informacje



sobota, 30 kwietnia 2016

Chemiczne wieści (6.)

 Dzisiejszy odcinek wypadł bardziej kwantowo-fizyczny. Bo tak.

Czterowymiarowy kryształ?
Tlenki żelaza choć znane od wieków, wciąż budzą zainteresowanie technologów i fizyków i niekiedy nadal daje się odkryć nowe, ciekawe ich właściwości. W 2011 roku doniesiono o odkryciu, że mieszanina tleneku żelaza II i żelaza II/III (FeO+Fe3O4) poddany działaniu wysokiego ciśnienia zamienia się w unikalny tlenek Fe4O5. Faza ta wykazywała silne właściwości ferrimagnetyczne podobne do magnetytu.
Wiadomo było już, że magnetyt w niskich temperaturach ulega przejściu fazowemu II rodzaju, w wyniku którego atomy o różnym stopniu utlenienia tworzą równoległe struktury (Wervey phase). W typowym magnetycie atomy żelaza II i żelaza III są przemieszane statystycznie, nie tworząc regularnych struktur, zaś elektrony mogą przeskakiwać od jednego jonu do drugiego dzięki czemu materiał wykazuje przewodność elektryczną. Po przejściu fazowym następuje samoorganizacja - atomy o danym stopniu utlenienia tworzą w sieci krystalicznej struktury liniowe lub płaszczyzny.

 W przypadku magnetytu wiązało się to z utrudnieniem ruchu elektronów i wzrostem oporu, ale w innych materiałach może to doprowadzać do pojawiania się nadprzewodnictwa, ferromagnetyczności lub gigantycznego magnetooporu stosowanego dziś w elektronicznych nośnikach danych.
Nic też dziwnego, że postanowiono sprawdzić czy w podobny sposób zachowa się nowy materiał. Rosyjski zespół stwierdził zachodzenie podobnej przemiany poniżej temperatury 150 K. Materiał zmieniał właściwości magnetyczne a opór elektryczny rósł o dwa rzędy wielkości. Problematyczne okazało się natomiast przypisanie mu określonej struktury. Zakładano, że mamy do czynienia z takim samym zjawiskiem organizacji stopni utlenienia, ale wyniki pomiarów nie dawały się złożyć w prosty model. Wyglądało na to, że struktury atomów o jednakowym stopniu utlenienia falują i statystycznie może się wydawać, że są rozmieszczone przypadkowo.
Porządek pojawił się dopiero gdy symulowano rozkład ładunków w przestrzeni czterowymiarowej. Z tego też powodu informacje o tym odkryciu często powtarzają że odkryto "czterowymiarowy kryształ". W tym przypadku chodzi jednak jedynie o matematyczny model rozkładu ładunków, opisywany funkcją nie dającą rozwiązania w normalnej przestrzeni.[1]

Kwantowa woda
Nietypowe zachowanie się wody zamkniętej w wąskich kapilarach odkryli właśnie amerykańscy badacze. Badali oni właściwości wody w kapilarnych kanałach struktury berylu, ważnego minerału magmowego, przy pomocy techniki rozpraszania neutronów. Średnica kanału na tyle ograniczała cząsteczki, że w przekroju mieściła się tylko jedna. Zamiast jednak struktur cząsteczek uzyskali nietypowe, heksagonalne pierścienie. Sygnał obecności atomu tlenu pojawiał się w sześciu miejscach, a każdego z dwóch wodorów także w sześciu. Ponieważ zaś sześć cząsteczek by się w przekroju kanału nie zmieściło, zaś dla tej jednej bariera energetyczna obrotu jest zbyt duża aby wynik wywoływało ustawianie się jej w różnych pozycjach w trakcie badania, jako wyjaśnienie tych obserwacji zaproponowali nietypowy model - jest to w istocie nadal jedna cząsteczka, tylko kwantowo interferująca sama ze sobą.[2]

Jedną z konsekwencji teorii kwantowej była hipoteza de Brogile'a, że każdej cząstce materialnej można przypisać właściwości falowe które wpływają na jej oddziaływania i zachowania. Za sprawą tych właściwości obserwujemy dyfrakcję cząstek na dwóch szczelinach lub siatkach dyfrakcyjnych, powodującą że prawdopodobieństwo znalezienia się cząstki z danym miejscu zależy od wzoru jej "fali materii". Przepuszczając odpowiednio dużo cząstek przez szczeliny i badając w jakie miejsce na detektorze uderzą, otrzymujemy w końcu wzór właściwy interferującym falom.
Jedną ze szczególnie interesujących konsekwencji tego zjawiska są kwantowe miraże, czyli wzory oddziaływań, jakie tworzy cząstka zamknięta w niewiele od niej większym ograniczeniu przestrzennym. Wewnątrz okręgu ułożonego z atomów na podłożu powstaje wzór podobny do fal na wodzie z centralną górką stanowiącą złudzenie istnienia tam jakiegoś atomu:


Po umieszczeniu atomu w jednym z ognisk elipsy, w drugim ognisku pojawia się jego słaby miraż:


Jak się wydaje w opisywanym przypadku zachodzi coś podobnego. Cząsteczka wody wewnątrz niewiele od niej większego, heksagonalnego kanału interferuje. Próby określenia położenia jej atomów kończą się więc stwierdzeniem sześciokątnego wzoru na który składają się zagęszczenia fal prawdopodobieństwa obecności atomu w tej niewielkiej przestrzeni. Poprzednio udało się zmierzyć podobny efekt dla atomów wodoru, ale woda to już zupełnie inna sprawa. Pory tych rozmiarów (4 A) występują w minerałach budujących skorupę ziemską, zatem kwantowy efekt może mieć znaczenie dla modelowania właściwości gleby i skał.

