tego typu przemian można zbadać i na tej podstawie z całkiem niezłą dokładnością oszacować jak stara jest plama. Co z pewnością znajdzie zastosowanie w kryminalistyce.

Zastosowaną techniką była w tym przypadku spektroskopia Ramanowska. W tym typie bada się widmo światła rozproszonego przez próbkę. Jeśli oświetlimy ją światłem o pewnej konkretnej częstotliwości fali, w widmie światła rozproszonego pojawią się dodatkowe sygnały o innych częstotliwościach. Ich źródłem są drgające fragmenty cząsteczek, podlegające zmianom długości i położenia wiązań. W istocie technika ta bada podobne zjawiska jak w spektroskopii w podczerwieni.
Ze złożenia informacji o tym, że w badanej substancji znajdują się konkretne fragmenty dające konkretne przesunięte sygnały, można wywnioskować z czym mamy do czynienia.

W tym przypadku próbki krwi rozmazanej na powierzchniach poddano naturalnemu starzeniu przez okres do dwóch lat. Co pewien czas badano widmo próbek. W trakcie starzenia, pewne sygnały zanikały, zaś inne pojawiały się tam gdzie ich nie było, świadcząc o przemianach chemicznych w próbce. Na podstawie wielu porównań możliwe było określenie zmian w sygnałach pojawiających się już po upływie kilku godzin od pobrania krwi. Bazując na tak powstałej skali badacze byli w stanie określić przybliżony wiek plamy krwi z dokładnością do 70%. [3]
 http://www.sciencedirect.com/science/article/pii/S2468170917300218

--------
[1]  Anders Nilsson et al. Diffusive dynamics during the high-to-low density transition in amorphous ice. PNAS, June 26, 2017 DOI: 10.1073/pnas.1705303114
[2]  1. M L McDermott, H Vanselous, S A Corcelli and P B Petersen, ACS Centr. Sci., 2017, DOI: 10.1021/acscentsci.7b00100
[3]  Kyle C. Doty, Claire K. Muro, Igor K. Lednev; Predicting the time of the crime: Bloodstain aging estimation for up to two years, Forensic Chemistry Volume 5, September 2017, Pages 1–7

poniedziałek, 24 kwietnia 2017

Chemiczne wieści (10.)



Aldehydy w elektronicznych papierosach
 Elektroniczne papierosy pojawiły się na rynku stosunkowo niedawno, i wciąż nie do końca znane są ich skutki zdrowotne. Na pewno, ze względu na brak substancji smolistych, nie są tak bardzo szkodliwe jak papierosy tytoniowe, jednak badań długotrwałego wpływu jest generalnie niewiele.
Chemicy wskazują, że skład mgiełki produkowanej przez te urządzenia, nie jest tak zupełnie bezpieczny, jak to się mogło wydawać.
Głównym składnikiem liquidów będących wkładem, jest gliceryna lub glikol propylenowy. Związki te są nieszkodliwe. Jednak podczas ich odparowywania na grzałce mogą zachodzić dodatkowe reakcje, prowadzące do powstawania reaktywnych aldehydów, głównie akroleiny, aldehydu mrówkowego i acetaldehydu. Wdychanie ich może zwiększać ryzyko chorób serca i układu krwionośnego. Dotychczasowe badania wskazywały, że mgiełka elektronicznych papierosów zawiera pewną niewielką ilość aldehydów, co jednak trudno było ocenić z powodu z powodu nietrwałości tych związków. Czasem pojawiały się pojedyncze badania wskazujące na wysokie stężenia, być może związane z niewłaściwą techniką poboru próbek (za wolne zaciąganie lub za duże grzanie).

W nowych badaniach mgiełkę wytwarzaną przez dostępne na rynku urządzenia pochłaniano na podłożu z krzemionki pokrytej cząsteczkami alkilowej pochodnej hydroksyloaminy. Ta reagowała z aldehydami tworząc charakterystyczne oksymy, które są dużo trwalsze, dzięki czemu w dalszych analizach łatwiej było odtworzyć rzeczywiste stężenie aldehydów i sprawdzić od jakiś czynników zależy.
Okazało się, że urządzenia nowsze wytwarzają większe stężenia aldehydów niż starsze. Efekt ten był związany z mocniejszymi bateriami i mocniejszymi grzałkami; między mocą grzałki a aldehydami istniała wyraźna zależność. Pewien wpływ miał też czas zaciągania powietrza.
W dodatkowym badaniu przy pomocy techniki NMR sprawdzono powstawanie hemiacetali, mogących ukrywać faktyczne stężenia aldehydów. W przypadku jednego liquidu smakowego wykryto hemiacetale, ale bez przekroczenia bezpiecznych norm, u pozostałych badanych smakowych i bezsmakowych taka reakcja nie zachodziła.

W ostatecznym rozrachunku poziomy aldehydów w aerozolu z e-papierosów są dużo niższe niż w dymie papierosowym (z wyjątkiem przypadków tzw. "suchego zaciągu"), niemniej fakt że jednak w nim występują, oznacza że nie jest to używka dla zdrowia całkiem obojętna.[1]


Spolaryzowana fluorescencja
Fluorescencja to szybki proces w wyniku którego wzbudzone cząsteczki lub atomy wypromieniowują energię w postaci światła. Najbardziej znanym jest świecenie pod wpływem ultrafioletu, wykorzystywane w wybielaczach optycznych. Teraz przedstawiono nietypową tego procesu modyfikację - fluorescencję świecącą od razu światłem spolaryzowanym.

Czynnikiem świecącym były jony rzadkiego pierwiastka europu. Jego sól została rozpuszczona w cieczy jonowej, to jest płynnym związku złożonym tylko z jonów (w zasadzie są to ciekłe sole), w tym przypadku był to kation tetrabutyloamoniowy i anion proliny. Po naświetleniu ultrafioletem roztwór świecił światłem spolaryzowanym kołowo. Kierunek obrotu polaryzacji zależał od tego czy użyta prolina była prawoskrętna czy lewoskrętna. [2]


Ładna demonstracja równowag chemicznych
Czasopismo Journal of Chemical Education mogłoby być w zasadzie zaliczone do pedagogicznych, poświęcone jest bowiem nauczaniu chemii, jednak robi to w ciekawy sposób - większość artykułów to nie biadolenie nad poziomem nauczania, tylko bardzo konkretne propozycje co takiego można uczniom pokazać, aby lepiej wyjaśnić im daną kwestię. Dlatego w zasadzie jest to skarbnica propozycji doświadczeń. W jednym z ostatnich numerów najbardziej wizualnie spodobał mi się artykuł na temat pokazywania równowag kwasowo-zasadowych.

Do czterech próbówek z wodą wsypano kationit kwasowy - to jest granulki specjalnego polimeru, mającego na powierzchni reszty kwasu siarkowego, skłonne oddawać protony. W zasadzie trzeba o nim myśleć jak o kwasie siarkowym osadzonym w plastiku. Do wody dodano odczynnik kwasowo-zasadowy błękit tymolowy. W warunkach obojętnych przybiera kolor żółty. Wprawdzie na dnie znajduje się polimer o właściwościach kwasowych, ale wcale nie oddaje on swoich protonów tak chętnie, musi je podmienić na jakieś inne kationy. Do jednej z próbówek dodajemy więc roztwór soli kuchennej i po chwili obserwujemy jak od dna rozwija się coraz wyraźniejsza różowa barwa, świadcząca o warunkach silnie kwaśnych. Do drugiej dodajemy niedużą ilość roztworu wodorotlenku sodu - w alkalicznym środowisku odczynnik zmienia kolor na błękitny. Jednak wodorotlenek zawiera też kationy sodowe, które mogą podmienić protony w kationicie. Dlatego od dna roztwór zaczyna się zabarwiać na żółto, świadcząc o zakwaszeniu roztworu, a w warstwach najbliżej dna na różowo. Mamy więc roztwór z trzema kolorami - różowym na dole, żółtym powyżej i błękitnym u góry.
Kolorowa równowaga. Udostępnione przez ACS Publications.

Co ma tłumaczyć doświadczenie? W próbówce pojawiają się nam dwie równowagi - jedna to równowaga odłączania protonów od kationitu, zależna od stężenia kationów metali w roztworze. Druga to równowaga między trzema różnobarwnymi formami odczynnika, zależna od odczynu. Wreszcie przesuwająca się od dna granica między kolorami ukazuje naocznie szybkość dyfuzji jonów hydroniowych. Po pewnym czasie cały roztwór stanie się różowo-żółty ale wtedy można dodać wodorotlenku jeszcze raz, powtarzając cykl; dla zaproponowanej ilości substratów można tak zrobić do siedmiu razy.
Takie rzeczy powinni pokazywać w szkołach, a nie tylko kreda i tablica. [3]


--------
[1] Mumiye A. Ogunwale et al. Aldehyde Detection in Electronic Cigarette Aerosols, ACS Omega (2017). DOI: 10.1021/acsomega.6b00489
 
[2]  Ben Zercher and Todd A. Hopkins, Induction of Circularly Polarized Luminescence from Europium by Amino Acid Based Ionic Liquids, Inorg. Chem., 2016, 55 (21), pp 10899–10906
[3]  Ingo Eilks and Ozcan Gulacar, A Colorful Demonstration to Visualize and Inquire into Essential Elements of Chemical EquilibriumJ. Chem. Educ., 2016, 93 (11), pp 1904–1907

niedziela, 5 lutego 2017

Najciekawsze odkrycia chemiczne w 2016 roku

Co w minionym roku chemicy dokonali najciekawszego, wartego uwagi czy choćby nietypowego? Lista odkryć o których nie pisałem w poprzednich wieściach, opracowana częściowo na podstawie tego co zapamiętałem, a częściowo na podstawie innych takich podsumowań zauważonych na zagranicznych portalach (linki na końcu artykułu). Nie pojawia się tu uznanie odkryć i nazwanie czterech nowych pierwiastków, bo już o tym pisałem i nie dotyczyło to odkryć z tego roku. Podobnie jest z tegoroczną nagrodą Nobla, ale tutaj artykuł o niej jeszcze czeka na napisanie.

