informacje



Pokazywanie postów oznaczonych etykietą zdjęcia. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą zdjęcia. Pokaż wszystkie posty

czwartek, 19 marca 2020

Kiedyś w laboratorium (74.)

Podczas częstej w wielu laboratoriach organicznych procedury odparowania roztworu potrzebnego związku, pod koniec zaobserwować można charakterystyczne zjawisko - wskutek dużego zagęszczenia na ściankach kolby rozprowadzony zostaje stężony, nasycony lub wręcz przesycony roztwór, który wcale nie musi tak od razu chętnie krystalizować, zwłaszcza jeśli jest to rozbudowana cząsteczka. Podczas stygnięcia kolby wyjętej z wyparki następuje więc spontaniczna krystalizacja wokół przypadkowych jąder, którymi może być na przykład nierówność na szkle lub cząstka stałego zanieczyszczenia. W takich warunkach, gdy roztwór substancji jest silnie nasycony,  promowane są skupiska promieniście rozłożonych igieł, które szybko rozrastają się koliście od miejsca inicjacji.
Proces jest bardzo szybki, czasem wystarczy pół minuty aby całe wnętrze zamieniło się w gęsto upakowane koła drobnych promieni.



wtorek, 14 stycznia 2020

Ostatnio w laboratorium (73.)

Jednym z podstawowych badań wchodzących w zakres sprawdzania wartości odżywczych żywności, jest analiza zawartości tłuszczu. W przypadku produktów twardych, w których tłuszcz jest związany w strukturze, zwykle używana jest metoda Soxhleta, w której tłuszcze są ekstrahowanie w ciągłym przepływie ciepłego heksanu. Rozpuszczalnik paruje w dolnej, ogrzewanej kolbie. Pary skraplają się w chłodnicy i spływają do komory, w której w przepuszczalnym pakiecie umieszczono rozdrobioną próbkę. Po przekroczeniu pewnego poziomu następuje zassanie lewara i opróżnienie komory. Sumarycznie więc cały tłuszcz ląduje w dolnej kobie, gdzie się zagęszcza.




Po odpowiednio długiej ekstrakcji, gdy wszystko co mogło zostało już wymyte, ekstrakt odparowuje się a pozostały tłuszcz waży, i tak voila! - mamy zawartość tłuszczu w próbce.

Niedawno w laboratorium robiłem tak z wiórkami kokosowymi, które okazały się tego tłuszczu zawierać całkiem sporo, i przy tej okazji zauważyłem ładny efekt. Gdy ciepłą kolbę z tłuszczem zostawiono na noc, stygnący powoli tłuszcz zestalił się tworząc kryształy. W samej masie wyglądało to jak ziarnista faktura, zupełnie różna od gładkiego, smalcowatego wyglądu stałych tłuszczów jaki zwykle obserwujemy. Z kolei w cienkiej warstwie rozprowadzonej na ściankach, pierzaste kryształy przybrały formę podobną do szronu na zalodzonej szybie.

sobota, 28 września 2019

Ostatnio w laboratorium (71.)

Nawet podczas mycia próbówek można znaleźć chwilę na zabawę. Kończyły się roztwory odczynników, trzeba było umyć kolby i przygotować nowe. Jedna kolba po nadmanganianie potasu, druga po indygokarminie. Używam tego zestawu przy miareczkowaniu garbników, co zresztą szerzej omówię w innym wpisie. Dość że oba silnie zabarwione roztwory reagują do słabo żółtego produktu. Miałem więc podczas mycia trochę rozcieńczonych roztworów i mieszałem ze sobą, patrząc jak znikają kolory. A jakby udało się jeden na drugi nawarstwić?

Użyłem wąskiej probówki. Roztwór nadmanganianu okazał się lżejszy. Nakraplajac na ściankę doprowadziłem do dwuwarstwowego układu. Obie warstwy reagowały ze sobą, stąd bezbarwna granica faz. Szerokość granicy wynika z szybkości dyfuzji obu substancji - koloru nie widać w obszarze o za niskim stężeniu form barwnych. Z kolei różnice dyfuzji i stężeń molowych w warstwach wpływają na przesuwanie się granicy - w tym przypadku różowa faza wygrywała a granicą przesuwała się do dołu.

