wtorek, 2 maja 2017

Stabilny zwiazek helu?

W artykule na temat związków chemicznych gazów szlachetnych (link) opisałem kilka przypadków w których teoretycznie niereaktywne pierwiastki są jednak w stanie utworzyć połączenia. Helowce ciężkie, jak krypton czy ksenon tworzą wiele związków, co ułatwia stosunkowo niska jak na tą grupę energia jonizacji. Jednak im bardziej w górę, tym z tym gorzej - energia jonizacji rośnie a już dla helu tworzenie wiązań kowalencyjnych uniemożliwiają pewne efekty związane z zapełnianiem orbitali.

Najnowsze odkrycie opublikowane właśnie w The Nature pokazuje jednak, że nie jest to zastrzeżenie tak ścisłe. Wprawdzie otrzymane kryształy helu z sodem nie są klasycznym połączeniem chemicznym, ale mają zdefiniowaną strukturę i stały skład, oraz pokazują coś, czego dotąd o własnościach helu nie wiedzieliśmy.

Mieszanina helu i metalicznego sodu pod ciśnieniem ponad 100 gigapaskali utworzyła szczególną strukturę, nazywaną elektrydem. Jest to w pewnym sensie sól elektronów - swobodny elektron zawarty w lukach struktury odgrywa rolę bardzo małego anionu, związanego z kationami metalu wokół.

Dość stabilne elektrydy są znane dla związków krystalizowanych z roztworów zawierających solwatowane elektrony, na przykład roztworów metali alkalicznych w amoniaku czy kryptandach, otrzymano też elektryd stabilny w temperaturze pokojowej, w której elektron został zamknięty w klatkowatej strukturze glinianu wapnia podobnej do zeolitów.
Niedawno stwierdzono powstawanie elektrydów także w metalach alkalicznych pod skrajnie wysokim ciśnieniem. Zewnętrzny nacisk powoduje, że atomy metalu są dociskane do siebie. Ze względu na odpychanie oraz konieczność spełniania reguły Pauliego, powłoki elektronowe są deformowane. Najwidoczniej dobrym sposobem na ustabilizowanie i zmniejszenie odpychania jest w tej sytuacji utworzenie struktury jonowej, z małymi wnękami zawierającymi zamknięte elektrony jako aniony i zawarte w sieci kationy metalu.

Możliwość tworzenia takich struktur zainteresowała zespół rosyjskich badaczy pod kierunkiem A. R. Oganowa. Na podstawie symulacji stwierdził on, że dla wysokich ciśnień powinno być możliwe utworzenie dość luźnej struktury zawierającej we wnękach także hel. Po długich przygotowaniach przetestowano tą możliwość stwierdzając, że po zastosowaniu przewidzianego ciśnienie połączenie takie powstaje dość łatwo.
Jak jednak wygląda ta struktura i jaka jest w niej rola helu?
Zasadniczo atomy sodu tworzą prostą sieć regularną, w której tworzą układ stykających się kostek z atomami w narożach, na powyższej wizualizacji są to fioletowe kulki. Wewnątrz jednych z tak powstałych luk znajdują się atomy helu nie oddziałujące z atomami sodu (zielone kostki), a wewnątrz innych tworzące anion dwa elektrony. Oddziałują one z sodem, przez co na mapach gęstości przyjmują formę ośmiościanów (tu czerwone okaedry we wnękach).




Wśród propozycji opisu sposobu w jaki niezwiązane elektrony oddziałują ze strukturą pojawia się wiązanie ośmiocentrowe-dwuelektronowe, jednak jest to dość pokrętna propozycja.
Tak powstałe połączenie jest trwałe tylko pod wysokim ciśnieniem.

Związek?
Atomy helu są w tej strukturze wprawdzie zawarte, ale nie tworzą żadnych wiązań, nie są więc ani składnikiem kowalencyjnym, ani jonowym. W pewnym sensie stanowią neutralną przekładkę stabilizującą strukturę. Bez nich układ atomów sodu byłby zbyt luźny, puste kostki nie powstrzymywałyby atomów przed zapadaniem w bardziej ścisłe człony. Można by je było oczywiście wypełnić następnymi parami elektronów, ale wtedy układ czterech kationów mógłby nie tworzyć regularnych klatek ze względu na wzajemne odpychanie. W zasadzie więc bez helu taka struktura by nie powstała.

Znane są już połączenia klatkowe, gdzie atomy helu są obecne w lukach innego materiału, na przykład klatraty czy pewna odmiana krystobalitu. Udało się też stworzyć hel zamknięty w fullerenach, z których nie jest w stanie się uwolnić, choć z nimi chemicznie nie oddziałuje. W tym przypadku połączenie elektrydowe z sodem wydaje się bardzo podobne, lecz rola atomów w strukturze jest nieco bardziej skomplikowana. Czy zatem jest to jakiś dziwny związek? To już zależy jak sobie związki zdefiniujemy.

Nietypowa struktura, niewiele wysokociśnieniowych aparatur zdolnych powtórzyć eksperyment, i dośc pokrętny opis teoretyczny spowodowała, że artykuł o odkryciu ukazał się dopiero po ponad dwóch latach, recenzenci chcieli być bowiem pewni, że nie jest to jakaś pomyłka.
Obecnie zespół badawczy pracuje nad otrzymaniem innych takich struktur. Wedle symulacji dodanie do mieszaniny atomów tlenu obniża ciśnienie potrzebne do stworzenie elektrydu dziesięciokrotnie.

--------
*  X. Dong, A.R. Oganov, A.F. Goncharov, E. Stavrou, S. Lobanov, G. Saleh, G. Qian, Q. Zhu, C. Gatti, V.L. Deringer, R. Dronskowski, X. Zhou, V.B. Prakapenka, Z. Konôpková, I.A. Popov, A.I. Boldyrev, and H. Wang, "A stable compound of helium and sodium at high pressure", Nature Chemistry, 2017. http://dx.doi.org/10.1038/nchem.2716


* https://en.wikipedia.org/wiki/Helium_compounds

Brak komentarzy:

Prześlij komentarz