informacje



Pokazywanie postów oznaczonych etykietą aminy. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą aminy. Pokaż wszystkie posty

poniedziałek, 30 listopada 2020

Obrzydliwa chemia (1.)

Czyli wszystko to co was kiedyś zaciekawiło na lekcjach chemii, ale wstydziliście się zapytać.

Skąd smród wymiocin?
Zapach wymiocin w dużej mierze wiąże się ze składem jedzenia - posiłki z reguły zawierają mniejsze lub większe ilości tłuszczy, te zaś stanowią połączenie kwasów tłuszczowych z gliceryną. Kwasy tłuszczowe, gdy mają długą cząsteczkę, mają postać woskowatych ciał o niewyczuwalnym zapachu, czego przykładem stearyna, to jest kwas stearynowy zawierający 17-węglowy łańcuch. Inaczej jest gdy kwasy są krótkie - stają się wówczas łatwo krzepnącymi cieczami o charakterystycznym zapachu. Najkrótsze, to jest mrówkowy, octowy i propionowy mają zapach kwaśny, ale począwszy od masłowego (4 węgle), ich wonie stają się coraz bardziej nieprzyjemne.
Kwas masłowy, jak sugeruje nazwa, jest tym który powoduje niemiły zapach zjełczałego masła, dłuższe od niego kwasy kapronowy, kaprylowy i kaprynowy, zostały nazwane od kozy i odpowiadają za zapach kozła i koziego mleka.


Skąd wolne kwasy tłuszczowe w zawartości żołądka?
Już podczas przeżuwania pokarmu, miesza się on ze śliną zwierającą lipazy, trawiące tłuszcze. Pewne znaczenie ma też lipaza żołądkowa. W wyniku ich działania część kwasów tłuszczowych zostaje uwolniona do treści żołądka. Gdy zaś w wyniku skurczu żołądka jego treść zostanie uwolniona do otoczenia, woń tych kwasów staje się zauważalna. Pewne znaczenie mogą tu mieć też wolne aminokwasy i aminy.


Zapach wymiocin wywołuje obrzydzenie u innych ludzi, do tego stopnia iż może wywołać wymioty. Podobny efekt wywołuje widok wymiotującej osoby a czasem nawet sam odgłos. W szczególnych przypadkach może to doprowadzić do wymiotów większą ilość zdrowych osób, a nawet przerodzić się w masowa histerię. Uważa się, że jest to zjawisko adaptacyjne - reakcja wymiotna na widok innej wymiotującej osoby miała w dawnych małych społecznościach ułatwić pozbycie się zatrutego jedzenia i uniknięcie choroby.

Mdłości pojawiają się także podczas ciąży. Niekiedy pojawia się wręcz niezdrowa nadwrażliwość na niektóre bodźce i do wymiotów skłonić mogą zapachy i skojarzenia normalnie neutralne, utrudniając ważne przecież w tym okresie odżywianie. W niedawnym badaniu z Malezji stwierdzono, że w takim przypadku najskuteczniejszym prowokatorem mdłości są ryby i smak gorzki, produkty o konsystencji ciastowatej, smażone, z konkretnych dań gotowany ryż. Najlepiej badane znosiły jedzenie chrupkie, słodkie i surowe, na przykład jabłko lub arbuza. [n]
Kwas masłowy bywa używany w bombach zapachowych oprócz merkaptanów.

Na koniec kwestia z którą się często spotykam - jak usunąć zapach wymiocin? Kwasy tłuszczowe słabo rozpuszczają się w wodzie, ale dobrze gdy są w formie jonowej. Ponieważ są słabymi kwasami, aby je w taką formę przeprowadzić należy użyć zasady. Wydaje się więc, że do czyszczenia zanieczyszczonych powierzchni powinno się używać alkalicznych środków czyszczących lub na przykład sody.


Czym śmierdzi gówno?
Przemiany metaboliczne zasadniczo mają za zadanie rozłożyć na czynniki prostsze to co można wykorzystać i wbudować, oraz usunąć to co niepotrzebne. Czasem jednak drogi przemian biochemicznych prowadzą w nieoczekiwaną stronę. Na przykład pewien niezbędny aminokwas tryptofan jest w części utleniany i przerabiany 3-metyloindol, nazywany też skatolem i wydalany z kałem. Związek ten w dużych ilościach ma swój charakterystyczny, nieprzyjemny zapach, jednak w małych stężeniach woń staje się słodkawa. W niewielkich ilościach występuje w olejkach eterycznych z kwiatu pomarańczy i jaśminu chińskiego, i bywa używany w perfumach jako wzmacniacz zapachu. 



Odpowiada też za niemiły zapach mięsa niekastrowanych wieprzy i dzików. Ponieważ tryptofan najobficiej występuje w białku mleka i wieprzowinie, zaś najrzadziej w produktach zbożowych, łatwo się domyśleć, że zapach kału w dużej mierze zależy od diety.
Pewien wpływ ma też jeszcze bardziej skrócona pochodna tryptofanu - indol. Udział w przerobie aminokwasu do tego produktu mają enterobakterie zasiedlające wnętrze naszych jelit. Związek ten w dużych stężeniach ma woń nieprzyjemną, choć słabiej wyczuwalną niż w przypadku skatolu. W małych natomiast stężeniach nabiera miłego fiołkowego zapachu i jest istotnym składnikiem (ok. 2%) zapachu jaśminu, stąd też indol jest używany do produkcji sztucznych aromatów jaśminowych. Oczywiście nie izoluje się go do tych celów z odchodów, ale syntezuje za pomocą którejś z kilkunastu popularnych metod.
Do tych wyrazistych związków dokładają się merkaptany będące wynikiem przerobu aminokwasów zawierających siarkę.


Kolor kupy, sików i siniaków
W tym przypadku wszystko zaczyna się od krwi. Krwinki czerwone zawierające niezbędny do zaopatrywania organizmu w tlen barwnik hemoglobinę, mają pewien skończony czas życia, i po jego przekroczeniu lub po uszkodzeniu, są wyłapywane przez śledzionę zajmującą się ich bezpieczną utylizacją.
Hemoglobina składa się z białka globiny i aktywnej cząsteczki hemu, mogącej kompleksować tlen. Składa się z dość dużego pierścienia w kształcie z grubsza kwadratowym, z czterema azotami pośrodku, trzymającymi w kleszczach atom żelaza.
Pierwszym etapem rozpadu jest oderwanie żelaza i białka i rozerwanie pierścienia w jednym miejscu. Tak powstaje u-kształtna zielona biliwerdyna. Ta szybko jest redukowana i po odgięciu cząsteczki zamienia się w żółtą bilirubinę. Ponieważ wolna bilirubina jest słabo rozpuszczalna w wodzie a stosunkowo dobrze w tłuszczach i wobec nadmiaru, nazywanego żółtaczką, ma skłonność do gromadzenia się w skórze i mózgu, gdzie jest toksyczna, toteż organizm stara się tak ją przerobić, aby móc ją łatwo wydalić. Odbywa się to w wątrobie.


Wątroba sprzęga bilirubinę z kwasem glukuronowym, dzięki czemu całość staje się rozpuszczalna w wodzie, i dodaje tak powstałe połączenie do żółci, skąd też bierze się jej barwa. Żółć trafia do jelita a pochodna bilirubiny jest przerabiana przez bakterie jelitowe. Część, pod postacią urobilinogenu jest wchłaniana i wydalana z moczem, nadając mu żółtą barwę, a reszta jest utleniana i zamienia się w ciemnobrązową sterkobilinę, która zabarwia sami wiecie co.

Podczas żółtaczki związanej z niewydolnością wątroby proces usuwania bilirubiny z ustroju jest zaburzony. Gromadzi się ona w tkance łącznej i zabarwia skórą oraz białka oczu. Bardzo niewiele jest wydalane do jelit z żółcią, stąd kał nabiera szarego koloru.


Bardzo podobne przemiany mają miejsce w podskórnych wylewach krwi. Najpierw czerwona krew jest odtlenowana i staje się sino-niebieska, potem tworzy się biliwerdyna i stąd zielone przebarwienia. Dalszy rozpad do bilirubiny następuje gdy już siniaki się wchłaniają, dając nam okazję naocznie prześledzić opisane wyżej przemiany.

Kolor moczu może być zaburzony pod wpływem różnych czynników. W stosunkowo częstej betaninurii nieprzetrawiony wskutek niskiej aktywności soku żołądkowego czerwony barwnik buraka, zabarwia go na czerwono, wywołując efekt podobny do krwawienia. Na czerwono zabarwia się wówczas także kał. W podobny sposób mocz zabarwiają też inne silne barwniki - pamiętam że w sklepach ze śmiesznymi rzeczami można było kupić specjalne cukierki, które zabarwiały mocz poczęstowanych na różne kolory, jednym z takich barwników jest błękitny indygokarmin, na tyle chętnie wydalany tą drogą że czasem używa się go do badań czynności nerek. Efekt taki dawać mogą niektóre leki.
 Na niebiesko przebarwiać może błękit metylenowy spotykany w niektórych lekach. Połączenie niewielkich ilości niebieskich barwników z żółtym kolorem własnym zwykle daje zieleń. Oprócz tego na zielono może zabarwić nasz mocz amitryptylina, propofol oraz szparagi.
Na pomarańczowo może zabarwiać duża ilość ryboflawiny, także lek przeciwgruźliczy izoniazyd i fenazopirydyna używana w infekcjach dróg moczowych. W pewnym stopniu też dieta obfitująca w marchewkę. 
Istnieją też dwa szczególne stany chorobowe, które mogą wywoływać wrażenie zmiany koloru moczu. W "zespole niebieskich pieluszek" genetyczna mutacja powoduje zaburzenie wchłaniania tryptofanu, który gromadząc się w jelitach jest przerabiany na pochodne indolowe. Jedną z nich jest izatyna, która wchłonięta wydala się wraz z moczem, a po kontakcie z powietrzem utlenia się i dimeryzuje tworząc niebieski barwnik indygo. Ponieważ choroba ujawnia się już w okresie niemowlęcym, oznaką wystąpienia jest zazwyczaj niebieskie zabarwienie pieluszek.



Z kolei "zespół purpurowych worków na mocz" występuje u osób z założonymi cewnikami, w których na powierzchni  cewnika pojawiają się bakterie. Będący produktem przerobu indolu siarczan indoksylu wydalany wraz z moczem, jest przerabiany i utleniany przez bakterie, z wytworzeniem niebieskiego indygo i czerwonej indirubiny. Sam w sobie nie wywołuje dolegliwości ale jest oznaką dużego ryzyka zakażenia dróg moczowych.

---------

[n] https://www.nature.com/articles/s41598-020-61114-y

piątek, 6 października 2017

Skąd ten akrylamid?

Co jakiś czas media donoszą o wykryciu tego związku chemicznego w różnych produktach, a to w chipsach, a to w prażonych orzeszkach a to znów w ciasteczkach czy solonych paluszkach. To silna trucizna o działaniu rakotwórczym. I wówczas może was zastanowić, skąd się właściwie w jedzeniu ten akrylamid wziął. Specjalnie go dodają? Czy może sam powstaje?

