informacje



Pokazywanie postów oznaczonych etykietą chemia i życie. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą chemia i życie. Pokaż wszystkie posty

czwartek, 14 sierpnia 2025

Chemia na komary

Jeśli pryskamy się czymś na komary, to jaka w tym siedzi chemia? I czy można ją zastąpić czymś naturalnym?





DEET
N,N-dimetylo-m-toluamid to stosunkowo prosty związek chemiczny, będący najpopularniejszym i prawdopodobnie najdłużej działającym odstraszaczem komarów.

   Wynaleziony w latach 40. z myślą o ochronie żołnierzy walczących w warunkach tropikalnych, wprowadzony do cywilnego obrotu w latach 50. Patenty na różne metody syntezy dawno wygasły, dlatego produkuje go wiele firm i stanowi podstawowy składnik wielu środków na odstraszanie komarów, moskitów, gzów i kleszczy, a nawet pcheł i innych owadów gryzących.
  Mechanizm działania nie jest do końca jasny. W wysokich stężeniach działa jak środek owadobójczy, ale nie tłumaczy to odstraszania. Sądzono, że blokuje u komarów wyczuwanie dwutlenku węgla lub innych substancji zapachowych skóry, po których wyczuwają one swe ofiary. Wyniki eksperymentów na owadach są niespójne - w jednych stwierdzono, że DEET zmniejsza lotność skórnych substancji zapachowych, ale są też eksperymenty wskazujące na to, że u części gatunków komarów środek ten jest wyczuwany jako nieprzyjemnie, drażniąco pachnący, i skłania do odlatywania dalej od opryskanych miejsc. Część gatunków prawdopodobnie jest jedynie zniechęcana do żerowania podczas kontaktu z pokrytymi środkiem powierzchniami, a więc tracą ochotę na gryzienie gdy usiądą na opryskanym miejscu.
  Niemniej eksperymenty potwierdzają, że DEET zapobiega ugryzieniom komarów i innych owadów niezależnie od mechanizmu. Czas ochrony zależy od warunków, rodzaju powierzchni i stężenia środka z preparacie. Przy stężeniach 50% i większych czas ochrony skóry to nawet 12 godzin, niższe  skracają ten czas do około 3 godzin przy stężeniu 20%.

  Jeśli chodzi o szkodliwość, to substancja jest stosunkowo bezpieczna. Wchłanianie przez skórę nie jest zbyt szybkie. Dawka wywołująca toksyczność ostrą LD50 to 1100 mg/kg m.c. w zasadzie więc poza przypadkami niezamierzonego lub celowego wypicia preparatu nie obserwuje się ciężkich zatruć. Efekty częstego narażenia na dawki typowe przy zwykłym zastosowaniu są bardziej subtelne i czasem trudno określić co właściwie jest ich przyczyną. Przykładem może być często cytowane badanie na temat pracowników Parku Narodowego Everglades, na bagiennych terenach Florydy, którzy stosując repelenty zawierające DEET codziennie podczas pracy, zgłaszali takie objawy jak senność, bóle głowy, podrażnienia skóry. Kwestią sporną jest w tym przypadku to, że repelenty zawierają jeszcze inne substancje, niż ta główna czynna i objawy równie dobrze mogą wynikać z innych przyczyn niż samo DEET. Częściej rejestruje się negatywne skutki przy niewłaściwym stosowaniu. Producenci odstraszaczy zwykle radzą aby napryskiwać preparat na dłonie i rozsmarowywać na odsłonięte części ciała. Pryskanie bezpośrednio na twarz lub opryskiwanie całego ciała w pomieszczeniach, narażają użytkowników na wdychanie aerozolu i lotnych rozpuszczalników.

Nie wykazano, żeby związek działał mutagennie czy rakotwórczo. Analiza związku wykrytego stężenia we krwi na czynniki zapalne nie wykazała wpływu. 

https://pmc.ncbi.nlm.nih.gov/articles/PMC7410448/

Jedną z wad DEET jest też pozostawianie tłustej warstwy oraz działanie jak rozpuszczalnik niektórych tworzyw sztucznych. Zgłaszano już rozpuszczanie szkiełek zegarkowych, okularków pływackich, uszkadzanie lakierów czy przedmiotów z polistyrenu (sprzęt turystyczny, styropianowe opakowania na żywność). Zastosowany na odzież może osłabić materiał ze sztucznej wiskozy, stroje sportowe lycra/spandex. Jest to jednak problem, który pojawia się też u niektórych alternatyw, olejki eteryczne z cytrusów także dobrze rozpuszczają polistyren i różne lakiery. 


Ikarydyna
Kolejny syntetyczny środek, stosunkowo nowy - wprowadzony na rynek europejski w 2001 roku, dlatego mniej popularny. W odróżnieniu od DEET ma dużo mniejsze wchłanianie przezskórne oraz słabsze działanie podrażniające, dlatego jest uważany za bezpieczniejszy przy użyciu bezpośrednio na ciało. Substancja prawdopodobnie blokuje u komarów odczuwanie zapachu, przez co nie może on namierzyć ofiar. Ma też pewien stopień odstraszania gzów, kleszczy.

W testach porównujących DEET i Ikarydyne w stężeniu 20% nie było różnicy w działaniu. DEET wygrywał w preparatach o wyższym stężeniu, ale te są mniej popularne. Preparaty z tą substancją nie powinny rozpuszczać tworzyw sztucznych. 


IR3535 

Pod względem chemicznym to bardzo prosta cząsteczka - butylo-acetylo-aminopropionian etylu


  Jest to więc amina trzeciorzędowa, w której do atomu azotu podłączone są trzy grupy: czterowęglowa butylowa, acetylowa czyli reszta kwasu octowego i ester etylowy kwasu propionowego. Można go też traktować jak pochodną aminokwasu beta alaniny. 
Prawdopodobnie działa jako zapach nieprzyjemny dla komarów. Przy stężeniu 20% działa do 5 godzin. Dla ludzi jest prawie bezwonny. Ma szerokie spektrum działania, oprócz typów komarów roznoszących choroby, działa też na kleszcze, meszki i wszy. Prawdopodobnie to najmniej toksyczny repelent. Jest słabo ale jednak rozpuszczalny z wodzie, więc w wilgotnych warunkach lub pod wpływem potu może się szybciej zmywać. 
Za zaletę uznaje się też to, że w środowisku łatwo ulega biodegradacji, więc nie staje się kumulującym zanieczyszczeniem. 

Złocień, pyretoidy i spirale
Znane wszystkim spiralne kadzidełka przeciwko komarom to wynalazek japoński, który co ciekawe często produkowany jest z roślin.
 
Od wieków na bliskim wschodzie znane były owadobójcze właściwości pyretrum - wyciągu otrzymywanego z drobnej rośliny z rodziny astrowatych, której klasyfikacja botaniczna zmieniała się kilka razy. W języku polskim najlepiej znana jest jako złocień dalmatyński, czasem jako chryzantema , w nowszych ujęciach opisuje się ją jako wrotycz starcolistny. Roślina była palona cała aby okadzać pomieszczenia, a proszek z niej używany do wcierania i przesypywania ubrań przeciwko pchłom i wszom. Najwięcej toksyn zawierają nasiona, z których możliwe jest wyekstrahowanie brunatnej oleożywcy. Przez długi czas pyrethrum było głównym towarem eksportowym Kenii, gdzie prowadzono duże uprawy. 



W XIX wieku w Japonii znane było kadzidło oparte o proszek pyrethrum, trociny i różne dodatki, formowane w różne kształty. Jeden z wytwórców takich kadzideł, Eiichro Ueyama,  skupiał się na otrzymaniu produktu palącego się możliwie jak najdłużej. Dodawał do masy dodatki spowalniające palenie, zwiększał grubość pałeczki i wydłużał ją aż niestety rozmiar stał się niewygodny. Pracująca z nim żona Yuki zaproponowała w końcu, że długie pałki kadzidła będą się mieściły w mniejszej przestrzeni jeśli się je skręci w kółko. Dalsze próby i testy doprowadziły do powstania kadzidełka w formie spirali, który to kształt otrzymywano skręcając wilgotny pręcik ręcznie. Pierwsze ich spirale na komary pojawiły się na rynku w 1902 roku. 

Głównymi substancjami czynnymi pyrethrum są podobne związki Pyretryna, Cyneryna i Jasmolina o bardzo podobnej budowie, z charakterystycznym motywem trójkątnego pierścienia cyklopropanowego połączonego z resztą cząsteczki przez wiązanie estrowe: 

Są to środki owadobójcze działające na układ nerwowy. W mniejszych stężeniach działają na owady drażniąco i odstraszają je od pomieszczeń. W wyższych stężeniach działają porażająco, w mniejszym stopniu zabijająco. Działanie na układ nerwowy ssaków jest dużo słabsze ze względu na szybki metabolizm. Naturalne pyretryny mają niską trwałość, rozkładają się pod wpływem światła słonecznego, wilgoci i bakterii glebowych - co w pewnych zastosowaniach jest zaletą - przez co czas działania nie jest długi. Aby poprawić ich właściwości zaczęło tworzyć związki syntetyczne o podobnej budowie, Pyretroidy. I często to one, obok mniejszej domieszki naturalnego pyrethrum, są dziś składnikami spiral na komary, sprejów i nasączanych moskitier.

Najszerzej stosowana jest chyba permetryna, stosowana w sprejach, wkładkach zapachowych, dtfuzorach, maściach, szamponach i innych preparatów. Pojawia się w preparatach leczniczych ze względu na działanie na świerzb i wszy. Moskitiery są czasem nią nasączane. Pojawia się w obrożach przeciw pchłom u psów. Stanowiąca jeden z pierwszych pyretroidów alletryna jest dziś znana też jako główny składnik spreju Raid. Metoflutryna została dopuszczona w UE jako składnik waporyzatorów elektrycznych wkładanych do gniazdka. W opryskach do stosowania wokół domu, na trawę i ściany, na komary, meszki i wszy pojawia się często Cyflutryna

Syntetyczne pyretroidy nie działają przez odstraszenie owada - działają na niego szkodliwie, może poczuć wpływ po dotknięciu spryskanej powierzchni lub wskutek par w powietrzu. Mniejsze dawki dezorientują owada, są odbierane nieprzyjemnie, zniechęcają do żerowania. większe porażają układ nerwowy - ale jeśli owad spadnie na podłogę i nie zostanie wymieciony, po jakimś czasie się ocknie. Odpowiednio duże stężenia działają owadobójczo.