Nowy rodzaj wiązania?
Obliczenia kwantowomechaniczne dokonane przez badaczy z amerykańskiego Southern Methodist University w Dallas wskazują na istnienie jeszcze jednego rzadkiego rodzaju wiązania chemicznego - jest to odmiana wiązania wodorowego z oddziaływaniem między atomem wodoru połączonym z borem a układem aromatycznym. Znane były tego rodzaju połączenia dla układów w których wodór połączony był z węglem i azotem, mające pewne znaczenie w biologii molekularnej, jednak dotychczas wydawało się, że nie powinny zachodzić dla boranów. Bor ma mniejszą elektroujemność niż wodór, toteż wiązanie między nimi jest tak spolaryzowane, że na protonie pojawia się lekki ładunek ujemny. Bardziej naładowany elektronami wodór powinien być więc odpychany przez pełen elektronów pierścień aromatyczny.
Z drugiej strony związki boru są często połączeniami elektrono-deficytowymi, z pojawiającymi się wiązaniami trójcentrowymi a w takiej sytuacji na wodorze powinien pojawić się cząstkowy ładunek dodatni.

@ American Chemical Society
Wedle ostatnich wyliczeń diborany oraz  karborany powinny na tej zasadzie tworzyć słabe wiązania B-H--Ar o długości 2,65-2,50 A . Pewnym potwierdzeniem tych przewidywań może być struktura pewnego kompleksu irydu, w którym między wodorem grupy karboranowej a pierścieniem z grupy trifenylometylowej występuje trudne do wytłumaczenia w inny sposób zbliżenie na zbliżoną odległość.[3]

---------
[1] Ovsyannikov V. S.; Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016; DOI: 10.1038/NCHEM.2478
[2] Kolesnikov A.I. et al.  Quantum Tunneling of Water in Beryl: A New State of the Water Molecule. Physical Review Letters, 2016; 116 (16) DOI: 10.1103/PhysRevLett.116.167802
[3]  X Zhang et al, B–H···π Interaction: A New Type of Nonclassical Hydrogen Bonding
J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b01249

piątek, 22 kwietnia 2016

Reakcja nie całkiem charakterystyczna

Czyli dłuższa anegdota o odkryciu pewnego związku.

Wraz z rozwojem przemysłu w XIX wiecznej Europie, w tym maszyn parowych i pieców hutniczych, duże znaczenie jako paliwo zaczął odgrywać węgiel kamienny. Dla pewnych zastosowań korzystniejszym niż surowe paliwem był koks, otrzymany przez ogrzewanie węgla bez dostępu powietrza tak, że ulatywała zeń woda i lotnie związki. Koks, o wyższej wartości opałowej, zużywano głównie do wytopu stali; gazy palne zużywano do oświetlania ulic w latarniach i jako gaz do kuchenek; wykraplana woda pogazowa zawierająca amoniak była zużywana do produkcji nawozów sztucznych.

 Jedynym produktem ubocznym jaki nie dawał się wprost zastosować była smoła pogazowa, często po prostu wylewana albo po oddzieleniu najbardziej lotnych składników używana do impregnacji drewna. Szybko zainteresowali się nią chemicy świadomi, że jest mieszanką wielu interesujących substancji. Stwierdzili oni na przykład, że przez destylację surowej smoły można otrzymać frakcje o rozmaitych właściwościach. Z jednych odzyskiwano naftalen, z innych dawało się wyprodukować fenol, zaś najlżejsza i niskowrząca frakcja dawała się zastosować jako rozpuszczalnik i olej oświetleniowy. Frakcja ta stanowiła też zresztą uciążliwe zanieczyszczenie gazu koksowniczego używanego do oświetlenia, zauważalne zwłaszcza gdy doprowadzany gaz był jeszcze ciepły. Wykraplała się na chłodnych kloszach latarń i przemieszana z sadzą zbierała na dnie.
Tam też na lepkie zanieczyszczenie zwrócił uwagę w 1825 roku Michael Faraday, który będąc bardzo praktycznym człowiekiem podjął się jej destylacji, chcąc otrzymać palny olej. Przydatnym produktem okazała się jedna z frakcji, o temperaturze wrzenia 80°C. Była to rzadka, lekko żółtawa ciecz spalająca się bardzo kopcącym płomieniem i będąca dobrym rozpuszczalnikiem. W następnych dekadach nauczono się wyodrębniać ją na duża skalę ze smoły pogazowej, a ze względu na obfite występowanie w benzolu, cieczy absorbowanej z gazu koksowniczego na stałych pochłaniaczach, nazwano ją benzenem.