Chemicznie rzecz ujmując, akrylamid to amid kwasu akrylowego, związek nienasycony zawierający wiązanie podwójne, grupę karbonylową i aminową. Każda z tych grup składowych może wchodzić w różnorodne reakcje, toteż cząsteczka będąca najściślejszym z możliwych ich połączeniem musi być bardzo reaktywna. Na tyle, że po dostaniu się do organizmu reaguje z białkami, lipidami i DNA wywołując różnorodne rozproszone uszkodzenia. Podczas metabolizmu jest utleniany przez komórkowy cytochrom 450 do formy epoksydowej czyli glicydamidu, który jest cząsteczką jeszcze bardziej reaktywną.

Glicydamid
Jako silny środek alkilujący działa mutagennie mogąc wywoływać nowotwory. W modelach zwierzęcych przewlekła ekspozycja na akrylamid w wysokich stężeniach, wywoływała nowotwory nadnerczy, tarczycy, płuc i jąder, oraz działała toksycznie na układ nerwowy.

Związek ten odkryto już bardzo dawno. Ze względu na skłonność do polimeryzacji zaczął być używany do produkcji tworzyw sztucznych o specjalnym przeznaczeniu. Polimeryzacja w roztworze wodnym tworzy twardy hydrożel o dużej przepuszczalności, będący jednym ze standardowych materiałów w elektroforezie białek i DNA. Ponadto używano go jako składnika różnych polimerów, substratu do produkcji pestycydów czy barwników. Przez długi czas wydawało się więc, że jedynym problemem toksykologicznym jest zanieczyszczenie środowiska przez zakłady które go używały, przenikał bowiem do ścieków a stamtąd do wody. Dlatego zaskoczeniem było odkrycie w 2002 roku, że w wyniku specyficznej reakcji może powstawać także w żywności.

Erytryjska badaczka Eden Tareke, zatrudniona na wydziale chemii żywności Uniwersytetu Sztokholmskiego, wprowadzała nową bardziej dokładną metodę badania żywności. Podczas testów z różnymi próbkami zauważyła niepokojący poziom akrylamidu w chipsach ziemniaczanych. Wydawał się zbyt duży aby wytłumaczyć to zanieczyszczeniami przemysłowymi. Wykonała więc prosty eksperyment - przygotowała chipsy z ziemniaków, które wcześniej przebadała pod kątem zawartości akrylamidu. Chipsy smażone w temperaturze przekraczającej 120 stopni nabierały wysokich poziomów akrylamidu, którego nie było w ziemniakach. A więc musiał on w jakiś sposób podczas smażenia powstawać. [1]

Kluczem okazała się znana od dawna reakcja Maillarda. W rzeczywistości jest to zespół reakcji o podobnym przebiegu, podczas których cukry redukujące reagują z aminami w podwyższonej temperaturze. Powstałe produkty ulegają izomeryzacji, dekarboksylacji, dehydratacji, kondensacji itp. w najrozmaitszych możliwych kombinacjach. 20 aminokwasów i jeden cukier redukujący tworzą setki produktów. W żywności zachodzą podczas każdej termicznej obróbki produktów zawierających białka i węglowodany, a więc podczas pieczenia, smażenia, duszenia czy wędzenia; podczas gotowania w mniejszym stopniu.
Powstałe wielkocząsteczkowe produkty kondensacji odpowiadają za brązowy kolor dobrze podpieczonego jedzenia, natomiast te mniejsze wpływają wyraźnie na smak i zapach. Większość składników aromatu pieczonego mięsa, pieczonego chleba czy prażonych ziaren kawy to właśnie produkty reakcji Mailarda, są więc niezbędne aby żywność nabrała pożądanych właściwości smakowych. Jak się jednak okazało, nie każde z możliwych reakcji są dobre.

W jednej z możliwych dróg grupa aminowa aminokwasu reaguje z grupą aldehydową cukru redukującego, a więc na przykład glukozy. Powstaje przejściowy produkt w którym dwie części połączone przez azot zawierają grupę karboksylowa i hydroksylową w pobliżu tego połączenia. W wysokiej temperaturze następuje odszczepienie cząsteczki wody i powstanie iminy w formie zasady Schiffa. Ta z kolei dekarboksyluje odszczepiając cząsteczkę dwutlenku węgla. Powstały nietrwały produkt bądź rozpada się z wytworzeniem podwójnego wiązania, bądź hydrolizuje. Jednym z produktów ostatecznych jest akrylamid. Ze względu na budowę najlepszym substratem do reakcji jest aminokwas asparagina, zaś cukrem redukującym jest najczęściej glukoza występująca w formie wolnej lub powstająca w wyniku rozpadu skrobi.[2]
W odpowiednio wysokich temperaturach możliwa jest też formacja bez cukrów, z gliceryny towarzyszącej tłuszczom. Gliceryna utlenia się do akroleiny, będącej aldehydem; ta reaguje z wolnymi aminami i w podobny sposób jak opisane wcześniej reakcje, zamienia się w akrylamid.
Reakcje te wymagają odpowiedniej temperatury, zaczynają ruszać w temperaturach powyżej 120 stopni i w większości produktów zachodzą najwydajniej około 140-150 stopni.

Największe stężenia wykrywa się w takich produktach jak frytki, chipsy ziemniaczane, mocno palona kawa, kawa rozpuszczalna, przypalone tosty, prażone orzechy. Ogółem są to zatem połączenia typu "skrobia + białko". Ważnym źródłem jest też dym papierosowy i dym ze spalania śmieci w niskich temperaturach.

Toksyczność
Jak już wspominałem, w badaniach na zwierzętach wykazano, że ekspozycja na akrylamid wywołuje różnego rodzaju nowotwory. Tymczasem w przypadku ludzi wpływy są najwyraźniej dużo subtelniejsze i trudne do precyzyjnego wyrażenia. Jak wracają uwagę krytycy, w badaniach na zwierzętach efekty kancerogenne pojawiały się przy stężeniach wielokrotnie większych niż spotykane w jedzeniu i ciężko jest je przełożyć na skutki dla ludzkiego organizmu. Zakładając liniową zależność prawdopodobieństwa dodatkowych nowotworów od stężenia, przy przeciętnej diecie wzrost ryzyka staje się tak mały, że mniejszy niż wpływ narażenia na dym.

Badania populacyjne osób narażonych na tą substancję w jedzeniu są niejednoznaczne. Chętnie spożywający chipsy i frytki mają zwiększoną częstość różnych chorób, ale ciężko przypisać to wyłącznie temu składnikowi a nie spożyciu tłuszczów, nadmiaru soli czy narażeniu na utlenione nienasycone kwasy tłuszczowe. Badania pracowników narażonych w pracy na akrylamid w większych niż w żywności stężeniach dawały różne wyniki, od większej częstości chorób po brak efektu. Ze względu na to, że stykamy się z nim od początków gatunku, gdy tylko zaczęliśmy piec mięso mamutów nad ogniskiem, możliwe że wykształciliśmy sobie jakiś sposób detoksyfikacji. Dlatego też formalnie składnik ten jest klasyfikowany jako substancja podejrzewana o rakotwórczość u ludzi.[3]
Przesadne są więc internetowe artykuły straszące szybkimi skutkami zdrowotnymi i wysoką toksycznością, czy opinie w rodzaju "zjadłem smażeninę, od razu rozbolała mnie głowa, to przez akrylamid". No nie, raczej od okazjonalnego zjadania czegoś mocno podpieczonego wiele się nam nie stanie, niemniej warto pamiętać o tym, że pewne trudne do określenia ryzyko faktycznie jest. I wobec tego może jednak trochę się ograniczyć ze spożywaniem czegoś przypalonego, podpieczonego do ciemnego brązu czy podprażonego. 

Redukcja
Czy da się tak produkować żywność, aby z jednej strony nie utracić wartości smakowych a z drugiej zredukować poziomy akrylamidu do możliwie najniższych wartości? Da się, i to na kilka różnych sposobów. Zauważono na przykład, że reakcji w której powstaje sprzyjają sole amonowe, w związku z czym więcej jest go w ciasteczkach w których jako spulchniacza użyto amoniaczku (węglan amonu) niż proszku do pieczenia (wodorowęglan sodu), można więc zastąpić jeden spulchniacz innym i zauważalnie zmniejszyć zawartość niepożądanego składnika.
Innym czynnikiem hamującym są sole zawierające kationy dwudodatnie, w przypadku pieczywa możliwe jest więc wzbogacenie ciasta w sole wapnia. Kolejny inhibitor to aminokwas glicyna. Ma on najprostszą możliwą budowę, tylko dwa węgle w cząsteczce. Ulega reakcji Maillarda ale nie może zamienić się w akrylamid. Wzbogacenie glicyną pierwotnego produktu przed obróbką termiczną powoduje, że część wolnych cukrów redukujących łączy się z nią zamiast z innymi aminokwasami co zużywa niezbędny substrat. Ma to jednak tą wadę, że produkty reakcji z glicyną powodują dużo mocniejsze zbrązowienie oraz niekiedy niepożądany posmak, więc nie wszędzie da się ją zastosować.

Najbardziej oczywistym sposobem jest obniżenie temperatury tak aby nie przekraczała 120 stopni lub skrócenie czasu ogrzewania. (jeśli macie wrażenie, że w ostatnich latach ciastka kruche i herbatniki są jakby mało wypieczone, to możliwe że to jest tego przyczyną). W przypadku chipsów i frytek pewne znaczenie ma też branie do produkcji bulw krótko przechowywanych. Podczas przechowywania, w ziemniakach zachodzi proces rozpadu skrobi z powstaniem wolnej glukozy, będącej przecież cukrem redukującym. W skrajnych przypadkach długo przechowywane ziemniaki mogą się stać słodkawe w smaku.[4]
-------
*  http://www.efsa.europa.eu/en/topics/topic/acrylamide

[1] Eden Tareke et. al., Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs,
. Agric. Food Chem., 2002, 50 (17), pp 4998–5006

[2] Maria D. Villagran et al. Acrylamide Formation Mechanism in Heated Foods, J. Agric. Food Chem. 2003, 51, 4782−4787
[3]  https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/acrylamide-fact-sheet
[4]  Guidance on reducing acrylamide in food, FDE

sobota, 3 października 2015

Kiedyś w laboratorium (47.)

Kiedyś na zajęciach z analityki robiliśmy doświadczenie z elektroforezą aminokwasów.

Aminokwasy zgodnie z nazwą są związkami, które zależnie od warunków mogą być kwasami lub zasadami - posiadają grupę karboksylową mogącą odszczepiać proton, która zwykle decyduje o właściwościach kwaśnych, oraz grupę aminową która mogłaby przyjąć proton w odpowiednio zakwaszonym środowisku. W szczególnych warunkach zjonizowane są obie grupy i punkt ten nazywany izoelektrycznym.
 Ponieważ w aminokwasach o różnej budowie stała protonowania grupy aminowej i stała deprotonacji grupy karboksylowej przybierają różne wartości, toteż w roztworach o tym samym odczynie różne aminokwasy będą przyjmowały bądź formę anionu bądź kationu. A gdy do roztworu przyłożymy napięcie elektryczne, każdy pomknie w inną stronę.

Przyciąganie jonów do elektrody o przeciwnym znaku powoduje ich migrację, której prędkość zależy od wielkości i stopnia naładowania cząsteczki. Wskutek tego możliwy staje się rozdział naładowanych cząstek w polu elektrycznym na podobnej zasadzie jak to się ma przy chromatografii. Techniki tej używa się do rozdziału białek, peptydów i fragmentów DNA na przykład podczas badań genetycznych, co kiedyś już opisywałem.