Pyretroidy choć zwykle szybko metabolizowane, nie są zupełnie obojętne. Narażenie na preparaty do oprysków z wyższym stężeniem mogą powodować pieczenie i podrażnienie skóry, wdychanie aerozolu może wywołać nudności i zwroty głowy, rzadziej duszności czy osłabienie. Fenotryna będąca składnikiem preparatów na wszy działa antyandrogennie, co może być czasem kłopotliwe przy wysokim narażeniu. Zanotowano wyraźnie zwiększoną częstość ginekomastii, spadku libido i zmian owłosienia u migrantów z Thaiti, którzy byli traktowani w ośrodkach dla uchodźców szamponem przeciw wszom, oraz regularnie spryskiwani po ciele i po pościeli sprejem o takim działaniu - oba środki zawierały ten sam składnik czynny. Może to mieć znaczenia o osób o już niskim wyjściowo poziomie testosteronu. Przypadkowe wypicie preparatów może wywołać ostre zatrucie, z wymiotami, drżeniem mięśni, śpiączką, obrzękami

Na różnego typu pyretroidy szczególnie wrażliwe są koty. Zdarzały się przypadki śmiertelnego zatrucia po założeniu kotu obroży przeciw pchłom dla psów. U większości ssaków związki tego typu są metabolizowane i usuwane dzięki enzymowi glukuronylotransferazie, który u kotów zwykle nie działa lub ma niska aktywność; dlatego środki na komary kumulują się w ich organizmie i wywołują porażenie układu nerwowego (ten sam brak enzymu powoduje nadwrażliwość na paracetamol).

 https://en.wikipedia.org/wiki/Mosquito_coil

Eukaliptus cytrynowy



Olejek eteryczny z liści australijskiego drzewa Corymbia citrodora, nazywanego eukaliptusem cytrynowym, często wymieniany jest jako trzeci polecany środek, zaraz po wymienianych tu syntetykach. Jego skuteczność i trwałość jest dosyć wysoka. Olejek z liści jest bogaty w cytronellol, związek o zapachu cytrynowym, który już sam w sobie odstrasza komary. Odkryto jednak, że głównym składnikiem czynnym jest występujący w zaledwie kilku procentach para-mentano-3,8-diol czyli PMD (czasem stosowana jest nazwa dihydroksycytrol). W handlu dostępny jest olejek rafinowany o zawartości PMD do 70%. Czysta substancja czynna ma zapach miętowy.
Skuteczność odstraszania komarów jest wysoka. Przy stężeniach rzędu 20-30% chroni skórę przed większością gatunków komarów, zależnie od warunków i obecności w preparacie utrwalaczy zmniejszających lotność, nawet do 4 godzin.
Mechanizm działania nie jest jasny, w jakiś sposób PMD zniechęca komary do żerowania nawet jeśli usiądą na skórze, natomiast raczej nie odstrasza ich, co zresztą sam na sobie obserwowałem (gryzły tylko w miejsca nieposmarowane). Owady narażone na ten związek były mniej chętne żerować
https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-011550_01-Apr-00.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023277/ 

Czyli środki z PMD to zamienniki syntetycznych, i są preparatami zawierającymi w pełni naturalną substancję czynną? Cóż, trochę tu się przyczepię. Na opakowaniach preparatów można znaleźć dość skomplikowaną formułę, mówiącą o olejku eterycznym cyklizowanym, zgodnie ze zmienionym nazewnictwem. Jeśli coś zostało cyklizowane, to znaczy że coś bez pierścieni zamieniło się w coś z pierścieniami. A zatem została dokonana jakaś przemiana.

Rzecz w tym, że stanowiący główny składnik olejku cytronellol może w warunkach kwaśnych ulegać cyklizacji z wytworzeniem właśnie PMD. I taka reakcja następuje biochemicznie w eukaliptusie, gdzie jednak przemianie ulega tylko kilka procentów.  Dlatego można olejek docyklizować dalej poddając go reakcji z jakimś kwasem. Powstały produkt jest więc przetworzony dla zwiększenia zawartości cennego składnika, ale nie został wcześniej oczyszczony. Olejek cyklizowany jest więc w najlepszym razie surowcem pół-syntetycznym. 



P
Olejki i zioła

Substancji aromatycznych mogących przydać się przeciwko komarom jest wiele, ale nie każda jest tak samo dobra. Popularne portale przypisują jak widzę zdolność odstraszania komarów dowolnym roślinom o wyraźnym zapachu, często bez dowodów lub z dowodami anegdotycznymi.  Niektóre substancje jedynie zabijają zapach naszego ciała, inne wykazują bardziej specyficzne działanie, różne dla różnych komarów.
W analizie aktywności składników kopru włoskiego stwierdzono, że 5% fenchol wykazuje aktywność odstraszającą na poziomie 82-94% działania DEET w podobnym stężeniu, przy czym fenchol działał na skórze przez pół godziny a DEET przez godzinę. Zwiększenie stężenia DEET pozostawiało olejek daleko w tyle. [f] Pewien stopień odstraszania wywoływały olejki z kocimiętki, bazylii, rozmarynu, mirtu cytrynowego, niepokalanka, pieprzu czarnego czy kurkumy, z czasem działania wahającym się od 1 do 3 godzin zależnie od stężenia i formy preparatu. 
Wanilina, składnik ekstraktów z wanilii, ma pewien stopień działania, ale zwykle dość krótki. Dodana do innych olejków lub do syntetycznych repelentów zwiększa ich skuteczność.

Cytronellal, Cytronellol, Geraniol 
Trzy podobne do siebie, i często współwystępujące składniki olejków eterycznych, które też wykazują pewien stopień odstraszania komarów, działają na skórze do 3-4 godzin. Ponieważ są odbierane jako przyjemne zapachy, są częstym składnikiem antykomarowych opasek, świec i kadzidełek. . Najbardziej obfitują w nie olejek geraniowy, z trawy cytrynowej, z limonki, palmorozowy, różany, neroli, w mniejszym stopniu cytrynowy ze skórki

Witamina B.
Witamina B1 czyli tiamina ma charakterystyczny zapach, przez wielu kojarzony z zapachem "leków w aptece". Po zażyciu większej dawki witaminy, zapach może być wyczuwalny w pocie. To też spowodowało, że według reguły "cokolwiek co pachnie" zaczęto polecać nacieranie się roztworem witaminy przeciwko komarom.
Przegląd badań z 2022 roku pokazuje jednak, że to mit - witamina B nie odstrasza komarów
https://pubmed.ncbi.nlm.nih.gov/35199632/ 

----
[f] https://pubs.acs.org/doi/10.1021/jf020504b

sobota, 19 lipca 2025

Chemiczne wieści (31.) - Starożytny kosmetyk, nowa forma azotu i złoto

Nowa odmiana alotropowa azotu o potencjale wybuchowym

Odkrycie nowej molekularnej odmiany alotropowej pospolitego pierwiastka, która nie jest po prostu faza krystaliczną o innym ułożeniu cząsteczek, to w ostatnich latach raczej rzadkie odkrycie. Tworzy się takie nowe odmiany głównie dla węgla, a dla innych niemetali większość takich dokonań miała miejsce lata temu.

Dlatego ostatnie odkrycie na temat azotu jest interesujące - stworzono cząsteczkę złożoną wyłącznie z azotu, która jest obojętna elektrycznie i nie wymaga ultra niskich temperatur aby istnieć, udało się ją w pewnych warunkach zagęścić do cieczy. Oraz jest bardzo energetyczna i ma potencjał wykorzystania w materiałach wybuchowych. 

Najbardziej znaną formą azotu jest cząsteczka dwuatomowa, w której atomy są połączone silnym wiązaniem potrójnym, z kolei cząsteczki oddziałują między sobą jedynie przez słabe siły van der Waalsa, dlatego pierwiastek naturalnie jest gazem o bardzo niskiej temperaturze wrzenia. Ten fakt wysokiej energii wiązania tej formy azotu i gazowej formy powoduje, że przemiany innych związków azotu do cząsteczki dwuatomowej wiążą się z wydzieleniem dużej ilości energii i dużą zmianą objętości. Na tym w dużej mierze polega działanie wielu azotowych materiałów wybuchowych; podczas eksplozji TNT z jednego mola związku powstają trzy mole dwuatomowego azotu. 

Rodnik azydkowy


Od dawna znaną formą był jon azydkowy, w którym trzy azoty są połączone liniowo, dając niestabilny anion. Jego sole z metalami ciężkimi, azydki, to materiały wybuchowe używane w spłonkach. W 1956 otrzymano jego obojętną elektrycznie odmianę trójazot, jest to wolny rodnik ze względu na niesparowany elektron. W 2003 roku doniesiono też o formie pierścieniowej, w kształcie trójkąta.

Większy liniowy analog czteroazot jest nietrwałym gazem, który w temperaturze pokojowej łatwo rozkłada się na dwie cząsteczki dwuatomowe; stabilniejsze są jego kationy. Wykroto go jeszcze w latach 50. ale mało wiadomo o jego właściwościach. W 1999 roku odkryto kation pentazyny, który daje nietrwałe sole, jednak cząsteczki obojętnej nie wyizolowano. Istnieje cykliczna forma pentazol.

Skoro więc mamy formy zawierające 2,3,4 i 5 azotów, to czemu nie dalej? Cykliczna heksazyna pozostaje na razie hipotetyczna, ale formę liniową, sześcioazot, właśnie wykryto i wyizolowano. Można by ją opisać jako dimer rodnika triazynowego. W odmianie o największym udziale sklada się z dwóch częściu o strukturze liniowego rodnika triazynowego, połączonych wiązaniem pojedynczym i o układzie trans. Długości wiązań i geometria układu sugerują, że w uśrednionej strukturze udział ma też forma mezomeryczna z wiązaniem podwójnym pośrodku. 

Synteza nowego alotropu okazała się dość prosta i łagodna - badacze przepuszczali gazowy chlor przez porowatą warstwę azydku srebra pod niskim ciśnieniem - i w temperaturze pokojowej! Sygnał nowej cząsteczki wykryto poczatkowo metodami spektroskopii IR; potem powstające gazowe produkty były zbierane na ochłodzonej powierzchni. Początkowo zimną matrycą był zestalony argon o temperaturze 10K, potem udało się też wykorzystać powierzchnię schłodzoną ciepłym azotem (77K). Sześcioazot utworzył czystą warstwę w tej temperaturze. Ponieważ istnieje bariera energetyczna przegrupowania do trzech cząsteczek N2, związek ten ma pewna stabilność.

Według obliczeń rozkład tego związku na trzy cząsteczki azotu skutkuje uwolnieniem energii 180 kcal/mol, co stanowi 2,2 razy więcej niż przy rozkładzie trotylu TNT. Oczywiście tej konkretnie cząsteczki raczej się nie zastosuje jako materiału wybuchowego, jest za bardzo reaktywna, ale może w przyszłości uda się otrzymać bardziej stabilną strukturę opartą na jej formie. Przychodzi mi też do głowy możliwość wykorzystania jako materiał pędny w warunkach kosmicznych, gdzie bez izolacji cieplnej wszystko jest dostatecznie zimne aby można było przechowywać heksanitrogen. 

https://www.nature.com/articles/s41586-025-09032-9

Makeup sprzed 2700 lat

Wazonik na Kohl i patyczek do aplikowania,
okres Nowego Państwa, Starożytny Egipt. 
Met Museum


Na starożytnym cmentarzu Kani Kofter koło Dere Pemeyan w Iranie, w grobie z trzeciej fazy epoki żelaza, a więc sprzed około 2700 lat, znaleziona została ceramiczna fiolka, która była na tyle szczelnie zamknięta, że zachowała się jej zawartość. Czarny pigment był prawdopodobnie lokalną formą kosmetyku Kohl, znanego w starożytności w Egipcie i na Bliskim Wschodzie. Kohl służył do przyciemniania powiek i podkreślania brwi. Dziś w nawiązaniu do tej tradycji kohlem nazywa się preparaty do konturowania oka, przyciemniania powiek czy rzęs

Nakładające się analizy przy pomocy technik: spektroskopii Ramana, XRF i rentgenowskiej krystalografii proszkowej pozwoliły rozwiązać skład. Głównymi czarnymi pigmentami okazał się tlenek manganu w formie piroluzytu oraz grafit mineralny, mniejszą domieszkę stanowiły tlenki żelaza. Oprócz nich mniejszy składnik stanowiły minerały ilaste, kwarc i skaleń, być może stanowiące bazę lub będące zanieczyszczeniem z ceramicznych naczyń w których przygotowywano pigment. Nie znaleziono natomiast żadnych pozostałości po organicznych lepiszczach - niektóre składniki takich kosmetyków, jak guma arabska czy białko jaja mogły się rozłożyć, ale lipidy z tłuszczu zwierzęcego czy terpenoidy z wyciągów roślinnych powinny dać jakiś ślad. Możliwe więc, ze pigment był przechowywany jako suchy proszek a do zastosowań kosmetycznych był rozrabiany lub używano go na sucho.