Najbardziej polarny związek organiczny
Polarność to cecha cząsteczek mówiąca o nierównym rozłożeniu ładunku elektrycznego. Atomy tworzące cząsteczki otoczone są przez elektrony, te jednak są dość ruchliwe. Jeśli w cząsteczce pojawią się rozłożone niesymetrycznie atomy o bardzo różnej elektroujemności (zdolności do przyciągania elektronów), lub grupy z różnych przyczyn odpychające lub przeciągające elektrony, to cząsteczka taka nabierze momentu dipolowego, pokazującego która strona cząsteczki jest nieco bardziej dodatnia a która nieco bardziej ujemna.
Takie polarne właściwości ma choćby woda, składająca się z silnie elektroujemnego tlenu po jednej stronie i słabo elektroujemnych wodorów do drugiej stronie. dzięki tej właściwości woda może łatwiej rozpuszczać sole mineralne i wiele polarnych związków organicznych.
Moment dipolowy jest własnością wektorową, drobne oddziaływania różnych części cząsteczki sumują się do momentu ogólnego.

Silny moment dipolowy posiadają cząsteczki ulegające jonizacji, a więc aniony kwasów karboksylowych, kationy fosfoniowe a szczególnie posiadające fragment anionowy i fragment kationowy betainy. Jednak w opisanym nie tak dawno przypadku wyjątkowo silne oddziaływanie udało się otrzymać dla cząsteczki elektrycznie obojętnej.
Jest to w sumie dość prosty związek 5,5-diamino-1,2,3,4-tatracarbonitrylobenzen , benzen z różnymi podstawnikami - cztery grupy nitrylowe po jednej stronie i dwie aminowe po drugiej. Efekty elektronowe powodują, że grupy aminowe ściągają w swoją stronę elektrony, zaś grupy nitrylowe odpychają. Wskutek dodania się wektorów polaryzacji tych sześciu leżących na jednej płaszczyźnie grup tworzy się moment dipolowy, którego zmierzona wartość osiągnęła 14,1 D. [1] To nawet więcej niż wartość dla niektórych soli nieorganicznych w stanie gazowym. Dla porównania dla cząsteczki wody moment ten ma wartość 1,85 D
Zaproponowano już jednak cząsteczki o potencjale na jeszcze większą polarność, więc rekord jest raczej zagrożony. [2]

Najmocniejsza zasada organiczna
Kolejny rekord odnosi się do innej właściwości cząsteczek organicznych - skłonności do wiązania kationu wodorowego. Związki które chętnie proton oddają, to kwasy, związki które chętnie go przyjmują, to zasady. Niedawno opublikowane obliczenia pokazały, że dianion otro-dietynylobenzenu przyjmuje protony najchętniej, z energią 1834 kJ/mol.[3]


Sześciowiązalny węgiel
Nic tak bardzo nie cieszy chemików, jak odkrycie że coś uznawanego dawniej za pewnik, nim nie jest. I tak jest w tym przypadku.

Heksametylobenzen to dość prosty związek organiczny - benzen zupełnie podstawiony grupami metylowymi. W latach 70. podczas badań nad jego aktywnością zwrócono uwagę na szczególną formę - potraktowanie związku "kwasem magicznym", mieszaniną kwasu fluorosulfonowego i fluorku antymonu o bardzo dużej mocy, spowodowało powstanie dość trwałego dikationu który zachował właściwości aromatyczne, mimo że wydawało się to niemożliwe. Aby to wyjaśnić zaproponowano kilka struktur kationu, wśród nich ekstremalną w formie piramidy pentagonalnej, ale ta wydawała się niemożliwa. Dopiero niedawno udało się uzyskać kryształ soli tego dikationu i zbadać strukturę metodami rentgenowskimi. Dokładne pomiary potwierdziły, że z pozoru nieprawdopodobna propozycja jest prawdziwa.
 Po zjonizowaniu cząsteczka ulega przearanżowaniu w formę z jednym pierścieniem pięciokątnym, pięcioma grupami metylowymi po bokach. Jeden węgiel z dawnego pierścienia jest połączony z kolejną grupą metylową i z wszystkimi atomami pierścienia po jednym wiązaniu.
W czym problem? Atomy tworzą wiązania poprzez uwspólnienie elektronów z zewnętrznej, niezapełnionej powłoki, po jednym od każdego, dwa na jedno wiązanie, dążąc do trwalszego energetycznie układu ośmiu elektronów w otoczeniu. Obojętnemu atomowi węgla brakuje do tego stanu 4 elektronów, toteż tworzy maksymalnie 4 wiązania. Wprawdzie znane były związki hiperwalencyjne dla niektórych pierwiastków, gdzie atom tworzył więcej wiązań niż mu starczyło elektronów ale odkrycie, że może je tworzyć też węgiel było dość zaskakujące. Jak na niemetale ma stosunkowo wysoką elektroujemność co powinno przeszkadzać takim połączeniom. Czterowiązalny węgiel to jedno z podstawowych założeń w chemii organicznej.

Prawdopodobnie wiązania są w tym przypadku utworzone poprzez utworzenie orbitalu wielocentrowego, a więc będącego "wiązaniem" łączącym jedną parą elektronową więcej jak dwa atomy, w efekcie węgiel na wierzchołku wprawdzie jest powiązany z sześcioma innymi, ale uzyskuje oktet.[4]

Lek na zatrucie czadem
Tlenek węgla i zatrucia nim kiedyś już omawiałem (link). Wdychany łączy się z hemoglobiną czerwonych krwinek i wypiera z nich tlen, w dodatku połączenie to jest bardzo trwałe, przez co zatruta krwinka nie może już przenosić tlenu. Wraz z kolejnymi wdechami coraz większa ilość krwi ulega zatruciu, zaś człowiek traci przytomność i umiera z powodu niedotlenienia. Ponieważ czad jest bezwonny a niedotlenienie póki jest lekkie nie wywołuje alarmujących objawów, zatrucia nim stają się co roku przyczyną tysięcy zgonów.
Odratowanie częściowo zatrutego jest trudne, najczęściej polega na podawaniu tlenu pod zwiększonym ciśnieniem, czasem próbuje się przetaczania krwi. Dlatego odkrycie, że istnieć może bardziej bezpośrednio działające antidotum, jest bardzo ważne.

Mark Bladwin badał właściwości neuroglobiny, związku podobnego do hemoglobiny występującego w mózgu, mającego pomagać w natlenianiu neuronów Stwierdził podczas analiz, że neuroglobina bardzo silnie wiąże się także z tlenkiem węgla, i to wręcz silniej niż jej kuzynka z krwinek. Dla przebiegu zatrucia miało to o tyle istotne znaczenie, że wskazywało na znacznie silniejszy wpływ nawet małych dawek na mózg, niż na resztę organów. Możliwe, że utrzymywanie się w mózgu tego trwałego połączenia odpowiada za późne neurologiczne objawy zatrucia.

Potem jednak Bladwin skontaktował się z badaczami szukającymi związku, który mógłby usuwać czad z krwi, i zaproponował użycie właśnie tej proteiny. Idea była dość prosta - gdy zatruta hemoglobina z krwinki zetknie się z neuroglobiną, która tworzy z tlenkiem połączenie jeszcze chętniej, nastąpi między nimi wymiana. Neuroglobina utworzy bardzo trwały kompleks z czadem, a hemoglobina z krwinki zostanie odblokowana i zacznie normalnie przenosić tlen.

Pierwsze próby na zwierzętach były bardzo obiecujące, toteż wykorzystano biotechnologię testując wersje neuroglobiny z drobnymi mutacjami. Po wielu próbach i dalszej optymalizacji otrzymano odmianę Ngb H64Q wiążącą się z tlenkiem węgla 500 razy mocniej niż hemoglobina. Podanie jej dożylnie myszom narażonym na śmiertelną dawkę czadu pozwoliło na uratowanie 86% z nich.[5]

Jedwabniki karmione grafenem wytwarzają supernić
To doniesienie brzmi tak dziwacznie, że wciąż czekam czy nie okaże się przemyślnym żartem. Jedwabniki nakarmione liśćmi morwy z dodatkiem węglowych nanorurek i grafenu, wytworzyły jedwab bardziej wytrzymały od naturalnego. Prawdopodobnie cząsteczki białka utworzyły na powierzchni węgla bardziej zbite struktury warstwowe podobne do beta-harmonijki, co zwiększyło ich wytrzymałość.
Po zwęgleniu takiej przędzy powstawało włókno węglowe o zwiększonej przewodności elektrycznej, dlatego dość w sumie prosta technika może znaleźć zastosowanie na przykład do budowy węglowych elektrod.[6]

Chiralne cząstki w kosmosie. 
Życie jest chiralne. Organizmy żywe składają się w dużym stopniu ze związków mających tą właściwość, iż ich cząsteczki mogą tworzyć dwie odmiany przestrzenne, nie identyczne lecz podobne jak lustrzane odbicia. Takimi cząsteczkami są aminokwasy, całe białka czy DNA. Co jednak najbardziej interesujące, spośród dwóch lustrzanych form w organizmach żywych występuje tylko jedna - aminokwasy budujące wszystkie białka organizmu mają konfigurację L, izomery w odmianie D są w naturze rzadkością.