W tym przypadku jednak poprzestaliśmy na sytuacji dużo prostszej - na kilka pasków bibuły nasączonej przewodzącym buforem nałożyliśmy próbki kilku aminokwasów i przez pewien czas podłączyliśmy paski do elektrod. Te aminokwasy które w odczynie buforu były anionami pomknęły w stronę elektrody dodatniej zaś te będące kationami w stronę elektrody ujemnej. Plamy aminokwasów ujawnialiśmy ninhydryną:
Jak dogrzebię się do starego zeszytu to dopiszę jeszcze który pasek odpowiadał któremu z aminokwasów.

piątek, 14 listopada 2014

Poison story (7.) - Szatański dymek

Hrabia Hipolit Visart de Bocarme był gwałtownikiem i idealnie nadawałby się na bohatera historycznej tragedii. Pochodził ze znanej i szanowanej belgijskiej rodziny szlacheckiej, mającej majątki w zamorskich koloniach. Wedle rodzinnej opowieści urodził się na statku miotanym sztormem podczas podróży do Malezji, co nadało mu gwałtowny charakter ze skłonnością do awantur. Wychowywany przez malezyjskie matki dostał kiedyś do zjedzenia cząstkę lwiego serca, aby nabrał odwagi. Gdy jego ojciec stracił lukratywne stanowisko w kolonii na Jawie, przeniósł się wraz z nim do Arkansas, gdzie odpierając ataki Indian pomagał w zakładaniu kolejnej kolonii. Włóczył się z traperami i polował na dziką zwierzynę, jednak długo nie wytrzymał na prowincji. Gdy wreszcie w latach 40. XIX wieku wylądował w Belgii był bogaty w doświadczenia, lecz ubogi majątkowo.

Dzięki powiązaniom rodzinnym był jednak wystarczająco "na poziomie" aby móc ożenić się z Lidią Fougnies du Bois, z bogatej rodziny kupieckiej, która dorobiła się na handlu towarami kolonijnymi.
Jak mówiono potem, Lidia miała romantyczne usposobienie, nie dosyć, że zaczytywała się w młodości opowieściami o wielkich miłościach, ale wreszcie sama zaczęła pisać romanse, nie osiągając jednak większego sukcesu.
Żona wniosła pokaźny posag, który pomógł w utrzymaniu czwórki dzieci i średniowiecznego zamku  Bitremont, jednak pieniądze szybko się kończyły. Hrabiostwo musieli zwolnić część służby i ograniczyć niektóre rozrywki  aż wreszcie wyprzedawać ziemię. Pewną nadzieję na poprawę sytuacji dawał spadek po ojcu Lidii, właścicielu potężnego majątku. Niestety gdy otworzono testament okazało się, że większość swego majątku przekazał synowi Gustawowi. Był to człowiek chorowity, od dłuższego czasu narzekający na zdrowie, z powodu amputowanej stopy mający problemy z poruszaniem się, toteż małżonkowie mieli nadzieję na jego szybką śmierć i przekazanie spadku.
Jednak w 1850 roku Gustaw ogłosił, że się zaręcza.

Łatwo domyśleć się reakcji de Bocarme'ów - jeśli właściciel większości majątku ożeni się, w razie jego śmierci pieniądze przypadną żonie. Nie była to zbyt miła perspektywa.
20 listopada Gustaw przybywa do Bitremontu na zaproszenie siostry. Lidia musi niestety odmówić jego prośbie uczestnictwa w ślubie, hrabiostwo będą bowiem w tym czasie wyjeżdżać. Trudno, zdarza się. Wizyta przebiegała zupełnie spokojnie aż do kolacji, kiedy to hrabia wyprosił służbę i dzieci, chcąc zjeść ją tylko z siostrą i szwagrem. Drzwi zostają zamknięte. Atmosfera tej chwili jest najzupełniej odpowiednia, noc była to bowiem burzliwa i deszczowa.
Służący mimo nakazu oddalenia się, kręci się na korytarzu pod jadalnią. Dzięki temu wyraźnie słyszy rumor wewnątrz, trzask przewracanego krzesła i okrzyk "Przebacz!". Po kilku minutach drzwi otwierają się, zaś Hipolit w zmiętym ubraniu  oznajmia zdumionej służbie, że szwagier Gustaw nagle zmarł.
Miał podobno nagle zacząć skarżyć się na ból głowy. Potem osunął się z krzesła a jego ciałem wstrząsały konwulsje. Następnie zwiotczał i przestał oddychać. To z pewnością nagły udar mózgu - stwierdził hrabia, po czym poprosił służących o wiadro octu aby móc obmyć zwłoki i przygotować do pogrzebu. Równocześnie bardzo stanowczo zakazał komukolwiek ze służby udawać się do miasta. Gdy hrabia i hrabina obmywali octem trupa, a następnie skrobali zaplamione deski podłogi, cały czas zapewniając że to tylko tragiczny wypadek, służący opowiedział o wszystkim mieszkającemu obok księdzu. Ten, nie czując się związany żądaniami hrabiego, udał się co prędzej do miasta. Następnego dnia na zamek przybył sędzia aby rzecz zbadać, albowiem sami przyznacie, że okoliczności tej śmierci nie mogły być już chyba bardziej podejrzane.

Zarówno na dłoniach hrabiego jak i na ubraniu zmarłego widać było ślady szamotaniny a nawet głębokie ugryzienie - to skutek konwulsji, tłumaczył Hipolit. Na twarzy i języku zmarłego widać było oparzenia chemiczne - to przez wymioty, tłumaczył hrabia. Sekcja zwłok wykazała śmierć gwałtowną, wskutek wypicia żrącej cieczy, zarazem jednak nie znaleziono tam ani ługu kaustycznego ani kwasu. Co takiego zatem wypił Gustaw?

Zbadaniem wnętrzności zmarłego zajął się świetny chemik Jan Servais Stas, znany z badań nad ustaleniem względnej masy atomowej. On także nie znalazł ani potażu ani kwasu, co jednak zastanowiło go, to że oprócz silnej woni octu wyczuł w preparatach wyraźny zapach cygar. On sam nie znosił tej używki, zakazywał nawet asystentom palenia przed pracą, gdyż byli wówczas przesiąknięci nieznośnym zapachem. Czy zmarły palił cygara? - zapytał policję. Ależ skąd, miał za słabe płuca.
Czy zatem - zastanowił się Stas - śmierć mogło wywołać otrucie wyciągiem tytoniowym? Jeśli nawet tak było, stanowiło kłopot udowodnienie tego przed sądem. Dotychczas bowiem nikt nie opracował metody, mogącej niezbicie dowieść otrucia alkaloidami roślinnymi. Zatem należało taką metodę opracować...


Tytoń szlachetny to silnie rosnąca, jednoroczna roślina zielna z rodziny psiankowatych. W dobrych warunkach dorasta do trzech metrów, szeroko rozkładając duże, gęsto owłosione liście. Pochodzi prawdopodobnie z Andów, i stanowi hybrydę dwóch innych dzikich gatunków w tym machorki, ślady uprawy w tamtym regionie pochodzą z aż XV wieku p.n.e.[1] Ślady użytku w medycynie Indian ameryki północnej pochodzą z pierwszych wieków naszej ery. Wyciągi rośliny używane były do opatrywania ran i jako środek przeciwbólowy, wraz z szałwią na kaszel i choroby płuc. Tytoń palony w drewnianych fajkach, często z dodatkiem innych ziół, był środkiem mogącym zarówno oczyszczać myśli jak i prowadzić do odurzenia z halucynacjami, z tego też powodu uważany był za dar bogów i używany w magicznych i szamańskich rytuałach. Słynna "fajka pokoju" stanowi najbardziej znany przykład; jej palenie było zarówno symbolem zawarcia przymierza jak i sposobem odprawiania modlitw, które wraz z dymem miały unieść się do nieba. Ceremonia palenia była traktowana jak rytuał religijny, a roślina jak świętość, z tego też powodu nadużywanie tytoniu było powszechnie potępiane.
Po przybyciu pierwszych Europejczyków, zostali oni poczęstowani tytoniem. Stanowił on też prezent pojednawczy a nawet walutę. Oczywiście biały człowiek nie specjalnie przejmował się rytuałami i obyczajami tubylców, toteż tytoń zaczęto stosować jako codzienną używkę. Za pierwszego nałogowego palacza uważany jest powszechnie członek pierwszej wyprawy Rodrigo de Jerez, który spotkał się na Kubie ze zwyczajem palenia zwitków liści. Tak sobie to przypodobał, że zebrawszy odpowiedni zapas, praktykował palenie w rodzinnym miasteczku Ayamonte a nawet zachęcał sąsiadów.
Nie skończyło się to dla niego zbyt dobrze - hiszpańskiej inkwizycji doniesiono wkrótce, że Rodrigo praktykuje pogański zwyczaj, zaś po krótkim procesie uznano, iż tylko diabeł mógł sprawić, że człowiek zyskuje siły po wdychaniu dymu i chce otaczać się jego niemiłym zapachem, toteż skazano go na pokutę, siedem lat więzienia i tym samym przymusowy odwyk.

Koloniści szybko polubili nową używkę. Pierwszym który wysyłał tytoń do Europy był Diego Kolumb, najstarszy syn Krzysztofa. Potem jednak szerzej znanym propagatorem stał się francuski dyplomata Jean Nicot, który spotkał się z używką jako ambasador w Lizbonie. Uważał go za wartościowe zioło lecznicze, zażywane w formie naparów, przez żucie lub wziewnie po roztarciu na proszek, czyli tabakę. Opublikował nawet pracę w której polecał zażywanie jako lek na najrozmaitsze choroby, i zapewne skończyłoby się na paru traktatach, gdy by nie to, że Katarzyna Medycejska doznawała w tym okresie silnych migren.
Nicot polecił jej tabakę, co najwyraźniej poskutkowało a królowa polubiła nową roślinę. Za jej przykładem tabakę zażywali ludzie dworu aż wreszcie stała się popularną używką wśród arystokratycznej młodzieży.
O Nicot'cie  pamiętano jeszcze wówczas, gdy ustalano pozycję systematyczną rośliny. Nazwano ją Nicotiana tabacum właśnie dla utrwalenia tego pierwszego propagatora. Nazwa tabacum wywodzi się z określenia używanego przez tubylców, tabaco lub tavaco, które jednak w rzeczywistości oznaczało trzcinową rurę w której palono liście wciągając dym nosem, a nie samo zioło.