Benzen odegrał dużą rolę w rozwoju chemii organicznej. To od niego pewną grupę niereaktywnych związków, często posiadających charakterystyczny zapach, nazwano związkami aromatycznymi. W tym wczesnym okresie duży problem sprawiało chemikom określenie jego struktury cząsteczkowej. Całkiem niedawno przyjęło się uważać, że pierwiastki składają się z atomów, a związki ze złożeń tych atomów w drobne całostki, nazwane cząsteczkami, o określonej budowie i układzie połączonych atomów. Jedyną informację o przypuszczalnym składzie cząsteczki stanowiły stosunki ilościowe pierwiastków składowych. Wiedząc w jakich ilościach łączą się ze sobą atomy, należało domyśleć się jaką prawdopodobnie tworzyły ze sobą strukturę.
Chemikiem który włożył w tą dziedzinę najwięcej, był opisywany już tutaj August Friedrich Kekule. On to po raz pierwszy na podstawie swych badań ustalił, że węgiel w związkach organicznych łączy się z maksymalnie czterema innymi atomami. W późniejszym okresie zastanawiając się jak połączyć ze sobą budulcowe atomy, doszedł do wniosku, że atomy węgla w bardziej skomplikowanych związkach muszą łączyć się tworząc łańcuchy. Wedle opowiadanej przezeń po latach anegdoty, myśl tą podsunął mu sen w którym dostrzegł tańczące atomy, które w pewnym momencie zaczęły się bawić w lokomotywę.
Pomysł ten nie dawał się jednak zastosować do niektórych związków, czego przykładem był benzen, złożony z węgla i wodoru w stosunku 1:1, i zawierający najwyraźniej sześć węgli. Rozwiązanie podsunął mu kolejny sen, w którym tańczące atomy utworzyły węża, a ten w pewnym momencie uchwycił swój ogon i w takiej formie wirował mu przed oczami. No tak - załóżmy że atomy są połączone w pierścień i mają wolną możliwość przyłączenia jeszcze tylko po jednym, a skład będzie się zgadzał.

Po upływie kolejnych lat chemicy coraz śmielej poczynali sobie z tworzeniem nowych pochodnych tego związku, aż w roku 1879 słynny chemik Bayer, założyciel zakładu produkującego między innymi Aspirynę, zauważył bardzo specyficzną reakcję - gdy wytrząsnął benzen ze stężonym kwasem siarkowym i dodał izatyny, żółtopomarańczowej substancji otrzymywanej z indygo, powstawało wyraźne niebieskie zabarwienie, zauważalne nawet przy niewielkich ilościach substancji. Wyglądało zatem na to, że odkryto prostą i szybką reakcję charakterystyczną, pozwalającą wykrywać benzen.

Odkrycie szybko zostało uznane i niektórzy postępowi profesorowie chemii zaczęli uczyć o tej reakcji na uniwersytetach. Jednym z nich był profesor Wiliam Weith wykładający chemię na uniwersytecie w Zurychu. Miał on specjalny lektorat poświęcony związkom aromatycznym, podczas którego pokazywał najbardziej charakterystyczne reakcje. Niestety na początku 1882 roku zmarł, toteż zajęciami podczas wiosennego semestru zajął się jego bliski przyjaciel Viktor Meyer.
Gdy przygotowywał się do zajęć polecił swojemu asystentowi aby przygotował mu próbkę benzenu. Tylko miał być czysty, tak aby pokaz poszedł bez problemów.
W dniu wykładu asystent dostarczył odpowiednią ilość związku. Meyer omówił historię i strukturę benzenu, po czym przeszedł do omawiania reakcji. Można wyobrazić sobie jak mówi studentom, że gdy teraz wytrząsie benzen ze stężonym kwasem i doda izatyny, to zobaczymy piękny niebieski kolor. Następnie tak jak mówił wytrząsa w próbówce benzen i stężony kwas, dodaje izatynę i... nic się nie dzieje. Powtarza reakcję, bo może coś akurat źle zrobił, ale nic nie pomaga. No cóż, tak się czasem zdarza, powtórzymy na następnych zajęciach.

Po skończonym wykładzie zwrócił się zatem do asystenta z delikatnym zapytaniem, co on u licha mu na te zajęcia przygotował. Bo jeśli nie szyny i nie izatyna, to benzen był zły. Asystent, znany później Traugott Sandmeyer bronił się że ależ skąd, przygotował benzen czysty, jak profesor chciał, wszystko wedle przepisu z dekarboksylacji kwasu benzoesowego bo tylko wtedy dawało się otrzymać zupełnie czysty. To już było zastanawiające. Jeszcze tego samego dnia Meyer wziął komercyjnie dostępny benzen otrzymywany z powęglowego benzolu, wytrząsnął z kwasem, dodał izatyny i otrzymał zgodnie z opisem Bayera piękny niebieski barwnik, znany jako indofenina.
Nie wiedząc co z tym faktem począć, wziął większą ilość komercyjnego benzenu, wytrząsnął z kwasem, oddzieloną warstwę kwasową zobojętnił stwierdzając, że wydzieliła mu się rzadka, lekko żółtawa ciecz o charakterystycznym zapachu, która wydawała się identyczna z benzenem. Meyer sądził zatem, że benzen występuje w dwóch formach, jednej mało aktywnej i drugiej "zaktywizowanej" i wchodzącej w reakcję barwną. Powtórzenie reakcji z otrzymaną cieczą pozwoliło mu na wytworzenie większej ilości niebieskiego barwnika, który wysłał do zbadania Bayerowi. Ten orzekł, że faktycznie jest to indofenina, ale zarazem w analizie elementarnej wyszło mu, że związek zawiera siarkę, której nie było w izatynie. Dalsze testy "aktywizowanego benzenu" pokazały, że musi być to substancja różna od benzenu. W odróżnieniu od niego nie krystalizowała w lodzie, i wrzała w temperaturze 84 stopni, w porównaniu z 80 stopni dla benzenu zupełnie czystego. Wreszcie analiza chemiczna wykazała, że jest to związek zawierający jeden atom siarki, cztery atomy węgla i cztery wodoru.
I tak Meyer odkrył Tiofen.