Użycie jaki pigmentu grafitu jest nietypowe jak na podobne starożytne czernidła, w dodatku najwyraźniej jest to grafit mineralny a nie sadza. Częściej starożytny kohl zawierał siarczek arsenu, czarne tlenki żelaza i manganu, a jeśli już pojawiał się węgiel to w formie sadzy czy czerni kostnej. Można to jednak wyjaśnić dostępnością surowca - w rejonie Iranu, z którego pochodziła buteleczka, wydobywano grafit i używano na przykład do wykańczania powierzchni ceramiki. Archeolodzy spekulują, że mogły zadecydować też względy użytkowe; grafit daje metaliczny połysk oraz jego cząstki dobrze trzymają się skory. Tradycyjnie używane w takich formułach minerały stibnit, czyli siarczek antymonu, i galena czyli siarczek ołowiu, także mają połysk podobny do grafitu. 

https://onlinelibrary.wiley.com/doi/10.1111/arcm.13097

https://archaeology.org/issues/may-june-2024/digs-discoveries/near-eastern-lip-kit/

Przypomina to zeszłoroczne odkrycie czerwonej maści, może czerwieni do powiek a może szminki, sprzed 4000 lat w irańskiej miejscowości Jiroft. Substancja znaleziona w kamiennej fiolce zawierała głównie czerwony hematyt, z dodatkiem ciemniejszych pigmentów manganitu i braunitu i domieszką anglezytu, i była zmieszana ze spoiwem z roślinnych wosków, oleju i być może jakimś materiałem roślinnym. Wypadkową tego składu powinna być ciemnoczerwona maść. Spoiwo organiczne datowano metodami radioweglowymi na zakres od 1936 do 1687 p.n.e.

https://www.nature.com/articles/s41598-024-52490-w

Elektroosadzanie złota w kwarcu

Złoto jest generalnie pierwiastkiem rzadkim i jego przeciętne stężenie w skałach skorupy ziemskiej jest niskie. Najczęściej pojawia się jako domieszka w rudach innych metali, miedzi, srebra, arsenu, czasem jako rzadkie minerały w połączeniu z tellurem. Rozproszone skupiska w postaci metalicznej zostają wyseparowane przez erozję i tworzą wtórne złoża w żwirach rzecznych, gdzie złoto zagęszcza się we frakcji ciężkich ziaren. Najbardziej jednak cenione są złoża żyłowe rodzimego złota, gdzie wydrążenie szybu wzdłuż osi żyły daje bardzo korzystny stosunek produktu do skały płonnej. Dlatego też takie złoża są poszukiwane i badane są warunki ich powstawania.

Złoto na kwarcu, Kalifornia


Jednak mechanizm powodujący, że rządki pierwiastek skupia się w lite skupienia w wąskich szczelinach skalnych, nie jest do końca jasny. Złoto pojawia się wtedy w wąskim paśmie w obrębie szczeliny lub wzdłuż osi przecięcia dwóch szczelin, towarzyszy mu kwarc i piryt. Krystaliczny kwarc powstaje w wyniku osadzania krzemionki w warunkach hydrotermalnych, z przegrzanej wody z rozpuszczonymi minerałami, utrzymywanej przez ciśnienie grubo powyżej 100 stopni C w stanie płynnym. Skała musi być więc zakopana pod osadami na dużej głębokości, ma kontakt ze złożami hydrotermalnymi, które są podgrzewane przez systemy wulkaniczne, a szczeliny powstają w wyniku ruchów sejsmicznych. Problem w tym, że rozpuszczalność złota i jego związków w takich wodach podziemnych jest bardzo niska, żyły złotonośne mogą być bardzo cienkie i żeby osadzić aż tyle pierwiastka, przez wąski przekrój żyły musiały przepłynąć jakieś nieprawdopodobne ilości takiej wody. 

W ostatnich latach proponowano dla takich sytuacji alternatywne rozwiązania, jak powstawanie nanoczątek złota, które omijają ograniczenia rozpuszczalności, i agregują się w żyłach na zasadzie przemiany zol/żel. Teraz pojawiła się bardzo ciekawa propozycja, poparta eksperymentem, która może się okazać słuszna. 

O kryształach kwarcu wiadomo od dawna, że jest piezoelektryczny - odkształcenie mechaniczne kryształu generuje ładunki elektryczne, nieraz na tyle duże, że powodujące przeskok iskry. Wykorzystuje się to od dawna choćby w zapalniczkach gazowych. Skoro więc w żyle powstają kryształy kwarcu, w wyniku ruchów tektonicznych są one poddawane naprężeniom, i są zanurzone w roztworze zawierającym sole metali, to może złoto wydziela się poprzez znany od dawna proces elektroosadzania? 

W ramach testu zanurzono kryształy kwarcu w roztworze soli złota (w teście laboratoryjnym był to najwyraźniej chlorozłocian) i poddano je naciskowi. Po upływie dłuższego czasu obejrzano kryształy pod mikroskopem. Wytrąciło się złoto! Powstały krystaliczne nanocząstki złota, miejscami warstwy pokrywające powierzchnię. Nowe porcje złota chętniej dołączały się do już utworzonych wytrąceń, które działały jak elektroda i zbierały z powierzchni ładunek. Tym sposobem narastanie bryłek jest dużo szybsze niż powolne, samoistne wytrącanie przy przekroczeniu granicy rozpuszczalności. 

Przy czym ten proces wcale się nie wyklucza z wcześniejszą propozycją, może on tworzyć nanocząstki złota, które potem przyłączają się do agregatów. 

https://www.nature.com/articles/s41561-024-01514-1#citeas


piątek, 4 marca 2022

Opinia chemika czemu łykanie płynu Lugola nie ma sensu

 Ponieważ od kilku dni widzę zwiększony ruch we wpisach na temat jodu a ludzie donoszą mi o panice w aptekach i wykupowaniu płynu Lugola, krótkie wyjaśnienie w kilku logicznych punktach czemu to może nie być taki dobry pomysł, aby się nim teraz "zabezpieczać". 

1. Płyn Lugola to roztwór pierwiastka jodu w wodnym roztworze jodku potasu; jodyna to roztwór jodu w alkoholu. Stąd ich brązowo-pomarańczowy kolor.

2. Pierwiastkowy jod, podobnie jak pokrewny mu chlor, jest silnym utleniaczem, ma działanie drażniące i parzące, kiedyś był używany do dezynfekcji ran gdy nie było lepszych środków, bo jest tani w produkcji. Stężone roztwory wywołują poparzenie przełyku.

3. Ze względu na silnie utleniające i drażniące działanie, po łyknięciu roztworu następuje atak na tkanki żołądka i jelit, ich podrażnienie i pogorszenie ogólnego stanu. To nie jest zbyt dobre dla żołądka i przełyku. 

4. Organizm i tak nie jest w stanie wykorzystywać jodu w formie pierwiastkowej, bo wchłania i przetwarza jodki, czyli formę jonową, która nie ma działania utleniającego i podrażniającego. Nie ma więc potrzeby łykania roztworu pierwiastkowego jodu, bo ta forma wcale nie jest jakaś lepsza od innych form.

5. Jod nie ma cudownego działania chroniącego przed wszelkim promieniowaniem. Ekspozycja na izotopy uranu nie zostaje przez niego powstrzymana. Jod chroni tylko i wyłącznie przed wchłonięciem do organizmu radioaktywnego izotopu jodu-128, produktu rozszczepienia uranu w reaktorach lub bombie, który może potem zaszkodzić tarczycy. Podanie bardzo wysokiej dawki jodu lub jodków jonowych wywołuje efekt blokujący - na kilka dni tarczyca zatrzymuje wytwarzanie hormonów, bo jest przeładowana nadmiarem jodu. Jod nie powstrzymuje wchłaniania radioaktywnego cezu, strontu czy radu, bo to zupełnie inne pierwiastki.

6. Czemu więc po Czarnobylu podawano płyn Lugola dzieciom? W latach 80. sól nie była w Polsce w ogóle jodowana i przeważająca większość Polaków miała niedobór. Było więc jasne, że organizmy zaczną wchłaniać każdą ilość z jaką mają kontakt. Z drugiej strony tabletki z jodkiem potasu nie były popularne i mało aptek je miało. Natomiast płyn Lugola, zawierający i jod i jonowe jodki, był w każdej aptece jako środek dezynfekujący i nie było problemu aby z magazynów farmaceutycznych dostarczyć dostateczną ilość. Wybrano więc ten środek do masowej akcji nie dlatego, bo posiada wyjątkową zdolność uodparniania na wszelkie promieniowanie, tylko dlatego, bo nic lepszego nie było tak szeroko dostępne. 

7. Od roku 1997 obligatoryjnie joduje się w Polsce sól kuchenną i niedobór tego pierwiastka jest marginalny. Nie ma już przypadków wola z niedoboru, nie rodzą się dzieci z kretynizmem. Sytuacja jest więc zupełnie inna niż w 1986 roku i nasze tarczyce nie łakną jodu tak bardzo, że zassą każdą porcję z jaką się zetkną.

8. Efekt blokowania pracy tarczycy dużymi dawkami jodu działa tylko kilka dni a kolejne dawki tego czasu nie przedłużają. 

9. U niektórych osób organizm reaguje nieprawidłowo - nie następuje zablokowanie tarczycy i pojawia się indukowana nadczynność (Jod-Basedov). https://pubmed.ncbi.nlm.nih.gov/31334997/

10. U innych osób powtarzające się narażenie na wysokie dawki jodu wywołuje indukowaną niedoczynność tarczycy: https://pubmed.ncbi.nlm.nih.gov/34674109/

11. Narażenie na wysoką ilość jodu w pożywieniu, zwłaszcza połączone z niedoborem selenu, sprzyja rozwinięciu się choroby Hashimoto https://pubmed.ncbi.nlm.nih.gov/25050783/ 

12. Nie ma informacji aby miało właśnie miejsce jakieś skażenie, a sieć stacji monitorujących jest w tej części Europy gęsta i łatwo dostępna

13. Jeśli myślisz o łyknięciu Lugola na wszelki wypadek, bo doniesienia z internetu wywołały w tobie wewnętrzny niepokój, obudziły demony, i musisz się uspokoić - myślę że krople walerianowe będą skuteczniejsze. Poszukaj też informacji o technikach relaksacji, przy ostrym napadzie paniki możesz też zawsze zadzwonić na telefon porad dla osób w kryzysie psychologicznym 116 113 (czynny od 14 do 21)

14. Szacun walczącym Ukraińcom i jebać Putina.




piątek, 24 grudnia 2021

Mulisty smak karpia, ziemisty barszczyk i zapach jak po deszczu

 Gdy już zasiądniecie do wigilijnej kolacji, przełamiecie się opłatkiem i zabierzecie się za pałaszowanie dwunastu dań, to wówczas być może niektórych z was zastanowi jedna rzecz, o jakiej nie było mówione w szkole. Jeśli nawet dobrze obczyszczony karp smakuje trochę mułem z dna stawu, to czym właściwie smakuje?