Niespełna wiek po wprowadzeniu do Europy, tytoń miał status panaceum. Leczono nim krosty, bielactwo, czyraki, owrzodzenia a nawet raka, polecano na długowieczność, niestrawność, osłabienie, zimnicę i co tylko przyszło medykom do głowy. W czasie epidemii był uważany za środek zapobiegawczy. Ponieważ w tym czasie za przyczynę epidemii uważano lotne wapory i złe powietrze, wydawało się że wystarczy zabić czymś niemiłe zapachy, a choroba przestanie się roznosić. Idąc tym tropem władze Londynu podczas epidemii  w 1665 roku rozdawały tytoń dzieciom uczącym się w szkołach, oraz biedocie, polecając palić w pomieszczeniach.
Zarazem jednak tytoń był lekiem mało bezpiecznym, w nadmiarze wywoływał wymioty, kołatanie serca i zaburzenia oddychania. Czasem nadużycie soku lub wywaru kończyło się zatruciem, co z uwagi na dużą zmienność zawartości substancji zależnie od rośliny było trudne do uniknięcia. Z drugiej strony ówczesna medycyna chętnie stosowała takie środki jak arszenik czy strychnina, więc na tym tle tytoń nie wypadał jeszcze tak źle.
Niezwykłą popularność zyskał sobie tytoń w bardzo nietypowym zastosowaniu, które przebija nawet najdziwniejsze pomysły dzisiejszej medycyny alternatywnej. Była to lewatywa tytoniowym dymem.
Medycyna w tym czasie nie była pewna co właściwie jest przyczyną śmierci w takich przypadkach jak utonięcie lub uduszenie. Teoria humoralna mówiła, że utonięcie powoduje powstanie w ciele nadmiaru wilgoci i wychłodzenie, z drugiej strony trudno było nie zauważyć roli zatamowania oddechu. Praktycznym rozwinięciem teorii były metody "ratowania" polegające na wlewaniu do ust alkoholu, poruszania ramionami i nogami, oraz rozcierania członków, by pobudzić krążenie i rozgrzać ciało, co można zresztą znaleźć w wielu starszych powieściach. Lewatywę dymem uważano za bardzo skuteczny sposób rozgrzewający i pobudzający, toteż zaczęto go stosować w przypadku utonięć. Wielu lekarzy stosowało zarówno wdmuchiwanie powietrza do płuc jak i dymu do odbytu, uważając za ważniejszy ten drugi zabieg. Przekonanie to doprowadziło do tego, iż na początku XIX wieku w różnych miejscach nad Tamizą umieszczono zestawy ratunkowe, zawierające niewielki miech, garść tytoniu oraz rurkę.
Miech mógł też służyć do respiracji płuc. Jednak już wkrótce medyczne zastosowania tytoniu zaczęły stawać się coraz mniej popularne, zwłaszcza od czasu wykazania jak bardzo toksyczny jest to środek.
Pierwsze doświadczenia nad działaniem dużych dawek przeprowadzał Benjamin Brodie, który na początku XIX wieku wykazał, że wyciąg nikotynowy może zatrzymywać akcję serca. W 1828 roku Posselt izoluje z liści oleisty składnik aktywny, nazwany nikotyną.

Nikotyna to alkaloid o wyraźnych właściwościach pobudzających, oraz stosunkowo prostej budowie, jest to pierścień pirydyny połączony z pięciokątną pirolidyną. Atom węgla przy wiązaniu łączącym ma niesymetryczne otoczenie, stanowiąc decydujące o czynności optycznej centrum setereogeniczne. Z tego też powodu możliwe stają się dwie formy różniące się konfiguracją i podobne do siebie jak lustrzane odbicia - naturalna (-)-nikotyna i syntetyczna (+)-nikotyna. Różnią się też toksycznością.
Czysta nikotyna to oleista, brązowa ciecz, mieszająca się z wodą, natomiast zapach zwykle opisywany jest jako ostry - chociaż gdy miałem ostatnio okazję powąchać czystą nikotynę w laboratorium, zdziwił mnie miękki zapach, przypominający podpieczony wafel od lodów. Działając bezpośrednio na tkanki wywołuje podrażnienia i oparzenia. Już dawka 1-1,5 mg/kg masy ciała może wywołać śmiertelne zatrucie, co oznaczałoby toksyczność równie wysoką jak cyjanek, u nałogowców występuje pewna tolerancja.

Jest aminą o słabych właściwościach zasadowych. Pod wpływem kwasów zamienia się w sól amoniową bardzo dobrze rozpuszczalną w wodzie
Zawarta w tytoniu ulatnia się podczas spalania liści, ale nie w całości lecz tylko jakieś 10%. Wdychana wchodzi w kontakt z nabłonkiem wyścielającym drogi oddechowe. I tutaj znaczenie dla wchłaniania mają własności związku - dym jest zazwyczaj kwaśny i przejściowo zakwasza śluz pokrywający nabłonek. W takich warunkach związek przechodzi w formę jonową, która słabo wchłania się do organizmu, dlatego często papierosy zawierają dodatki uwalniające amoniak alkalizujący dym i zwiększający wchłanianie. Lekko zasadowa jest w normalnych warunkach ślina, dlatego żucie tytoniu pozwala wchłonąć znacznie więcej aktywnych substancji. W pewnych regionach działanie dodatkowo wzmacnia się, dodając do żutego tytoniu sody lub wapna (dokładnie ten sam mechanizm działa z betelem i koką, których liście były przeżuwane z wapnem).

Wciąganie tabaki podobnie jak palenie i żucie, także opiera się na wchłanianiu nikotyny, tyle że poprzez śluzówkę nosa, i to właśnie ten efekt ma działanie pobudzające, nie zaś samo kichanie. W formie tabaki tytoń przywędrował do Polski. Początkowo były to tabaki na pół chałupnicze, ucierane w nieemaliowanych garnkach glinianych czy donicach, często z dodatkiem popiołu, aby bardziej w nosie kręciło. Za króla Augusta znaną producentką tabaki stała się niejaka Syrakuzana, Włoszka urabiająca tabakę w formie groszków rozcieranych w palcach. Tytoń był zaprawiany lawendą lub skórką pomarańczy, a dla większej ostrości dodawano do niego siarczanu cynku lub żelaza. Jej tabaka zyskała taką popularność, że zaczęła być podrabiana w innych regionach. Złośliwi przekręcali jej imię na Srajkoziana. Bywało, że dla większego szczypania dodawano do tabaki pieprzu, tartych cegieł czy nawet soli.[2]
W Krajach Skandynawskich popularnym sposobem zażywania tytoniu jest snus, czyli torebeczka z tytoniem wkładana pod wargę i ssana.

Ostatecznie najbardziej popularnym sposobem zażycia tytoniu, jest jego palenie. Początkowo europejczycy naśladowali tubylców, paląc tytoń w trzcinowych rurach i wdychając dym nosem. Potem popularniejsze stały się fajki a dym zaczęto wdychać ustami. Poza fajkami zwykłymi i wodnymi znano właściwie tylko cygara robione ze skręconych liści, zawierające duża ilość rośliny. Dopiero potem zaczęto produkować mniejsze i wygodniejsze cygaretki, zawierające wewnątrz masę z pokruszonych liści zawiniętych w pojedynczy liść.
To co znamy dziś jako papierosy jest wynalazkiem względnie młodym - pomysł cygaretek zawijanych w cienki papier wprowadził w 1880 roku Albert Bonsack. Wynalazku wraz ze specjalną maszynką do zawijania początkowo nie chciano kupować, uważając że "papierowa cygaretka" jest gorsza w smaku i pewnie robi się ją ze zmiotek po cygarach. Pewien wpływ miały tu też obawy ze strony producentów cygar - glizownica pozwalała w krótkim czasie wyprodukować tyle papierosów, ile zakładom z wieloma robotnikami zajmowało tygodnie. Wynalazca wszedł więc w odpowiednią spółkę i zaczął produkować papierosy, które za sprawą niższej ceny i poręcznych rozmiarów szybko zyskały popularność na całym świecie. W Polsce pojawiły się na przełomie XIX i XX wieku.

Upowszechnienie papierosów spowodowało też jego umasowienie, co szybko zaczęło wywoływać kłopoty. Już w XIX wieku lekarze wyrażali obawy o wpływ palenia na zdrowie. Było wiadomo że wdychanie dymu przez węglarzy i kominiarzy szkodzi na płuca i że wśród ludzi tych częstszy jest rak płuca, dlatego w 1912 roku dr Azaak Adler ogłosił, że papenie tytoniu działa podobnie. Jednak badania polegające na obserwacji że wielu chorych na raka paliło, były niedostateczne - w końcu paliła duża część społeczeństwa.
Po zakończeniu I wojny światowej zaobserwowano gwałtowny wzrost zachorowań na nowotwory płuc, krtani i języka, co w latach 30. poważnie zaniepokoiło lekarzy. Dziwne jest w tej sytuacji zignorowanie doniesienia niemieckiego lekarza Fritza Lickinta, który najpierw w 1925 roku zwrócił na częstsze nowotwory żoładka u palaczy, a potem w 1929 wydał obszerną pracę statystycznie udowadniającą związek palenia z rakiem płuc.
Do zignorowania Lickinta częściowo przyczyniła się propaganda niemieckich firm tytoniowych, a częściowo jego poglądy polityczne - był socjaldemokratą, co wobec rosnącego w siłę ruchu nazistowskiego było niepożądane. W 1934 stracił pracę, a potem został wcielony do wojska jako lekarz frontowy, gdzie przeżył całą wojnę. Ironią losu było to, że jego wyniki stały się potem podstawą dla nazistowskiej kampanii antynikotynowej.
Stanowiący centrum nazistowskiej ideologii plan przebudowy społeczeństwa i wykształcenia idealnego narodu, obejmował też eliminację czynników osłabiających silę i morale. Za jeden z nich uznano szkodliwe używki, a w szczególności palenie papierosów. W dodatku wczesne badania wskazywały na zmniejszenie płodności za  sprawą większej ilości poronień i wad u dzieci matek palących - a przecież do budowy nowego społeczeństwa potrzebne były w pełni płodne, zdrowe matki. Dlatego w latach 30. doprowadziło to do zakazów palenia w tramwajach i miejscach publicznych, znane stało się też wtedy pojęcie "palenia biernego".
Nazistowscy badacze opublikowali w latach 1939-45 szereg obszernych badań wskazujących na szkodliwość palenia, w tym badań z grupą porównawczą, spełniających wszelkie wymogi statystyki. Za najważniejszy skutek palenia uznano wtedy choroby serca. Pod koniec wojny pojawiła się nawet praca opisująca wyniki autopsji kilkudziesięciu żołnierzy, którzy zmarli z powodu zawału - większość była palaczami i miała zniszczone płuca. Sam Hitler był przeciwnikiem palenia - uważał je za objaw dekadentyzmu, oraz "zemstę czerwonych", a także osłabiający nałóg osłabiający tężyznę fizyczną. Namawiał współpracowników do rzucenia nałogu i zawsze irytował go zwyczaj Goeringa do palenia w pomieszczeniach. Miał plany aby po wygranej wojnie zakazać palenia wszędzie.
Kampania antynikotynowa była brudną kampanią - obok uzasadnień ideologicznych chwytała się kojarzenia palenia z "żydowskimi zwyczajami", pisano też że to brudny murzyński zwyczaj niegodny cywilizowanego, białego aryjczyka. Do kampanii włączył się niemiecki kościół Adwentystów Dnia Siódmego. Doszło nawet do wydawania czasopisma z bajkami i śmiesznymi obrazkami o szkodliwych skutkach nikotynizmu.
Kampania była jednak mało skuteczna - aż do rozpoczęcia wojny konsumpcja papierosów rosła bardzo szybko. W czasie wojny przyhamowała głównie z powodu niedoboru surowca na rynku, mimo wzrostu ilości palaczy.