Odkrycie tiofenu zelektryzowało ówczesnych chemików. Okazało się że przez kilka dekad nie zauważyli, że benzen ze smoły węglowej jest mieszanką dwóch związków, przy czym ten drugi, tiofen, stanowił w niektórych partiach do 10%

Tiofen należy do grupy pięciokątnych związków aromatycznych, w których aromatyczność nadaje im zdelokalizowany układ sześciu elektronów - dwóch pochodzących z wiązań podwójnych na części węglowej i jednej wolnej pary pożyczonej z heteroatomu. Pełnowęglowy odpowiednik czyli cyklopentadien nie jest aromatyczny, a dodatkowo efekty antyaromatyczne tylko zmniejszają jego trwałość. Dążąc do utrwalenia chętnie odszczepia jeden wodór tworząc karboanion cyklopentadienylowy który już jest aromatyczny.
Podstawienie jednego węgla w tym układzie heteroatomem posiadającym wolną parę elektronową tworzy aromatyczną cząsteczkę obojętną. Gdy tym atomem jest tlen, otrzymujemy furan, gdy azot jest to pirol. Udało się także otrzymać analogiczne cząsteczki z niektórymi metalami i półmetalami, takie jak silol z krzemem, arsol z arsenem, stannol z cyną a nawet tytanol z tytanem. Zachowują one częściową aromatyczność, ale znacznie osłabioną.

Dziś możemy już odpowiedzieć na pytanie co takiego zachodziło w próbówce Meyera i co właściwie wykrywała reakcja. Tiofen w odróżnieniu od benzenu jest bardziej reaktywny. Tyle samo bo sześć elektronów stłoczonych jest jednak na mniejszym bo pięcioatomowym pierścieniu. Większe zagęszczenie ładunku (oraz karboanionowe struktury mezomeryczne) powoduje, że chętniej reaguje z czynnikami elektrofilowymi. Takim czynnikiem może być też proton uwalniany przez odpowiednio silny kwas.
Podczas wytrząsania benzolu ze stężonym kwasem, tiofen ulegał protonowaniu i w formie jonowej przechodził do warstwy kwasowej. Dalsza reakcja z izatyną jest dość skomplikowana i nie zupełnie rozgryziona, zaczyna się prawdopodobnie od sprotonowania izatyny i wytworzenia formy z ładunkiem dodatnim, która jako elektrofil atakuje cząsteczkę tiofenu. Powstające połączenie dimeryzuje i ulega przegrupowaniu tworząc niebieski barwnik:
Indofenina występuje w kilku izomerach różniących się konformacją trans/cis na wiązaniach podwójnych, w zasadzie więc powstaje mieszanina izomerów. Reakcja ma dziś jeszcze zastosowanie do oznaczania niektórych mało podstawionych pochodnych tiofenu.

Jakie zastosowania ma tiofen?
Jednym które samo się narzuca jest produkcja barwników. Chętnie jest też używany w syntezach nowych leków. Może zastępować pierścień benzenowy bez utraty właściwości leku, a dzięki łatwiejszemu podstawieniu łatwiej jest wytworzyć różnorodne pochodne.
Najciekawszym zastosowaniem jest jednak wytwarzanie politiofenu, polimeru mogącego przewodzić prąd elektryczny.




Spolimeryzowany tiofen po utlenieniu staje się przewodnikiem typu metalicznego. Utleniony tylko częściowo stanowi natomiast organiczny półprzewodnik. Możliwe jest więc wytworzenie na przykład przezroczystej folii przewodzącej prąd, co powinno znaleźć zastosowanie w ogniwach słonecznych. Szersze zastosowanie znalazła dobrze rozpuszczalna pochodna poli(etylenodioksytiofenu) (PEDOT-PSS), która dzięki przewodnictwu jest używana w powłokach antystatycznych, nie pozwalających na elektryzowanie się powierzchni.
Sam poli(etylenodioksytiofen) jest słabo rozpuszczalny w rozpuszczalnikach organicznych. Folie i przewody wytworzone z tego materiału są używane w elastycznych wyświetlaczach OLED.

------------
H. D. Hartough, The Chemistry of Heterocyclic Compounds, Thiophene and Its Derivatives,


* https://en.wikipedia.org/wiki/Thiophene
* https://en.wikipedia.org/wiki/Polythiophene

czwartek, 14 kwietnia 2016

Ostatnio w laboratorium (51.)