Byłoby to więc dobre doświadczenie edukacyjne.

czwartek, 17 stycznia 2019

Azuryt i malachit - ostatnio w laboratorium (65.)

Kolejny przypadek pojawienia się czegoś ciekawego w kolbie obok właściwej syntezy.

W zeszłym tygodniu obrabiałem mieszaninę po reakcji, w której użytym katalizatorem były sole miedzi. Aby usunąć z mieszaniny ją i kwaśne produkty uboczne, mieszaninę rozpuszczoną w octanie etylu ekstrahowałem roztworem węglanu sodu a potem solanką dla odciągnięcia wody. Miedź ładnie przechodziła do fazy wodnej:

Roztwór węglanu, brany z butli, w której uprzednio go przygotowałem, był niemal stężony, solanka podobnie, a ponieważ z fazy organicznej przeszedł jeszcze rozpuszczalny w wodzie acetonitryl, szybko w kolbie ze zlewkami wytrącił się osad węglanu, nad którym pozostał granatowy roztwór soli miedzi:

Kolbkę odstawiłem w kąt dygestorium i nie zajmowałem się dalej. Po weekendzie okazało się, że trochę roztworu odparowało, a z mieszaniny zaczął krystalizować osad w formie drobnych igiełek

Najwięcej zebrało się na dnie, na białej warstwie węglanu. Było to dość ciekawe. Roztwór był zasadowy, zawierał jony miedziowe, węglanowe, hydroksylowe i chlorkowe, i był właściwie nasycony. W tych warunkach wypaść z niego mogło kilka niebieskich substancji - węglan miedzi, chlorek miedzi, zasadowy węglan miedzi, zasadowy chlorek miedzi, wodorotlenek miedzi...

Aby coś rozstrzygnąć (i pobawić się) ostrożnie zlałem roztwór, zostawiając tylko zmieszane osady:

Przepłukałem je następnie zimną wodą, aby wypłukać dobrze rozpuszczalny węglan sodu. Sam niebieski osad był w wodzie raczej słabo rozpuszczalny, co raczej wykluczało chlorek miedzi. Po odsączeniu małą ilość osadu przeniosłem na szkiełko zegarkowe i zadałem paroma kroplami rozcieńczonego kwasu solnego. Osad rozpuścił się, do ostatniej grudki wydzielając bąbelki gazu. Zatem musiał to być jakiś węglan miedzi. A konkretnie azuryt.

Miedź na drugim stopniu utlenienia tworzy z jonami węglanowymi sole, jednak w normalnych warunkach nie jest to po prostu stechiometryczny węglan CuCO
3
, jak by się to mogło wydawać (i jak jest to zwykle zapisywane w podręcznikach). Wynika to z większego powinowactwa jonów hydroksylowych niż węglanowych, które słabo koordynują. W praktyce więc z wodnych roztworów wytrąca się zasadowy węglan miedzi, zawierający jony węglanowe i wodorotlenkowe. Ten jednak może występować w dwóch formach, różniących się ilością jonów węglanowych. Forma zawierająca dwa jony węglanowe i dwa hydroksylowe (Cu3(CO3)2(OH)2  ) to błękitny azuryt, zaś forma z jednym jonem węglanowym i dwoma hydroksylowymi ( Cu2CO3(OH)2 ) to zielony malachit. Ich trwałość zależy od warunków - pod ciśnieniem atmosferycznym trwalszy jest malachit, zawierający mniej jonów węglanowych. Azuryt wymaga większego ciśnienia dwutlenku węgla dla uzyskania równowagi, bez tego, zwłaszcza pod wpływem wilgoci, ulega powolnej przemianie w malachit. Często więc w złożach obserwuje się oba minerały zmieszane, z ziarnami azurytu zachowanymi wewnątrz brył malachitowych.