Lustrzane izomery aminokwasów niczym się nie różnią pod względem trwałości czy reaktywności, a ponieważ w reakcjach niebiologicznej syntezy zwykle powstaje mieszanina po równo obu izomerów, powstaje pytanie, czemu ziemskie organizmy ostatecznie wykorzystały tylko jedną z wersji tych cząsteczek? Jedną z propozycji jest założenie, że chiralne cząsteczki z nadmiarem jednej z form były obecne w obłoku z którego powstał układ słoneczny, w związku z czym gdy na Ziemi powstało życie, w praoceanie istniała już przewaga związków o jednej konfiguracji. Z kolei nadmiar jednego z izomerów w pierwotnym obłoku miałby wynikać z oświetlenia go błyskiem promieniowania spolaryzowanego kołowo tak, że cząsteczki o różnej konfiguracji a zatem i różnej czynności optycznej, w różnym stopniu pochłaniały energię i w różnym stopniu się rozkładały.

Aby to potwierdzić należałoby najpierw potwierdzić, że w kosmosie istnieją chiralne cząsteczki, a potem że zachodzi nierównowaga między zawartością lustrzanych form L i D. To pierwsze udało się w minionym roku - w obłoku pyłu i gazu Sagittarius B Północny w pobliżu centrum naszej galaktyki, wykryto spektroskopowo sygnał pochodzący od tlenku propylenu, będący takim właśnie chiralnym związkiem.[7]



Karbinowe nanodruty
Były już nanorurki, fullereny i grafen. Czas więc na następną odmianę węgla - karbiny. Chodzi o cząsteczki będące w zasadzie spolimeryzowanym acetylenem, z naprzemiennym układem wiązań pojedynczych i potrójnych (choć ze względu na delokalizację można też opisać je jako łańcuch atomów węgla połączonych wiązaniami podwójnymi).

Przewidziany teoretycznie materiał powinien mieć potencjalnie interesujące właściwości - niezwykle wysoką właściwą wytrzymałość na zerwanie, sztywność większą niż diament, dobre przewodnictwo elektryczne i cieplne. Problemem było natomiast jego otrzymanie - dotychczasowe techniki oparte o redukcję acetylenków metali czy alkenów zwykle prowadziły do otrzymania krótkich odcinków, zakończonych dużymi grupami innego rodzaju, posplatanych i posklejanych na różne sposoby. Jeśli jakiś zespół wymyślił metodę kontrolowanego otrzymania nici 40-50 atomowej, to już tym to sukces.
Dlatego ostatnie odkrycie jest potężnym skokiem technologicznym - przy pomocy odpowiednio dobranych warunków udało się otrzymać węglowe nanorurki z "wkładem" z łańcuchów karbinowych o długości do 6000 atomów. [8]
-------
* Chemistry & Engeenering 10 najbardziej poczytnych artykułów 2016 roku
* Compound Interest Biggest chemistry stories 

[1]  J. Wudarczyk et. al.  Hexasubstituted Benzenes with Ultrastrong Dipole Moments, Angewandte Chemie International Edition, vol. 55, pp. 3220-3223, 2016.
[2]  http://www.rzepa.net/blog/?p=17205
[3] Leo Radom et.al.  Preparation of an ion with the highest calculated proton affinity: ortho-diethynylbenzene dianion, Chem. Sci., 2016,7, 6245-6250
[4] Moritz Malischewski, K. Seppelt "Crystal Structure Determination of the Pentagonal-Pyramidal Hexamethyl benzene Dication", Angew. Chem. Int.Ed.  56 (1): 368–370.
[5] Mark T. Bladwin et.al.  Five-coordinate H64Q neuroglobin as a ligand-trap antidote for carbon monoxide poisoning, Science Translational Medicine  8,  368, pp. 368-173
[6] Qi Wang et al. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers, Nano Letters (2016) 16 (10), pp 6695–6700
[7]  B McGuire et al, Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)
Science, 2016, 352, 1449

[8]  Thomas Pichler et al. Confined linear carbon chains as a route to bulk carbyne, Nature Materials,15, 634–639

wtorek, 13 września 2016

Chemiczne wieści (9.)

Reakcja w kroplach nad rozgrzaną blachą
Efekt Leidenfrosta jest jednym z tych ciekawych zjawisk fizycznych, jakie z pewnością każdy miał okazję obserwować, tylko nie specjalnie zastanawiał się nad jego przyczyną. Upuszczenie kropli wody na bardzo rozgrzaną blachę, kuchenkę elektryczną czy patelnię powoduje, że zamiast zwyczajnie odparować przez pewien czas szybko śmiga niczym mały poduszkowiec.
Odpowiednio duża różnica temperatur powoduje, że rozgrzewanie całej kropli jest wolniejsze niż odparowanie porcji najbliżej blachy. Powstająca para wodna ma ciśnienie wystarczające, aby unieść nad gorącą powierzchnię całą kroplę, która nie ma bezpośredniego kontaktu, spowalniając wyparowanie kropli wielokrotnie.

Zespół amerykańskich naukowców z Purdue University wykorzystał ten efekt, tworząc z kropelek mikroreaktory do przeprowadzenia reakcji. Wcześniej znany był już efekt przyspieszania reakcji w kropelkach powstających przy rozpryskiwania roztworów techniką elektrospreju.  Prawdopodobnie na granicy faz następowała adsorpcja naładowanych reagentów, które wobec tego były tylko częściowo solwatowane przez rozpuszczalnik. Niecałkowita otoczka solwatacyjna obniżała energię aktywacji reakcji między składnikami roztworu. Ze względu na mikroskopijne rozmiary powstających kropelek, stosunek objętości do powierzchni był bardzo korzystny. Z drugiej strony efekt obserwowano w bardzo niewielkiej ilości mieszaniny reakcyjnej, przez co trudno bylo zjawisko w jakiś sposób zastosować.

Tutaj pomysł był podobny, tylko kropelki większe, bo otrzymywane przez efekt Leidenfrosta. Za modelową reakcję posłużyła kondensacja ketonu z pochodną hydrazyny. Reagenty rozpuszczono w rozpuszczalniku i upuszczono po kropli na rozgrzane szkiełko zegarkowe, utrzymując kropelkę przez dwie minuty w stanie lewitacji. Po zbadaniu roztworu stwierdzono, że reakcja zachodziła z nawet pięćdziesięciokrotnie większą szybkością. Tą metodą można poddawać reakcji miligramowe iloci reagentów, możliwe, że nawet większe jeśli udałoby się zbudować układ w którym krople mogłyby odpowiednio długo wędrować jedna za drugą. [1]


Najsilniejszy niefluorowy utleniacz
Utlenianie to w rozumieniu chemików reakcja polegająca na odebraniu reagującemu atomowi elektronów (dezelektronacja). Tlen i zawierające go związki są dość dobrymi utleniaczami, ale nie jedynymi, przykładowo gazowy chlor reagując z metalicznym sodem odbiera mu elektron, utleniając do kationu sodowego; sam redukuje się więc do anionu chlorkowego i tworzy związek chlorek sodu, czyli sól kuchenną.

W roli utleniacza zadziałać może też elektroda z przyłożonym odpowiednim napięciem. W procesie elektrolizy jedne składniki roztworu są utleniane a inne redukowane, lecz materiał elektrody nie ulega w tych procesach przemianom, jest jedynie przekaźnikiem elektronów które są przez potencjał elektryczny bądź wyciągane bądź wpychane w reagującą cząsteczkę. Oczywiście aby doszło do reakcji i aby elektron przeskoczył z miejsca na miejsce, należy użyć odpowiednio dużej energii, a w tym przypadku przyłożyć do elektrody odpowiednio duże napięcie, poniżej którego reakcja nie zajdzie.
Dzięki temu badając napięcie przy którym na elektrodzie następuje dana reakcja, można porównać związki i ich skłonności do oddawania lub przyjmowania elektronów, a tym samym moc różnych reduktorów lub utleniaczy. Zajście reakcji utlenienia przy pomocy danego utleniacza, to odpowiednik potencjału X woltów. Stąd biorą się tabele potencjałów standardowych, jakie zapewne widzieliście w podręcznikach. Z tego jaką wielkość mają potencjały dwóch substancji i jaka jest między nimi różnica, można zgadnąć czy zajdzie nimi reakcja redoks i w którą stronę. Ten który ma potencjał bardziej dodatni, będzie utleniaczem, ten który będzie miał potencjał bardziej ujemny będzie reduktorem. Im większy jest między nimi odstęp, tym energiczniej zachodzi reakcja, a więc tym chętniej.
Dla układów pośrodku skali potencjałów (standardowo za 0 przyjmuje się potencjał reakcji redukcji kationów wodorowych), substancje zależnie od tego z czym się spotkają mogą być utleniaczami lub reduktorami. Na dodatnich i ujemnych krańcach skali znajdują się związki i jony pierwiastków, które zwykle traktuje się po prostu jak utleniacze lub reduktory zawsze, bo na przykład osiągnęły maksymalną wartościowość której już nie zwiększą albo nie bardzo mają okazję przereagować z czymś silniejszym (ale czasem mają - nadtlenek wodoru, generalnie utleniacz, w reakcji z jonami srebra redukuje je do obojętnego metalu, a sam utlenia się do... tlenu).