Ostatnio w laboratorium rozdzielałem ciemną, zesmołowaną mieszaninę poreakcyjną na kolumnie z wypełnieniem krzemionkowym. Eluent (chloroform/metanol) miał współczynnik załamania na tyle zbliżony do ziaren krzemionki, że całość wydawała się przezroczysta. Dzięki czemu bardzo ładnie było widać, jak mieszanina rozdziela się na poszczególne składniki, tworzące osobne prążki:

Nałożyłem trochę za dużo i kolumna się przeładowała, ale to o co mi chodziło udało się oddzielić.

poniedziałek, 4 kwietnia 2016

To już 5 lat.

No i właśnie mija piąty rok Nowej Alchemii.

Na początek podsumowanie statystyk:
- blog wyświetlono 675 tysięcy razy, w związku z czym od zeszłorocznego podsumowania przybyło 180 tysięcy obejrzeń. Szacuję że około 10% to wizyty botów.
- średnia dzienna przeglądalność sięgnęła poziomu 600 wyświetleń
- do artykułów dodano 972 komentarze, zatem od zeszłego roku przybyło 230, z czego jakieś
10-15 % to moje odpowiedzi.

W minionym roku największe zainteresowanie wywołały wpisy:
* Dlaczego pokrzywa parzy? - 6740 wyświetleń
* Soda na raka czyli ciastko z trucizną i komórka która gryzie - 5580 wyświetleń
* Cała tablica Mendelejewa w soli - 2222 wyświetlenia
* Dlaczego sód wybucha w wodzie? - 1400 wyświetleń
* Dziwne i zabawne nazwy związków chemicznych - 1370 wyświetleń
* Czarne czy zielone? - 1140 wyświetleń

Nadal nieustającym zainteresowaniem cieszy się wpis o ałunie.

Blog dorobił się też 121 obserwatorów, których korzystając z okazji pozdrawiam.

Jeśli chodzi o źródła wejść, w tym roku bardzo uaktywnił się pod tym względem Facebook. Polecanie co ciekawszych wpisów zwiększyło ilość wizyt. Ponadto oczywiście liczne były wejścia przez wyszukiwarkę, czasem z dość dziwnych, przypadkowych powodów, przykładowo kilka osób odnalazło tą stronę szukając hasła "zgnieciony liść", nie wiem czemu. Ostatnio pojawił się pewien skok aktywności wpisu o mieszaniu środków czystości, ze względu na pojawiającą się tam spekulację o wytwarzaniu nadtlenku acetonu w pewnych mieszankach, a to z powodu wzmianki w mediach, że taki skład ma materiał wybuchowy "matka szatana".

Jeśli chodzi o planowane wpisy, będę kontynuował obiecujący cykl Chemicznych Wieści, pojawią się też nowe wpisy z serii o truciznach. Planuję też kilka wpisów o kuchennych doświadczeniach pokazujących jak można w domowych warunkach przeprowadzać ciekawe reakcje chemiczne lub wytwarzać ciekawe materiały. Zobaczymy jak to będzie.

środa, 30 marca 2016

Wybuch powietrza?

Co pewien czas w mediach pojawia się informacja o tym, że jakiś student używający sprężonego powietrza do czyszczenia komputera wywołał wybuch. I zawsze wówczas ludzie zaczynają się zastanawiać, jak to możliwe, że powietrze wybuchło. Cały problem polega bowiem na tym, że popularną, handlową nazwę produktu, utożsamia się ze składem - a to dwie różne rzeczy.

Tak zwane "sprężone powietrze" to zapuszkowany gaz pod ciśnieniem, zwykle skroplony, który po uwolnieniu tworzy szybki, suchy strumień z łatwością wydmuchujący kurz, okruchy kanapek i chipsów z różnych zakamarków sprzętów elektronicznych, nie wprowadzając jednak wilgoci mogącej wywołać spięcia i uszkodzenia.
Wśród rodzajów takich puszek znajdują się rzeczywiście puszki z powietrzem sprężonym do ciśnienia kilku atmosfer, te jednak nie starczają na zbyt długo, dlatego w większości używane są łatwe do skroplenia, niskowrzące gazy. Trudno byłoby użyć w tym celu skroplonego powietrza, które staje się ciekłe dopiero w temperaturach rzędu -110 °C a skroplenie go w temperaturze pokojowej wymaga na tyle dużego ciśnienia, że grubościenna butla ciśnieniowa byłaby cokolwiek nieporęczna. Dlatego większość tego typu produktów zawiera w sobie inne niż powietrze substancje i niektóre z nich są gazami palnymi.

Generalnie powinno się o takich produktach myśleć jak o dezodorantach tylko bez zapachu.

Rozprężenie i odparowanie zawartości puszki bardzo ochładza strumień gazu. Przy obchodzeniu się z takimi preparatami trzeba więc uważać, aby sobie czegoś nie odmrozić. Niekiedy konstrukcja opakowania powoduje, że przy niewłaściwym ustawieniu (na boku lub do góry nogami) z dyszy może wyciec skroplony gaz, a ten odparowując też może wywołać silne odmrożenia.