Podczas wytrącania węglanu miedzi w trakcie szkolnych eksperymentów zwykle otrzymuje się osad zawierający przewagę malachitu, o niebiesko-zielonym kolorze, wynika to z niedostatecznej ilości jonów węglanowych. Dalsze przetrzymywanie mokrego osadu wywołuje po pewnym czasie całkowitą konwersję w malachit, przeprowadzenie reakcji w podwyższonej temperaturze przyspiesza przemianę do jednej-dwóch godzin.
Przypuszczam, że w tym przypadkowym osadzie otrzymałem raczej przewagę azurytu. Sprzyja temu przeprowadzenie krystalizacji w nasyconym roztworze węglanu (duży nadmiar jonów węglanowych).  Jedną ze wskazówek jest wyraźnie niebieski kolor osuszonego osadu:




Azuryt występuje w naturze jako minerał wtórny towarzyszący rudom miedzi, zwykle wraz z malachitem. Już od starożytności budził zainteresowanie, ze skał z przewagą tego składnika wykonywano ozdoby, zaś on sam po rozkruszeniu służył jako pigment malarski. Niestety znaną niedogodnością było powolne zielenienie oraz mała odporność na kwaśne składniki farby lub spoiwa, dlatego bardziej ceniona była ultramaryna, otrzymywana z minerału lapis lauzuli.
Malachit syntetyczny, otrzymywany z roztworów, znany był jako verditer, a syntetyczny azuryt jako niebieski verditer.

Neutralny węglan miedzi, jaki wydawałoby się, że powinien powstawać w reakcji, jest natomiast związkiem nietrwałym w obecności wilgoci i trudno otrzymać go normalną drogą. W zasadzie dopiero w 1973 roku opublikowano syntezę w bezwodnych warunkach między zasadowym węglanem a dwutlenkiem węgla, w wysokiej temperaturze i ciśnieniu. Ma postać szarego proszku i nie znalazł jakiegoś specjalnego zastosowania. [a]

--------
[a]  Hartmut Erhardt, Wilhelm Johannes, and Hinrich Seidel (1973): "Hochdrucksynthese von Kupfer(II)-Carbonat", Z. Naturforsch., volume 28b, issue 9-10, page 682.


środa, 31 października 2018

Ostatnio w laboratorium (63.)

Ostatnio w laboratorium przypadkiem uzyskałem efekt, który wcześniej trudno mi było uzyskać zamierzenie w domowych warunkach. Podczas oczyszczania mieszaniny poreakcyjnej stosowałem między innymi ekstrakcję z roztworem wodorowęglanu sodu, dla usunięcia kwaśnych produktów ubocznych, po czym dla zmniejszenia zawartości wody w fazie organicznej przeekstrahowałem ją jeszcze z nasyconą solanką. Nasycony roztwór soli chętnie chłonie wodę. Oczywiście do ostatecznego dosuszenia używa się desykatorów w rodzaju bezwodnego siarczanu sodu, ale bez wstępnego odciągnięcia nadmiaru wody solanką, należałoby użyć tego środka wiążącego całkiem sporo.

Tak więc po rozdzieleniu faz oddzieliłem organiczną od solanki, którą to zlałem do osobnej zlewki. Tą odłożyłem na bok, i zapomniawszy wylać zostawiłem na weekend. W poniedziałek stwierdziłem, że mimo iż na ściankach nie było widać śladów krystalizacji czy większego odparowania, to na dnie zlewki powstało kilka ładnie uformowanych kryształów:

Choć sól kuchenna jest jednym z pierwszych wyborów, gdy tylko przyjdzie nam do głowy robienie sobie w domu kryształków, niespecjalnie się do tego nadaje. Ma niestety skłonność do krystalizowania w zbitych skupiskach drobnokrystalicznych, a różnica rozpuszczalności w wodzie między temperaturą pokojową a wrzątkiem jest mała, przez co wymuszanie krystalizacji przez przesycenie spadkiem temperatury, jest mało efektywne. W większości przypadków próby krystalizacji polegające na zanurzeniu sznurka w solance, kończą się powstaniem czegoś podobnego do białego stalaktytu.

Podczas domowych prób rezygnowałem więc z krystalizacji na sznurku czy nitce, zamiast tego wrzucałem do roztworu jakiś obiekt, który pozostawał całkowicie zanurzony.
Ziarno czarnego pieprzu z przezroczystymi kryształami
Teraz powstało mi natomiast bez żadnych przygotowań, bez powstania drobnokrystalicznych osadów i innych przeszkadzających dodatków, kilka dość regularnych kryształów o wielkości do pół centymetra:
Oczywiście, jak widać, nie są idealne. Są białe, zapewne podczas szybkiego wzrostu pochłaniały z roztworu zanieczyszczenia organiczne i banieczki powietrza. Rosły przyrośnięte do dna, dlatego zamiast regularnych kostek powstały płytki. Ciekawą cechą jest też kształt górnej ściany krystalicznej - posiada regularne wgłębienie, zagłębiające się w kryształ równymi schodkami.