Zaraz zaraz - skoro już wtedy, w tych wojennych czasach ukazały się szczegółowe, dobrze wykonane prace o szkodliwości palenia, to dlaczego po wojnie papierosy nadal były uważane za nieszkodliwe?  Bo tamte prace były nazistowskie.
Dlatego też świat musiał poczekać aż do roku 1950 gdy brytyjski lekarz Richard Doll opublikował swój raport, wykazujący związek palenia z rakiem płuc. Trzy lata później głośna stała się praca opisująca powstawanie raka skóry u myszy posmarowanych smołą tytoniową.
Dziś szkodliwy wpływ papierosów jest już dobrze udowodniony. Główne znaczenie mają tu rakotwórcze produkty częściowej pirolizy tytoniowych okruchów, takie jak arkoleina czy wielopierścieniowe węglowodory aromatyczne, częściowo metale ciężkie jak ołów i kadm zawarte w nawozach a w pewnym stopniu też promieniotwórczy polon gromadzący się na powierzchni liści. Na zdrowie palaczy wpływ ma też tlenek węgla zawarty w dymie.

Po wchłonięciu bardzo szybko zostaje rozprowadzona po organizmie, docierając do mózgu gdzie wywiera właściwe działanie, stanowiąc inhibitor receptora acetylocholinowego.

Komórki nerwowe utrzymują stale pewną nierównowagę ilości jonów między wnętrzem i zewnętrzem. Aktywny transport jonów doprowadza do sytuacji, gdy po wewnętrznej stronie błony komórkowej jest więcej anionów niż w płynie na zewnątrz. W efekcie powstaje niewielki potencjał elektryczny ok. -70 mV. Jego rozładowanie zachodzące poprzez otworzenie kanałów jonowych w błonie i pozwolenie jonom na wpływanie do komórki, wywołuje miejscowe powstanie przeciwnego potencjału o wielkości ok. +30 mV. Ta zmiana potencjału rozchodzi się od neuronu do neuronu, tworząc impuls nerwowy.
W tworzeniu tej elektrycznej nierównowagi udział biorą głownie jony potasu i sodu, których stężenia są sztucznie zmieniane przy pomocy kanałów jonowych - tworów przechodzących przez błonę i wyrzucających na zewnątrz sód i wciągających do środka potas.

Kanały te mogą otwierać się aby przepuścić jony w którąś stronę, jeśli jest to organizmowi potrzebne, co sygnalizują odpowiednie neuroprzekaźniki. Takim kanałem są między innymi receptory acetylocholinowe zlokalizowane w błonach neuronów. Aby kanał się otworzył, organizm musi wydzielić agonistę, czyli substancję która wiążąc się z receptorem otworzy kanał. Taki uniwersalnym agonistą jest acetylocholina, związek będący prostą, czwartorzędową aminą. Identyczne działanie może mieć jednak wiele innych substancji będących aminami, w tym nikotyna.
Otworzenie kanału jonowego zmienia polaryzację błony, co wywołuje krótkotrwałe pobudzenie układu nerwowego. Dlatego substancje będące agonistami tego receptora będą miały działanie pobudzające. W przypadku nikotyny szczególnie chętnie łączy się ona z receptorami komórek nerwowych w nadnerczach, wywołując uwalnianie adrenaliny. Uaktywnia też wydzielanie dopaminy, stąd poprawa samopoczucia.

Ale jak to już wielokrotnie wykazywałem, co za dużo, to nie zdrowo. Kanały jonowe nie powinny pozostawać otwarte zbyt długo, dlatego cholina i nikotyna zwykle dosyć szybko odłączają się od receptora. Jednak przy dużych dawkach, zanim komórka powróci do pierwotnej polaryzacji, receptor jest znów otwierany. Przedłużona depolaryzacja błony wywołuje ostatecznie efekt odwrotny do pierwotnego - aktywność układu nerwowego zmniejsza się.

Objawy zatrucia nikotyną są zazwyczaj dość charakterystyczne. Najpierw następuje faza nadmiernego pobudzenia, co daje takie objawy jak nadmierne pocenie i ślinienie, podwyższone ciśnienie, szybkie bicie serca, drżenie przechodzące w drgawki, bóle brzucha i głowy, wymioty itp. Po tej fazie następuje druga, związana z działaniem hamującym nadmiernych dawek. Następuje gwałtowny spadek ciśnienia, niedowłady i duszności przechodzące w ustanie oddechu wskutek osłabienia mięśni oddechowych. Przyczyną zgonu zwykle jest uduszenie lub ustanie czynności serca.
Dawka śmiertelna to ok. 500 mg nikotyny, o jest raczej trudne do osiągnięcia przez samo palenie papierosów. Teoretycznie możliwe jest przy kombinacji palenia, gum nikotynowych i plastrów. Zanotowano przypadek śmierci dwóch nastolatków, którzy wdychali dym z rury napełnionej tytoniem, którzy za pomocą tej zaimprowizowanej fajki chcieli wywołać u siebie halucynacje, ale to ekstremum.
Większość notowanych zatruć wynikała więc raczej z kontaktu z środkami owadobójczymi na bazie nikotyny. Alkaloid jest dla owadów znacznie bardziej toksyczny niż dla ludzi, i dlatego sok tytoniu, wyciąg wodny a nawet pył z roztartych liści już od wieków były używane do zwalczania szkodników. Aż do lat 50. insektycydy stanowiły drugie najważniejsze zastosowanie tytoniu. Obecnie jednak wycofuje się je ze względu na zbyt mało specyficzne działanie, nikotyna i jej pochodne zabijają bowiem też zwierzęta, no i oczywiście są niebezpieczne dla ludzi. Pochodne z grupy neonikotynidów były uważane za bezpieczną alternatywę ze względu na niską toksyczność wśród ssaków, jednak powiązano je ze zjawiskiem masowego ginięcia pszczół i dlatego są wycofywane.

Jest jednak jeszcze jedno źródło nikotyny, coraz popularniejsze i tym samym niebezpieczne - liquid, czyli płynny wkład do papierosów elektronicznych. Jest to zazwyczaj roztwór nikotyny w glicerynie lub glikolu propylenowym z dodatkami zapachowymi i smakowymi. stężenia nikotyny w takich płynach mogą być dosyć duże, dlatego notowano już zatrucia związane z nieostrożnym obchodzeniem się. Niekiedy wystarcza rozlanie wkładu na dłonie, ręce czy tułowie a także na ubranie mające potem dłuższy kontakt ze skórą, bowiem nikotyna wchłania się przez skórę. Inne przypadki dotyczyły zwilżenia ustnika, czy jedzenia dłońmi na które wcześniej wylał się liquid.
Bardzo wiele zatruć dotyczy dzieci, które liżą niedokręcone buteleczki, przyciągnięte słodkim, owocowym zapachem, lub wypijają płyn z otwartych pojemników, albo wdychają mgiełkę z pozostawionych włączonych urządzeń.
 Wzrost liczby takich przypadków jest dramatyczny - już w tym roku w Stanach Zjednoczonych zdarzyło się 2400 zatruć z tego powodu, z czego ponad połowa dotyczyła dzieci, część z nich wywołała zgon.[3] Niektóre z tych zatruć dotyczyły nastolatków zaprawiających sobie drinki dla wzmocnienia, inne dotyczyły dorosłych smarujących się płynem w zastępstwie plastra nikotynowego.
W przypadku rozlania liquida na skórę, powinno się go szybko zetrzeć, a skórę umyć mydłem. Podobni powinno się postępować z powierzchniami na które wylał się lub kapnął płyn.  W przypadku ubrania powinno się je zdjąć, nawet jeśli wydaje się że plama wyschła. Po przeczytaniu tego fragmentu powinniście się już orientować, że pojemniczków nie powinno się przechowywać w zasięgu dzieci i zwierząt domowych bo może to być dla nich śmiertelnie niebezpieczne.

W przypadku połknięcia nikotyny, jedną z metod leczenia może być podanie węgla aktywnego, zmniejszającego wchłanianie. Leczenie szpitalne zatruć polega głównie na łagodzeniu objawów - w fazie nadmiernego pobudzenia środkami uspokajającymi a w fazie osłabienia podawaniem atropiny, regulacją ciśnienia i wspomaganiem oddechu. Przy zatruciu ostrym z zatrzymaniem oddechu ważna jest sztuczna wentylacja, wówczas bowiem większą szkodę wywołuje niedotlenienie niż samo zatrucie. Zazwyczaj przy takim wspomaganiu objawy ustępują po paru dniach w miarę metabolicznego przerobu nikotyny, i nie pozostawiają długotrwałych następstw.

A co tam u hrabiostwa?
Podczas śledztwa zwrócono uwagę na sprzęt laboratoryjny w domu hrabiego. Podobno w ostatnim czasie zainteresował się chemią. W dodatku znaleziono u niego książkę na temat trujących roślin, w tym także o właściwościach tytoniu.
Służba opowiedziała sędziemu, że w lato Bocarme zamówił duże ilości ciętego tytoniu, rzekomo na zapas do skręcania cygaretek, choć nie widziano potem aby tak często palił. Jeśli połączyć to z informacją o zakopanych w kącie ogrodu zdechłych nagle okolicznych psach i kotach, cała historia zaczyna wyglądać jasno. Hrabia kupił tytoń, z niego poprzez gotowanie z octem otrzymał wyciąg, który zagęścił; z wyciągu wyizolował czystą nikotynę, której działanie testował na zwierzętach. Wyglądało to zatem na działania planowane już od dawna.
Jednak dla sądu pomiędzy stwierdzeniem, że oskarżony mógł zdobyć niebezpieczną truciznę, a stwierdzeniem że to nią otruto Gustawa, zachodziła istotna różnica. Należało zatem tą truciznę w ciele zmarłego wykryć.

Gdy Jan Servais Stas zastanawiał się nad wyizolowaniem trucizny z tkanek zabitego, medycyna sądowa nie dawała na to zbyt wielkich nadziei. Były już znane techniki wykrywania we wnętrznościach trucizn nieorganicznych, zazwyczaj w tym celu próbkę spalano lub rozpuszczano w mocnym kwasie, który niszczył substancje organiczne pozostawiając sole trującego metalu. Nikotyna jest jednak trucizną organiczną, i nie można było jej niszczyć. Dlatego wpadł na inny pomysł.
Pobrał część żołądka zabitego i wytrawiał w rozcieńczonym kwasie, przeprowadzając alkaloid w rozpuszczalne sole i tym  samym wypłukując go z tkanki. Otrzymany płyn potraktował zasadą, która rozpuściła resztki białek i przeprowadził nikotynę do wolnej postaci. Na koniec zagęścił powoli odparowując.
Gdy Stas otrzymał już płyn z roztworzenia żołądka, wykorzystał znaną właściwość nikotyny do rozpuszczania się w eterze. Ekstrahował mieszaninę eterem, który odparowywał. Na dnie pozostała mu już tylko oleista ciecz o charakterystycznym zapachu, którą poddał próbom charakterystycznym z kwasami, potwierdzając, że reaguje identycznie jak nikotyna. A skoro tak, to musiała być nikotyna.
[4]
 Tym samym można było potwierdzić, iż zabójstwa dokonano tym związkiem. Gdy to nastąpiło, rozpoczął się proces, który ze względu na stan społeczny oskarżonych wzbudził zainteresowanie w całej Europie.