Propan, butan
Zdecydowanie najtańszym gazem pędnym używanym w puszkach "sprężonego powietrza" są lotne węglowodory w tym propan, butan i izobutan, oznaczane odpowiednio R290, R 600 i R 600a . Oznacza to, że równie dobrze można taką puszką napełniać zapalniczki. Jak łatwo się domyśleć, mieszanka jest skrajnie łatwopalna. Opróżnienie puszki w pomieszczeniu może w razie powstania iskry lub pojawienia się ognia wywołać wybuch mieszaniny z prawdziwym powietrzem, o czym już przekonało się kilka osób.

Przykładowe produkty oparte o tą mieszankę:
- Sprężone Powietrze Hart, AAB Cooling, Active Jet "Compressed Air",

Eter dimetylowy
Innym chętnie stosowanym gazem jest eter dimetylowy (R-E170), opisywany też jako tlenek dimetylu, gaz o specyficznym eterowym zapachu, skraplający się w temperaturze -22 °C. Jest łatwopalny, może być używany jako paliwo zamiast gazu LPG, w mieszankach z powietrzem może być wybuchowy

Przykładowe produkty:
Airduster Plus, Semicon "Dust Off"

HFC
Stosunkowo często używanym typem gazów pędnych są fluorowane węglowodory, przy czym ze względu na  temperatury skraplania są to najczęściej fluoroetany.
Gaz oznaczany na opakowaniach jako HFC-152a to 1,1-difluoroetan (C2H4F2 ). Pod normalnym ciśnieniem skrapla się w temperaturze −25 °C. Skierowany na otwarty ogień może się zapalić wydzielając fluorowodór. Jest też podejrzewany o wywoływanie zaburzeń rytmu serca u osób regularnie wdychających go w większych ilościach dla odurzenia.

Gaz oznaczany R-143a to 1,1,1-trifluoroetan (nazywany też po prostu trifluoroetanem) wrzący w temperaturze -43 stopni, nietoksyczny, mało palny.

Najmniej palnym gazem używanym w puszkach "sprężonego powietrza) jest R-134a czyli 1,1,1,2-tetrafluoroetan wrzący w temperaturze −26.3 °C, nietoksyczny gaz używany w instalacjach chłodniczych w zastępstwie freonów. Jest też używany jako rozpuszczalnik i gaz pędny w aerozolach, w tym w inhalatorach medycznych.

Przykładowe produkty:
- Active Jet "Compressed Non Flammable Air", Wurth "Sprężone powietrze w sprayu", Semicon "Dust Off"

Używając takich produktów należy zatem pamiętać o dobrym przewietrzeniu oraz uważać aby w pobliżu nie znalazł się otwarty ogień lub źródło iskier. Przy kupnie, jeśli chce się używać najmniej palnych, można kierować się wymienionymi oznaczeniami liczbowymi, lub szukać oznaczeń "non flammable". Warto też zwrócić uwagę na piktogramy na puszce. Na tych ze skrajnie łatwopalną zawartością powinien pojawić się odpowiedni znaczek:
I/lub litera F+
Sklepy sprzedające puszki sprężonego "powietrza" powinny zresztą posiadać i udostępniać karty charakterystyki zawierające informacje o niebezpiecznych składnikach


Zamrażacze
Zamrażacze służące do lokalnego schłodzenia elektroniki, bądź do wykrycia uszkodzonych złączy, to w większości bardzo podobne skroplone gazy, dla których konstrukcja zaworu ułatwia wypływ cieczy na zamrażaną powierzchnię. Gwałtowne odparowanie skroplonego gazu ochładza opryskany przedmiot, nieraz do bardzo niskich temperatur.
Jeśli chodzi o skład, z tego co znalazłem większość opiera się na mieszance propan/butan i na tetrafluoroetanie, jak zatem łatwo się domyśleć, są to materiały palne. I niestety tak jak nikomu nie przyszłoby do głowy, że "sprężone powietrze" może wywołać odmrożenia, tak rzadko któremu użytkownikowi zamrażaczy przychodzi go głowy, że zamrażacz może się zapalić. Chyba, że uważnie obejrzy etykietkę.
W wymrażaczach do brodawek i kurzajek zwykle stosowana jest mieszanka propanu i eteru dimetylowego, podczas odparowywania schładzająca lokalnie zmianę skórną do bardzo niskich temperatur, dlatego z nimi też warto uważać.

--------
* https://en.wikipedia.org/wiki/Gas_duster
* https://en.wikipedia.org/wiki/1,1,1,2-Tetrafluoroethane
* https://en.wikipedia.org/wiki/1,1,1,2-Tetrafluoroethane
* https://en.wikipedia.org/wiki/1,1-Difluoroethane
* https://en.wikipedia.org/wiki/Dimethyl_ether

środa, 9 marca 2016

Chemiczne wieści (5.)



Tlenek kryptonu możliwy
Jak to już kiedyś pisałem w artykule "Chemiczne mezalianse", wbrew powszechnemu mniemaniu gazy szlachetne są w stanie tworzyć związki chemiczne, poprzez tworzenie innych niż oktet struktur elektronowych. Są one oczywiście bardzo nietrwałe i niekiedy daje się je wytworzyć tylko w bardzo specyficznych warunkach. Dość dobrze poznana jest tu chemia ksenonu, tworzącego związek z silnym utleniaczem sześciofluorkiem platyny, oraz związki z tlenem w tym silnie utleniający kwas ksenonowy.
Chemia lżejszych gazów jest zdecydowanie uboższa, ze względu na obniżoną trwałość i rosnącą energię jonizacji. Znany jest jeden pełnoprawny związek argonu. W przypadku helu znane są pewne cząsteczki wzbudzone, ale wedle uznanej definicji za związek uznaje się cząsteczki w stanie podstawowym.