Choć zapach jaki wydziela gleba, i jaki wydziela się z mulistych osadów, był znany od zarania dziejów, pierwsze badania na ten temat pojawiły się dopiero w XIX wieku, gdy to postanowiono sprawdzić co odpowiada za ten przyjemny zapach, jaki powstaje na początku deszczu, zwłaszcza po kilku dniach suchych. Po destylacji z parą wodną dużej ilości gleby odzyskano olejek eteryczny, składający się głównie z prostych terpenoidów. Wbrew oczekiwaniom nie pochodziły one z roślin, lecz były wytwarzane przez bakterie żyjące w glebie i wodzie.


 

Wszystkich produktów rozkładu roślin i metabolizmu bakterii jest bardzo wiele, ale w większości gleb i wód decydujące znaczenie mają dwa składniki występujące najczęściej - geosmina i 2-metyloizoborneol (MIB). Są to proste terpenoidy, które w czystej postaci są oleistymi cieczami, rozpuszczalnymi dobrze w tłuszczach a słabo w wodzie. Ludzki nos jest jednak mimo to bardzo silnie wyczulony na ich zapach, wyczuwając go nawet w stężeniu 400 części na milion. 

Substancje te są jednymi z ubocznych metabolitów licznych gatunków bakterii. Geosminę wytwarzają  głównie cyjanobakterie, będące organizmami fotosyntezującymi, występującymi głównie w wodach powierzchniowych i w wierzchniej warstwie wilgotnej gleby. Jej stężenie rośnie podczas zakwitów glonów i sinic. MIB wytwarzają także cyjanobakterie, ale ponadto też bakterie Streptomyces, znane jako glebowe patogeny roślin wywołujące choroby korzeni, na przykład gnicie bulw ziemniaków. Z warzyw, które mogą pochłaniać geosminę w trakcie wzrostu, często staje się wyczuwalna w korzeniach czerwonego buraka. W tym przypadku ziemisty zapach nie musi oznaczać porażenia przez bakterie.

Nie więc zaskakujące, że jesteśmy tak wyczuleni na ziemisty zapach - bakterie wytwarzające te związki mogą też tworzyć toksyny oraz być chorobotwórcze. Dlatego ewolucja przystosowała nas do wyczuwania, że jedzenie zostało skażone ziemią lub brudną wodą. Tego, że zechcemy zjadać rybę wylegującą się w mule, chyba nie przewidziała.

Związki te dość dobrze rozpuszczają się w tłuszczach, toteż tłuste ryby będą je akumulowały. Badano to już dla różnych gatunków. Jeśli woda w stawie zawierała geosminę lub MIB to w ciągu kilku dni ryba nabierała pewnego wyczuwalnego stężenia. Bakterie i glony nie musiały być przez rybę zjadane, wystarczył kontakt z wodą.  

Jak sobie z nimi poradzić? 

Najlepiej kupić ryby o dobrym smaku. Stężenie geosminy w rybie bardzo mocno zależy od wody w stawie, a jej jakość od gleby w jakiej staw był wykopany. Im bardziej torfiasta i zasobna w próchnicę gleba, tym więcej geosminy było w wodzie i w rybach. Częściowo można na to wpływać manipulując odczynem wody i warunkami natlenienia. Najważniejszym jednak sposobem usuwania niepożądanych zapachów, używanym na świecie też do małży i omułków, jest "płukanie" - umieszczenie żywej ryby w wodzie czystej. Rozkład geosminy i MIB w rybie następuje dość szybko, zwykle wystarczą dwa dni aby zapach stał się akceptowany. Im bardziej tłusta ryba tym wolniej to następuje.

A jeśli mamy już gotowa, ubitą rybę i podczas oprawiania wyszło, że wyjątkowo ten osobnik daje mułem trochę za mocno? Cóż, sprawdza się tu stara, dobra formuła - przyrządzić rybę w kwaśnej zalewie. Ma to podstawy naukowe. Zarówno geosmina jak i MIB ulegają w kwaśnych warunkach rozkładowi. Produkty rozkładu są bezwonne lub mają zapach kamforowo-żywiczny, ale dużo słabiej wyczuwalne. W publikacji badającej wpływ różnych kwasów na substancje w wodzie stwierdzono, że kwas cytrynowy rozkłada je łatwiej i w mniejszych stężeniach niż ocet. Wydaje się, że wynika to stąd, że jego roztwory są po prostu bardziej kwaśne. Bardzo łatwo rozkładał się metyloizoborneol, już od niewielkich dodatków kwasu. Geosmina była na rozkład bardziej oporna. [1]

Mogłoby to tłumaczyć czemu sposoby zmniejszania woni ryby czasem działają dobrze a czasem nie za bardzo. Ilości tych substancji w rybie mogą być różne, zależnie od warunków w stawie. Jeśli w karpiu dominuje MIB, to już niewiele soku z cytryny wystarczy aby zapach się zmniejszył. Jeśli dominuje geosmina, to kwasu potrzeba więcej. Ponadto im bardziej tłusta jest ryba, tym trudniej zachodzi rozkład, bo tkanka jest wolniej przenikana prze rozpuszczony w wodzie kwas. Stąd w jednym roku tak samo przyrządzony karp będzie smakował inaczej niż udało się w poprzednim roku.

------

[1]  https://www.researchgate.net/publication/275954147_Reduction_of_off-flavour_compounds_geosmin_and_2-methylisoborneol_using_different_organic_acids

https://journals.asm.org/doi/10.1128/AEM.02250-06

poniedziałek, 30 listopada 2020

Obrzydliwa chemia (1.)

Czyli wszystko to co was kiedyś zaciekawiło na lekcjach chemii, ale wstydziliście się zapytać.

Skąd smród wymiocin?
Zapach wymiocin w dużej mierze wiąże się ze składem jedzenia - posiłki z reguły zawierają mniejsze lub większe ilości tłuszczy, te zaś stanowią połączenie kwasów tłuszczowych z gliceryną. Kwasy tłuszczowe, gdy mają długą cząsteczkę, mają postać woskowatych ciał o niewyczuwalnym zapachu, czego przykładem stearyna, to jest kwas stearynowy zawierający 17-węglowy łańcuch. Inaczej jest gdy kwasy są krótkie - stają się wówczas łatwo krzepnącymi cieczami o charakterystycznym zapachu. Najkrótsze, to jest mrówkowy, octowy i propionowy mają zapach kwaśny, ale począwszy od masłowego (4 węgle), ich wonie stają się coraz bardziej nieprzyjemne.
Kwas masłowy, jak sugeruje nazwa, jest tym który powoduje niemiły zapach zjełczałego masła, dłuższe od niego kwasy kapronowy, kaprylowy i kaprynowy, zostały nazwane od kozy i odpowiadają za zapach kozła i koziego mleka.


Skąd wolne kwasy tłuszczowe w zawartości żołądka?
Już podczas przeżuwania pokarmu, miesza się on ze śliną zwierającą lipazy, trawiące tłuszcze. Pewne znaczenie ma też lipaza żołądkowa. W wyniku ich działania część kwasów tłuszczowych zostaje uwolniona do treści żołądka. Gdy zaś w wyniku skurczu żołądka jego treść zostanie uwolniona do otoczenia, woń tych kwasów staje się zauważalna. Pewne znaczenie mogą tu mieć też wolne aminokwasy i aminy.


Zapach wymiocin wywołuje obrzydzenie u innych ludzi, do tego stopnia iż może wywołać wymioty. Podobny efekt wywołuje widok wymiotującej osoby a czasem nawet sam odgłos. W szczególnych przypadkach może to doprowadzić do wymiotów większą ilość zdrowych osób, a nawet przerodzić się w masowa histerię. Uważa się, że jest to zjawisko adaptacyjne - reakcja wymiotna na widok innej wymiotującej osoby miała w dawnych małych społecznościach ułatwić pozbycie się zatrutego jedzenia i uniknięcie choroby.

Mdłości pojawiają się także podczas ciąży. Niekiedy pojawia się wręcz niezdrowa nadwrażliwość na niektóre bodźce i do wymiotów skłonić mogą zapachy i skojarzenia normalnie neutralne, utrudniając ważne przecież w tym okresie odżywianie. W niedawnym badaniu z Malezji stwierdzono, że w takim przypadku najskuteczniejszym prowokatorem mdłości są ryby i smak gorzki, produkty o konsystencji ciastowatej, smażone, z konkretnych dań gotowany ryż. Najlepiej badane znosiły jedzenie chrupkie, słodkie i surowe, na przykład jabłko lub arbuza. [n]
Kwas masłowy bywa używany w bombach zapachowych oprócz merkaptanów.

Na koniec kwestia z którą się często spotykam - jak usunąć zapach wymiocin? Kwasy tłuszczowe słabo rozpuszczają się w wodzie, ale dobrze gdy są w formie jonowej. Ponieważ są słabymi kwasami, aby je w taką formę przeprowadzić należy użyć zasady. Wydaje się więc, że do czyszczenia zanieczyszczonych powierzchni powinno się używać alkalicznych środków czyszczących lub na przykład sody.


Czym śmierdzi gówno?
Przemiany metaboliczne zasadniczo mają za zadanie rozłożyć na czynniki prostsze to co można wykorzystać i wbudować, oraz usunąć to co niepotrzebne. Czasem jednak drogi przemian biochemicznych prowadzą w nieoczekiwaną stronę. Na przykład pewien niezbędny aminokwas tryptofan jest w części utleniany i przerabiany 3-metyloindol, nazywany też skatolem i wydalany z kałem. Związek ten w dużych ilościach ma swój charakterystyczny, nieprzyjemny zapach, jednak w małych stężeniach woń staje się słodkawa. W niewielkich ilościach występuje w olejkach eterycznych z kwiatu pomarańczy i jaśminu chińskiego, i bywa używany w perfumach jako wzmacniacz zapachu. 



Odpowiada też za niemiły zapach mięsa niekastrowanych wieprzy i dzików. Ponieważ tryptofan najobficiej występuje w białku mleka i wieprzowinie, zaś najrzadziej w produktach zbożowych, łatwo się domyśleć, że zapach kału w dużej mierze zależy od diety.
Pewien wpływ ma też jeszcze bardziej skrócona pochodna tryptofanu - indol. Udział w przerobie aminokwasu do tego produktu mają enterobakterie zasiedlające wnętrze naszych jelit. Związek ten w dużych stężeniach ma woń nieprzyjemną, choć słabiej wyczuwalną niż w przypadku skatolu. W małych natomiast stężeniach nabiera miłego fiołkowego zapachu i jest istotnym składnikiem (ok. 2%) zapachu jaśminu, stąd też indol jest używany do produkcji sztucznych aromatów jaśminowych. Oczywiście nie izoluje się go do tych celów z odchodów, ale syntezuje za pomocą którejś z kilkunastu popularnych metod.
Do tych wyrazistych związków dokładają się merkaptany będące wynikiem przerobu aminokwasów zawierających siarkę.