Generalnie w takim ujęciu za utleniacze silne uznaje się już układy o potencjale standardowym powyżej +2 V. Utleniaczem silnym jest więc na przykład nadsiarczan sodu (E0= +2 V), od niego silniejszy jest pierwiastkowy fluor (E0= +2,8 V), kwas ksenonowy (+2,5 V), i różne układy oparte o fluor lub chlor. Do najsilniejszych należy rodnik fluorowy, który w reakcji z kationem wodoru utlenia go z potencjałem +3,87 V i difluorek kryptonu KrF2 o potencjale +3,27 V.
Fluor pojawia się tutaj nieprzypadkowo - pierwiastek ten ma wysoką elektroujemność, co oznacza że trudno go zjonizować, oraz ze chętnie przyciąga elektrony. Najsilniejsze znane utleniacze są więc związkami fluoru. Przynajmniej aż do teraz.

Grupa badaczy z Uniwersytetu Warszawskiego opublikowała niedawno wyniki eksperymentów z otrzymaniem bardzo silnego utleniacza, jakim okazały się kationy srebra II. Jest to dla srebra stan utleniania bardzo nietrwały, stąd duża energiczność reakcji dzięki której może przejść w bardziej trwały kation srebra I. W specyficznych warunkach stężonego oleum, które wpływają na przebieg reakcji, utlenienie przy pomocy srebra II osiąga potencjał standardowy +2,9 i jest najwyższą znaną wartością dla utleniaczy nie zawierających fluoru. Prawdopodobnie kationy metalu są solwatowane przez cztery cząsteczki kwasu, co ma duże znaczenie dla potencjału utleniania. Utleniacz o takiej sile mógłby być użyty do rozkładu niektórych trudnych do przetworzenia zanieczyszczeń.[2]

Niskotemperaturowa synteza amoniaku
Jednym z najbardziej znanych procesów przemysłowych, wykorzystywanym na gigantyczną skalę, jest synteza amoniaku z azotu, pozwalająca na otrzymanie związków azotowych, zużywanych potem głównie do produkcji nawozów sztucznych. Najpospoliciej stosowaną obecnie jest metoda Habera-Bosha, polegająca na reakcji wodoru i azotu pod ciśnieniem kilkuset atmosfer i temperaturze 500 stopni, z użyciem katalizatora żelazowego. Mimo tych ekstremalnych warunków metoda jest opłacalna. Wcześniej próbowano takich reakcji jak otrzymywanie azotku magnezu i rozpuszczanie go w kwasach, czy hydroliza cyjanamidu wapniowego (tzw. azotniak).

Jednak ostatnia praca chińskich badaczy z Dalian Institute of Chemical Physics pokazuje że potencjalnie możliwe jest przeprowadzenie tego procesu w bardziej łagodnych warunkach.

Zespół pierwotnie zajmował się badaniem materiałów do pochłaniania i przechowywania wodoru. Podczas cykli wygrzewania oprócz wodoru powstawały też pewne ilości amoniaku, wskutek niepożądanej reakcji ubocznej. Dość przypadkowo, podczas symulacji sprawdzających przebieg tej reakcji, badacze stwierdzili że proces uwodornienia azotu jest sam w sobie dość obiecujący. Zachodzące podczas syntezy procesy obejmują adsorpcję azotu na metalu, aktywizację cząsteczki, przyłączenie wodoru i dysocjację. Idealny katalizator powinien dobrze aktywować azot ale też słabo wiązać aktywowaną cząsteczkę. niestety w przypadku metali przejściowych dobre wiązanie i aktywizowanie azotu wiązało się też z trudnym odłączaniem zaktywizowanej formy. Właśnie konieczność odłączenia cząsteczki od katalizatora powodowała, że potrzebna była tak wysoka temperatura.
Pomysł Chińczyków był generalnie dość prosty - należy użyć dodatkowego katalizatora. Tym katalizatorem okazał się wodorek litu.

Centrum reakcyjne ma postać drobnych plamek wodorku litu na powierzchni katalizatora metalicznego. Cząsteczka azotu przyłącza się w pobliżu, w związku z utworzeniem wiązania azot-metal zostaje zaktywizowana. Pobliski wodorek litu jest reduktorem, oraz odszczepia bardzo reaktywny anion wodorkowy. W efekcie pobliska cząsteczka azotu zostaje zredukowana i odszczepiona, równocześnie z przyłączeniem wodoru. Powstający amidek litu reaguje z wodorem, odnawiając wodorek litu i odłączając amoniak.
Taki podwójnie katalizowany proces może być przeprowadzony w dużo łagodniejszych warunkach. Dla katalizatora żelaznego z domieszką wodorku litu proces zachodził wydajnie już w temperaturze 150 stopni Celsiusza. [3]

Rośliny oczyszczają domowe powietrze
Powietrze w domach i mieszkaniach różni się od tego napływającego z zewnątrz. Nie dość, że dostają się do niego związki wydzielane przez nas samych, uwalniane podczas gotowania czy codziennej toalety, to jeszcze swoje dokładają lotne składniki farb, materiałów budowlanych, mebli i elementów wystroju wnętrz. Niektóre z nich mogą mieć działanie szkodliwe, dlatego dobrze jest co jakiś czas wietrzyć mieszkanie. Zaleganie toksycznych oparów w pomieszczeniach, uwalnianych przez ściany i sprzęty domowe, jest niekiedy wiązane z "zespołem chorego budynku" powodującego różne, często trudne do określenia dolegliwości, jak bóle głowy, alergie, napady astmy, uczucie zmęczenia.
Do sposobów unikania tego zjawiska należy polepszenie wentylacji i napływu powietrza z zewnątrz lub stosowanie filtrów pochłaniających. Znane były też badania sugerujące, że pewne związki mogą pochłaniać z powietrza rośliny doniczkowe.

Zespół amerykańskich badaczy postanowił precyzyjniej porównać zdolności oczyszczania powietrza przez różne gatunki w tej samej przestrzeni. Wzięto pięć gatunków często używanych jako rośliny doniczkowe i sprawdzano jak ich obecnośc wpływa na stężenia lotnych związków w specjalnie przygotowanej komorze. Były to: zielistka, dracena, bromelia guzmania, grubosz (znany też jako drzewko szczęścia) i kaktus Consolea.
Przetestowano ich aktywność na ośmiu przykładowych związkach, stwierdzając że pewne gatunki mają wyjątkowo dużą skłonność do wchłaniania niektórych. Przykładowo dracena wchłaniała 90% acetonu obecnego w powietrzu. Najlepszą z badanych okazała się bromelia, która dla sześciu lotnych związków eliminowała 80% obecnej ilości.[4]


Prosta i tania metoda otrzymywania
Wiele substancji znajdujących ciekawe zastosowania bądź występuje w naturze zbyt rzadko aby możliwe było tanie ich pozyskanie, bądź nie występuje w niej w ogóle. Dlatego trzeba je otrzymywać przy pomocy metod syntetycznych. Jednak w przypadku niektórych skomplikowanych cząsteczek, synteza przestaje być tak dobrą alternatywą, jeśli jest złożona z wielu etapów w których zużywa się wiele różnorodnych reagentów, tym bardziej, że im więcej etapów pośrednich tym mniejsza wydajność końcowa. 10 etapów o wydajności 80% przekłada się na wydajność całkowitą 10%
Dlatego też chemicy szukają sprytnych sposobów aby konstruować cząsteczki w mniejszej ilości etapów, szybciej i z mniejszą ilością reagentów. Takimi prostymi skokami omijającymi parę etapów są reakcje wieloskładnikowe, gdy to reakcję przeprowadzamy na mieszaninie kilku składników, które w trakcie tego samego procesu reagują ze sobą w określonej konfiguracji; reakcje kaskadowe gdy odpowiednio skonstruowana cząsteczka ulega serii wewnętrznych przekształceń, oraz reakcje rednoreaktorowe (one pot) gdy kolejne etapy są dokonywane dolewając następne reagenty do mieszaniny po poprzedniej reakcji, bez często żmudnego procesu izolowania czystych produktów pośrednich.

Przykładem może być praca jaka wpadła mi w oko, opisująca nową metodę syntezy (-)-ambroksanu, terpenoidu będącego głównym składnikiem zapachowym naturalnej ambry. Ta naturalna jest rzadka i droga i nie sposób zwiększyć jej pozyskania*, dlatego główny pachnący związek otrzymuje się syntetycznie.
Związkiem wyjściowym jest sklareol, otrzymywany z olejku eterycznego szałwii muszkatołowej, bo to najtańsze źródło. Cząsteczka jest generalnie bardzo podobna do ambroksanu, należy jedynie zamknąć trzeci pierścień w formie eteru i odrzucić niepotrzebne dwa węgle, ale bez zmiany konfiguracji jednego centrum stereogenicznego:
Opisano kilka metod przeprowadzenia takiej reakcji, które są wykorzystywane w przemyśle, mają one jednak tą wadę, że są przeprowadzane w kilku etapach. Czyli substancja wyjściowa jest poddawana reakcji, po której półprodukt jest oddzielany i używany do następnego etapu. Każdy taki proces następuje ze skończoną wydajnością, sumą kilku procesów jest bardzo mała wydajność końcowa, do tego dochodzą koszty zużytych w każdym etapie odczynników. Dlatego nowa metoda w której używa się tylko dwóch odczynników a całą reakcję przeprowadza się w jednym etapie bez oddzielania związków pośrednich z pewnością wzbudzi zainteresowanie przemysłu.

