Aldehydy w elektronicznych papierosach
Elektroniczne papierosy pojawiły się na rynku stosunkowo niedawno, i wciąż nie do końca znane są ich skutki zdrowotne. Na pewno, ze względu na brak substancji smolistych, nie są tak bardzo szkodliwe jak papierosy tytoniowe, jednak badań długotrwałego wpływu jest generalnie niewiele.
Chemicy wskazują, że skład mgiełki produkowanej przez te urządzenia, nie jest tak zupełnie bezpieczny, jak to się mogło wydawać.
Głównym składnikiem liquidów będących wkładem, jest gliceryna lub glikol propylenowy. Związki te są nieszkodliwe. Jednak podczas ich odparowywania na grzałce mogą zachodzić dodatkowe reakcje, prowadzące do powstawania reaktywnych aldehydów, głównie akroleiny, aldehydu mrówkowego i acetaldehydu. Wdychanie ich może zwiększać ryzyko chorób serca i układu krwionośnego. Dotychczasowe badania wskazywały, że mgiełka elektronicznych papierosów zawiera pewną niewielką ilość aldehydów, co jednak trudno było ocenić z powodu z powodu nietrwałości tych związków. Czasem pojawiały się pojedyncze badania wskazujące na wysokie stężenia, być może związane z niewłaściwą techniką poboru próbek (za wolne zaciąganie lub za duże grzanie).
W nowych badaniach mgiełkę wytwarzaną przez dostępne na rynku urządzenia pochłaniano na podłożu z krzemionki pokrytej cząsteczkami alkilowej pochodnej hydroksyloaminy. Ta reagowała z aldehydami tworząc charakterystyczne oksymy, które są dużo trwalsze, dzięki czemu w dalszych analizach łatwiej było odtworzyć rzeczywiste stężenie aldehydów i sprawdzić od jakiś czynników zależy.
Okazało się, że urządzenia nowsze wytwarzają większe stężenia aldehydów niż starsze. Efekt ten był związany z mocniejszymi bateriami i mocniejszymi grzałkami; między mocą grzałki a aldehydami istniała wyraźna zależność. Pewien wpływ miał też czas zaciągania powietrza.
W dodatkowym badaniu przy pomocy techniki NMR sprawdzono powstawanie hemiacetali, mogących ukrywać faktyczne stężenia aldehydów. W przypadku jednego liquidu smakowego wykryto hemiacetale, ale bez przekroczenia bezpiecznych norm, u pozostałych badanych smakowych i bezsmakowych taka reakcja nie zachodziła.
W ostatecznym rozrachunku poziomy aldehydów w aerozolu z e-papierosów są dużo niższe niż w dymie papierosowym (z wyjątkiem przypadków tzw. "suchego zaciągu"), niemniej fakt że jednak w nim występują, oznacza że nie jest to używka dla zdrowia całkiem obojętna.[1]
Spolaryzowana fluorescencja
Fluorescencja to szybki proces w wyniku którego wzbudzone cząsteczki lub atomy wypromieniowują energię w postaci światła. Najbardziej znanym jest świecenie pod wpływem ultrafioletu, wykorzystywane w wybielaczach optycznych. Teraz przedstawiono nietypową tego procesu modyfikację - fluorescencję świecącą od razu światłem spolaryzowanym.
Czynnikiem świecącym były jony rzadkiego pierwiastka europu. Jego sól została rozpuszczona w cieczy jonowej, to jest płynnym związku złożonym tylko z jonów (w zasadzie są to ciekłe sole), w tym przypadku był to kation tetrabutyloamoniowy i anion proliny. Po naświetleniu ultrafioletem roztwór świecił światłem spolaryzowanym kołowo. Kierunek obrotu polaryzacji zależał od tego czy użyta prolina była prawoskrętna czy lewoskrętna. [2]
Ładna demonstracja równowag chemicznych
Czasopismo Journal of Chemical Education mogłoby być w zasadzie zaliczone do pedagogicznych, poświęcone jest bowiem nauczaniu chemii, jednak robi to w ciekawy sposób - większość artykułów to nie biadolenie nad poziomem nauczania, tylko bardzo konkretne propozycje co takiego można uczniom pokazać, aby lepiej wyjaśnić im daną kwestię. Dlatego w zasadzie jest to skarbnica propozycji doświadczeń. W jednym z ostatnich numerów najbardziej wizualnie spodobał mi się artykuł na temat pokazywania równowag kwasowo-zasadowych.
Do czterech próbówek z wodą wsypano kationit kwasowy - to jest granulki specjalnego polimeru, mającego na powierzchni reszty kwasu siarkowego, skłonne oddawać protony. W zasadzie trzeba o nim myśleć jak o kwasie siarkowym osadzonym w plastiku. Do wody dodano odczynnik kwasowo-zasadowy błękit tymolowy. W warunkach obojętnych przybiera kolor żółty. Wprawdzie na dnie znajduje się polimer o właściwościach kwasowych, ale wcale nie oddaje on swoich protonów tak chętnie, musi je podmienić na jakieś inne kationy. Do jednej z próbówek dodajemy więc roztwór soli kuchennej i po chwili obserwujemy jak od dna rozwija się coraz wyraźniejsza różowa barwa, świadcząca o warunkach silnie kwaśnych. Do drugiej dodajemy niedużą ilość roztworu wodorotlenku sodu - w alkalicznym środowisku odczynnik zmienia kolor na błękitny. Jednak wodorotlenek zawiera też kationy sodowe, które mogą podmienić protony w kationicie. Dlatego od dna roztwór zaczyna się zabarwiać na żółto, świadcząc o zakwaszeniu roztworu, a w warstwach najbliżej dna na różowo. Mamy więc roztwór z trzema kolorami - różowym na dole, żółtym powyżej i błękitnym u góry.
Kolorowa równowaga. Udostępnione przez ACS Publications. |
Co ma tłumaczyć doświadczenie? W próbówce pojawiają się nam dwie równowagi - jedna to równowaga odłączania protonów od kationitu, zależna od stężenia kationów metali w roztworze. Druga to równowaga między trzema różnobarwnymi formami odczynnika, zależna od odczynu. Wreszcie przesuwająca się od dna granica między kolorami ukazuje naocznie szybkość dyfuzji jonów hydroniowych. Po pewnym czasie cały roztwór stanie się różowo-żółty ale wtedy można dodać wodorotlenku jeszcze raz, powtarzając cykl; dla zaproponowanej ilości substratów można tak zrobić do siedmiu razy.
Takie rzeczy powinni pokazywać w szkołach, a nie tylko kreda i tablica. [3]
--------
[1] Mumiye A. Ogunwale et al. Aldehyde Detection in Electronic Cigarette Aerosols, ACS Omega (2017). DOI: 10.1021/acsomega.6b00489
[2] Ben Zercher and Todd A. Hopkins, Induction of Circularly Polarized Luminescence from Europium by Amino Acid Based Ionic Liquids, Inorg. Chem., 2016, 55 (21), pp 10899–10906
[3] Ingo Eilks and Ozcan Gulacar, A Colorful Demonstration to Visualize and Inquire into Essential Elements of Chemical Equilibrium, J. Chem. Educ., 2016, 93 (11), pp 1904–1907
Wielce przyjemny artykuł - dziekuję. Mam tylko małą prośbę. Taką niedużą. By zwracać uwagę na różnicę pomiędzy "niedużą" a "nie dużą".
OdpowiedzUsuń