To tak zwany kryształ szkieletowy, powstający w warunkach szybkiego wzrostu w warunkach przesycenia. Woda odparowywała z solanki, bardziej zagęszczony roztwór opadał na dno. Kryształy powstawały więc w warstwie nieruchomego roztworu o dużym stopniu przesycenia. Grawitacja w przypadku górnej ścianki kryształu nie wspomagała ruchu cieczy, zatem szybkość krystalizacji była ograniczana szybkością dyfuzji cząstek, oraz różnicowana anizotropią budowy kryształu.
W takich sytuacjach częstym zjawiskiem jest szybszy przyrost kryształu na krawędziach niż pośrodku ściany, wynika to z lepszej dostępności roztworu (zamiast docierać z połowy przestrzeni, cząstki mają 3/4 objętości z której dochodzą do powierzchni kryształu). Efekt ten może wzmacniać pojawiające się na krysztale pole elektryczne.
© Hershel Friedman - minerals.net

Zależnie od tego jak duży jest stopień przesycenia, oraz jaki jest normalny pokrój kryształów danej substancji, tworzą się więc albo kryształy zachowujące normalny pokrój, ale ze schodkowatymi lejami na ścianach, albo mające formę cienkich lejków, albo przybierające kształty igieł, gwiazdek czy pierzastych dendrytów. Z tworzenia takiego pokroju znany jest właśnie halit, ale obserwowano go też u kwarcu, kalcytu i w kryształach lodu. Łatwo powstaje też podczas krystalizacji bizmutu, metalu o stosunkowo niskiej temperaturze topnienia, z którego da się w amatorskich warunkach uzyskać efektowne kryształy.

© www.johnbetts-fineminerals.com



Wraz ze zmianą warunków, forma kryształu może się zmienić. Zmniejszenie stopnia przesycenia roztworu często powoduje wypełnienie jam w ścianach, jedyną pozostałością mogą wówczas być wtrącenia układające się wewnątrz kryształu w stożkowaty wzór.


wtorek, 16 października 2018

Ostatnio w laboratorium (62.)

Gdy chemik wychodzi z pracy do domu, dobrze jest zadbać o to, aby przypadkiem nie wynosił na sobie chemikaliów. Zwłaszcza na rękach, którymi będzie potem dotykał wszystkiego, w tym domowników i siebie. Oczywiście przy pracy z odczynnikami powinno się stosować rękawiczki, ale trudno się zupełnie ustrzec przed pobrudzeniem. Często przed wyjściem do domu, po umyciu rąk sprawdzam ich czystość pod lampą ultrafioletową ustawioną na dalszy, "czarny" zakres. Większość substancji z którymi pracuję, w jakimś stopniu świeci w takim zakresie, zwykle na niebiesko lub żółto.

Dlatego łatwo będzie zrozumieć moje obawy, gdy podczas takich prób stwierdziłem wyraźną fluorescencję samych paznokci, zupełnie jakby czymś się nasączyły:
Dopiero przegląd literatury nieco mnie uspokoił. Otóż wygląda na to, że paznokcie fluoryzują same z siebie. W przeglądzie dermatologicznych badań nad skórą opisano naturalne świecenie naświetlanych ultrafioletem paznokci.[1] Nie dowiedziałem się natomiast co konkretnie w nich świeci, może bilirubina która dość często w stanach chorobowych odkłada się w płytce paznokcia aż do wyraźnego zabarwienia.
Do paznokci mogą też przenikać fluoryzujące leki - po zażyciu tetracykliny obserwuje się żółte świecenie, a po zażyciu atabryny żółto-zielone.[2] Próbuje się wykorzystać to zjawisko w bezinwazyjnej diagnostyce.

---------
[1]   Pierre Agache, Philippe Humbert, Measuring the Skin, Google Books s. 296

[2] https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-4362.1999.00794.x

piątek, 21 września 2018

Ostatnio w laboratorium (61.)