Kolor kupy, sików i siniaków
W tym przypadku wszystko zaczyna się od krwi. Krwinki czerwone zawierające niezbędny do zaopatrywania organizmu w tlen barwnik hemoglobinę, mają pewien skończony czas życia, i po jego przekroczeniu lub po uszkodzeniu, są wyłapywane przez śledzionę zajmującą się ich bezpieczną utylizacją.
Hemoglobina składa się z białka globiny i aktywnej cząsteczki hemu, mogącej kompleksować tlen. Składa się z dość dużego pierścienia w kształcie z grubsza kwadratowym, z czterema azotami pośrodku, trzymającymi w kleszczach atom żelaza.
Pierwszym etapem rozpadu jest oderwanie żelaza i białka i rozerwanie pierścienia w jednym miejscu. Tak powstaje u-kształtna zielona biliwerdyna. Ta szybko jest redukowana i po odgięciu cząsteczki zamienia się w żółtą bilirubinę. Ponieważ wolna bilirubina jest słabo rozpuszczalna w wodzie a stosunkowo dobrze w tłuszczach i wobec nadmiaru, nazywanego żółtaczką, ma skłonność do gromadzenia się w skórze i mózgu, gdzie jest toksyczna, toteż organizm stara się tak ją przerobić, aby móc ją łatwo wydalić. Odbywa się to w wątrobie.


Wątroba sprzęga bilirubinę z kwasem glukuronowym, dzięki czemu całość staje się rozpuszczalna w wodzie, i dodaje tak powstałe połączenie do żółci, skąd też bierze się jej barwa. Żółć trafia do jelita a pochodna bilirubiny jest przerabiana przez bakterie jelitowe. Część, pod postacią urobilinogenu jest wchłaniana i wydalana z moczem, nadając mu żółtą barwę, a reszta jest utleniana i zamienia się w ciemnobrązową sterkobilinę, która zabarwia sami wiecie co.

Podczas żółtaczki związanej z niewydolnością wątroby proces usuwania bilirubiny z ustroju jest zaburzony. Gromadzi się ona w tkance łącznej i zabarwia skórą oraz białka oczu. Bardzo niewiele jest wydalane do jelit z żółcią, stąd kał nabiera szarego koloru.


Bardzo podobne przemiany mają miejsce w podskórnych wylewach krwi. Najpierw czerwona krew jest odtlenowana i staje się sino-niebieska, potem tworzy się biliwerdyna i stąd zielone przebarwienia. Dalszy rozpad do bilirubiny następuje gdy już siniaki się wchłaniają, dając nam okazję naocznie prześledzić opisane wyżej przemiany.

Kolor moczu może być zaburzony pod wpływem różnych czynników. W stosunkowo częstej betaninurii nieprzetrawiony wskutek niskiej aktywności soku żołądkowego czerwony barwnik buraka, zabarwia go na czerwono, wywołując efekt podobny do krwawienia. Na czerwono zabarwia się wówczas także kał. W podobny sposób mocz zabarwiają też inne silne barwniki - pamiętam że w sklepach ze śmiesznymi rzeczami można było kupić specjalne cukierki, które zabarwiały mocz poczęstowanych na różne kolory, jednym z takich barwników jest błękitny indygokarmin, na tyle chętnie wydalany tą drogą że czasem używa się go do badań czynności nerek. Efekt taki dawać mogą niektóre leki.
 Na niebiesko przebarwiać może błękit metylenowy spotykany w niektórych lekach. Połączenie niewielkich ilości niebieskich barwników z żółtym kolorem własnym zwykle daje zieleń. Oprócz tego na zielono może zabarwić nasz mocz amitryptylina, propofol oraz szparagi.
Na pomarańczowo może zabarwiać duża ilość ryboflawiny, także lek przeciwgruźliczy izoniazyd i fenazopirydyna używana w infekcjach dróg moczowych. W pewnym stopniu też dieta obfitująca w marchewkę. 
Istnieją też dwa szczególne stany chorobowe, które mogą wywoływać wrażenie zmiany koloru moczu. W "zespole niebieskich pieluszek" genetyczna mutacja powoduje zaburzenie wchłaniania tryptofanu, który gromadząc się w jelitach jest przerabiany na pochodne indolowe. Jedną z nich jest izatyna, która wchłonięta wydala się wraz z moczem, a po kontakcie z powietrzem utlenia się i dimeryzuje tworząc niebieski barwnik indygo. Ponieważ choroba ujawnia się już w okresie niemowlęcym, oznaką wystąpienia jest zazwyczaj niebieskie zabarwienie pieluszek.



Z kolei "zespół purpurowych worków na mocz" występuje u osób z założonymi cewnikami, w których na powierzchni  cewnika pojawiają się bakterie. Będący produktem przerobu indolu siarczan indoksylu wydalany wraz z moczem, jest przerabiany i utleniany przez bakterie, z wytworzeniem niebieskiego indygo i czerwonej indirubiny. Sam w sobie nie wywołuje dolegliwości ale jest oznaką dużego ryzyka zakażenia dróg moczowych.

---------

[n] https://www.nature.com/articles/s41598-020-61114-y

poniedziałek, 19 października 2020

Poison Story (11.) - Grzybek z ryzykiem

  Gdy człowiek zawodowo zajmujący się badaniem grzybów robi sobie z nich potrawkę, można w zasadzie być pewnym, że doskonale wie co takiego zebrał. Raczej trudno aby przez przypadek wkręcił mu się do garnka grzybek, o którym wiadomo, że jest trujący. A jednak natura potrafi zaskoczyć specjalistów.

  Taka sytuacja zaszła, gdy w październiku 1944 roku potrawkę grzybową przygotował niemiecki mykolog Julius Schäffer. W swoich zainteresowaniach naukowych skupiał się głównie na klasyfikacji i rozróżnianiu gatunków w rzędzie Pieczarkowców (Agaricales), zwłaszcza z rodzaju gołąbek, na temat którego napisał monografię.
  Najbardziej znanym jego wkładem w badanie grzybów jest test barwny, pozwalający rozróżniać gatunki pieczarek należące do różnych sekcji - na górnej powierzchni kapelusza smaruje się dwie krzyżujące linie - jedną roztworem aniliny w wodzie, drugą 65% kwasem azotowym. Pojawienie się pomarańczowej lub czerwonej barwy w miejscu skrzyżowania linii oznacza, że badana pieczarka należy do sekcji Flavescentes, poza tą grupą podobne zabarwienie daje jeszcze pieczarka płaska i p. karbolowa. Brak zabarwienia w teście dotyczy między innymi najpopularniejszej w sklepach pieczarki dwuzarodnikowej.

Mieszkając w Niemczech był przeciwny ruchom faszystowskim. Jego broszura o tym, jak rasizm podkopuje słuszną ideę wzmacniania narodowej tożsamości znalazła się wśród książek palonych podczas słynnej akcji niszczenia niewłaściwych publikacji w 1933 roku. W roku 1939 odszedł na wcześniejszą emeryturę i wyjechał na wieś w zachodniej części kraju.


Wróćmy jednak do jesieni 1944 roku. Podczas spaceru z żoną i studentkami seminarium nauczycielskiego nazbierał w lesie grzybów z rodzaju Paxillus, znanych im i dawniej chętnie jadanych. W Polsce grzyby te znane są pod wieloma nazwami: krowia gęba, świnka, tłustocha, olszówka, ostatecznie utrwaliła się jednak nazwa naukowa krowiak podwinięty. Niespełna godzinę po zjedzeniu gotowanych grzybów poczuł ból brzucha, pojawiło się też osłabienie i mdłości. Miejscowy lekarz nie dysponował zbyt zaawansowanym sprzętem, zrobił płukanie żołądka, które niewiele dało. Z powodu braku benzyny, wywołanego wojennymi niedoborami, badacz trafił do szpitala w Weilheim dopiero po dwóch dniach, gdzie jednak nie zdołano mu pomóc. Po 17 dniach od pechowego posiłku zmarł z powodu uszkodzenia nerek.


Krowiak podwinięty to stosunkowo częsty grzyb blaszkowy, osiąga do kilkunastu centymetrów średnicy. Rośnie pod różnymi drzewami, olchami, brzozami, nawet sosnami. Kapelusz początkowo wypukły, wyraźnie podwinięty do środka, w starszych owocnikach może stać się wklęsły i pofałdowany, ale zwykle zachowuje podwinięcie brzegu. Kapelusz brązowy w różnych odcieniach. Miąższ po przecięciu kremowo-żółtawy, po pewnym czasie zaczyna ciemnieć do koloru rudobrązowego. Owocnik nie wydziela mleczka, co odróżnia go od mleczajów z którymi teoretycznie mógłby być mylony.
Zasadniczo uważany za smaczny, ale dopiero po odpowiedniej obróbce. Spożyty na surowo lub po zbyt słabym obgotowaniu wywołuje dolegliwości żołądkowe. Z tego powodu był przyrządzany z odlewaniem wody po pierwszym zagotowaniu. Mógł być też kiszony w różnych zalewach i tak przechowywany dłuższy czas
 



Doniesienie o śmierci badacza wywołało duże zaskoczenie. Krowiak był w Niemczech może niezbyt ceniony, ale jednak jadany, wcześniej nie pojawiały się opisy podobnych sytuacji, które dało się powiązać tylko z tym czynnikiem. Należałoby uznać, że faktycznie w koszyku pojawił się jakiś jeszcze trujący grzyb, choć przebieg choroby nie bardzo pasował do znanych typów zatrucia. Aby jednak przyjąć to wyjaśnienie, należałoby uznać, że mykolog, specjalista od grzybów z tego rzędu, pomylił się przy grzybobraniu.
Wydarzenie to nie było może jakimś przełomem, ale od tego czasu zaczęto zwracać uwagę na możliwe powiązanie znanego, i często spożywanego grzyba z rzadko pojawiającą się, piorunującą w przebiegu chorobą, zachodzącą wraz z rozpadem czerwonych krwinek i wynikającym z tego uszkodzeniem organów.
Kolejne doniesienia o przypadkach choroby związane ze spożyciem krowiaka (syndrom Paxillis) zaczęły się pojawiać w latach 50. , w kolejnych dekadach notowano kilkanaście przypadków rocznie. Wspominany już w artykule o zasłonakach dr Grzymała opublikował w 1958 roku doniesienie o  przypadkach zatrucia w Polsce, wiążąc je jednak głównie ze zjedzeniem grzybów surowych lub źle przyrządzonych.[1] Problemem było natomiast wykrycie mechanizmu działania i tym samym potwierdzenie, że przyczyną jest grzyb jako taki a nie na przykład skażenie środowiska. Bywało, że objawy chorobowe rozwijały się gwałtownie u tylko jednej osoby z grupy, która jadła tą samą potrawę. Często poszkodowany wiele razy wcześniej jadł ten gatunek, bez żadnych szkodliwych następstw, do czasu. Stąd brały się przypuszczenia, że może przyczyną są pomyłki w określeniu gatunku, toksyny pasożytniczych pleśni, trucizny z gleby itp.
 Dlatego też, mimo pojawiających się sygnałów, jeszcze przez długi czas uważano krowiaka za grzyba jadalnego lub jadalnego warunkowo, po dłuższym obgotowaniu i wylaniu pierwszej wody

Dopiero w latach 80. pojawiły się prace, w których udało się odtworzyć efekt hemolityczny[2]. Mechanizm działania grzyba okazał się dość interesujący - zawiera on w sobie substancje działające jak antygeny, prawdopodobnie krótkie peptydy, które po wchłonięciu z jelit wiążą się z powierzchnią czerwonych krwinek. Początkowo organizm na nie nie reaguje, aż nagle... Zaczyna wytwarzać przeciwciała przeciwko antygenom krowiaka. Ponieważ są osadzone na powierzchni czerwonych krwinek, układ odpornościowy atakuje je i powoduje ich rozpad. Uwalnia to do krwi białka oraz hem z ich wnętrza. Nadmiar wolnego hemu jest toksyczny dla komórek, dodatkowo zaatakowane krwinki zlepiają się w mikroskrzepy. Sumarycznym efektem jest uszkodzenie wątroby, nerek i śledziony.
Jest to więc taki sam mechanizm, jakim organizm normalnie walczy z bakteriami i innymi obcymi ciałami, zarazem nie jest to wprost to samo co alergia. Zwykle pojawia się po którymś z kolei spożyciu, ale czasem wystarczy pierwszy raz.
Objawy mogą pojawiać się z różnym natężeniem i czasem, od godziny po zjedzeniu krowiaka do nawet kilkunastu godzin. Początkowo są to typowe problemy żołądkowo-jelitowe, ból brzucha, wymioty, biegunka. Z czasem pojawiają się objawy uszkodzenia wątroby i nerek.

