informacje



czwartek, 3 maja 2012

Ostatnio w domu - kryształki


Pozostawszy w domu na dłużej, postanowiłem zająć się czymś niewymagającym. Na przykład wyhodować jakieś ładne kryształki. Pewnie wiele osób próbowało tego z solą kuchenną ale mało komu się to udało. Sól wprawdzie jest dobrze rozpuszczalna w wodzie, ale dla krystalizacji najistotniejszym parametrem jest różnica rozpuszczalności w różnych temperaturach. Jeśli nasz związek dobrze rozpuszcza się w wodzie gorącej a słabiej w zimnej, to po ochłodzeniu nasyconego gorącego roztworu powstający nadmiar musi się jakoś wydzielić. Im większa jest ta różnica tym lepiej.
W przypadku chlorku sodu rozpuszczalność w 100 st. C to 39 gramów w 100 gramach wody a w temperaturze pokojowej ok.36 g. Różnica 3 gramów to niespecjalnie dużo. Dla siarczanu miedzi różnica to 100 gramów[1], dlatego też z tego powodu (ale nie wyłącznie) błękitne kryształy siarczanu miedzi uzyskuje się znacznie łatwiej. Sól niestety łatwo tworzy skupienia drobnokrystaliczne, skorupiaste, a większe kryształy tworzą się podczas bardzo powolnego zatężania roztworów. Dlatego też soli nie brałem.
Jest wiele łatwo dostępnych substancji tworzących ładne kryształy. Jak choćby cukier biały, tworzący przezroczyste kryształy podobne do kawałków szkła - czasem można dostać w sklepach takie kryształy stanowiące oryginalną formę osłody (choć nadają się też do picia herbaty na sposób rosyjski - przez cukier trzymany w ustach). Ja jednak obawiałem się, że podczas robienia stężonego roztworu zrobi mi się syrop, więc zdecydowałem się na kwasek cytrynowy.

Kwas cytrynowy tworzy przezroczyste, bezbarwne kryształy, w temperaturze pokojowej krystalizując jako monohydrat. Jest bardzo dobrze rozpuszczalny i dobrze dostępny. Nalałem więc gorącej wody do słoiczka, tyci tyci na dno, i wsypałem niemal całe opakowanie kwasku, który rozpuścił się bez śladu, co świadczyło o tym, że roztwór nie był jeszcze całkiem nasycony. Trzeba było zatem poczekać aż trochę odparuje, zatem odstawiłem słoiczek na parapet i na kilka dni o nim zapomniałem.

Po kilku dniach ścianki były zarośnięte skorupą kwasu, a dno zasłane grubą warstwą krystalicznej masy, z której wystawało kilka większych okazów. Bardzo stężony, syropowaty roztwór przelałem więc do innego słoika, a z wydobytej masy wyłupałem największe i najbardziej kształtne okazy.

Następnie wybrałem kilka najładniejszych i włożyłem do słoiczka z roztworem, tak aby rosnąc nie stykały się ze sobą. Rosły jednak bardzo powoli:

Na ściankach znów zaczęła osadzać się krystaliczna masa, toteż co pewien czas odbijałem od niej moje zarodki żeby nie przyrosły. Wreszcie gdy powierzchnia wody niemal dotykała kryształków, uznałem że można je wyjąć. Nie prezentują się jakoś specjalnie urodziwie - są raczej zbliźniaczone, zaś to, że od strony dna miały gorszy dostęp porcji związku, sprawiło że niektóre ścianki nie wykształciły się regularnie. Mimo to daje się w nich dostrzec regularne kształty.








Takie bardzo kwaśne cukierki.
-----
[1] http://www.chemorganiczna.com/tablice/48-rozpuszczalnosc.html

wtorek, 24 kwietnia 2012

Chemik na miejscu zbrodni - próby analityczne na krew

Pomysł na ten wpis przyszedł mi do głowy nieoczekiwanie. Zaglądam czasem (jako Zaciekawiony) na forum kryminalityka.fr.pl, gdzie niekiedy wpadnie mi w oko jakaś ciekawostka. Tam też pojawił się temat, w którym zapytywano o proste metody chemicznej analizy różnych substancji, tak aby poznać skład. Tłumacząc tam jak bardzo obszerny jest to temat i jakie są ograniczenia "domowych laboratoriów", wspomniałem o pewnej próbie wykrywającej obecność krwi, że zaś dopytano się mnie jeszcze o nie, grzebnąłem po różnych stronach, aż uznałem że temat jest na tyle ciekawy i chemiczny, że nadaje się aby o nim coś tutaj napisać. Często obserwujemy jak w serialach kryminalnych pojawiają się specjaliści orzekający - tu prysnęła krew, tu był strzał, stamtąd strzelano - i niejednokrotnie zastanawialiśmy się, jak oni to robią. Jak? a no tak:

Krew, formalnie rzecz biorąc, jest tkanką łączną, składającą się z komórek różnego rodzaju zawieszonych w osoczu. Są to zarówno czerwone krwinki, pełniące funkcję transportową jak i krwinki białe i limfocyty pełniące funkcję obronną. Stanowi ważny element ludzkiego organizmu, zaś jej utrata, może doprowadzić do śmierci, co może następować w wyniku wypadku, samobójstwa lub morderstwa. W tym ostatnim przypadku krew wydostająca się na zewnątrz staje się ważnym dowodem dla śledztwa, znacząc miejsce, narzędzie i sprawcę zgonu. Wydaje się dość oczywiste, że jeśli mamy człowieka z raną piersi, zakrwawiony nóż i osobnika o zakrwawionej koszuli, to te trzy rzeczy musiały mieć ze sobą bliską styczność w momencie zdarzenia, toteż taki ważny dowód już u początków kryminalistyki był bardzo chętnie poszukiwany.
Niestety w tych dawnych czasach rozpoznanie krwi było dużym problemem. Rdza może dawać plamy bardzo podobne do starej, zaschniętej krwi, podobnie jak pewne soki roślinne, farby czy pewne odmiany gliniastej ziemi. Znalezienie czerwonej plamy na czyimś ubraniu czy podłodze nie było zatem aż tak oczywistym dowodem. W dodatku stare plamy krwi zmieniają swe właściwości, robią się brunatne, pomarańczowe, żółtawe a nawet zielone, i przypominają brud. Początkowo jedynym sposobem odróżnienia było doświadczenie śledczego. Tworzono też katalogi opisujące wygląd plam po różnym czasie na różnych materiałach., co pozwalało lepiej się zorientować, ale nadal w razie procesu sądowego, dowód taki można było zakwestionować.
W przypadku względnie świeżej plamy można było rozpuścić ją w wodzie i oglądając pod mikroskopem rozpoznać krwinki, co pozwalało na odróżnienie jej od innych substancji, jednak dla starych śladów, podległych częściowej degradacji, było to niemożliwe.

Pierwszą próbą chemiczną, jaką stosowano do wykrywania krwi, była reakcja z wodą utlenioną. Już Thenard zaważył w 1818 roku, że nadtlenek wodoru rozkłada się wskutek zetknięcia z krwią. Nadtlenek reagował bądź z hemoglobiną bądź z enzymami,  z wydzieleniem bardzo reaktywnego tlenu:
H2O2 → H2O + O
Wydawało się to całkiem proste - zwilżamy badaną plamę lub tkaninę wodą utlenioną, i gdy się pieni, to jest krew. Niestety okazało się, że podobne reakcje dawać może rdza, tlenki manganu i soki roślinne zawierające peroksydazy, toteż choć próba była już jakąś wskazówką, okazała się niedostateczna. Mimo to stała się podstawą dla innych reakcji, o czym później.

Pierwszą próbą pozwalającą wykryć istotny składnik krwi, jakim jest hemoglobina, była próba Teichmanna. Ludwik Teichmann , urodzony w Lublinie lekarz i anatom, ogłosił w 1853 roku, że udało mu się uzyskać próbę analityczną jednoznacznie identyfikującą krew. W jego metodzie badana próbka była ogrzewana z lodowatym kwasem octowym i roztworem soli. W kropli roztworu w miarę stygnięcia, powstawały charakterystyczne, tabliczkowate kryształki pochodnej hemoglobiny:


Tą pochodną była hemina, będąca właściwie chlorkiem ferriporfiryny, to jest z żelazem na stopniu utlenienia III połączonym z chlorem normalnym wiązaniem jonowym. Jako że hemoglobina występuje wyłącznie we krwi, test potwierdzał jej obecność (teoretycznie podobnie mogłyby zadziałać cytochromy, ale nie występują w płynach fizjologicznych, nie wiem natomiast czy tak też reaguje mioglobina z przetworów mięsnych)). Próba dawała pozytywny wynik nawet w przypadku kilkunastoletnich plam.

Modyfikacją tej próby był wprowadzony w 1912 roku test Takayamy, gdzie próbkę ogrzewano w obecności kwasu octowego i pirydyny. Powstający kompleks hemo-pirydyniowy nazywany hemochromogenem wytrącał się w formie tabliczek bądź pryzmatów, wystarczająco charakterystycznych aby przeprowadzać identyfikację. Istnieje jeszcze wiele modyfikacji, zastępujących pirydynę glicyną, aminami czy nawet acetonem.

Tak więc próbę potwierdzającą obecność krwi mieliśmy, jednakowoż aby poddać próbkę badaniom, trzeba ją najpierw znaleźć, a to w sytuacji gdy sprawca mógł próbować usunąć ślady nie było wcale takie proste.
Próbę z wodą utlenioną już omawiałem. Raczej nie da się jej użyć w przypadku dużych powierzchni, a i tak przy bardzo powolnym postępie reakcji bezbarwna piana może być niezauważalna. Ale od czego są chemicy?

Aby rozkład nadtlenku wywoływany przez hemoglobinę jakoś uwidocznić, postanowiono wykorzystać barwne reakcje utlenienia. Najprościej było wykorzystać tu barwniki o bardzo intensywnym kolorze, w formie chromogenów - a więc w formie bezbarwnej, którą można "ubarwić" przez proste przekształcenie, na przykład utlenienie. Takie probarwniki są używane przy farbowaniu tkanin, często bowiem forma barwna jest trudno rozpuszczalna i słabo wchłania się w strukturę nici materiału. Tak jest na przykład z indygo przy farbowaniu dżinsów. W tym przypadku opracowano kilka zbliżonych metod, różniących się zastosowanym barwnikiem:

Próba Kastle'a-Meyera z fenoloftaleiną
Fenoloftaleina to popularny wskaźnik kwasowo-zasadowy, przyjmujący w warunkach zasadowych różowe zabarwienie, dlaczego i jak to się dzieje, już niedawno pisałem.  Pod wpływem łagodnych reduktorów przechodzi w fenoloftalinę (nie znalazłem co prawda polskiego odpowiednika angielskiej "phenolphthalin" ale przez analogię powinien brzmieć tak), nie mającą form barwnych, łatwo ulegająca utlenieniu. W 1901 roku Kastle i Shedd zauważyli, że katalizatorem utlenienia może być materiał biologiczny, i gdy działo się to w warunkach zasadowych, pojawiało się wyraźne zabarwienie. W 1903 roku w Niemczech Meyer zauważył, że w podobny sposób działają czerwone krwinki. Gdy zaś w 1906 roku Kastle udowodnił, że przemianę katalizuje hemoglobina uwolniona z krwinek, uznano że może być to dobra metoda ujawniania zatartych śladów krwi.[1] Reakcja zachodzi w przypadku rozcieńczeń sięgających nawet 1:10 000[2]
Spotkałem się z niepoprawnym tłumaczeniem, że skoro krew jest lekko zasadowa, to reakcja polega na wykrywaniu odczynu, podczas gdy chodzi jedynie o zamianę formy bezbarwnej w barwną.
Metoda polega na rozpuszczeniu próbki w silnie zasadowym roztworze i dodaniu do roztworu zredukowanej cynkiem fenoloftaleiny, potem do roztworu dodaje się wody utlenionej. Inna wersja to papierek bądź wacik nasączony świeżym odczynnikiem, przykładany do podejrzanej powierzchni. Dla zwiększenia dokładności jako rozpuszczalnika używa się etanolu. Na serialach kryminalnych widać czasem jak kryminalistycy pocierają powierzchnie wacikiem, który zabarwia się na różowo - to właśnie ten test. Jest to jednak test zawodny. Rozkład nadtlenku może wywołać wiele różnych substancji, w tym peroksydazy z soków roślinnych, dlatego też jest to test raczej wykluczający niż potwierdzający - jeśli zabarwienie nie nastąpi, możemy uznać że na badanej powierzchni nie ma śladów krwi; natomiast jeśli barwa się pojawi, to możemy uznać, że krew może tu być, ale należy to potwierdzić bardziej dokładnymi badaniami. Niestety właściwie wszystkie testy oparte na utlenieniu mają ten ogranicznik.

Próba z Zielenią malachitową
Zieleń malachitowa to sztuczny barwnik wykazujący duże podobieństwo strukturalne do fenoloftaleiny, oparty zasadniczo na tym samym szkielecie trifenylometanowym, z dodatkowymi grupami aminowymi.Również wykazuje zmienność zabarwienia zależną od pH, jednak z uwagi na to, iż następuje to przy wartościach ekstremalnie niskich, w praktyce nie jest używany. Zasada jest ta sama - po potraktowaniu reduktorami przyjmuje formę bezbarwną. Utlenienie atomowym tlenem z rozkładu nadtlenków powoduje powrót intensywnej zielonej barwy.   

Próba benzydynowa
Benzydyna to aromatyczna diamina, która mogła by być traktowana jak dimer aniliny w położeniu para. Pod wpływem nadtlenków i wolnego tlenu ulega stopniowemu utlenieniu do formy diiminowej tworzącej z wyjściowym substratem kompleks z przeniesieniem ładunki o kolorze intensywnie niebieskim. Zbliżona reakcja jest wykorzystywana przy wybarwianiu preparatów mikroskopowych. Dalsze utlenienie do całkowitej przemiany zmienia kolor na intensywnie żółty. Niegdyś, od wynalezienia w 1904 roku, bardzo popularna przy ujawnianiu krwi na dużych powierzchniach, dziś wycofana z racji dobrze potwierdzonej rakotwórczości związku, bywa zastępowana mniej szkodliwą pochodną 3,3-5,5-tetrametylową.
  
Próba gwajakolowa
Gwajakol, to związek należący do polifenoli (formalnie można go uznać za monoeter metylowy katecholu), znany jako lek wykrztuśny stosowany w syropach na kaszel. Pod wpływem reaktywnego tlenu powstającego z nadtlenków zamienia się w pomarańczowy tetramer z mostkami nadtlenkowymi łączącymi pierścienie. Próba została opisana już w 1862 roku ale należy do rzadziej używanych. Zastanawia mnie czy obecność jodków może fałszować wynik - powodują rozkład wody utlenionej a powstający jod ma pomarańczowy kolor.
Próba w nieco zmodyfikowanej postaci była i czasem wciąż jest używana do wykrywania krwi utajonej w kale.

Na koniec zbiorczo duża infografika, mam nadzieję, że czytelna:


Próba z Luminolem
Jest to próba oparta na nieco innym mechanizmie. Wprawdzie też chodzi o utlenienie, ale utleniany związek nie jest barwnikiem. Luminol to pochodna kwasu ftalowego, która w obecności utleniaczy i różnych aktywatorów ulega utlenieniu - ale nie od razu. Początkowo utlenienie powoduje odszczepienie azotu i powstanie nadtlenku, bardzo jednak nietrwałego w powodu bliskości dwóch grup karbonylowych. Pęknięcie wiązania przerzuca elektrony na atomach tlenu w stan wzbudzony. Powrót do stanu podstawowego przebiega z wydzieleniem energii w postaci intensywnego, niebieskiego
 lub zielonego światła. Czułość sięga ilości krwi z rozcieńczeniu 1:300 000.
W kryminalistyce po spryskaniu w ciemności badanych powierzchni mieszaniną luminolu i wody utlenionej, w miejscach gdzie obecne są ślady krwi, pojawia się trwające do 30 sekund świecenie, które należy utrwalić na fotografii. Niestety podobny efekt mogą dać ślady kału, sole miedzi, cząstki stopów miedzi i preparaty czyszczące z wybielaczami. Dokładne wymycie zabrudzonej powierzchni wybielaczem może tak zafałszować wynik, że badanie nie wykryje śladów które faktycznie tam są. Podobnie jak w przypadku innych metod katalitycznych badanie należy traktować jako wstępne, służące umiejscowieniu śladów, co do których dopiero dalsze badania potwierdzą, że jest to krew.

Ostatecznie wszystkie te testy potwierdzają jedynie istnienie krwi, nie rozróżniają jednak pomiędzy rodzajami krwi a więc pomiędzy krwią ludzką a zwierzęcą. Jeśli u podejrzanego odnaleziono na deskach podłogi w kuchni ślady krwi, zawsze mógł twierdzić że niedawno jadł sztukamięs prosto od rzeźnika i podczas mycia deski do krojenia trochę zakrwawionej wody poleciało mu na podłogę. Jak zatem potwierdzić że nasza wybadana krew, należy do człowieka?
Problem ten rozwiązało odkrycie z 1901 roku. Niemiecki lekarz Paul Uhlenhuth, badając reakcje immunologiczne odkrył, że reakcja pomiędzy antygenami wytwarzanymi wobec obcego czynnika drażniącego, jest wysoce charakterystyczna. Gdy wstrzyknął królikowi białko jaja kurzego, przejściowo powstał odczyn zapalny a jego organizm, broniąc się, wytworzył antygeny przeciwko-jajokurze, zaś surowica krwi takiego królika wytrącała białko jaja kurzego, ale nie inne. Gdy wstrzyknął królikowi białko jaja przepiórczego, surowica wytrącała białko z takiego materiału, natomiast nie reagowała z białkiem jajka kurzego. Podobne reakcje zachodziły z mlekiem różnych gatunków zwierząt oraz z krwią.
Surowica królika zadrażnionego ludzką krwią, strącała białka z ludzkiej krwi, zupełnie nie reagując na krew innych gatunków ssaków i ptaków. Co więcej, reakcja zachodziła również w przypadku starych, zaschniętych śladów, uprzednio rozpuszczonych.
Już wkrótce metoda, dzięki przychylności postępowego sędziego śledczego, posłużyła do rozwiązania morderstwa dwóch dziewczynek na Rugii, jednak zdecydowany rozgłos zdobyła dzięki pomocy w rozwiązaniu morderstwa 8-letniej Lucie Berlin, do jakiego doszło w 1904 roku w Berlinie.

Precyzyjne testy precypitacyjne stały się zatem cenną pomocą w odróżnianiu krwi ludzkiej od zwierzęcej. Kolejnym krokiem było odkrycie grup krwi, pozwalające na rozróżnienie krwi pochodzącej od różnych osób. Choć  Landsteiner odkrył je w 1901 roku, spotkał się z dużym oporem ze strony środowisk medycznych, i choć jego odkrycie pozwalało bezpiecznie przetaczać krew, trzeba było I wojny światowej aby uznano jej przydatność, zaś do badań kryminalistycznych weszło około lat 20. Pierwszy system A B 0, został uzupełniony o czynniki Rh+, Rh-, M,N,S i wiele innych, co nadawało krwi dużą indywidualność.
Potem nauczono się rozróżniać krew różnych płci aż wreszcie do użytku weszły badania DNA, o których już kiedyś pisałem

Współcześnie znamy wiele testów wykrywających krew - wspomniane próby, jak test z luminolem służą jedynie lokalizowaniu podejrzanych śladów na dużych powierzchniach, jak podłoga pomieszczeń, czy ściany. Potwierdzenie że jest to krew i to konkretnie ludzka następuje za pomocą innych specyficznych reakcji, na przykład barwny test immunologiczny, oparty na reakcji specyficznych antygenów. Testy takie, dające wynik tylko z krwią ludzką, używane są czasem do wykrywania krwi utajonej w stolcu i moczu.


Na koniec polecam ciekawym dwie ciekawe książki Jürgena Thorwalda "Stulecie detektywów" i "Godzina detektywów" w fascynujący sposób opisujące historię kryminalistyki.

---------
Źródła:
http://www25.brinkster.com/icequeen11/chemistry/bmk1.html testy na krew - opisy procedur http://www.forensicsciencecentral.co.uk/history.shtml
http://www.wavesignal.com/Forensics/Blood.html
http://de.wikipedia.org/wiki/Kastle-Meyer-Testhttp://en.wikipedia.org/wiki/Luminol
http://de.wikipedia.org/wiki/Paul_Uhlenhuth
http://en.wikipedia.org/wiki/Paul_Uhlenhuth

[1] https://www.ncjrs.gov/pdffiles1/pr/160880_unit_2.pdf   
[2] http://www.wavesignal.com/Forensics/Blood.html 

niedziela, 15 kwietnia 2012

Kiedyś w laboratorium... (9.)

Kiedy jeszcze uczyłem się w technikum, miałem przedmiot Bioanalitykę. Zajęcia prowadziła pani Skrobek, którą miło wspominam między innymi dlatego, że nie widziała przeszkód abym mógł robić na zajęciach zdjęcia. Jedne z zajęć poświęcone były podstawom histologii i wówczas nie omieszkałem sfotografować przez mikroskop pokazywanych preparatów tkankowych. Ten, który podaję poniżej, to preparat komórek rakowych:

Preparat był utrwalany i niestety dosyć stary, dlatego popękał. W każdym razie widać bardzo grubą błonę komórkową, i nieregularne jądro dzielące się równocześnie na kilka części. Taki wygląd mają komórki raka stodium szybkiego wzrostu.

piątek, 13 kwietnia 2012

Kraszanki czyli o wielkanocnej chemii


Szykowałem ten wpis na poniedziałek wielkanocny, ale różne okoliczności natury osobistej sprawiły, że wstawiam go z opóźnieniem. mimo wszystko sądzę, że będzie interesujący.

Pisanki to stara wielkanocna tradycja. Tak stara, że starsza od chrześcijaństwa. Wzmianki o barwieniu jaj znajdujemy jeszcze w starożytnych zapisach, zaś powiązanie między ich tworzeniem a wiosennymi świętami na pewno powszechne było wśród pogańskich europejczyków. Jego twarda, gładka skorupka sprawiała, że przypominało kamień, jednak z tego "kamienia" mógł się wykluć ptak. To życie wychodzące ze zdawałoby się martwego przedmiotu, kojarzono z wiosennym budzeniem się do życia "suchych" drzew, zazielenianiem się "martwej" ziemi i ogółem z witalnością. Nie bez znaczenia było też zapewne, że jajka są dosyć pożywne i mają działanie wzmacniające, dlatego też jajo, jako symbol wiosennego odrodzenia, jak i obiecywanego przez religie pośmiertnego życia, stały się ważnym elementem dawnych kultów.
U Słowian, jak się wydaje, kojarzono jaja z kultami solarnymi, na zasadzie że tak jak powracające po zimowym oddaleniu Słońce, ogrzewając wiosną Ziemię budzi ją i to co na niej istnieje do życia, tak z twardej skorupki wykluwa się małe, ruchliwe pisklę, w przypadku kur w dodatku jasnożółte - a więc w kolorze słońca. Dodatkowo ptaki, które wykluwają się z jaj, często były symbolami bądź posłańcami Bóstw.[1]
Ze względu na nietrwałość materiału, najstarsze zachowane pisanki były wykonane z gliny, bądź też były ozdobionymi kamieniami odpowiedniego kształtu. Za najstarszą polską uważa się gliniane jajko z X wieku znalezione w Opolu. Często jako pisanki opisuje się jajowate grzechotki z okresu neolitycznej kultury Trypolskiej, na terenach Ukrainy, ale jakoś w to powątpiewam.

Techniki zdobienia pisanek są tak różnorodne, że nie w sposób tu wszystkich wymienić. Mogą być gotowane w barwnikach, malowane, rysowane, malowane woskiem i barwione, oklejane obrazkami, sznurkiem czy koralikami, a nawet koronkową koszulką, drapane, wytrawiane, opalane - nie zdziwię się jak ktoś niedługo wymyśli drukarkę do jaj. Ja jednak skupię się na jednej - na robieniu "karaszanek" lub "kroszonek", polegającej na gotowaniu jaj w roztworach barwników, którą najczęściej stosuje się u mnie w domu.

Skorupka jaja zbudowana jest głównie z drobnokrystalicznego węglanu wapnia w postaci igiełkowatych pryzmatów kalcytu (tylko u żółwi pojawia się aragonit), oraz nadającego jej pewną elastyczność białka. Zależnie od rodzaju i grupy zwierząt, proporcje te zmieniają się od niemal zupełnie białkowych, miękkich jaj gadów, do sztywnych jaj ptaków. Tego typu jaja zachowują się w skamielinach[2].
Jest to materiał bardzo porowaty, dzięki czemu rozwijający się kurzy zarodek może być zaopatrywany w tlen. Te same pory ułatwiają też barwnikom wnikanie w głąb materiału i osadzanie się na powierzchni kryształków mineralnych, i dzięki temu skorupka jaja może być trwale zabarwiona. Nawiasem mówiąc za brązowawe zabarwienie jaj kurzych preferowanych w Europie (Anglosasi i amerykanie wolą jajka białe jak piłeczki pingpongowe) jest wynikiem wydzielania przez jajowód kury biliwerdyny i protoporfiryny, i zależy właściwie tylko od rasy nie zaś od sposobu żywienia.

Dawne sposoby barwienia jaj były niezwykle różnorodne i to nimi, a konkretnie używanymi barwnikami, chcę się zająć w tym wpisie. A więc:

Żółty:
Aby otrzymać żółty kolor, należy zastosować żółty wywar. Zwykle używano tutaj kwiatów nagietka lub jaskra, uprzednio zasuszonych na tą okazję, ale także młodych listków i pędów brzozy, olchy i jabłoni. Bardziej majętni mogli sobie pozwolić na szafran.
A więc, żółtym barwnikiem nagietków są patuletyna i patulitryna[3], flawonoidy o słabym działaniu przeciwbakteryjnym. Wywar z płatków nagietka był i wciąż może być używany do farbowania wełny. Podobne wykorzystanie ma wywar z liści brzozy zawierający luteolinę, ciekawy flawonoid będący silnym przeciwutleniaczem, o działaniu przeciwbakteryjnym i przeciwzapalnym.[4]
Szafran to końcówki słupków kwiatów Krokusa wiosennego, od dawna używany jako niezwykle cenna przyprawa. Jego smak jest raczej gorzki, natomiast zapach to pomieszanie zapachu siana i słodkiego kwiatowego. Ponieważ jeden kwiat zawiera jedno-dwa znamiona, a materiał jest dosyć lekki, na zebranie jednego kilograma potrzeba zerwać znamiona 100-170 tysięcy kwiatów, co przekłada się na cenę rzędu 30-40 tysięcy złotych. Z tego też powodu dawniej tylko bogacze mogli sobie na niego pozwolić, i już w średniowieczu problemem stało się jego fałszowanie nagietkiem, makiem a nawet tartą cegłą (w XIX wieku cegłą nagminnie fałszowano u nas paprykę). Zawiera wiele cennych substancji, jednak za jego kolor odpowiadają głównie karotenoidy: likopen, zawarty też w pomidorach, i zeaksantyna oraz jej ester krocyna, wszystkie o intensywnych pomarańczowo-czerwonych kolorach. Są to substancje będące silnymi przeciwutleniaczami. Zeaksantyna jest izomerem luteiny i podobnie jak ona ma znaczenie w ochronie przed zwyrodnieniem plamki żółtej i zaćmą.
Krocyna jest słabym przeciwutleniaczem, niektóre źródła spekulują o właściwościach przeciwrakowych, podobnych do kurkuminy, barwnika ostryżu (kurkuma), też zresztą wykorzystywanej do barwienia.[5]

Czerwony

Aby zabarwić jaja na czerwono należało gotować je w soku z buraków. O burakach miałem ochotę napisać na Wigilię, ale nie wyszło. Głównym barwnikiem buraków jest betanina, mająca postać glikozydu betaliny. Barwnik jest trwały w warunkach lekko kwaśnych, zaś w zasadowych degraduje do żółtawych produktów rozpadu. U niektórych ludzi barwnik po wchłonięciu jest wydalany wraz z moczem, bez wcześniejszej degradacji czy detoksykacji, stąd czerwone zabarwienie moczu nazywane betaninurią (w języku angielskim częstsza jest niepoprawna nazwa beeturia utworzona od angielskiej nazwy buraka "beet").
Wprawdzie wydaje się że u części osób jest związana z pewnym recesywnym genem[6], ale zasadniczo może się pojawiać i znikać zależnie od aktywności enzymatycznej, występując u około 10-14 % ludzkości. Pojawia się też przy niedoborach żelaza i witaminy B12, w przebiegu niedokrwistości złośliwej. [7] Podawane niekiedy informacje, że betaninuria jest objawem "nieszczelności jelita" czy perforacji ściany żołądka nie są prawdziwe.

Na czerwono jaja mógł też farbować wywar z płatków maku, intensywny kolor nadają im antocyjaniny, głównie pochodne pelargonidyny i cyjaniny.[p]

Brązowy

Aby zabarwić jaja na różne odcienie brązu tradycyjnie stosowano wywar z łupin cebuli. Odcień zależy od czasu gotowania. Głównym barwnikiem jest w tym przypadku kwercetyna, należąca do najpospolitszych flawonoli, zawarta też w korze dębu i uważana za cenny przeciwutleniacz, wpływający na stan naczyń krwionośnych. Najwięcej zawiera jej herbata chińska, kapary i lubczyk.[8]

Zielony
Barwienia na kolor zielony odbywało się w odwarze z młodego jęczmienia lub jakichkolwiek liści. Barwnikiem był oczywiście chlorofil, który już tu szerzej opisywałem.


Niebieski
Może to brzmieć zaskakująco, ale niebieski kolor uzyskuje się w wywarze z czerwonej kapusty. Wywar ten zawiera bardzo dużo różnorodnych antocyjanów, naturalnych barwników o szerokim zakresie barw. Ich kolor zależy od pH środowiska - w kwaśnym są czerwono-fioletowe, w lekko zasadowym niebieskie a w mocno zasadowym zielone. Powyżej pH 12 degradują do trwałego żółtego zabarwienia:

Sok z czerwonej kapusty w różnym pH

Odczyn skorupek jest właśnie lekko zasadowy, stąd błękit.

Źródłem niebieskiego zabarwienia mógł być też wywar z płatków chabrów polnych. Za ich kolor odpowiadają także antocyjany, ale w formie utrwalonej jako sól glinowa, dopiero mocniejsze zakwaszenie zmienia kolor wyciągu na różowy. Dawniej, gdy niebieskie barwniki były rzadko dostępne, alkalicznej zaprawy z płatków chabra z ałunem używano do farbowania wełny.

Fiolet
Fioletowy kolor uzyskiwano gotując jajka w wywarze z owoców jagód, lub w wywarze z płatków czarnej malwy, można było także użyć płatków ostróżeczki lub róży. Podobnie jak inne kwiaty zawierają mieszaniny różnych antocyjanów, głównie delfinidyny

Ogółem zatem do barwienia jaj przyczynia się wiele różnorodnych związków chemicznych, o ciekawych właściwościach. A przecież to dopiero początek zabawy.
------
Źródła:
* http://pl.wikipedia.org/wiki/Pisanka
* http://en.wikipedia.org/wiki/Pysanka

[1] Panorama kultur: Historia Pisanki
[2] Fossill Eggshell: Introduction to eggshells
[3]
Guinot P, Gargadennec A, Valette G, Fruchier A, & Andary C (2008). Primary flavonoids in marigold dye: extraction, structure and involvement in the dyeing process. Phytochemical analysis : PCA, 19 (1), 46-51 PMID: 17654539
[4] http://en.wikipedia.org/wiki/Luteolin
[5] http://naukadlazdrowia.pl/szafran-na-dobry-nastroj-i-zdrowie
[6]Forrai G, Bánkövi G, & Vágújfalvi D (1982). Betaninuria: a genetic trait? Acta physiologica Academiae Scientiarum Hungaricae, 59 (3), 265-82 PMID: 6891987
[7] http://en.wikipedia.org/wiki/Beeturia
[p]  https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1962.tb06294.x
[8] http://en.wikipedia.org/wiki/Quercetin



Polecam też ciekawy blog poświęcony naturalnym sposobom farbowania wełny:
http://riihivilla.blogspot.com