Bardzo ładna rekrystalizacja:
W tym przypadku była to pewna pochodna chinoliny. Kilkakrotna krystalizacja, rozpuszczenie i ponowna krystalizacja pozwoliły na oddzielenie brązowego zanieczyszczenia od jasnokremowego związku bez konieczności użycia chromatografii.

sobota, 17 lutego 2018

Kiedyś w laboratorium (58.)

Publikowałem tu już kiedyś zdjęcia widm lamp jarzeniowych z gazami szlachetnymi, teraz wrzucę jeszcze jedno z tamtych ćwiczeń, pokazujące linie emisyjne wodoru w paśmie widzialnym:

 Wyraźnie widoczne są trzy pasma, tzw. "seria Balmera": czerwone o długości fali 656 nm, zielonkawo-niebieskie 486 nm i niebieskofioletowe 434 nm. Nieco bardziej na lewo powinno być jeszcze czwarte pasmo i nawet gołym okiem było je słabo widać, ale na aparacie przy tej jasności lampy się nie załapało, ma długość fali 410 nm i leży na pograniczu widzialnego fioletu i ultrafioletu. Poza zasięgiem aparatu pojawiają się jeszcze pasma ultrafioletowe.
Aparat cyfrowy nie do końca dobrze oddał kolory, środkowe pasmo było patrząc gołym okiem nieco bardziej morskie, dodatkowe widmo w tle miało szerszy zakres żółty a czerwone pasmo nie było tak mocno jasne, aż prześwietlone.

Uzupełniające tło słabsze widmo wielu drobnych linii to prawdopodobnie efekt domieszki azotu w wodorze wypełniającym rurkę jarzeniową.

Linie emisyjne wodoru odegrały dużą rolę w chemii kwantowej. Balmer znalazł ogólny wzór opisujący długość fali poszczególnych linii za pomocą pewnego prostego szeregu. Była to w zasadzie czysta numerologia, czyli dobieranie liczb tak, aby pojawił się między nimi związek, ale rozszerzenie tej formuły pozwoliło przewidzieć odkryte później linie w zakresie ultrafioletu. Wzór został uogólniony przez Rydberga i okazał się przewidywać także linie emisji w dalekim ultrafiolecie, dalszej podczerwieni.
Gdy zaczęła się formować teoria atomu jako układu złożonego z dodatnio naładowanego jądra i elektronów krążących wokół, serie widmowe znalazły wyjaśnienie jako emisje w postaci światła energii, będącej różnicą między energią kolejnych coraz bardziej oddalonych orbit, wydzielaną przez elektrony wzbudzone, spadające z dalekich orbit na te bliższe jądru. Bardzo wąskie linie emisji oznaczają, że zakresy energetyczne dla orbit są dość ściśle określone, zostało to dobrze wyjaśnione dopiero na gruncie kwantowego modelu atomu (w modelu Bohra dozwolone orbity były stacjonarne, bo tak).
Widmo wzbudzonego wodoru było przy tym o tyle łatwe do opisu, że wynikało z najprostszego możliwego układu z jednym elektronem. Opis widm innych pierwiastków nie jest tak łatwy i tylko do części linii widmowych stosuje się wprost wzór Rydberga.

ps. a nowe materiały z laboratorium nie pojawiają się, bo już nie pracuję na UW.


piątek, 7 lipca 2017

Kiedyś w laboratorium (56.)

Jednym z obowiązków doktorantów jest przeprowadzenie odpowiedniej ilości godzin dydaktycznych ze studentami. W zeszłym roku pomagałem przy preparatyce organicznej, w tym natomiast przy zajęciach z fizyki.

Jedną z zalet tych zajęć było to, że mogłem jeszcze raz samemu przyswoić sobie pewne podstawy. Oraz że czasem miałem okazję zrobić ładne zdjęcia. Tak było podczas prowadzenia ćwiczenia ze spektroskopii - student na stole mierzył spektroskopem kąty ugięcia poszczególnych prążków emisyjnych emitowanych przez lampy z różnymi gazami, a ja próbowałem jakoś ładnie to uchwycić:
Najlepiej wyglądało to przy użyciu siatki dyfrakcyjnej lustrzanej, dającej jasne obrazy. Tutaj lampa ze świecącym helem:
a tu ta sama lampa bez rozszczepienia światła:
Tu zaś widmo lampy z neonem:

Jak widać na prawdę bogate w linie.