Sklareol jest rozpuszczany w dioksanie, dodawany jest utleniacz czyli 30% nadtlenek wodoru i katalizator będący fosfomolibdenianem alkiloamoniowym, mieszanina jest ogrzewana najpierw przez dwie godziny w temperaturze 70 stopni a potem godzinę w 90 stopniach. I tyle.  Wydajność to nieco ponad 20%, jest więc jedynie nieco wyższa niż w poprzednich metodach, ale być może da się to jeszcze usprawnić.
Reakcja przebiega prawdopodobnie poprzez utworzenie epoksydu, który cyklizuje i ulega przegrupowaniu.[5]


------
* Ambra to grudki masy będącej zastygniętymi wymiocinami kaszalota, który najadł się zbyt dużo kałamarnic olbrzymich żyjących w głębinach oceanów. Jak na razie nikomu nie udało się ich pod tym kątem tresować.

[1] Bain RM, Pulliam CJ, Thery F, Cooks RG. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets, Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10478-82
[2] Połczyński P.,Jurczakowski R., Grochala W., Stabilization and strong oxidizing properties of Ag(II) in a fluorine-free solvent, Chem. Commun., 2013,49, 7480-7482
[3] Peikun Wang et al, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nature Chemistry (2016).
[4] https://www.acs.org/content/acs/en/pressroom/newsreleases/2016/august/selecting-the-right-house-plant-could-improve-indoor-air-animation.html
[5] Yang, S. et al. One-pot synthesis of (−)-Ambrox. Sci. Rep. 6, 32650; doi: 10.1038/srep32650 (2016).

wtorek, 23 sierpnia 2016

Chemiczne wieści (8.)

Naturalne kompleksy szkieletowe
To akurat odkrycie nie było dla mnie zaskakujące, bo od dawna sądziłem że do niego dojdzie - geolodzy znaleźli na Syberii minerał będący naturalną formą metalo-organicznych szkieletów (MOF) materiałów o dużej porowatości na poziomie cząsteczkowym, o ciekawych właściwościach katalitycznych.

MOFy to interesująca grupa materiałów, będąca w zasadzie usieciowanymi kompleksami wielordzeniowymi - kationy metalu stanowią zworniki sieci tworzonej przez ligandy mogące łączyć się z nimi na dwóch lub więcej końcach. Między nimi powstają puste przestrzenie o zdefiniowanej, określonej wielkości i kształcie, stąd użycie MOFów jako absorbentów do gazów, ale też katalizatorów. Dotychczas wytwarzano je wyłącznie laboratoryjnie.

Przebadanie nowymi technikami rentgenowskimi słabo dotychczas poznanych minerałów stepanowitu (stepanovite) i żemczużnikowitu (zhemchuzhnikovite)* , znalezionych w syberyjskich kopalniach już w latach 60. ujawniło, że są takimi właśnie naturalnymi MOFami. Chemicznie są to mieszane szczawiany żelaza i magnezu, z występującymi w wolnych przestrzeniach jonami sodu i domieszką innych metali; w żemczużnikowicie pewna ilość jonów trójwartościowego żelaza jest wymieniona na podobne wielkością jony glinu[1]
Strukturę potwierdzono dokonując syntezy kryształów o takim składzie.



Najlżejsza cząsteczka pi-aromatyczna
Aromatyczność to szczególny przykład stabilizowania cząsteczki przez rezonans struktur elektronowych.  Wolne pary elektronowe tworzą w takich cząsteczkach płaski, pierścieniowaty orbital na którym ładunek jest równomiernie rozprowadzony, a elektrony wirują jak po karuzeli. Najlepiej przebadana jest aromatyczność związków węgla, natomiast słabiej przebadane są tego typu połączenia zbudowane wyłącznie z innych pierwiastków.

W szeregu węglowodorów aromatycznych najmniejszą cząsteczkę miał kation cyklopropenyliowy, ze zdelokalizowanym układem dwóch elektronów na trójkątnej cząsteczce. Wykazano, że podobny układ mogą tworzyć też inne pierwiastki, krzem, fosfor, glin

Obecnie odkryto prawdopodobnie najlżejszy możliwy taki układ - kation borocyklopropyliowy stabilizowany lekkimi ligandami. Badania spektroskopowe oparów boru poddanych działaniu lasera w obecności odpowiednich gazów, wykazały istnienie względnie stabilnych kationów [B3(NN)3]+ i  [B3(CO)3]+ . Ze względu na małą masę atomową boru, mniejszą niż dla węgla, i małą masę stabilizujących ligandów, są to najlżejsze cząsteczki pi-aromatyczne. [2]

Nieco wcześniej utworzono stabilne kompleksy zawierający pierścień triborocyklopropyliowy, zobojętnione kationami sodu, ale ligandy były dość rozbudowane a pierścienie tworzyły dimer w formie kompleksu kanapkowego, przez co powstała molekuła była dużo cięższa.[3]


------------
* Nazwa minerału Zhemchuzhnikovite pochodzi od angielskiej transkrypcji nazwiska mineraloga Żemczużnikowa, polska transkrypcja nazw rosyjskich jest inna ze względu na istnienie w języku tych samych głosek.

[1] Tomislav Friščić, Minerals with metal-organic framework structures, Sciences Advances,  Vol. 2, no. 8, e1600621, DOI: 10.1126/sciadv.1600621
[2] Gernot Frenking et.al. The [B3(NN)3]+ and [B3(CO)3]+ Complexes Featuring the Smallest π-Aromatic Species B3+Angew. Chem. Int. Ed. Volume 55, Issue 6, Pages 2078–2082
[3] Holger Braunshweid et.al The Triboracyclopropenyl Dianion: The Lightest Possible Main-Group-Element Hückel π Aromatic, Angew. Chem. Int. Ed. Volume 54, Issue 50,  Pages 15084–15088

niedziela, 17 lipca 2016

Reakcja w warunkach ekstremalnych

Otrzymanie odpowiednich wyników w trakcie doświadczenia chemicznego bywa bardzo trudne. Nieraz aby reakcja przebiegła w zamierzony sposób należy stworzyć specyficzne, ściśle określone warunki. Nikomu jednak nie przyszłoby do głowy, że czasem, aby wytworzyć ładne kryształy, należy wyskoczyć z samolotu z próbówką w ręku.
Bardzo emocjonujący eksperyment © University of Melbourne
Chemicy z Uniwersytetu w Melbourne w Australii badający właściwości metaloorganicznych materiałów porowatych (MOF), po sprawdzeniu wpływu jaki wywierają na ich formowanie i krystalizację temperatury, ciśnienia i wielu innych zmiennych, postanowili sprawdzić jaki wpływ może tu mieć zmiana czynnika, przyjmowanego dotychczas za stały - siły ciążenia.

Metal-Organic Frameworks czyli MOFs, co można przetłumaczyć jako "metaloorganiczne szkielety" czy rusztowania, to szczególny rodzaj materiału łączącego właściwości kryształów i ciał porowatych. Są to w zasadzie usieciowane kompleksy, w których jony metalu stanowią zworniki dla regularnej sieci utworzonej przez łączące je ligandy organiczne. Kształt, ilość miejsc wiązania i wielkość ligandów ale też rodzaj i wielkość kationu determinują kształt utworzonej sieci, mogącej przybierać wiele form na podobieństwo zeolitów.
MOFy są obecnie intensywnie badane jako niezwykle obiecujące materiały. Dzięki ogromnej porowatości na poziomie molekularnym mogą być użyte jako pochłaniacze zanieczyszczeń, magazyny gazów, nośniki leków; inne stanowią katalizatory, reaktywne filtry unieszkodliwiające zanieczyszczenia, mogą stanowić elementy czujników. Obecnie co roku publikuje się kilkaset prac na temat nowych przebadanych kombinacji i nowych metod ich otrzymywania.

Znane były już wcześniej pewne efekty grawitacyjne na szybkość krystalizacji. Grawitacja wywołuje opadanie zarodków krystalizacji na dno, gdzie proces jest hamowany w powodu ograniczenia od jednej strony dnem. Powoduje także pojawienie się prądów konwekcyjnych wokół rosnącego kryształu, w związku ze zmianami stężenia a więc i gęstości, co często ma skutek pozytywny. W szczególnych przypadkach może utrudniać powstawanie kryształów dużych molekuł powodując deformowanie się powstającej sieci.
Badacze z Australii przypuszczali, że efekty te będą wpływać także na wielkość kryształów MOFów wytrącających się z nasyconego roztworu, dlatego postanowili sprawdzić jak przebiegać będzie krystalizacja w trzech warunkach - grawitacji normalnej, obniżonej i zwiększonej.

Ten trzeci efekt był akurat dosyć prosty do sprawdzenia - rolę zwiększonej grawitacji pełni siła odśrodkowa. Mieszaninę substratów odwirowywano w wirówce poddając ją przeciążeniu kilkunastu g. Otrzymane w wyniku procesu kryształy były wyraźnie mniejsze od tych dla warunków normalnych.Natomiast uzyskanie obniżonej grawitacji było wyraźnie trudniejsze.

Początkowo badacze zrzucali próbówki z mieszaniną reakcyjną z dachu kilkunastopiętrowego budynku, otrzymując 2-3 sekundy stanu nieważności.
Wyjaśnię tutaj pokrótce, że ciała spadające swobodnie paradoksalnie nie odczuwają ciążenia. Jest to konsekwencją praw dynamiki - grawitacja jako siła działająca na ciało powoduje jego przyspieszenie, toteż ciało spadające swobodnie przyspiesza co sekundę o ok. 10 m/s2. Jednakże przyspieszenie, nie będące ruchem jednostajnym, wzbudza opór czyli bezwładność. Gdy ciało spada swobodnie obie siły się równoważą w efekcie nie czuje ono ciążenia, mimo że siła ciążenia na nie działa, wszak spada. Wykorzystuje się ten efekt w specjalnych samolotach testowych, które wykonują lot nurkowy z prędkością na tyle dużą, że ludzie na pokładzie zaczynają odczuwać nieważność i przez kilkanaście sekund poczuć się mogą jak w kosmosie.
Tak więc w zrzuconych z dachu próbówkach przez pewien czas następowało istotne zmniejszenie grawitacji (nie całkowite zniesienie przez opory aerodynamiczne miękkiego opakowania), mierzone zresztą przez badaczy przy pomocy akceleatora w telefonie komórkowym. Wpływ tego stanu na kryształy był niewielki, ale zauważalny - powstawały większe i czystsze. Jednak z powody bardzo krótkiego czasu efekt był bardzo mały.
Naukowcy zaczęli więc szukać sposobu na wydłużenie okresu małograwitacyjnej krystalizacji. Musiało być to coś sprytnego ale zarazem taniego.  O wysłaniu eksperymentu na międzynarodową stację kosmiczną ani nawet w lot paraboliczny, nie było mowy. Był też pomysł aby zrzucić próbówki z balonu na gorące powietrze albo użyć drona, ale w przypadku lotów dostępnych komercyjnie wysokość była zbyt mała, natomiast w przypadku drona nie dało się rozpocząć procesu w momencie opadania. Po podliczeniu wszystkich kosztów najtańszą opcją okazało się zrzucać badaczy z samolotu.
Czegoś trzeba trzymać się © University of Melbourne

Trzech ochotników: Mattias Bjornmalm, dr. Fabio Lisi i Matthew Faria skoczyło w tandemie z instruktorem z wysokości 4 kilometrów, ściskając w ręku specjalnie przygotowane próbówki - po wyskoku wcisnęli górną część próbówki wstrzykując jeden substrat do drugiego i zapoczątkowując krystalizację w trakcie opadania. Przez pewien czas opadali prawie swobodnie, potem instruktorzy otworzyli spadochrony, ale opadanie ze spadochronem także stanowiło okres o pewnym zmniejszeniu odczuwanego przez kryształy ciążenia. Dla Farii był to pierwszy skok ze spadochronem w życiu.
  Później co prawda okazało się że niektóre próbówki wcisnęły się przedwcześnie a w innej substraty się nie zmieszały, ale udało się odzyskać trzy próbki które krystalizowały podczas lotu. Jak się okazało zmniejszona grawitacja zauważalnie wpłynęła na wielkość kryształów - powstały większe i z mniejszą ilością wad.
Po lewej - kryształy w warunkach normalnego ciążenia; po prawej - hodowane podczas skoku.  © Dr Joseph Richardson et. al
Dla pewnych zastosowań, jak katalizatory czy pochłaniacze gazów, większe i bardziej regularne kryształy MOFów są bardziej przydatne, toteż możliwe że w przyszłości pewne procesy technologiczne będą wykonywane na orbicie (lub w lotach parabolicznych). Do innych zastosowań, jak nośniki leków, lepsze są drobniejsze kryształki, toteż odkrycie że wielkość można regulować przy pomocy wirówek może szybko znaleźć zastosowanie.

------------
* Joseph J. Richardson et al. Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational-Forces, European Journal of Inorganic Chemistry (2016). 

środa, 13 lipca 2016

Chemiczne wieści (7.)

Bateria z jajka
Każdy kto często spożywa jajecznicę wie, że skorupki są odpadem nieco kłopotliwym. Od wewnętrznej strony skorupka jest pokryta białkową błoną. Białko to chętnie gnije po wyrzuceniu do kosza i dorzuca do woni śmieci specyficzny, zgniłojajeczny aromat. Fakt ten jest też zresztą przeszkodą w przetwarzaniu odpadowych skorupek - zarówno przy przerabianiu na suplement diety jak i na dodatek wapnujący do gleby należy oddzielać błonkę, zwykle za pomocą odpowiednich chemikaliów.

Chemicy z Wayne State University w Detroit znaleźli natomiast sposób jak wykorzystać nieoczyszczoną skorupkę do syntezy materiału na elektrody do baterii litowych.


Metoda jest bardzo prosta - nie rozgniecioną skorupkę z jajka umieścili w naczyniu z roztworem wodorotlenku sodu, do środka skorupki dodali natomiast roztwór soli kobaltu. Skorupka posłużyła tu za porowatą, półprzepuszczalną przegrodę, przez którą powoli do wnętrza dyfundowały aniony hydroksylowe OH-. Na podściełającej skorupkę błonie wytrącała się warstewka amorficznego wodorotlenku kobaltu pokrywająca włókna białka.
Po czterech dniach skorupkę wyjęto i wysuszono, po czym już suchą poddano wyprażaniu bez dostępu powietrza w temperaturze 650 stopni. Włókna białkowe uległy wówczas zwęgleniu uwalniając siarkę, która reagowała z kobaltem, tworząc nanopręty siarczku kobaltu osadzone na włóknach węglowych.
Materiał ten może być potem przetworzony na porowatą elektrodę w pewnym typie baterii jonowych, chociaż nie znalazłem w pracy oryginalnej szczegółów na temat oddzielania włókien od skorupki.

Autorzy spekulują, że metoda mogłaby być zastosowana dla wykorzystania skorupek jaj rozbijanych maszynowo, gdzie jest to raczej odsysanie zawartości niż rozbicie, toteż po procesie zostają skorupki w dużym stopni całe.[a]

Imiona nowych pierwiastków
Zaledwie w styczniu oficjalnie uznano istnienie czterech nowych pierwiastków (o czym już pisałem) a już pojawiają się bardziej konkretne propozycje nazw. Grupy badaczy uznane za odkrywców mogą zgłosić własne propozycje nazw, które będą potem brane pod uwagę podczas podejmowania decyzji. Mogą być to nazwy odnoszące się do mitologii, do miejscowości lub minerałów, krajów lub regionów, charakterystycznej własciwosci pierwiastka lub honorujące jakiegoś znanego naukowca. Wedle tych zasad zespoły odkrywców zaproponowały:

- Zespół Riken z Japonii, uznany za odkrywców pierwiastka 113, proponuje nazwę "Nihonium" (Nh) od słowa "nihon" będącego jedną z dwóch nazw Japonii w języku japońskim.

- Zespół z Dubnej w Rosji który odkrył pierwiastek 115 proponuje nazwę "Moscovium) (Mv) od zlatynizowanej nazwy Moskwy.

- Ponieważ zarówno pierwiastek 115 i 117 odkryty został w ramach współpracy ośrodków w Dubnej w Rosji i w Oak Ridge w USA, dla tego drugiego zaproponowano nazwę Tennessine (Tn) od nazwy stanu w którym znajduje się kilka ośrodków badań jądrowych

- Pierwiastek 118 odkryto w ramach współpracy ośrodka w Dubnej i w Berkley, a jako nazwę zaproponowano Oganesson dla uczczenia profesora Jurija Oganessaja, pioniera badań nad poszukiwaniami transuranowców.

Jeśli nazwy zostałyby przyjęte przez IUPAC, to prawdopodobnie zostałyby spolszczone do "nihon", "moskow", "tennesyn" i "oganess". Nie brzmi to zbyt dobrze.[b]

Wystarczy jeden atom
Platyna od dawna znana jest ze swych świetnych właściwości katalitycznych i jest na dużą skalę używana w przemyśle, ale też na przykład jako składnik katalizatorów samochodowych. Poza łatwością zatruwania od pewnych domieszek ma platyna pewną istotną wadę - jest droga. Dlatego też chemicy od dawna starają się jak mogą zmniejszać jej ilość w katalizatorze przy zachowaniu zdolności do przyspieszania reakcji. W zasadzie nie używa się już czerni platynowej to jest jej bardzo drobnych cząstek, lecz raczej różnych materiałów porowatych pokrytych drobnymi ilościami platyny na powierzchni.
Ostatnia praca badaczy z Singapuru pokazuje, że można pójść jeszcze dalej.

Zastosowany przez nich katalizator składał się głownie z porowatego węgla na którego powierzchni osadzono klastry kwasu polifosforanomolibdenowego z przyłączonym jednym atomem platyny (PMo12O403−) Pt . Z jego użyciem możliwe było przeprowadzenie reakcji uwodorniania takich związków jak nitrobenzen, cykloheksanon czy styren, z nienajgorszymi wydajnościami (30-40%) przy stosunkach ilości platyny do substratu od 1:100 do 1:2000, a przy przedłużeniu czasu reakcji udało się nawet niemal całkowicie uwodornić substrakt przy stosunku 1:8000. [c]

------------
[a] X. Meng and Da Deng. Trash to Treasure: Waste Eggshells Used as Reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage. Chem. Mater., 2016, 28 (11), pp 3897–3904 DOI: 10.1021/acs.chemmater.6b01142
[b]  http://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/
[c] B. Zhang et.al. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity, Angew. Chem. Int Ed. Volume 55, Issue 29
July 11, 2016 Pages 8319–8323


sobota, 30 kwietnia 2016

Chemiczne wieści (6.)

 Dzisiejszy odcinek wypadł bardziej kwantowo-fizyczny. Bo tak.

Czterowymiarowy kryształ?
Tlenki żelaza choć znane od wieków, wciąż budzą zainteresowanie technologów i fizyków i niekiedy nadal daje się odkryć nowe, ciekawe ich właściwości. W 2011 roku doniesiono o odkryciu, że mieszanina tleneku żelaza II i żelaza II/III (FeO+Fe3O4) poddany działaniu wysokiego ciśnienia zamienia się w unikalny tlenek Fe4O5. Faza ta wykazywała silne właściwości ferrimagnetyczne podobne do magnetytu.
Wiadomo było już, że magnetyt w niskich temperaturach ulega przejściu fazowemu II rodzaju, w wyniku którego atomy o różnym stopniu utlenienia tworzą równoległe struktury (Wervey phase). W typowym magnetycie atomy żelaza II i żelaza III są przemieszane statystycznie, nie tworząc regularnych struktur, zaś elektrony mogą przeskakiwać od jednego jonu do drugiego dzięki czemu materiał wykazuje przewodność elektryczną. Po przejściu fazowym następuje samoorganizacja - atomy o danym stopniu utlenienia tworzą w sieci krystalicznej struktury liniowe lub płaszczyzny.

 W przypadku magnetytu wiązało się to z utrudnieniem ruchu elektronów i wzrostem oporu, ale w innych materiałach może to doprowadzać do pojawiania się nadprzewodnictwa, ferromagnetyczności lub gigantycznego magnetooporu stosowanego dziś w elektronicznych nośnikach danych.
Nic też dziwnego, że postanowiono sprawdzić czy w podobny sposób zachowa się nowy materiał. Rosyjski zespół stwierdził zachodzenie podobnej przemiany poniżej temperatury 150 K. Materiał zmieniał właściwości magnetyczne a opór elektryczny rósł o dwa rzędy wielkości. Problematyczne okazało się natomiast przypisanie mu określonej struktury. Zakładano, że mamy do czynienia z takim samym zjawiskiem organizacji stopni utlenienia, ale wyniki pomiarów nie dawały się złożyć w prosty model. Wyglądało na to, że struktury atomów o jednakowym stopniu utlenienia falują i statystycznie może się wydawać, że są rozmieszczone przypadkowo.
Porządek pojawił się dopiero gdy symulowano rozkład ładunków w przestrzeni czterowymiarowej. Z tego też powodu informacje o tym odkryciu często powtarzają że odkryto "czterowymiarowy kryształ". W tym przypadku chodzi jednak jedynie o matematyczny model rozkładu ładunków, opisywany funkcją nie dającą rozwiązania w normalnej przestrzeni.[1]

Kwantowa woda
Nietypowe zachowanie się wody zamkniętej w wąskich kapilarach odkryli właśnie amerykańscy badacze. Badali oni właściwości wody w kapilarnych kanałach struktury berylu, ważnego minerału magmowego, przy pomocy techniki rozpraszania neutronów. Średnica kanału na tyle ograniczała cząsteczki, że w przekroju mieściła się tylko jedna. Zamiast jednak struktur cząsteczek uzyskali nietypowe, heksagonalne pierścienie. Sygnał obecności atomu tlenu pojawiał się w sześciu miejscach, a każdego z dwóch wodorów także w sześciu. Ponieważ zaś sześć cząsteczek by się w przekroju kanału nie zmieściło, zaś dla tej jednej bariera energetyczna obrotu jest zbyt duża aby wynik wywoływało ustawianie się jej w różnych pozycjach w trakcie badania, jako wyjaśnienie tych obserwacji zaproponowali nietypowy model - jest to w istocie nadal jedna cząsteczka, tylko kwantowo interferująca sama ze sobą.[2]

Jedną z konsekwencji teorii kwantowej była hipoteza de Brogile'a, że każdej cząstce materialnej można przypisać właściwości falowe które wpływają na jej oddziaływania i zachowania. Za sprawą tych właściwości obserwujemy dyfrakcję cząstek na dwóch szczelinach lub siatkach dyfrakcyjnych, powodującą że prawdopodobieństwo znalezienia się cząstki z danym miejscu zależy od wzoru jej "fali materii". Przepuszczając odpowiednio dużo cząstek przez szczeliny i badając w jakie miejsce na detektorze uderzą, otrzymujemy w końcu wzór właściwy interferującym falom.
Jedną ze szczególnie interesujących konsekwencji tego zjawiska są kwantowe miraże, czyli wzory oddziaływań, jakie tworzy cząstka zamknięta w niewiele od niej większym ograniczeniu przestrzennym. Wewnątrz okręgu ułożonego z atomów na podłożu powstaje wzór podobny do fal na wodzie z centralną górką stanowiącą złudzenie istnienia tam jakiegoś atomu:


Po umieszczeniu atomu w jednym z ognisk elipsy, w drugim ognisku pojawia się jego słaby miraż:


Jak się wydaje w opisywanym przypadku zachodzi coś podobnego. Cząsteczka wody wewnątrz niewiele od niej większego, heksagonalnego kanału interferuje. Próby określenia położenia jej atomów kończą się więc stwierdzeniem sześciokątnego wzoru na który składają się zagęszczenia fal prawdopodobieństwa obecności atomu w tej niewielkiej przestrzeni. Poprzednio udało się zmierzyć podobny efekt dla atomów wodoru, ale woda to już zupełnie inna sprawa. Pory tych rozmiarów (4 A) występują w minerałach budujących skorupę ziemską, zatem kwantowy efekt może mieć znaczenie dla modelowania właściwości gleby i skał.

Nowy rodzaj wiązania?
Obliczenia kwantowomechaniczne dokonane przez badaczy z amerykańskiego Southern Methodist University w Dallas wskazują na istnienie jeszcze jednego rzadkiego rodzaju wiązania chemicznego - jest to odmiana wiązania wodorowego z oddziaływaniem między atomem wodoru połączonym z borem a układem aromatycznym. Znane były tego rodzaju połączenia dla układów w których wodór połączony był z węglem i azotem, mające pewne znaczenie w biologii molekularnej, jednak dotychczas wydawało się, że nie powinny zachodzić dla boranów. Bor ma mniejszą elektroujemność niż wodór, toteż wiązanie między nimi jest tak spolaryzowane, że na protonie pojawia się lekki ładunek ujemny. Bardziej naładowany elektronami wodór powinien być więc odpychany przez pełen elektronów pierścień aromatyczny.
Z drugiej strony związki boru są często połączeniami elektrono-deficytowymi, z pojawiającymi się wiązaniami trójcentrowymi a w takiej sytuacji na wodorze powinien pojawić się cząstkowy ładunek dodatni.

@ American Chemical Society
Wedle ostatnich wyliczeń diborany oraz  karborany powinny na tej zasadzie tworzyć słabe wiązania B-H--Ar o długości 2,65-2,50 A . Pewnym potwierdzeniem tych przewidywań może być struktura pewnego kompleksu irydu, w którym między wodorem grupy karboranowej a pierścieniem z grupy trifenylometylowej występuje trudne do wytłumaczenia w inny sposób zbliżenie na zbliżoną odległość.[3]

---------
[1] Ovsyannikov V. S.; Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016; DOI: 10.1038/NCHEM.2478
[2] Kolesnikov A.I. et al.  Quantum Tunneling of Water in Beryl: A New State of the Water Molecule. Physical Review Letters, 2016; 116 (16) DOI: 10.1103/PhysRevLett.116.167802
[3]  X Zhang et al, B–H···π Interaction: A New Type of Nonclassical Hydrogen Bonding
J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b01249

środa, 9 marca 2016

Chemiczne wieści (5.)



Tlenek kryptonu możliwy
Jak to już kiedyś pisałem w artykule "Chemiczne mezalianse", wbrew powszechnemu mniemaniu gazy szlachetne są w stanie tworzyć związki chemiczne, poprzez tworzenie innych niż oktet struktur elektronowych. Są one oczywiście bardzo nietrwałe i niekiedy daje się je wytworzyć tylko w bardzo specyficznych warunkach. Dość dobrze poznana jest tu chemia ksenonu, tworzącego związek z silnym utleniaczem sześciofluorkiem platyny, oraz związki z tlenem w tym silnie utleniający kwas ksenonowy.
Chemia lżejszych gazów jest zdecydowanie uboższa, ze względu na obniżoną trwałość i rosnącą energię jonizacji. Znany jest jeden pełnoprawny związek argonu. W przypadku helu znane są pewne cząsteczki wzbudzone, ale wedle uznanej definicji za związek uznaje się cząsteczki w stanie podstawowym.

W przypadku kryptonu dość dobrze znany jest difluorek, pewne bardzo nietrwałe połączenia z cyjankami, trwały tylko pod bardzo wysokim ciśnieniem wodorek i kompleks z kwasem tellurofluorowym. Jak pokazały ostatnie symulacje polskich naukowców, do tej listy będzie trzeba niedługo dodać jeszcze tlenek.
Badacze z Instytutu Chemii Fizycznej PAN zaprezentowali wyniki obliczeń, wskazujące na możliwość wytworzenia stabilnego tlenku kryptonu przy użycia odpowiednio dużego, choć jak na warunki laboratoryjne, wcale nie tak gigantycznego ciśnienia. Pod naciskiem 3-5 milionów atmosfer, osiągalnym w kowadłach diamentowych, powinno być możliwe wytworzenie tlenku kryptonu (II), tworzącego w takich warunkach sieć krystaliczną z charakterystycznymi łańcuchami ...Kr-O-Kr-O... i będącego nieprzezroczystym izolatorem. Natomiast pod ciśnieniem 3,4 mln atmosfer powinno zachodzić formowanie się czterotlenku kryptonu, mającego być przewodnikiem o właściwościach metalicznych.

Związki te po otrzymaniu byłyby prawdopodobnie bardziej stabilne w niższych ciśnieniach, ale też zapewne i tak rozkładałyby się przy ciśnieniu normalnym, więc raczej nie dałoby się ich obejrzeć poza komorą wysokociśnieniową. W materiałach prasowych udostępnianych przez Instytut (IChF PAN jest jedną z nielicznych polskich instytucji naukowych, jakie regularnie przygotowują takie materiały dla dziennikarzy), badacze żartują, że wobec tego Superman nie ma się co obawiać, że tak otrzymany "niemal kryptonit" zdoła mu zaszkodzić. [1],[2]

Co mnie natomiast w tych materiałach nieco dziwi, to podkreślanie, że może to być "pierwszy trwały związek kryptonu". Może to być wynik niezgrabnego wytłumaczenia, że chodziło im o pierwszy związek tworzący jonową sieć krystaliczną, w odróżnieniu od wspomnianych cyjanków i fluorków, tworzących kryształ molekularny, z niepołączonymi cząsteczkami.
Są bowiem związki kryptonu, które zdecydowanie należałoby nazwać trwałymi. Difluorek kryptonu, który jest trwały w niskich temperaturach, jest w stanie utlenić złoto tworząc kompleks KrF[AuF6], który rozkłada się pod normalnym ciśnieniem dopiero w temperaturze 60 °C, toteż jest możliwe aby zobaczyć go w jakiejś próbówce. [3]



Tańszy i ekologiczny odzysk złota z elektroniki 
Złoto bądź to w formie czystej, bądź to jako dodatek stopowy, jest chętnie używane w układach elektronicznych. Wprawdzie z oczywistych względów producenci starają się używać go jak najmniej, ale i tak na takie potrzeby zużywa się rocznie wiele ton. Z tego też powodu odzysk złota i innych cennych pierwiastków ze zużytej i uszkodzonej elektroniki, nadającej się już w zasadzie do wyrzucenia, stał się ważną i dość dochodową gałęzią przetwórstwa śmieci.
Oprócz specjalistycznych firm, takim odzyskiem zajmują się amatorsko różne prywatne osoby, mające dostęp do części elektronicznych, nie jest to jednak ani łatwe, ani bezpieczne. Układy elektroniczne składają się z części zawierających wiele różnorodnych materiałów, począwszy od tworzyw sztucznych, przez metale kolorowe jak miedź i cyna, metale ciężkie jak ołów, półmetale i ich związki jak metaliczny krzem, czy arsenek galu, a kończąc na szkle i materiałach ceramicznych. Usunięcie tego co niepotrzebne i pozostawienie tylko złota, srebra czy platyny nie jest proste, i często wymaga użycia dość agresywnych odczynników, jak kwasy utleniające czy ich mieszanki z silnymi utleniaczami, które roztwarzając metale wydzielają szkodliwe opary.

Nic więc dziwnego, że chemicy szukają metod pozwalających zrobić to samo prościej i bezpieczniej. Zespół badaczy z University of Saskatchewan, doniósł właśnie o odkryciu nowej techniki ekstrakcji złota z elektroniki. Uzyskany przez nich roztwór trawiący selektywnie roztwarza złoto, na oddzielenie tej samej ilości metalu potrzeba go mniejszą objętość niż takiej na przykład wody królewskiej, podczas procesu nie powstają szkodliwe opary a sam roztwór trawiący można regenerować.
Brzmi bardzo obiecująco. A jaki jest skład tej mieszanki?

Na razie nie ukazał się na ten temat artykuł naukowy, o wszystkim wiemy za sprawą materiałów przygotowanych dla mediów udostępnianych przez uniwersytet. Opis mieszanki trawiącej jest tam dość ogólny: czysty kwas octowy, drugi kwas i katalityczna ilość pewnego utleniacza. Uniwersytet stara się teraz o znalezienie inwestora który zastosowałby tą metodę na skalę przemysłową, więc zapewne metoda jest patentowana. Skoro informacja w ogóle się ukazała, procedura patentowa jest widocznie na tyle zaawansowana że już daje jakąś ochronę, ale najwyraźniej przed jej ukończeniem i ewentualnym wdrożeniem patentu nie chcą ujawniać szczegółów. Nic dziwnego - tańsza i bezpieczniejsza metoda odzysku może przynieść stosującej je firmie spore zyski, zaś udzielającemu patentu uniwersytetowi całkiem przyzwoite udziały.

Domyślać się możemy, że lodowaty kwas octowy jest tutaj rozpuszczalnikiem soli złota, że utleniacz utlenia złoto do soli, jaką tworzy ono z drugim kwasem. Ponieważ ilość utleniacza jest niewielka a on sam ma być regenerowalny, nie może to być utleniacz z którego podczas procesu powstają lotne tlenki. [4]

Nowa odmiana lodu?
Woda jest bardzo prostą ale zarazem niezwykle ciekawą substancją. Silne wiązania wodorowe modyfikują jej właściwości fizyczne, będąc przyczyną takich anomalii jak rozszerzanie się podczas krzepnięcia czy względnie, jak na tak lekką cząsteczkę, wysoka temperatura wrzenia.
Zamarzając tworzy lód o uporządkowanej strukturze krystalicznej. Jak jednak stwierdzono, lód ten może przybrać wiele form, różniących się sposobem upakowania cząsteczek.
Lód Ih powstający w zwykłych warunkach zamarzania
Najbardziej znany nam lód, powstający przy zamarzaniu pod normalnym ciśnieniem, to lód Ih, heksagonalny o nie uporządkowanych wiązaniach wodorowych. Zmiana warunków zamarzania pozwala na otrzymanie innych odmian. Wysoko w stratosferze wytrącanie się kryształków z pary wodnej w bardzo niskich temperaturach i ciśnieniu formuje trygonalny lód Ic. Pod odpowiednio wysokim ciśnieniem możliwe jest powstanie tak egzotycznych odmian, jak lód VI stabilny do temperatury 80 stopni - gdyby nie konieczność utrzymania dużego ciśnienia, kostką takiego lodu można by się oparzyć.

Obecnie znanych jest 17 odmian polimorficznych lodu, często pojawiają się one tylko w wyjątkowo specyficznych warunkach. Ostatnia to stworzony w 2004 roku lód XVI, o bardzo niskiej gęstości, otrzymany przez utworzenie klatratu neonu a następnie usunięcie szlachetnego gazu. Pozostała klatkowa struktura składała się z pustych wielościanów i była trwała pod odpowiednio niskim ciśnieniem. Lód XVI miał gęstość 0,81 g/cm3 był zatem znacznie lżejszy od zwykłego lodu.

 Najnowsze obliczenia zespołu ze Stanów Zjednoczonych wskazują na możliwość jeszcze jednej formy, o jeszcze niższej gęstości. W warunkach niskiego ciśnienia i odpowiedniej temperatury tworzyć się powinna klatkowa struktura lodu o gęstości 0,59 g/cm3 a więc prawie dwa razy mniejszej od gęstości wody. [5]
Teraz tylko pytanie czy uda się ją stworzyć.

Australijscy aborygeni i chemicy pracują nad supercienkimi kondomami
Ta wiadomość ma szansę na nagrodę Ig-Nobla z Chemii.

Australijscy badacze z The University of Queensland, pracujący nad wzmocnieniem już znanego lateksu, postanowili zwiększyć jego wytrzymałość przy pomocy niewielkiego dodatku nanocelulozy. Szukając dobrego źródła materiału nawiązali współpracę z aborygenami z plemiona Indjalandji-Dhidhanu, którzy wskazali im pewien lokalny gatunek trawy z rodzaju Spinifex.
Pierwsze próby wypadły bardzo obiecująco - błony z lateksu z dodatkiem nanocelulozy miały większą wytrzymałość na rozciąganie i wytrzymywały większe ciśnienia.
Zdaniem badaczy pozwoli to na otrzymanie jeszcze cieńszych i dających bardziej naturalne doznania prezerwatyw... albo delikatniejszych rękawiczek. [6]


--------------
Źródła:
[1]  Patryk Zaleski-Ejgierd, Pawel M. Lata. Krypton oxides under pressure. Scientific Reports, 2016; 6:
[2] Informacja prasowa IChF PAN "Superman może zacząć się bać: mamy przepis na (prawie) kryptonit!"
[3] John H. Holloway and Gary J. Schrobilgen; Krypton fluoride chemistry; a route to AuF5, KrF+AuF6, Xe2F3+AuF6, and NO+AuF6: the KrF+–XeOF4 system, J. Chem. Soc., Chem. Commun., 1975, 623-624
[4] https://www.sciencedaily.com/releases/2016/01/160128122901.htm
[6]  http://phys.org/news/2016-02-native-grass-key-super-thin-condoms.html