Początkowo hrabiostwo wszystkiemu zaprzeczali, jednak po rozpoczęciu procesu zgłosił się profesor Loppens, którego przez kilka miesięcy pewien człowiek wypytywał o technologię wyodrębniania nikotyny, tłumacząc mu, iż będąc w Ameryce widział, jak Indianie zatruwają strzały sokami pewnych roślin, że zaś ma za oceanem rodzinę do której zamierza znów przyjechać, pragnie zdobyć wiedzę o takich truciznach. Człowiek ten, posługujący się nazwiskiem Bernard, raz nawet odwiedził go pokazując próbki ekstraktów i informując, że sprawdzał je już na zwierzętach z piorunującym skutkiem.
Śledczy przeprowadzili małą konfrontację, dając profesorowi okazję zobaczenia hrabiego. Był to dokładnie ten sam człowiek. Profesor zachował listy, napisane jak oceniono ręką hrabiny. Mając w ręku taki dowód, śledczy przycisnął hrabinę, grożąc że może zostać uznana za morderczynię. Przestraszona Lidia przyznała - tak, Gustaw został zabity. Ale sprawcą był mąż Hippolit. Podszedł od tyłu do jej brata i trzymając jedną ręką za głowę, włożył mu dwa palce głęboko do ust, wlewając truciznę między rozwarte zęby. Gdy ciałem wstrząsnęły konwulsję trzymał go, dopóki ten nie zwiotczał.

Podczas procesu urządzono konfrontację małżonków. Lidia oskarżała męża o maltretowanie i przymuszanie do zbrodniczego planu, natomiast hrabia zbywał te słowa uśmiechem. Przez większość procesu zachowywał się swobodnie, uważając że dowody są zbyt słabe. Dwuznacznie chwalił się wielką znajomością trucizn i dużym wkładem w toksykologię.
Nie mogąc zaprzeczyć, że wyrabiał nikotynę i że od nikotyny zginął Gustaw, twierdził że zmarły wypił fiolkę z nikotyną stojącą na kredensie, gdy hrabiostwo udali się na chwilkę do kuchni po drugie danie.
Gdy nie dano temu wiary, zmienił punkt obrony - to Lidia dała truciznę bratu, mówiąc mu że to koniak, a nawet rozlała jej nieco na suknie i dłonie. Dlatego właśnie, jak widziała służba, zaraz po otworzeniu sali jadalnej poszła umyć ręce, dlatego kazała ubrania swoje i męża uprać jeszcze tej samej nocy, i dlatego wreszcie wrzuciła do pieca kule zmarłego brata.
Brat miał odjeżdżać i poprosił o szklankę koniaku na odjezdne. Lidia wzięła dwa kieliszki i postawiła je na kredensie, gdzie napełniła je z butelki, tak że nie widzieli co nalewa. Dała kieliszki obydwu, Gustaw wychylił swój duszkiem, mąż zaledwie przytknął do ust nim poznał po zapachu nikotynę. Gdy Gustaw poznał, że to co wypił było trucizną, zaczął krzyczeć. Wtedy hrabia zamknął mu dłonią usta aby nie wywołał skandalu i został ugryziony. Ponieważ nieco trucizny znalazło się na jego języku, stracił na chwilkę przytomność i upadł, co tłumaczy stan jego ubrania, ponadto uderzył się w kredens co tłumaczy ranę na czole którą wzięto za ślad paznokci zabitego. Co do motywów żony, najpierw niejednoznacznie dawał do zrozumienia, że między rodzeństwem panowała głęboka nienawiść, lecz zaraz potem twierdził, że nalanie do kieliszków trucizny było nieszczęśliwym zbiegiem okoliczności - butelka z alkoholem stała niedaleko butelki z trucizną i Lidia wzięła nie tą co trzeba.
Obawiając się, że nikt nie da im wiary, uznał że trzeba ukryć to zdarzenie. A dlaczego teraz żona go oskarża? Bo ona ma dużą skłonność do kłamania, pisze te romanse i ciągle coś zmyśla.

Proces przeciągał się. Powoływano coraz to nowych świadków, roztrząsano kwestie gdzie stała butelka, czy podłoga była skrobana, czy wiemy jak działa nikotyna czy też jest to rzecz niepewna, lecz ostatecznie 14 czerwca ogłoszono wyrok: Hippolit Visart Hrabia de Bocarme zostaje uznany winnym zabójstwa Gustawa Fougnies. Lidia Visart, siostra Gustawa, zostaje uniewinniona.

W późniejszym czasie wątpliwości wywoływało uniewinnienie hrabiny, która czy z własnej woli czy przez przymuszenie musiała pomagać w przygotowaniach. Ponadto wskazywano, że podczas wlewania trucizny, ofiarę musiały trzymać dwie osoby. Mimo to nie doszło do rewizji procesu.
Hrabia Hippolit został zgilotynowany 19 lipca 1851 roku.

-------
* Zastosowania medyczne tytoniu w historii 
 * Gazeta Warszawska nr. 145. 2 czerwca 1851 EBUW
*  Gazeta Warszawska nr. 147, 4 czerwca 1851 EBUW
* Gazeta Warszawska nr. 155, 14 czerwca 1851 EBUW
* Gazeta Warszawska nr. 171. 4 lipca 1851 EBUW
*  http://murderpedia.org/male.B/b/bocarme.htm

* http://en.wikipedia.org/wiki/Tobacco
* http://en.wikipedia.org/wiki/History_of_tobacco
* http://en.wikipedia.org/wiki/Rodrigo_de_Jerez
* http://en.wikipedia.org/wiki/Tobacco_smoke_enema
* http://en.wikipedia.org/wiki/Anti-tobacco_movement_in_Nazi_Germany
* http://en.wikipedia.org/wiki/Nicotiana_tabacum
* http://en.wikipedia.org/wiki/Nicotine
* http://en.wikipedia.org/wiki/Nicotine_poisoning
* http://en.wikipedia.org/wiki/Nicotinic_acetylcholine_receptor
* http://en.wikipedia.org/wiki/Ligand-gated_ion_channel

[1] http://archaeology.about.com/od/tterms/qt/Tobacco-History.htm
[2] http://staropolscy.pl/jedrzej-kitowicz/opis-obyczajow-za-panowania-augusta-iii/o-tabace-i-wloszce-syrakuzanie-nazywanej
[3] http://www.cbsnews.com/news/sharp-rise-in-liquid-nicotine-poisonings-in-children/
[4] Dodatek do "Chemii Policyjno Prawnej" Warszawa 1854, EBUW

wtorek, 8 kwietnia 2014

Azot Kjeldahla

Kiedyś kiedyś, w laboratorium... Na zajęciach z chemii środowiska badałem zawartość azotu w żywności metodą Kjeldahla.


Białka z jakich zbudowane są żyjące organizmy, składają się z aminokwasów, zawierających azot. Chcąc więc oznaczyć zawartość białka w pożywieniu mierzy się zazwyczaj po prostu zawartość azotu. Metodę tą wymyślił duński chemik pracujący na potrzeby browarów - zawartość białka w ziarnie przekłada się na właściwości słodu a te na jakość piwa.
Sama idea jest dosyć prosta - próbkę żywności roztwarza się w kwasie siarkowym w wysokiej temperaturze. W takich warunkach białka, skrobia i większość innych substancji ulegną zniszczeniu, zaś azot pochodzący z amin, głównie tych w białkach, ulegnie zamianie w siarczan amonu.
NR'+ H2SO4 → (NH4)2SO4 + CO2 + H2O
Po zalkalizowaniu roztworu mocną zasadą, siarczan amonu rozłoży się z wydzieleniem amoniaku:
(NH4)2SO4 + 2NaOH → Na2SO4 + 2H2O + 2NH3
Amoniak jest bardzo lotny więc podczas gotowania roztworu odparuje i wraz z parą wodną będzie skraplany w chłodnicy. Rozpuszczony w wykroplinach amoniak musi być teraz schwycony w roztworze. W tym celu skropliny wprowadza się do odbieralnika z kwasem borowym, będącym stosunkowo słabym kwasem. Zobojętnianie kwasu zmienia odczyn i kolor wskaźnika. Pochłoniętą ilość amoniaku odmiareczkowuje się kwasem. Proste.

Nie pamiętam czy sami mineralizowaliśmy próbkę prezed ćwiczeniem, chyba korzystałem z roztworu już przygotowanego. Mętna zalkalizowana próbka gotowała się cały czas:

Aparatura była skonstruowana trochę nieklasycznie:


Odbieralnikiem była zwykła kolbka z mianowanym roztworem kwasu borowego i z dodatkiem odczynnika Tashiro, czyli mieszaniny wskaźników - czerwieni i błękitu metylenowych. W miarę wykraplania amoniaku zawartośc stawała się zielona:

Aby po przemiareczkowaniu zasadą powrócić do głębokiego fioletu:


W tym przypadku azotu było niewiele.

Sama matoda jest dosyć dokładna, ale tak wyznaczoną zawartość białka mogą podwyższać inne substancje też uwalniające azot w formie soli amonowych. Znanym przykładem jest melamina, nagminnie używana przez nieuczciwych producentów do zawyżania zawartości białka w mleku lub paszach. Właśnie to było powodem niedawnego skandalu w Chinach gdzie wypuszczenie na rynek chrzczonego melaminą mleka w proszku spowodowało zatrucie tysięcy niemowląt.

poniedziałek, 18 listopada 2013

Synteza I. - etap pierwszy, męczący

Dawno dawno temu... jeszcze przed wakacjami, obiecywałem że zacznę pisać o syntezach wykonywanych w ramach pracowni magisterskiej. Niestety jak widać zrobił mi się w tej kwestii znaczny poślizg, co zresztą dotyczy wszystkich dłuższych postów. Ledwie coś zacznę, tracę zapał do dokańczania i odkładam rzecz na później. To "zatwardzenie pióra" sprawia że wolę już niczego nie obiecywać.

Skoro już w jednym z wcześniejszych wpisów obszernie objaśniłem o co chodzi z tymi syntezami asymetrycznymi, mogę przejść do opisu pierwszej wykonywanej syntezy, jeszcze z poprzedniego roku studiów. Wówczas to, w drugim semestrze czwartego roku, mając czas przeznaczony na laboratorium w wymiarze jednego dnia tygodniowo, raczej wprawiałem się i wdrażałem do pracy laboratoryjnej, toteż to co robiłem było raczej powtórzeniem już przeprowadzanej syntezy, a nie rozpoczynaniem czegoś nowego. Miało to tą dobrą stronę, że w razie wątpliwości mogłem zajrzeć do notatek osoby robiącej to samo w zeszłym roku.

Moim związkiem końcowym miała być 3-bromo-5-fenylo-1,2,4-triazyna, a uzyskać ją miałem z wyjściowych związków niecyklicznych. Całość reakcji powinna wyglądać tak:


Pierwszy etap który omówię w tym wpisie, dotyczył cyklizacji i wyodrębnienia produktu.
Substratami wyjściowymi był fenyloglioksal i karbamohydrazonotioester metylowy (chyba, po angielsku Methyl carbamohydrazonothioate) w formie jodowodorku. Ten drugi jest tu dostarczycielem dwóch azotów połączonych wiązaniem; grupa tioestrowa jest tu sposobem zabezpieczenia grupy hydroksylowej, która w przeciwnym wypadku też mogłaby wchodzić w reakcję. W obecności słabej zasady, jaką jest wodorowęglan sodu następuje kondensacja grup aminowych do węgli karboksylowych, tworząc sześcioczłonowy pierścień:

Możliwy produkt uboczny, z podstawnikami w ustawieniu 3,6 (a więc para-trizyna), nazywany dalej izomerem 6, powstaje gdy cząsteczki połączą się obrócone, jest go jednak mało, o czym później.
Zgodnie z przepisem odważyłem fenylogliokasal, mający w tym przypadku postać żółtawego proszku o bardzo niemiłym zapachu - dosyć ostrym, jakby czosnkowym ale z kwaśną nutą. Podobnie pachniał kiedyś słoik zepsutych kiszonych ogórków. 

Drugi związek miał formę białego proszku, przechowywano go w lodówce z uwagi na niestabilność. Glioksal i węglan sodu rozpuściłem w kolbie i dodałem drugi substrat. Całość umieściłem na mieszadle magnetycznym (wcześniej wrzuciłem magnetyczny drops), obłożyłem z zewnątrz lodem  i tak to się miało kręcić całą dobę.

Kolejnego dna po ostatnim wykładzie przyszedłem zobaczyć co wyszło. A wyszło mianowicie to, że zastałem w kolbce żółtawą mieszaninę poreakcyjną. Należało ją teraz rozdzielić. Najpierw ekstrahowałem ją chlorkiem metylenu aby oddzielić węglan sodu i częściowo zhydrolizowany hydrazyd, otrzymując brązowy roztwór:

Potem oczywiście nałożyłem na kolumnę i rozdzieliłem chromatograficznie. Wcześniejsze próby na płytce pokazały że w ekstrakcie miałem głównie pożądany produkt i ślady izomeru 6, możliwe do rozdzielenia. Kwestię rozdziału na kolumnie preparatywnej, jej wykonywanie i problemy z tym związane, już tu omawiałem, więc nie będę się u szczegółowo powtarzał. Początkowo użyłem mieszanki CH2Cl2:metanol 100:1 która na płytce dawała dobre rezultaty. Niestety na kolumnie nie specjalnie.
Związek główny strasznie ogonował - za czołem zawierającym główną porcję ciągnął się "ogon" zawierający produkt, co oznaczało że do całkowitego wymycia potrzebne jest przelanie przez kolumnę dużej ilości eluentu. Zdaje się że zużyłem w ten sposób ponad pół butelki chlorku metylenu zbierając 12 frakcji aż prowadząca uznała, że lepiej użyć mieszanki z większa ilością metanolu i dopiero wówczas związek wymył się całkiem.
Kolejnego dnia miałem zająć się przede wszystkim odparowaniem czystych frakcji na wyparce. Jest to przyrząd w którym roztwór umieszczony zostaje w kulistej kolbie zanurzonej w misie z ciepłą wodą i podłączony do chłodnicy pod obniżonym ciśnieniem. Kombinacja niskiego ciśnienia, podgrzewania i rozprowadzania cieczy na ściankach powoduje szybkie odparowanie rozpuszczalnika.

Tak więc nalewałem do kolby kolejne frakcje, i odparowywałem. Pierwsza, drugą, trzecią, czwartą, piątą... a gdy byłem przy dziesiątej zdarzyła się katastrofa. 
Kolbka podłączona do wyparki trzyma się obracającego szlifu trochę za sprawą tarcia a trochę za sprawą przyssania. Dla pewności można założyć plastikowy klips. Gdy odparowałem już wszystkie wcześniejsze frakcje, odszedłem na chwilę a przez ten czas z tej samej pompy ssącej skorzystał ktoś inny aby coś sobie przesączyć. I wyłączył pompę. Gdy powróciłem nie zwróciłem na to uwagi - wlałem do kolbki jedenastą frakcję, nasunąłem ją na szlif, zanurzyłem w misie i włączyłem obrót. Kolbka obróciła się kilka razy i wpadła do misy...
Oczywiście nie do końca odparowany roztwór wylał się do środka i będąc cięższym od wody osiadł na dnie. Łatwo sobie wyobrazić moją reakcję. No ale cóż, nie było na co się dalej złościć, trzeba było ratować co się da. Wybrałem wodę z misy po czym odciągnąłem roztwór z dna pipetką. Zanieczyszczony różnymi osadami z dna i wodą roztwór wlałem do kolby i zasypałem środkiem suszącym. I tak skończył się dzień kolejny.
Na następnej pracowni odparowałem ocaloną frakcję produktu, po czym nałożyłem wysuszoną i przesączoną mieszaninę powypadkową, po czym... nałożyłem na kolumnę i rozdzielałem.

Tym razem poszło mi to szybciej za sprawą lepiej dobranego układu, ale też zeszło na to trochę czasu. Na koniec porównałem obie części ze wzorcem produktu i odparowałem wspólnie, w jednej kolbie, otrzymując 1,5 grama związku. Po odparowaniu początkowo utworzył olejek, który ładnie wykrystalizował:

Porządnie mnie wymęczył ten etap.

poniedziałek, 24 czerwca 2013

Synteza I - Wstęp

Więc...
Dotarłem już w nauce akademickiej do tego momentu, gdy zamiast poprzestawać wyłącznie na powtarzaniu już opisanych i przygotowanych reakcji, muszę zacząć podjąć własną pracę naukową - oczywiście pod bacznym okiem promotora, dr Ewy Wolińskiej.
Dokładnie określonego tematu pracy jeszcze nie mam, ale zasadniczo opierać się będzie ona na syntezie zawierających 1,2,4-triazynę ligandów, do katalizatorów mających posłużyć do syntezy asymetrycznej. Zanim jednak omówię coś z przeprowadzonych syntez, muszę oczywiście objaśnić co też są to te triazyny, ligandy i dlaczego synteza miałaby być asymetryczna; ponieważ jednak objaśnienia te bardzo mi się wydłużyły, uznałem że ten wstęp teoretyczny podam w jednym wpisie, zaś trzy kolejne etapy właściwej syntezy omówię w kolejnych. Teraz więc będzie o tym, czy mogą istnieć "lewe" cząsteczki i jak to się ma do naszego zdrowia:

Jedną z właściwości cząsteczek organicznych, jest posiadanie określonej symetrii. Popatrzcie na swoje ręce; najlepiej wyciągnijcie je przed siebie i połóżcie jedną na drugą, bez obracania ku sobie. Nie nakładają się. Kciuki sterczą w przeciwne strony. Możemy jednak obrócić jedną i złożyć z drugą jak do modlitwy, wtedy ich obrysy będą się nakładały, ale nadal nie będą identyczne, bo ich grzbiety będą skierowane w przeciwne strony. Jak byśmy ich nie obracali, jedna nie stanie się taka jak druga.
To zupełnie oczywiste - jedna jest dłonią lewą a druga prawą. Są do siebie podobne jak lustrzane odbicia. Gdyby ktoś miał idealnie symetryczne dłonie, to lustrzane odbicie jednej wyglądałoby dokładnie tak jak druga.
O bryłach mających tą właściwość, że podobnie jak dłonie, posiadają formę "lewą" i "prawą", które nie dają się na siebie nałożyć przez obrót w przestrzeni, i są do siebie podobne jak lustrzane odbicia, mówimy że są chiralne (od greckiego chira - ręka). Jest wiele takich figur. Istnieją lewe i prawe muszle ślimaków, kwiaty, a z przedmiotów codziennego użytku, nożyczki dla prawo i leworęcznych:


Nie inaczej jest ze związkami chemicznymi. Już na początku XIX wieku skrupulatny badacz Ludwik Pasteur, najbardziej znany z badań nad fermentacją, przyglądając się kryształom soli syntetycznego kwasu winowego zauważył, iż są one asymetryczne, oraż że tworzą dwie odmiany, podobne jak lustrzane odbicia. Gdy zaś oddzielił jedną odmianę od drugiej, po prostu sortując kryształki pincetą, stwierdził że kwas winowy "prawy" zawsze krystalizuje w takiej formie. Uznał więc, że widocznie musi istnieć prawa i lewa odmiana kwasu winowego, które różnią się kształtem cząsteczki. Teoria atomowa była wówczas w powijakach, a co dopiero teoria struktury cząsteczek, toteż przez długi czas ta luźna hipoteza nie znajdowała zainteresowania. Do czasu gdy odkryto wreszcie jak rozłożone są w przestrzeni wiązania z węglem w związkach organicznych.

Węgiel w tych związkach tworzy cztery wiązania z innymi atomami - mogą to być wiązania potrójne, podwójne lub pojedyncze. Ponieważ każde wiązanie stanowi parę elektronową, a każda taka para odpycha się od innej, starają się one rozłożyć w przestrzeni w największym możliwym oddaleniu, co w przypadku czterech wiązań pojedynczych realizuje się w formie rozłożenia tetraedrycznego - to jest atom znajduje się jakby w środku foremnego czworościanu, a wiązania biegną do naroży. Jeśli teraz zdarzy się, że przy każdym z wiązań podczepiona będzie inna grupa, to cała cząsteczka stanie się chiralna, i możliwe staną się dla niej dwie konfiguracje - lewa i prawa, podobne jak lustrzane odbicia, jak to widać na tej pięknej grafice:



Związki chemiczne mające taką właśnie lustrzaną właściwość, to enancjomery, zaś atom węgla (czasem może to być fosfor lub azot, ale rzadziej) wokół którego pojawia się ta szczególna asymetria, nazywany jest atomem asymetrycznym, centrum chiralnym lub też jak zaleca się ostatnio centrum stereogenicznym. Konfigurację podstawników wokół takiego atomu określa się na różne sposoby - najczęściej używana metoda, polega na przypisaniu podstawnikom "ważności", tak że na przykład grupa metylowa jest ważniejsza od podstawnika wodorowego, etylowa od metylowej, a chlorkowa od etylowej. Jeśli teraz tak obrócić nasz asymetryczny atom, aby podstawnik o najmniejszej ważności znalazł się z tyłu, to konfigurację określa kierunek w którym poustawiane są pozostałe - gdy od najważniejszego do najmniej ważnego ruch jest zgodny z kierunkiem wskazówek zegara, to konfiguracja jest określana literą R, gdy jest odwrotnie, konfigurację określamy S. Są też inne typy konfiguracji, na przykład dla cukrów i aminokwasów zwykle używa się oznaczeń D i L.

 Gdy związek ma więcej jak jedno takie miejsce, sytuacja się komplikuje, bo wówczas możliwa jest większa liczba kombinacji - każde centrum może mieć dwie konfiguracje. Kwas winowy ma dwa takie miejsca, stąd możliwe są dla niego trzy odmiany: gdy oba centra mają konfigurację R, gdy oba mają S i gdy jedno ma R a drugie S. Glukoza ma cztery takie miejsca i dla niej możliwych jest 16 odmian, cholesterol ma 8 takich miejsc i teoretycznie mógłby mieć ponad 200 odmian, choć niektóre struktury za bardzo deformowałyby cząsteczkę. Takie odmiany wielocentrowe, nazywamy stereoizomerami, i nie są one już swymi lustrzanymi odbiciami.
Natomiast mieszaniny równych ilości R i S izomerów, nazywamy racematami.

I co z tego?
Izomery różniące się konfiguracją, mają takie same właściwości chemiczne, jednak dość istotne różnice zachodzą w ich oddziaływaniu biologicznym, oto bowiem my sami jesteśmy chiralni.
Podstawowymi związkami strukturalnymi organizmów żywych są białka, te zaś zbudowane są z aminokwasów - związków, zawierających grupę aminową i karboksylową, połączonych do tego samego węgla. Jeśli dwa pozostałe podstawniki są różne, to cząsteczka staje się chiralna i tak właśnie jest w przypadku wszystkich biogennych aminokwasów, z wyjątkiem glicyny. Z tych chiralnych cząsteczek zbudowane są białka, a z białek elementy strukturalne, i jak się okazuje, bardzo często konfiguracja substancji wpływa na reakcje jakim ulega w naszym organizmie. Jednym z takich znanych przypadków, jest limonen - izomer D ma zapach pomarańczy i występuje w skórce tego owocu, izomer L ma zapach terpentyny i występuje w roślinach szpilkowych. Będący jego pochodną karwon ma jeszcze wyraźniejsze różnice zapachu - izomer S pachnie anyżkiem, a izomer R miętą. Inny terpenoid, mentol, ma trzy centra i 8 odmian; odmiana występująca w mięcie polnej i mająca najsilniejsze działanie i zapach, ma konfigurację 1R,2S,5R, pozostałe występują rzadko lub zostały otrzymane sztucznie


W podobny sposób różnią się smaki izomerów - lustrzane wersje substancji słodkich mogą mieć smak kwaśny lub gorzki, choć nie zawsze tak jest. Lustrzana wersja glukozy jest tak samo słodka jak oma, ma jednak jedną ciekawą właściwość - nie pasuje do pierwszego enzymu, rozpoczynającego metabolizm. Powoduje to, że nie jest przetwarzana na energię i zostaje w niezmienionej formie wydalona - byłaby zatem idealnym słodzikiem, słodkim ale nie kalorycznym. Niestety jej produkcja jest nieopłacalna.
Dla nas jednak najistotniejszą kwestią nie jest smak czy zapach, lecz działanie na organizm. Nie zawsze, ale jednak bardzo często to, czy dana substancja będzie dla organizmu obojętna, szkodliwa czy lecznicza, zależy od konfiguracji jej centrów stereogenicznych, jeśli takie posiada. Przykładowo lek przeciwbólowy Ibuprofen jest zwykle syntezowany w formie racematu, jednak właściwości lecznicze ma tylko S izomer, co znaczyłoby, że połowa wyprodukowanego związku jest zupełnie niepotrzebna. Okazało się jednak że obie odmiany mogą zamieniać się w siebie w organizmie. Podobnie jest z Naproksenem - tylko jeden izomer ma właściwości przeciwbólowe, a oba są toksyczne dla wątroby.  
Niekiedy działanie odmian może być skrajnie różne, zależnie od konfiguracji. D-propoksyfen jest środkiem przeciwbólowym; L-odmiana ma silniejsze działanie przeciwkaszlowe, ale w wysokich dawkach. Obie odmiany wycofano z powodu częstych sercowych skutków ubocznych. Naturalny kwas L-askorbinowy jest witaminą C, i bierze udział w pewnych przemianach enzymatycznych; izomer D jest nieaktywny i nie może być nazywany witaminą - choć też jest przeciwutleniaczem. Dlatego też witaminę syntetyczną produkuje się tak, aby otrzymać tylko L-izomer, w czym biorą udział pewne szczepy bakteryjne.
Amfetamina i metamfetamina też mają dwie odmiany - odmiana D pobudza zarówno obwodowy jak i centralny układ nerwowy, i ma działanie narkotyczne; izomer L pobudza tylko OUN i nie wywołuje odurzenia, dlatego też ten izomer bywa stosowany w inhalatorach donosowych, wywołując skurcz naczyń krwionośnych. Inny środek narkotyczny, nikotyna, w naturze występuje w odmianie S(-). Enancjomer R ma podobne działanie lecznice, ale jest znacznie mniej toksyczny - źródła podają że od 20 do 40 razy.
Skrajnym przypadkiem jest niechlubny Talidomid, którego jeden enancjomer zapobiegał mdłościom, bólom głowy i miał działanie uspokajające, a drugi miał działanie teratogenne, uszkadzające płód. Produkowany preparat był racemiczną mieszanką obu izomerów, i zalecany kobietom w ciąży, co doprowadziło do narodzin tysięcy kalekich dzieci, co kiedyś już  opisałem. Obecnie bywa używany w chemioterapii do hamowania rozrostu guza.

Skoro między właściwościami izomerów istnieją na tyle istotne różnice, to chyba najlepiej byłoby wziąć tylko jeden z nich i stosować czysty związek? Jak najbardziej, tyle że nie jest to taka łatwa sprawa gdy mamy je zmieszane. Stereoizomery mają takie same właściwości fizyczne i chemiczne - jedynie czasem różnią się na przykład strukturą krystaliczną, lub szybkością reagowania i można próbować rozdzielać je w ten sposób. Zrobił to choćby Pasteur, sortując kryształki soli kwasu winowego, obie bowiem odmiany tego związku najchętniej tworzą kryształy zawierające tylko jedną z nich. Czynią to na tyle chętnie, że chemikowi udało się przeprowadzić bardzo zabawne doświadczenie - do kuwety z nasyconym racematem kwasu, włożył z jednej strony kryształek odmiany R a z drugiej odmiany S. Kryształy stopniowo rosły, przyjmując do sieci krystalicznej cząsteczki tylko jednej odmiany, takiej samej jak w krysztale zarodkowym, aż otrzymał dwa duże kryształy rozdzielonych izomerów.

Inny pomysł polega na zastosowaniu chiralnych reagentów, tworzących związki o wystarczająco różnych właściwościach. Przykładowo związek nasz w mieszaninie R i S jest lekko zasadową aminą, więc traktujemy go na przykład R,R kwasem winowym. Tworzą się nam dwie sole - RR-winian-R-aminy i RR-winian-S-aminy, które bardzo często różnią się rozpuszczalnością, bo chiralne fragmenty różnie ze sobą reagują. Chwytając kogoś prawą dłonią za prawą, możemy go złapać mocniej, niż prawą za lewą, i podobnie jest w tego typu solach.
Dla tych, gdzie oddziaływania są silniejsze, krystalizacja zachodzi chętniej, więc można je wydzielić przez wielokrotne przekrystalizowanie. Inny pomysł polega na tworzeniu estrów o różnej rozpuszczalności bądź temperaturze wrzenia. Bardziej wyrafinowane sposoby wykorzystują reakcje enzymatyczne - na przykład związek o naturze alkoholu przeprowadzamy w ester kwasu tłuszczowego i traktujemy którąś z esteraz - enzymów trawiennych przywykłych do rozkładania połączeń o jednej konfiguracji. Rozkład na przykład R-estru, daje nam selektywnie wyjściowy alkohol, czysty enancjomerycznie, możliwy do oddzielenia przez ekstrakcję. Jeszcze inna metoda polega na zastosowaniu chromatografii kolumnowej, z wypełnieniem zawierającym chiralne związki - na przykład krystaliczną celulozę - jest to jednak metoda bardzo droga.

A może łatwiej byłoby otrzymywać od razu jeden izomer, a nie mieszaninę dwóch? - w tym właśnie cały ambaras, aby nie powstawały oba na raz. Jeżeli poddajemy reakcjom związki już chiralne, i w trakcie reakcji centrum stereogeniczne nie jest naruszane, to otrzymamy selektywnie czysty izomer produktu, przykładowo redukując naturalne R-aminokwasy, otrzymamy R-aminoalkohole a z tych na przykład pierścieniową R-oksazolinę.  Reakcje, gdy wychodząc z substratu o określonej konfiguracji, otrzymujemy produkt o określonej konfiguracji, nazywamy stereoselektywnymi.
Nieco większy problem sprawiają nam reakcje, w których mamy stworzyć nowe centrum, wychodząc ze związku, który takiego nie posiada. Weźmy sobie taki prosty związek jak 1,3-dimetyloheksen, z jednym wiązaniem podwójnym. I poddajmy go reakcji przyłączenia chlorowodoru. Zgodnie z odpowiednimi prawami, wodór przyłączy się z tej strony wiązania, gdzie jest już drugi, a chlor przy grupie metylowej. I powstanie nam centrum stereogeniczne, mające w otoczeniu - przy jednym wiązaniu grupę metylową, przy drugim chlor, przy trzecim pierścień mający grupę metylową za 4 węgle a z czwartej strony ten sam pierścień, ale z grupą metylową za trzy węgle. Tylko jaka będzie konfiguracja? Mieszana.

Gdy atom chloru atakuje wiązanie podwójne, o płaskiej strukturze, może dotrzeć do cząsteczki z dwóch stron - od lewej i od prawej. Ponieważ cząsteczka jest płaska, szanse obu przebiegów są równe, w efekcie otrzymujemy równomolową mieszankę produktów, powstałych a ataku z lewej i z prawej, czyli R:S 1:1 - a zatem racemat.
Wszystkie metody syntezy, mającej zachwiać tą symetrią - a więc syntezy asymetryczne -  opierają się na utrudnieniu dostępu z jednej strony, co może być osiągnięte na różne sposoby. Związek może być zaabsorbowany na powierzchni kryształu - jedna strona będzie zasłonięta i będzie się nam tworzył jeden produkt. Największe jednak zastosowanie mają specyficzne, chiralne katalizatory. Jak mogą działać?
Weźmy sobie cząsteczkę bardzo podobną do powyższej, ale z grupą hydroksylową, a więc 1-metyloheksen-3-ol. Grupa hydroksylowa przy trzecim węglu sama tworzy centrum stereogeniczne. Teraz przed dodaniem substraktu, używamy katalizatora - odpowiedniego kompleksu zawierającego jakiś metal, tak dobranego, że jon metalu może tworzyć wiązania koordynacyjne z elektronami Pi wiązania podwójnego, i wolnymi parami elektronowymi tlenu. Będzie zatem łączył się z cząsteczką od tej strony, z której jest grupa OH

zasłoni więc sobą jedną stronę, umożliwiając dostęp z drugiej strony. W tym przykładzie nowe centrum będzie miało konfigurację R. Jest to przykład wymyślony, ale pokazuje jak takie selektywne reakcje mogą zachodzić.
Prawdziwym majstersztykiem jest stosowana na skalę przemysłową synteza  1R,2S,5R-mentolu, a więc takiego samego związku jak naturalny. Związkiem wyjściowym jest terpenoid mircen, po katalitycznej izomeryzacji zamieniany na R-cytronellal a ten cyklizowany do ostatecznej cząsteczki z trzema centrami chiralnymi. Twórca tej metody Ryoji Noyori w roku 2001 dostał nagrodę Nobla za prace nad asymetrycznym uwodornieniem.

Triazyny to związki organiczne, składające się z sześcioczłonowych pierścieni, w których znajdują się trzy atomy azotu. Możliwe są trzy ich ustawienia - w pozycjach 1,2,3, a więc wszystkie obok siebie; 1,2,4 - dwa obok siebie a jeden z odstępem; oraz 1,3,5 czyli symetrycznie rozdzielone. W moim przypadku zajmuję się 1,2,4-triazyną.
Pochodne triazyn dosyć chętnie tworzą kompleksy z jonami metali, i niektóre z nich mają zdolność do takiego katalizowania reakcji tworzących nowe centrum stereogeniczne, aby powstawał nadmiar jednego z izomerów, a co za tym idzie, zamiast racematu 1:1 otrzymujemy mieszaninę na przykład 6:4, 7:3 czy też najchętniej, ale rzadko 9:1 i wyższe.

A tym, czym będę się zajmował na pracowni, będzie tworzenie chiralnych ligandów do kompleksów mających wywoływać taką selektywność.