środa, 11 stycznia 2017

Ostatnio w laboratorium (54.)

Kryształy białka lizozymu, otrzymane metodą wiszącej kropli:
Lizozym to enzym bakteriobójczy, powodujący rozkład glikoprotein w ścianie komórkowej bakterii. Po uszkodzeniu ściany następuje pęknięcie i rozpłynięcie się komórki bakterii, czyli tzw. liza, stąd nazwa enzymu. Jego cząsteczka składa się ze 129 aminokwasów.

Lizozym należy do białek które stosunkowo łatwo krystalizują, dlatego wcześnie poznano jego strukturę.

Kryształy na zdjęciach są takie sobie, przede wszystkim bardzo małe, może za parę dni bardziej urosną. Natomiast zachwyciła mnie gra kolorów widoczna pod filtrem polaryzacyjnym. Jestem mimo wszystko trochę estetą.

* * *
Myślę, że dobrze by było przy tej okazji parę rzeczy objaśnić, bo może regularnie zaglądający zastanawiali się nad paroma kwestiami. Ponieważ prace typowo syntetyczne na pracowni prof. Czarnockiego nie bardzo mi wychodziły, ostatecznie zmieniłem promotora i temat pracy, bo istniało ryzyko, że ciągnąc dotychczasowy mógłbym nie otrzymać wyników na satysfakcjonującą pracę doktorską.
Tak że teraz zająłem się czymś bliższym chemii fizycznej, czyli badaniami krystalograficznymi. Prawdopodobnie ostateczny temat będzie zawierał cześć syntetyczną i część krystalograficzną. Na razie jednak nadrabiam teorię i praktykę, bo obsługi dyfraktometru rentgenowskiego na studiach nie miałem, przez pierwszy semestr chodzę też na zajęcia specjalizacyjne ze studentami.

Przygotowuję powoli wpis na temat tego krystalografii i tego jak można kryształom zrobić prześwietlenie.

czwartek, 14 kwietnia 2016

Ostatnio w laboratorium (51.)

Ostatnio w laboratorium rozdzielałem ciemną, zesmołowaną mieszaninę poreakcyjną na kolumnie z wypełnieniem krzemionkowym. Eluent (chloroform/metanol) miał współczynnik załamania na tyle zbliżony do ziaren krzemionki, że całość wydawała się przezroczysta. Dzięki czemu bardzo ładnie było widać, jak mieszanina rozdziela się na poszczególne składniki, tworzące osobne prążki:

Nałożyłem trochę za dużo i kolumna się przeładowała, ale to o co mi chodziło udało się oddzielić.

sobota, 13 lutego 2016

Ostatnio w laboratorium (50.)

Gdy wykonuje się małą chromatografię na płytce wycinanej z arkusza, należy pilnować aby brzeg był równy. Jeśli bowiem żel odpryśnie się nierówno na brzegach, eluent będzie szybciej wsiąkał od tej strony, zaś plamki substancji zostaną przesunięte w przeciwną.

W poniższym przypadku nierówny brzeg z obu stron zaowocował dość walentynkowym efektem wizualnym:

piątek, 11 grudnia 2015

Ostatnio w laboratorium (48.)

Ostatnio w laboratorium po skończeniu wydawałoby się prostego przekształcenia musiałem rozdzielić mieszaninę poreakcyjną, która wbrew przepisowi przybrała kolor brunatno-zielony. Gdy już z kolumny chromatograficznej zeszła większość frakcji, końcowe zanieczyszczenia rozwinęły się, ukazując swe dość intensywne, jak na to rozcieńczenie, i różnorodne kolory:
Cóż, gdyby nie to, że spieszę się aby do końca miesiąca przebrnąć przez najważniejszy etap syntezy katalizatora, wolałbym sprawdzić co też takiego dziwnego mi tu powstało. Na razie jedynie kolory te oznaczają, że powstała mi znaczna ilość produktów ubocznych, jakich tu być nie powinno, toteż chyba będę musiał użyć nieco mniej agresywnych reagentów...

czwartek, 26 listopada 2015

Dziś w laboratorium (47.)