Informacje o toksyczności grzyba zaczęły być upowszechniane w zasadzie dopiero w latach 80. dlatego wciąż są jeszcze osoby, które pamiętają krowiaka jako grzyba jadalnego. Z tymi informacjami jest zresztą ten problem, że po drodze trochę się zniekształciły. Jedni uznali, że chodzi tu o ten sam problem żołądkowo-jelitowy, jaki dotyczy świeżego grzyba, z czym radzono sobie przez gotowanie go dwa razy, więc uznają że grzyba trzeba po prostu odpowiednio przyrządzić, na przykład gotując trzeci raz. Sam z kolei spotkałem się kiedyś z doniesieniami w formie "coś z grzyba się odkłada w organizmie i po wielu latach zaczyna szkodzić".
Ponieważ mechanizm działania nie jest zerojedynkowy i zwykle zaczyna działać po wielokrotnej ekspozycji, wiele osób mogło w poprzednie sezony jeść krowiaka raz czy dwa razy na sezon, bez szkodliwych następstw. Jednak każde kolejne spożycie, to podwyższanie ryzyka.
Nie udało mi się jednak odnaleźć informacji co konkretnie prowokuje gwałtowną reakcję organizmu, który wcześniej w ogóle nie reagował na substancje grzyba.  Może wrażliwość wykształca się w wyniku częstej ekspozycji? Może jest jakiś limit stężenia przeciwciała, powyżej którego organizm reaguje? Sytuację komplikuje odkrycie, że w obrębie gatunku grzyba pojawiają się odmiany i odmienne formy genetyczne, toteż grzyb z jednego lasu może się na poziomie molekularnym wyraźnie różnić od tego z innego miejsca. Może więc reakcja immunologiczna powstaje, gdy po spożyciu jednej formy, w jedną odmianą przeciwciał, spożyje się krowiaka innej odmiany?

Zatrucia krowiakiem nie są może specjalnie częste, ale widać je w statystykach. Dawniej co roku pojawiało się 20-30 zatruć o różnej ciężkości, obecnie, być może w związku z zdecydowanie rzadszym zbiorem, a może przez mniejszą popularność grzybiarstwa w ogóle,  pojawia się jedno-dwa zatrucia rocznie. Dla porównania, Grymała w 1958 roku notował, że 1/3 zatruć grzybowych wiązała się ze zjedzeniem krowiaka.  W pracy z 1998 roku na temat zatruć na obszarze obecnego województwa podlaskiego na 83 zatrucia grzybami 8 dotyczyło krowiaka, i żadne nie skończyło się śmiercią, choć były w tym przypadki stanu ciężkiego. [3]

Może się to wydać zaskakujące, ale częściej zdarzają się zatrucia grzybami jadalnymi - pewnie dlatego, bo częściej się je zbiera. W statystykach na drugim miejscu po muchomorze są grzyby borowikowate. Negatywne efekty prawdopodobnie wynikają z przeliczenia się ze zdolnościami żołądka do przetrawienia solidnej porcji, ale wskazuje się też na możliwość powstania toksycznych substancji, gdy grzyb jest źle przechowywany. Ugniecione w foliowej torebce i nie od razu schowane do lodówki, mogą grzyby zacząć fermentować, w wyniku czego często w nich występująca cholina zamienia się w neurynę.[4]
W ostatnich dekadach pojawiły się też niepokojące doniesienia o zatruciach gąską zielonką, z przypadkami rabdomiolizy, to jest uszkodzenia mięśni, ale tutaj sami specjaliści nie są pewni czy winny jest ten grzyb, czy coś jeszcze.[5] Gąska zielonka bywa mylona z muchomorem sromotnikowym oraz z gąską siarkową, znaną od dawna z lekko trujących właściwości.

------
Źródła
* https://de.wikipedia.org/wiki/Julius_Sch%C3%A4ffer


[1] Grzymala S (1958), roczniki PZH, http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-ae7d8e36-76dc-43c5-9708-810849b6d6eb/c/277-282.PDF

[2]  https://link.springer.com/article/10.1007/BF01728620

[3] Tadeusz Wojciech Łapiński, Danuta Prokopowicz, "Cechy epidemiologiczno-medyczne zatruć grzybami w rejonie północno-wschodniej Polski, Przeg.Epid, 1998, 52, 4, 455-462

[4]  https://journals.sagepub.com/doi/abs/10.1177/0960327114557901

 [5] https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12374

piątek, 11 października 2019

Zrób sobie atrament

Na temat galasów dębowych i robionego z nich atramentu kiedyś już pisałem, więc nie będę wszystkiego powtarzał, możecie doczytać (link), wracam jednak do tematu, bowiem postanowiłem w małej skali taki atrament odtworzyć, oraz coś nim napisać przy pomocy pióra.

   Galas to narośl powstająca na liściach dębu, w wyniku żerowania na nich larw drobnego owada. Larwa wytwarza substancje stymulujące rozwój tkanki blaszki liścia w formie kulistej, gąbczastej narośli otaczającej larwę, w której przeżywa zimę aby wiosną, po przemianie w formę dojrzałą, wydostać się i zarażać inne drzewa. Miękka tkanka galasa nasączona jest sokiem zawierającym bardzo wiele kwasu galusowego - prostego kwasu fenolowego, którego bardziej rozbudowane pochodne to taniny, nadające tkankom i owocom dębu gorzki posmak.
   Kwas ten może tworzyć z solami żelaza żywo zabarwione związki kompleksowe, które po utlenieniu stają się nierozpuszczalne, co od wieków było wykorzystywane w produkcji inkaustu. Atrament taki dobrze trzymał się papieru i pergaminu. Używany był prawdopodobnie już w starożytności, ale najstarsze zachowane dokumenty nim pisane pochodzą z IV wieku naszej ery. W XIX wieku zaczęły go wypierać atramenty oparte o sztuczne barwniki, aż wreszcie dziś stykamy się właściwie tylko z tuszami w długopisach.
   Czasem jednak atramenty galasowe są nadal używane, na przykład jako stosowany w Wielkiej Brytanii Register's Ink, służący do wypełniania i pieczątkowania ważnych dokumentów, na których kolor pisma ma przetrwać bardzo wiele lat.

Aby zrobić atrament, potrzebne są galasy. To zielone kulki o średnicy około centymetra, wiszące na spodniej stronie liści dębowych, czasem kilka ich wisi na jednym, ale zwykle trzeba się jednak nieco naszukać aby zebrać choć garsteczkę. Późną jesienią można je łatwo znaleźć wśród opadłych liści. Galas można po rozcięciu zasuszyć i z takiego później robić roztwór.

   Następnie trzeba otrzymać z nich sok. Ja zmiażdżyłem je po prostu w moździerzu, i zalałem małą ilością wody. Powstaje zielonożółty sok, mający tendencję do ciemnienia przy przechowywaniu.
Teraz trzeba połączyć go z roztworem soli żelaza. Dawne przepisy podawały jako składnik "zielony witriol" czyli siarczan żelaza II. Ja użyłem soli Mohra, w której jon żelaza jest stosunkowo odporny na utlenianie do rdzawożółtego żelaza III. Ilość soli odmierzyłem na oko, tak aby powstał rozcieńczony, bezbarwny roztwór.
   Po zmieszaniu obu roztworów, mieszanina pociemniała, aż stała się niemal granatowa. Nie jest to jeszcze właściwy atrament. Sól Mohra mimo wszystko zawierała zapewne nieco żelaza III, oba roztwory miały też pewnie nieco rozpuszczonego tlenu. Powstała więc zawiesina ciemno zabarwionego, nierozpuszczalnego kompleksu żelaza III. Już takim roztworem można pisać, dobrze jest jednak zostawić nieco w zamkniętym naczyniu, aby zobaczyć, że po opadnięciu osadu powstaje przezroczysty roztwór. Jeśli pobrać pipetką lub strzykawką klarowną ciecz, to łatwo jest się przekonać, że nabiera ona koloru po rozprowadzeniu, mimo że wcześniej była bezbarwna.
Atrament po odstaniu - górna warstwa ciemnieje od powietrza.

   Jak użyć tak powstałego atramentu? Jeśli ktoś ma pióro ze stalówką, to nie powinno być większych problemów, najwyżej powinien przed użyciem przesączyć atrament, aby drobne cząstki nie zatykały końcówki. Jeśli jednak ktoś, tak jak ja, postanowi spróbować pisać przy pomocy ptasiego pióra, musi je nieco przygotować. Najlepiej jest brać pióra ptaków będące lotkami (pióra na brzegach skrzydeł) są bowiem długie i mają dużą komorę powietrzną. Dawniej chętnie używano do tego piór gęsich, w ostateczności jednak wystarczą też i kacze, wronie, czy kurze. Najwyżej trudniej będzie otrzymać dobre narzędzie. Ja poszukałem po okolicy i wpadło mi w oko pióro perliczki, o ładnym, pasiastym wzorze. Odnośnie dalszego postępowania polecam film:
  W moim przypadku ładne i równe przycięcie nie bardzo się udało. Rdzeń pióra był pęknięty wzdłuż, po kilku próbach dobrego przycięcia został mi krótki kawałek, w miejscu, gdzie kończyła się komora powietrzna. Jeśli chodzi o pisanie, to zaostrzona końcówka ze szczeliną nie bardzo się sprawdzała, podczas zawracania pióra drapała w papier, rozpryskując atrament dookoła:


  Ostatecznie więc po namoczeniu przeciągałem jedną z płaskich stron końcówki po papierze, konstruując litery z pociągnięć w tę samą stronę. Krój wyszedł niezgorszy. Początkowo ślad był słabo, lub w ogóle nie widoczny, jednak szybko pod wpływem powietrza następowało utlenienie żelaza i powstanie ciemnego kompleksu, który osadza się na włóknach papieru. Od razu po wyschnięciu próbowałem zmyć litery pod bieżącą wodą, ale nie schodziły.


   Kolor zależy od tego jaką warstwą został rozprowadzony płyn i ile pozwoliliśmy mu postać, generalnie jednak atrament nie jest czarny a raczej przypomina połączenie koloru granatowego z sepią, w ciągu kolejnych dni od zapisania jeszcze trochę ciemnieje. Dawne atramenty były dodatkowo podbarwiane innymi związkami, w tym czernidłem kałamarnic. Chodziło o to, aby od razu przy pisaniu widzieć stawiane litery. Z czasem ten dodatkowy barwnik organiczny blakł, natomiast kompleks galusanów z żelazem pozostawał, więc litery starych dokumentów mają nieco rozjaśniony odcień.

Atrament naniesiony piórem, patyczkiem do uszu i watką
   Aby płyn zbyt szybko nie spływał z pióra i nie rozlewał się po kartce, dodawano do niego zagęstników, czy to szelaku, czy gumy arabskiej. W domowym eksperymencie można by użyć na przykład rozpuszczonego w wodzie kleju do papieru. Ponieważ schnięcie roztworu trochę trwało, a ilość nanoszona przez pióro wystarczała aż nadto, dawniej przykładano do kartki arkusz bibuły, który miał wchłonąć nadmiar płynu. W przeciwnym razie litery mogły się rozmazywać, zabrudzić kolejne strony, a nawet tusz mógł przesiąknąć przez kartę i zamazać pismo po drugiej stronie. Bibułę przyciskano do papieru przyrządem podobnym do pieczątki z półokrągłym zakończeniem, tak zwaną suszką.
   Inną opcją było podsypywanie kartki specjalnym drobnym piaskiem, którego suche ziarenka po przyklejeniu się do liter oddzielały zapisaną powierzchnię od kolejnej, obie metody mogły być używane równocześnie. Pamiętam opowiadanie o Sherlocku Holmesie, w którym detektyw dowodził tezy o autorstwie pewnego listu na podstawie specyficznego rodzaju piasku używanego przez piszącego.

   Atramentu galasowego można też potencjalnie użyć do farbowania tkanin. Przetestowałem to na ręczniku papierowym, którego kawałek trzy razy nasączałem i pozostawiałem do wyschnięcia. Gdybym miał więcej cierpliwości i powtórzył procedurę jeszcze kilka razy, byłby niemal czarny.

Atrament taki ma ograniczoną trwałość, ze względu na związki organiczne z galasa, w niektórych nowoczesnych formułach dodaje się do niego konserwant, najczęściej fenol lub tymol. Nieźle brudzi palce.

poniedziałek, 12 sierpnia 2019

Wody i ich minerały

Jaka woda mineralna zawiera najwięcej selenu, a jaka wapnia? I czy właściwie warto jest je pić?

   Woda mineralna, wedle dziś uznawanej definicji, to woda wydobywana z ujęć podziemnych, która jest naturalnie czystsza od zwykłej wody pitnej, oraz ma określony, stabilny skład. Nie będzie więc wodą mineralną ta uzdatniana, która płynie w naszych kranach, choć niekiedy parametry obu wód są podobne. Dawniej, na potrzeby działalności zakładów wodoleczniczych stosowano definicję, uznającą za wodę mineralną tylko taką, która ma powyżej 1g/l składników rozpuszczonych. Zawężało to ilość wód mineralnych do około 30.
   Dziś wodą mineralną może więc zostać w zasadzie każda woda głębinowa o niezmiennym składzie i czystości, stąd też namnożyło się ich nam na rynku na prawdę sporo (ponad 130), i trudno zdecydować jaką wybrać.

Czy wody mineralne mogą być potraktowane jako dobre suplementy składników mineralnych? Niespecjalnie. Mimo wszystko w popularnych wodach składników mineralnych nie jest zbyt wiele. Wprawdzie najbardziej nawapniona woda mineralna, zawiera w litrze 1/4 zalecanej dziennej dawki Ca, ale przy spożyciu doustnym wchłanialność soli wapnia wynosi do 30%. Biorąc pod uwagę znaczne rozcieńczenie, próba uzupełnienia dobowej dawki wodą mineralną może być trudna, oraz prowadzić może do zwiększonego wypłukania tychże minerałów z moczem. Wody mineralne są najwyżej jednym z dodatkowych źródeł, ale główne zapotrzebowanie powinna zaspokajać po prostu żywność dobrej jakości i odpowiednio zróżnicowana.

Na podstawie kilku różnych źródeł postanowiłem podsumować informacje o tym, jaka woda zawiera najwięcej różnych jonów.

Wapń
Pierwiastek dość rozpowszechniony i w praktycznie każdej wodzie mineralnej jest obecny. Najwięcej z tych, które znalazłem, jest go w trudnej do zdobycia litewskiej wodzie Vytatuas, bo ponad 500 mg/l. Jest to woda generalnie dość słona, zawierająca przede wszystkim chlorek sodu. Z wód krajowych, łatwiej dostępnych w sklepach, najwięcej wapnia jest w Muszynie Minerale (456 mg/l), Kryniczance (436 mg/l) i Galicjance (415 mg/l)

Sód
Najczęściej występuje jako chlorek i wodorowęglan, stąd najwięcej jest go w wodach bardzo słonych i alkalicznych. Najzasobniejsza jest woda uzdrowiskowa Magdalena, zawierająca 8g/l Na. Następne w kolejce są wody Zuber (6,1g/l), Szczawa II (5,1) Szczawa I (4,8) Franciszek (3,8); z łatwiej dostępnych Wysowianka (0,39 g/l) czy Słotwinka (0,29g/l)
Jeśli chodzi o wody niskosodowe, zwykle bardzo mało sodu mają wody źródlane,  na przykład Górska Natura podaje na etykiecie tylko 1 mg/l co jest chyba najniższą jeszcze podawaną wartością, niewiele więcej podaje Dobrowianka (2 mg/l) i Primavera (2,4 mg/l)

Potas
Ma właściwości podobne do sodu i zwykle występuje wraz z nim w różnej proporcji, nie będzie więc zaskoczeniem, że najzasobniejsza w ten pierwiastek jest woda Zuber (288 mg/l). Następne w rankingu to Szczawa I (208 mg/l), Hanna (104), Franciszek (90), a z szerzej dostępnych, słodkich Wielka Pieniawa (64), Polanicka Zdrój (38).

Magnez
Ze względu na podobieństwo do wapnia i niekiedy występowanie z nim w skałach, zwykle towarzyszy mu w alkalicznych szczawach, jednak wodą zawierającą go najwięcej jest u nas Zuber, która po prostu zawiera najwięcej wszystkiego, przez co jest wodą uzdrowiskową trudną do przełknięcia. Zawiera 363 mg/l magnezu. Następna w kolejce to nie taka łatwa do znalezienia woda Muszyńskie Zdroje, zawierająca 292 mg/l, oraz pojawiająca się w sklepach
Słotwinka (244 mg/l). Z wód bardziej popularnych, obfitym źródłem jest Muszynianka (135 mg/l) i Galicjanka (90 mg/l).

Dla porównania wody rozprowadzane przez wodociągi są zwykle miękkie lub lekko twarde i nie zawierają zbyt wiele magnezu. Z kilku badań które przeglądałem, najbardziej w magnez obfitowała woda z ujęcia w Dąbrowie Górniczej, zawierająca 48 mg/l. [d]


Fluorki
Obecność w wodzie fluorków zwykle wiąże się ze złożami fluorytu i fluoroapatytu, ale może też wynikać z obecności niektórych turmalinów. Zwykle pojawiają się w ujęciach podgórskich, z uwagi na bliskie podchodzenie pod powierzchnię skał magmowych - i tutaj w badaniu z 2010 najwyższą zawartość fluorków miała Długopolanka (1,5 mg/l).
Fluorki  mogą jednak pojawiać się na niżu w związku z obecnością w podłożu osadów polodowcowych z odseparowaną frakcją ciężkich minerałów, lub przenikaniem wód głębinowych. Chyba ta przyczyna spowodowała, że łatwo dostępną wodą mineralną o drugiej najwyższej zawartości fluorków, jest Augustowianka (1 mg/l - około 30% dziennej dawki). Jest to woda czerpana z dość dużej głębokości (450 m), lekko słonawa, zawierająca też chlorki sodu, wapnia i magnezu.  Z innych łatwo dostępnych wód Polanica Zdrój zawiera o połowę mniej fluoru - 0,5 mg/l, podobnie Staropolanka i woda zdrojowa Henryk, kilkanaście wód zawiera 0,3-0,1 mg/l, a wiele innych w ogóle go nie wymienia.

Dla porównania są rejony, w których ze względu na minerały fluoru w glebie, zawartość fluorków w wodzie wodociągowej z ujęć lokalnych także osiąga spore wartości. W Toruniu dawniej czynne były ujęcia tzw. "studni kredowych" ujmujących wody z warstwy kredy, zawierające nawet 1,5 mg F w litrze; aktualnie toruńska kranówka zawiera 0,2-0,4 mg/l.[f] Wysokie poziomy fluoru związanego ze złożami osadów, notuje się w studniach na Żuławach. Wynika to zapewne z warstwy osadów z okresu Permu, w miejscu dawnej zatoki morskiej. Pomiędzy złożami soli i gipsu znaleziono skupiska fluorytu. W studniach głębinowych z okolic Malborka fluorków było nawet 3,5 mg/l.[g] Podwyższone poziomy notuje się też w Tczewie, Gdańsku, Sieradzu, i w okolicy Kalisza.

Siarczany
Obecność w wodzie siarczanów zwykle wiąże się ze złożami gipsu. Uzupełniają one nieorganiczną siarkę, ale ze względu na działanie osmotyczne, przy stężeniach przekraczających 1g/l zaczynają działać przeczyszczająco. Najwięcej zawiera ich litewska woda Vytatuas (989 mg/l), a z krajowych Solannova (472), czy MagneVita (192). Z szerzej dostępnych stosunkowo sporo zawiera ich Polanicka Zdrój (100 mg/l), Polaris (88 mg/l [p]) i Selenka (85 mg/l).

Lit
Pierwiastek ten ma właściwości podobne do innych metali alkalicznych, jak sód czy potas, toteż często im towarzyszy. Dlatego wodami mineralnymi o największej jego zawartości są zwykle wody silnie zmineralizowane, słone. Króluje tu wybitnie słona woda Zuber (18,5 mg/l), dalej Szczawa II (14,5), Szczawa I (11,6) i nieco bardziej znośna Franciszek (5,2). Z wód łatwo dostępnych, słodkich, stosunkowo dużo litu zawiera Piwniczanka (0,6 mg/l) i Galicjanka (0,2).
Nie ma zbyt wielu informacji o zawartości litu w wodach wodociągowych, z którymi można by porównać te wyniki. Zwykle się go nie bada.

Jod
Jod ma właściwości chemiczne podobne do chloru, więc często występuje w wodach słonych. Z tych, których skład sprawdzałem, najwięcej ma go woda Dziedzilla (4,4 mg/l) i Szczawa II (3,0 mg/l), nieco mniej Szczawa I i Hanna (2,5 mg/l), Franciszek (2,2 mg/l). Są to wody zdrojowe, czasami spotykane w sklepach w małych buteleczkach.

Selen
Selen jest pierwiastkiem rzadkim i potrzebnym organizmowi w śladowych ilościach. Chemicznie jest najbardziej podobny do siarki, stąd występuje w wodach siarczkowych i siarczanowych, często też żelazistych, wynikających z kontaktu ze złożami pirytu.
W analizie z 1999 roku stwierdzono, że najwięcej selenu zawierały wody Cristal (0,514 ug/l = 0,0005 mg/l), Krynica Zdrój niegazowana (0,5 ug/l), Nałęczowianka niegazowana (0,498) Muszynianka niegazowana (0,495), Multi Vita (0,460) i Kryniczanka (0,450).  W wodach gazowanych zwykle było go mniej niż w niegazowanych, być może z powodu występowania części pierwiastka w lotnych formach. Podczas standardowych oznaczeń próbkę się odgazowuje, więc im więcej gazu miała woda, tym większe były różnice między wersją gazowaną i niegazowaną.[s]
Obecnością selenu chwali się woda z Wieńca Zdroju, o chwytliwej nazwie Selenka, choć trudno powiedzieć, czy jest w ten pierwiastek jakoś wyjątkowo zasobna. Podawana na etykiecie wartość <0,02 mg/l to tylko granica oznaczalności metody, pod nią mieszczą się wszystkie podane wcześniej wyniki zawartości, a także maksymalna dopuszczalna zawartość dla wód pitnych (0,01 mg/l). Miejsce w rankingu mogłyby ustalić dokładne wyniki analizy, ale tej nigdzie nie da się znaleźć.

Inne rzadkie
W teście popularnych wód na zlecenie UOKiK z 2012 roku[u] zbadano też niektóre rzadsze pierwiastki, w tym rad i radon.W żadnej z wód radioaktywność nie przekraczała norm, choć szczególnie duża była w Staropolance 2000 - całkowita dawka przy trwającym rok codziennym uzupełnianiu płynów tylko tą wodą wyniosłaby 0,175 mSv/r  - przy czym producent zalecał dzienną dawkę wody 1l, co obniżało skumulowane narażenie do 0,088 mSv/r. Żadna z wód nie przekraczała też norm dla zawartości uranu ale największe stężenie wykazano dla Ustronianki (1,2 ug/l).

------
* http://www.wodamineralna.netmark.pl/ - ranking wód bazujący na informacjach z etykiet
* Łukasz J. Krzych i inni, CHARAKTERYSTYKA WÓD BUTELKOWANYCH DOSTĘPNYCH
W SPRZEDAŻY W WOJEWÓDZTWIE ŚLĄSKIM, ROCZN. PZH 2010, 61, Nr 1, 37 - 43

[d] D. Bodzek i inni, Zawartość wapnia i magnezu w wybranych wodach i osadach ściekowych Górnego Śląska, Ochrona Środowiska, 4(71) 1998

[f]  http://www.wodociagi.torun.com.pl/index.php?lang=PL&m=faq
[g] Halina Łazarz i inni, Fluor w wodach podziemnych wschodniej części Żuław Wiślanych, Kwartalnik Geologiczny, I. 31, nr 1. 1987 r., Str. 69 - 82
[p] Anna Pasternakiewicz i inni,  Badania zawartości wybranych anionów nieorganicznych
w wodach mineralnych i źródlanych – pod kątem bezpieczeństwa zdrowotnego wody, Probl Hig Epidemiol 2014, 95(3): 788-793
[s] Masłowska J., Ocena zawartości selenu w naturalnych wodach mineralnych dostępnych na rynku w Polsce, Żywność 3 (20) 1999
[u] https://www.bankier.pl/static/att/90000/2467072_Wybrwody.pdf

wtorek, 29 maja 2018

Krystalografia czekolady

... czyli o praktycznych zastosowaniach bardzo ścisłej, i zmatematyzowanej dziedziny, z których efektami spotykamy się na co dzień.

  Krystalografia to dziedzina na pograniczu chemii fizycznej i fizyki ciała stałego, zajmująca się badaniem właściwości kryształów i niektórych innych faz uporządkowanych, oraz ich teoretycznym opisem. Wedle definicji utworzonych w ramach tych badań, stan krystaliczny to forma materii charakteryzująca się wysokim uporządkowaniem struktury przestrzennej tworzonej przez pojedyncze cząsteczki lub jony. Cząstki tworzące kryształ są tak ułożone, iż tworzą pewien podstawowy schemat, mogący powtarzać się w trzech wymiarach praktycznie w nieskończoność - przynajmniej aż do zewnętrznej ściany ziarna krystalicznego.
 Niech to będzie powiedzmy przestrzenny kwinkunks z ośmioma cząsteczkami w rogach domyślnego sześcianu i jedną w geometrycznym środku między nimi:

Kryształ mający za swój podstawowy wzór, nazywany komórką elementarną, taki właśnie układ, będzie zatem powtarzał go tworząc ścisłą sieć podobnych połączonych komórek:
Wedle tego typu komórki krystalicznej, szeregujemy struktury kryształów w grupy oparte na konkretnej geometrii, czyli układy krystalograficzne, jest ich kilka: oparty na sześcianie układ regularny, układ heksagonalny oparty na heksagonie itp.
Dodatkowo w każdym typie możliwe jest że między narożami komórki pojawią się dodatkowe cząsteczki w centrum ścian lub w środku, stąd możliwość dodatkowych typów "centrowanych". Łącznie 7 układów wraz z centrowanymi kombinacjami daje 32 typy sieci krystalicznych, nazywane sieciami Bravais'go (czyt: 'brawego').

Wiele substancji może tworzyć kryształy różnego rodzaju, o różnej strukturze krystalicznej, zależnie od warunków krystalizacji. Jeden rodzaj sieci krystalicznej może przechodzić w drugi gdy zmienią się warunki. Znanym przykładem jest choćby siarka, która krystalizowana ze stopu tworzy igiełkowate kryształki o symetrii jednoskośnej, które w temperaturze poniżej 95 stopni powoli zamieniają się w kryształki o symetrii rombowej. Formy te różnią się też rozpuszczalnością w dwusiarczku węgla. Podobną sytuację widać w przypadku węgla, gdzie drastycznie różne właściwości mają dwie formy krystaliczne - czarny i miękki grafit oraz przezroczysty i twardy diament.
Istnienie różnych form krystalicznych tej samej substancji nazywane jest polimorfizmem.
Dwa zupełnie różnego kształtu i koloru kryształy tej samej substancji (kobalto-karboran) różniące się wzajemnym ułożeniem cząsteczek w komórce elementarnej. (publikacja)

Odmiany krystaliczne tej samej substancji, poza geometrią i symetrią, różnią się też właściwościami fizycznymi. Mogą różnić się twardością, kolorem, przewodnością a także temperaturą topnienia.
Co to wszystko ma do czekolady?

Czekolada to mieszanina otrzymywana ze zmieszania kakao i tłuszczu kakaowego, także z mlekiem i cukrem; często zamiast kakao używa się miazgi kakaowej. Cząstki kakao i kropelki wodnistej części mleka tworzą zawiesinę w masie stałego masła kakaowego. Masło to w formie stałej składa się z drobnych ziaren krystalicznych, czego gołym okiem nie widać z powodu ich niewielkich rozmiarów. Kryształy masła z kolei mogą występować w kilku odmianach polimorficznych, różniącym się między innymi wytrzymałością mechaniczną i temperaturą topnienia.
Zatem znajomość własności kryształów tłuszczu kakaowego, pozwala na otrzymanie czekolady o właściwych parametrach.

Z kilku najważniejszych form krystalicznych tłuszczu w czekoladzie, trzy topią się w temperaturze poniżej 25 stopni, jedna (forma IV) w 27 stopniach, jedna (V) przy około 33 stopniach i jedna (VI) przy około 36-38 stopniach. Przy złym wykonaniu i schłodzeniu masy albo otrzymamy czekoladę, która pozostaje miękka w temperaturze pokojowej i łatwo topi się w dłoni, albo otrzymamy produkt twardy i z trudem rozpuszczający się nawet w ustach. W dodatku niskotopliwe formy chętnie tworzą duże kryształy, które rozpychają na boki cząstki kakao, powstaje wówczas czekolada o matowej, nierówno zabarwionej powierzchni.

Aby otrzymać czekoladę z przewagą formy krystalicznej właściwej, należy przeprocesować ją w odpowiedniej temperaturze. Proces ten nazywany jest temperowaniem.
Typowym sposobem temperowania jest najpierw stopienie masy czekoladowej w temperaturze, w której topią się wszystkie formy krystaliczne, czyli około 45 stopni. Następnie masa jest szybko schładzana do temperatury nieco poniżej topnienia średniotopliwej formy, około 26-27 stopni. W tej temperaturze w mieszanej szybko masie powstać mogą drobne kryształki trzech typów - formy IV o temperaturze topnienia 27 stopni, formy V i formy VI - które to drobne kryształki działają jak zarodki dla powstawania kolejnych kryształów w tych typach. Gdybyśmy teraz pozwolili masie powoli ostygać, zawierałaby mieszankę trzech form krystalicznych i miałaby wciąż niską temperaturę mięknięcia i topnienia.
Dlatego teraz masa jest precyzyjnie ogrzewana do temperatury około 30-31 stopni. Kryształki formy IV, topiące się w 27 stopniach, zanikną. Pozostaną więc już tylko kryształki form V i VI. Masa od tego momentu jest dość powoli ochładzana, na tyle, że gdy jej temperatura spadnie do około 25 stopni, większość masła kakaowego będzie już skrystalizowana i nie będą nam powstawały nowe kryształki form o niskich temperaturach topnienia. Tak otrzymanym ideałem jest masa topiąca się w temperaturze 34-35 stopni, czyli znana z reklam "czekolada rozpływająca się w ustach a nie w dłoni".

Dla otrzymania równomiernej masy o pożądanych właściwościach stosuje się precyzyjną kontrolę temperatury i szybkie mieszanie. Dokładne wartości temperatur zależą też od składu, dla czekolady ciemnej są wyższe, dla mlecznej niższe (ze względu na domieszkę tłuszczu mlecznego). Większy dodatek wody zwiększa miękkość czekolady.

Otrzymana w przewadze forma średniotopliwa V jest jednak w temperaturze pokojowej nie do końca stabilna termodynamicznie. Dłuższe przechowywanie powoduje, że część masła kakaowego ulega przemianie w formę VI. Odbywa się to najczęściej w warstwach powierzchniowych przy nieco podwyższonej temperaturze. Powstające kryształki nowej formy wyrastają z powierzchni czekolady, tworząc jaśniejszą warstwę, widoczną dobrze zwłaszcza na tabliczkach w pobliżu okresu ważności. Sam w sobie ten jasny osad nie jest oznaką zepsucia, ale może wskazywać na niezbyt dobre warunki przechowywania. Gdy tabliczka leżała w sklepie w warunkach tak ciepłych, że częściowo się nadtopiła, efekt ten wywołuje powstanie nieregularnych cętek, plam białych i żółtawych złożonych głównie z samego tłuszczu, które mogą nie smakować za dobrze.

---------
* Klaus Roth, Chocolate - The Noblest Polymorphism,
* https://en.wikipedia.org/wiki/Chocolate