W przypadku kryptonu dość dobrze znany jest difluorek, pewne bardzo nietrwałe połączenia z cyjankami, trwały tylko pod bardzo wysokim ciśnieniem wodorek i kompleks z kwasem tellurofluorowym. Jak pokazały ostatnie symulacje polskich naukowców, do tej listy będzie trzeba niedługo dodać jeszcze tlenek.
Badacze z Instytutu Chemii Fizycznej PAN zaprezentowali wyniki obliczeń, wskazujące na możliwość wytworzenia stabilnego tlenku kryptonu przy użycia odpowiednio dużego, choć jak na warunki laboratoryjne, wcale nie tak gigantycznego ciśnienia. Pod naciskiem 3-5 milionów atmosfer, osiągalnym w kowadłach diamentowych, powinno być możliwe wytworzenie tlenku kryptonu (II), tworzącego w takich warunkach sieć krystaliczną z charakterystycznymi łańcuchami ...Kr-O-Kr-O... i będącego nieprzezroczystym izolatorem. Natomiast pod ciśnieniem 3,4 mln atmosfer powinno zachodzić formowanie się czterotlenku kryptonu, mającego być przewodnikiem o właściwościach metalicznych.

Związki te po otrzymaniu byłyby prawdopodobnie bardziej stabilne w niższych ciśnieniach, ale też zapewne i tak rozkładałyby się przy ciśnieniu normalnym, więc raczej nie dałoby się ich obejrzeć poza komorą wysokociśnieniową. W materiałach prasowych udostępnianych przez Instytut (IChF PAN jest jedną z nielicznych polskich instytucji naukowych, jakie regularnie przygotowują takie materiały dla dziennikarzy), badacze żartują, że wobec tego Superman nie ma się co obawiać, że tak otrzymany "niemal kryptonit" zdoła mu zaszkodzić. [1],[2]

Co mnie natomiast w tych materiałach nieco dziwi, to podkreślanie, że może to być "pierwszy trwały związek kryptonu". Może to być wynik niezgrabnego wytłumaczenia, że chodziło im o pierwszy związek tworzący jonową sieć krystaliczną, w odróżnieniu od wspomnianych cyjanków i fluorków, tworzących kryształ molekularny, z niepołączonymi cząsteczkami.
Są bowiem związki kryptonu, które zdecydowanie należałoby nazwać trwałymi. Difluorek kryptonu, który jest trwały w niskich temperaturach, jest w stanie utlenić złoto tworząc kompleks KrF[AuF6], który rozkłada się pod normalnym ciśnieniem dopiero w temperaturze 60 °C, toteż jest możliwe aby zobaczyć go w jakiejś próbówce. [3]



Tańszy i ekologiczny odzysk złota z elektroniki 
Złoto bądź to w formie czystej, bądź to jako dodatek stopowy, jest chętnie używane w układach elektronicznych. Wprawdzie z oczywistych względów producenci starają się używać go jak najmniej, ale i tak na takie potrzeby zużywa się rocznie wiele ton. Z tego też powodu odzysk złota i innych cennych pierwiastków ze zużytej i uszkodzonej elektroniki, nadającej się już w zasadzie do wyrzucenia, stał się ważną i dość dochodową gałęzią przetwórstwa śmieci.
Oprócz specjalistycznych firm, takim odzyskiem zajmują się amatorsko różne prywatne osoby, mające dostęp do części elektronicznych, nie jest to jednak ani łatwe, ani bezpieczne. Układy elektroniczne składają się z części zawierających wiele różnorodnych materiałów, począwszy od tworzyw sztucznych, przez metale kolorowe jak miedź i cyna, metale ciężkie jak ołów, półmetale i ich związki jak metaliczny krzem, czy arsenek galu, a kończąc na szkle i materiałach ceramicznych. Usunięcie tego co niepotrzebne i pozostawienie tylko złota, srebra czy platyny nie jest proste, i często wymaga użycia dość agresywnych odczynników, jak kwasy utleniające czy ich mieszanki z silnymi utleniaczami, które roztwarzając metale wydzielają szkodliwe opary.

Nic więc dziwnego, że chemicy szukają metod pozwalających zrobić to samo prościej i bezpieczniej. Zespół badaczy z University of Saskatchewan, doniósł właśnie o odkryciu nowej techniki ekstrakcji złota z elektroniki. Uzyskany przez nich roztwór trawiący selektywnie roztwarza złoto, na oddzielenie tej samej ilości metalu potrzeba go mniejszą objętość niż takiej na przykład wody królewskiej, podczas procesu nie powstają szkodliwe opary a sam roztwór trawiący można regenerować.
Brzmi bardzo obiecująco. A jaki jest skład tej mieszanki?

Na razie nie ukazał się na ten temat artykuł naukowy, o wszystkim wiemy za sprawą materiałów przygotowanych dla mediów udostępnianych przez uniwersytet. Opis mieszanki trawiącej jest tam dość ogólny: czysty kwas octowy, drugi kwas i katalityczna ilość pewnego utleniacza. Uniwersytet stara się teraz o znalezienie inwestora który zastosowałby tą metodę na skalę przemysłową, więc zapewne metoda jest patentowana. Skoro informacja w ogóle się ukazała, procedura patentowa jest widocznie na tyle zaawansowana że już daje jakąś ochronę, ale najwyraźniej przed jej ukończeniem i ewentualnym wdrożeniem patentu nie chcą ujawniać szczegółów. Nic dziwnego - tańsza i bezpieczniejsza metoda odzysku może przynieść stosującej je firmie spore zyski, zaś udzielającemu patentu uniwersytetowi całkiem przyzwoite udziały.

Domyślać się możemy, że lodowaty kwas octowy jest tutaj rozpuszczalnikiem soli złota, że utleniacz utlenia złoto do soli, jaką tworzy ono z drugim kwasem. Ponieważ ilość utleniacza jest niewielka a on sam ma być regenerowalny, nie może to być utleniacz z którego podczas procesu powstają lotne tlenki. [4]

Nowa odmiana lodu?
Woda jest bardzo prostą ale zarazem niezwykle ciekawą substancją. Silne wiązania wodorowe modyfikują jej właściwości fizyczne, będąc przyczyną takich anomalii jak rozszerzanie się podczas krzepnięcia czy względnie, jak na tak lekką cząsteczkę, wysoka temperatura wrzenia.
Zamarzając tworzy lód o uporządkowanej strukturze krystalicznej. Jak jednak stwierdzono, lód ten może przybrać wiele form, różniących się sposobem upakowania cząsteczek.
Lód Ih powstający w zwykłych warunkach zamarzania
Najbardziej znany nam lód, powstający przy zamarzaniu pod normalnym ciśnieniem, to lód Ih, heksagonalny o nie uporządkowanych wiązaniach wodorowych. Zmiana warunków zamarzania pozwala na otrzymanie innych odmian. Wysoko w stratosferze wytrącanie się kryształków z pary wodnej w bardzo niskich temperaturach i ciśnieniu formuje trygonalny lód Ic. Pod odpowiednio wysokim ciśnieniem możliwe jest powstanie tak egzotycznych odmian, jak lód VI stabilny do temperatury 80 stopni - gdyby nie konieczność utrzymania dużego ciśnienia, kostką takiego lodu można by się oparzyć.

Obecnie znanych jest 17 odmian polimorficznych lodu, często pojawiają się one tylko w wyjątkowo specyficznych warunkach. Ostatnia to stworzony w 2004 roku lód XVI, o bardzo niskiej gęstości, otrzymany przez utworzenie klatratu neonu a następnie usunięcie szlachetnego gazu. Pozostała klatkowa struktura składała się z pustych wielościanów i była trwała pod odpowiednio niskim ciśnieniem. Lód XVI miał gęstość 0,81 g/cm3 był zatem znacznie lżejszy od zwykłego lodu.

 Najnowsze obliczenia zespołu ze Stanów Zjednoczonych wskazują na możliwość jeszcze jednej formy, o jeszcze niższej gęstości. W warunkach niskiego ciśnienia i odpowiedniej temperatury tworzyć się powinna klatkowa struktura lodu o gęstości 0,59 g/cm3 a więc prawie dwa razy mniejszej od gęstości wody. [5]
Teraz tylko pytanie czy uda się ją stworzyć.

Australijscy aborygeni i chemicy pracują nad supercienkimi kondomami
Ta wiadomość ma szansę na nagrodę Ig-Nobla z Chemii.

Australijscy badacze z The University of Queensland, pracujący nad wzmocnieniem już znanego lateksu, postanowili zwiększyć jego wytrzymałość przy pomocy niewielkiego dodatku nanocelulozy. Szukając dobrego źródła materiału nawiązali współpracę z aborygenami z plemiona Indjalandji-Dhidhanu, którzy wskazali im pewien lokalny gatunek trawy z rodzaju Spinifex.
Pierwsze próby wypadły bardzo obiecująco - błony z lateksu z dodatkiem nanocelulozy miały większą wytrzymałość na rozciąganie i wytrzymywały większe ciśnienia.
Zdaniem badaczy pozwoli to na otrzymanie jeszcze cieńszych i dających bardziej naturalne doznania prezerwatyw... albo delikatniejszych rękawiczek. [6]


--------------
Źródła:
[1]  Patryk Zaleski-Ejgierd, Pawel M. Lata. Krypton oxides under pressure. Scientific Reports, 2016; 6:
[2] Informacja prasowa IChF PAN "Superman może zacząć się bać: mamy przepis na (prawie) kryptonit!"
[3] John H. Holloway and Gary J. Schrobilgen; Krypton fluoride chemistry; a route to AuF5, KrF+AuF6, Xe2F3+AuF6, and NO+AuF6: the KrF+–XeOF4 system, J. Chem. Soc., Chem. Commun., 1975, 623-624
[4] https://www.sciencedaily.com/releases/2016/01/160128122901.htm
[6]  http://phys.org/news/2016-02-native-grass-key-super-thin-condoms.html