Dziś w laboratorium po wyłączeniu dość prostej reakcji redukcji i rozwinięciu kropli, otrzymałem na płytce TLC oświetlonej ultrafioletem zjawiskowy wzór składników mieszaniny poreakcyjnej:
Wzór efektowny ale też nieco niepokojący bo oznacza, że reakcja która powinna zajść czysto i niemal ilościowo wytworzyła dużo więcej produktów o różnorodnych właściwościach niż to zakładałem.

sobota, 3 października 2015

Kiedyś w laboratorium (47.)

Kiedyś na zajęciach z analityki robiliśmy doświadczenie z elektroforezą aminokwasów.

Aminokwasy zgodnie z nazwą są związkami, które zależnie od warunków mogą być kwasami lub zasadami - posiadają grupę karboksylową mogącą odszczepiać proton, która zwykle decyduje o właściwościach kwaśnych, oraz grupę aminową która mogłaby przyjąć proton w odpowiednio zakwaszonym środowisku. W szczególnych warunkach zjonizowane są obie grupy i punkt ten nazywany izoelektrycznym.
 Ponieważ w aminokwasach o różnej budowie stała protonowania grupy aminowej i stała deprotonacji grupy karboksylowej przybierają różne wartości, toteż w roztworach o tym samym odczynie różne aminokwasy będą przyjmowały bądź formę anionu bądź kationu. A gdy do roztworu przyłożymy napięcie elektryczne, każdy pomknie w inną stronę.

Przyciąganie jonów do elektrody o przeciwnym znaku powoduje ich migrację, której prędkość zależy od wielkości i stopnia naładowania cząsteczki. Wskutek tego możliwy staje się rozdział naładowanych cząstek w polu elektrycznym na podobnej zasadzie jak to się ma przy chromatografii. Techniki tej używa się do rozdziału białek, peptydów i fragmentów DNA na przykład podczas badań genetycznych, co kiedyś już opisywałem.

W tym przypadku jednak poprzestaliśmy na sytuacji dużo prostszej - na kilka pasków bibuły nasączonej przewodzącym buforem nałożyliśmy próbki kilku aminokwasów i przez pewien czas podłączyliśmy paski do elektrod. Te aminokwasy które w odczynie buforu były anionami pomknęły w stronę elektrody dodatniej zaś te będące kationami w stronę elektrody ujemnej. Plamy aminokwasów ujawnialiśmy ninhydryną:
Jak dogrzebię się do starego zeszytu to dopiszę jeszcze który pasek odpowiadał któremu z aminokwasów.

środa, 7 stycznia 2015

Kiedyś w laboratorium (44.)

Gdy jeszcze zajmowałem się syntezami na potrzeby pracy magisterskiej, zaintrygował mnie sposób w jaki wykrystalizowała jedna z otrzymanych oksazolin:
W miarę odparowywana na wyparce, stężenie związku z cienkiej warstwie roztworu rosło, aż od pewnego punktu rozpoczęła się szybka krystalizacja. Jednak zamiast promienistych igieł, kryształy uformowały wyraźne prążki. Musiała nastąpić jakaś specyficzna organizacja, tworząca regularny kształt:

Z innymi oksazolinami czegoś takiego nie obserwowałem. Później zagęszczałem jeszcze jedną frakcję z tym związkiem i w innym naczyniu zachował się identycznie, widocznie to jego właściwość.

ps. znalazłem pracę w IChO PAN w Warszawie, za parę dni opiszę szerzej.

środa, 16 lipca 2014

Barwienie bakterii metodą Grama

Dawno, dawno temu, kiedy jeszcze uczyłem się w technikum chemicznym, jednym z przedmiotów była bioanaliza, gdzie uczyliśmy się jak badać mocz, rozpoznawać pod mikroskopem różne limfocyty, albo badać zawartość cholesterolu w osoczu.
Jednym z ciekawszych ćwiczeń była hodowla bakterii z powietrza - sterylną płytkę z podłożem odkrywało się na określony czas w nieruchowym powietrzu pomieszczenia, zakrywało i wstawiało do inkubatora. Bakterie które znajdowały się w powietrzu osiadały na płytce i tworzyły kolonie - jedna bakteria tworzyła jedną kolonię. Zliczając ilość kolonii na powierzchni płytki i znając czas wystawienia płytki, można było policzyć stężenie bakterii w powietrzu - całkiem proste.

Jednak otrzymane bakterie dobrze jest też jakoś zidentyfikować. Oprócz opisanych już kiedyś metod hodowli na podłożu różnicującym, inną techniką jest barwienie metodą Grama. Badanie obejmuje kilka etapów, a wszystkie je sfotografowałem.

Zasadnicza różnica między typami bakterii jaką wykrywa się w tym badaniu, to grubość i przenikliwość ściany komórkowej - w jednym bakteriach jest cienka, w innych stosunkowo gruba. Ma to wpływ na ogólną fizjologię bakterii, zaś dla medycyny znaczenie ma różna wrażliwość na leki - zasadniczo bakterie o grubszej ścianie komórkowej są bardziej odporne, z powodu słabszego wchłaniania antybiotyku do wnętrza. Różna grubość ścian komórkowych wykrywana jest przez selektywne wybarwianie fioletem krystalicznym. W jaki sposób?

Na początek należy sobie wybrać jakąś kolonię z której będziemy robić rozmaz:

Ja akurat wybrałem sobie taką w której na kolonię żółtą naciekała biała, mając nadzieję że uda mi się złapać dwa różne typy. Masę kolonii pobierałem ezą, to jest pętelką z drutu z rączką. Tę jednak należało przedtem wyżarzyć, aby usunąć wszystkie inne bakterie:

Ponieważ kolonia miała postać stałej masy, najpierw nabrałem nieco soli fizjologicznej:

potem nieco kolonii:

i rozmazałem na płytce:
Rozmaz należało teraz wysuszyć i utrwalić, aby bakterie dobrze przylegały do podłoża. Dlatego po podsuszeniu w suszarce przeciągnęliśmy płytki nad płomykiem lampki spirytusowej, tak aby masa bakteryjna "przyschła" do płytki.
Wszystkie płytki należało teraz umieścić nad tacką, założyć rękawiczki i uważać na ubranie, bo można się było nieźle pobrudzić. Najpierw każda płytka została zalana roztworem fioletu krystalicznego:
Następnie czekaliśmy dwie minuty, po czym zlaliśmy barwnik do tacki:
Nie usuwając całej cieczy, zalewaliśmy płytki płynem Lugola - na powierzchni płynu powstawała błyszcząca warstewka, jak podejrzewam był to wydzielający się jod. Płyn dzięki temu błyszczał i opalizował, wyglądając jak odwłok złotego żuka:


Po około trzydziestu sekundach zlaliśmy ciecz i dokładnie przemyliśmy alkoholem:

A następnie wodą:
Na sam koniec zalaliśmy płytki roztworem fuksyny:
Pół minuty potem zlaliśmy ją do tacki, płytki przemyliśmy wodą i osuszyliśmy w suszarce. Tak zabarwione płytki nadawały się do badania mikroskopowego:

Co takiego następowało podczas wybarwiania? Gdy zalewaliśmy płytki roztworem fioletu krystalicznego, wnikał on do bakterii zabarwiając je wszystkie. Dodany potem roztwór jodu dodatkowo przyciemniał zabarwienie poprzez tworzenie kompleksów jodu z barwnikiem. Na tym etapie zabarwione były wszystkie.
Jednak gdy przemywaliśmy płytki alkoholem, zaznaczyła się różnica - łatwo wypłukiwał on barwnik z bakterii o cienkiej ściance, natomiast nie był w stanie odbarwić bakterii o ścianie grubej. W efekcie te pierwsze stawały się bezbarwne, zaś te drugie ciemnofioletowe. Gdy zalaliśmy płytki fuksyną, odbarwione bakterie o cienkiej ścianie zabarwiły się na różowo. Te o grubej także, ale mocniejszy kolor fioletu zagłuszał róż.
W efekcie bakterie o ściance cienkiej zabarwiły się na różowo a te o grubej na ciemno fioletowo. Rożróżnianie bakterii pod mikroskopem jest zatem bardzo łatwe - bakterie Gram+ są fioletowe a Gram- różowe.

Akurat mnie, jako chemika-estetę bardziej zainteresowały kryształy fuksyny, które wykrystalizowały na płytce. Tutaj pęk kryształów w otoczeniu bakterii gram-ujemnych (powiększenie ok. 400X):
A tutaj w otoczeniu gram-dodatnich (pow. ok. 600X):


I na koniec mieszanka dwóch różnych typów bakterii: