informacje



Pokazywanie postów oznaczonych etykietą minerały. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą minerały. Pokaż wszystkie posty

wtorek, 21 marca 2023

Nieładny gips

 Ciekawostka geologiczna i chemiczna. 


 

Siarczan wapnia występuje jako minerał w dwóch formach - uwodniony gips mający 2 cząsteczki związanej wody i bezwodny anhydryt. Oba odkładają się na dwie wysychających jezior i zatok morskich, ale w różnych warunkach. Gips w niższej temperaturze i zasoleniu, anhydryt powyżej 40 stopni i w dużym zasoleniu. Często więc warstwy obu minerałów przeplatają się. Pod wpływem, podwyższonego ciśnienia i temperatury po zagrzebaniu w osadach, gips staje się mniej stabilny i zaczyna odwadniać się do bardziej gęstej odmiany anhydrytu. Ta forma potem dość wolno reaguje z wodą w porach skalnych, więc podczas erozji może zachować swój skład a do odsłonięcia.

Ponieważ oba minerały towarzyszą soli kamiennej, wraz z nią często są wypychane pod powierzchnię przez ciśnienie, które zmiękcza sól. Tworzą wówczas "czapę" gipsowo-anhydrytową, która w pewnym stopniu chroni złoże soli przed wypłukiwaniem. Wiele kopalń soli zaczynało w dawniejszych wiekach jako kopalnie gipsu, aż w końcu głęboki szyb dotarł do cenniejszej soli.

Gips używany w budownictwie jest robiony z tego uwodnionego przez podgrzanie i usunięcie połowy związanej wody. Powstała masa dość szybko reaguje z dodaną wodą, która zostaje związana, tworzą się nowe kryształy formy uwodnionej i masa twardnieje. Anhydryt kopalny też może być tak używany ale nie we wszystkich zastosowaniach zachowuje się podczas wiązania masy tak samo.

 Główna różnica jest taka, że anhydryt podczas wchłaniania wody bardzo pęcznieje. Przechodzi z gęstszej, odwodnionej na głębokości formy, w dużo luźniejszą nawodnioną. Zwiększa objętość nawet o 60%. Nie za bardzo więc nadaje się do odlewania twardych form. Ma to pewne dodatkowe skutki geologiczne, które brzmią bardzo interesująco. Gdy złoże anhydrytu zostanie odsłonięte przez erozję lub wydobycie albo sól wypycha go płytko pod powierzchnię, reaguje ze słodką wodą deszczową. Zamienia się w gips i zwiększa objętość. Może tworzyć pagórki i grzbiety, pęka, generuje lokalne wstrząsy. Pęcznienie wierzchniej warstwy powoduje jej odspojenie i wypiętrzenie z powstaniem kopuł z pustką pod nimi, lub struktury typu wigwam (płaskie płyty oparte o siebie i tworzące schronisko).

Polscy geolodzy badali jego takie miejsce w Kanadzie na dnie dawnej odkrywki. Nawodnienie wierzchniej warstwy anhydrytu wytworzyło kompleks 40 jaskiń pod widocznymi na wierzchu wypukłościami. Największa to kopuła w kształcie szkiełka zegarkowego tworząca pustkę wysoką na metr i o średnicy 8 metrów, do której można bezpiecznie wejść.[1]  



Z drugiej strony zaburzenie przepływu wód podziemnych w miejscu gdzie głębiej są warstwy anhydrytu, tworzy zagrożenie budowlane. Przekonały się o tym władze niemieckiego miasteczka Staufen, które w 2007 roku wykonały odwierty aby założyć instalację pompy ciepła podziemnego do ogrzewania ratusza. Teren okazał się nie do końca dobrze rozpoznany. Warstwa wodonośna okazała się pod sporym ciśnieniem, które popłynęło odwiertem i uszkodziło jego ściany. Głęboka woda zaczęła być wstrzykiwana do soczewki anhydrytu. Ten zaczął się nawadniać i pęcznieć. Teren w pobliżu historycznego centrum zaczął się deformować a wiele kamienic popękało. Najbardziej uszkodzony jest właśnie ratusz.[2] Szybkość wypiętrzania dochodzi do 12 cm rocznie. Po zorientowaniu się w sytuacji założono studnie odwadniające, aby zmniejszyć ciśnienie, ale rozwiązanie to może jedynie przyhamować pęcznienie kolejnych porcji, już powstałych deformacji nie da się odwrócić. 


 Inne znane zagrożenie wiąże się z niszczeniem ceramiki i cegieł, jeśli glina z której je wykonano nie została właściwie oczyszczona. Jeśli w masie były kawałeczki gipsu, podczas wypalania przechodzą w anhydryt. Potem powoli docierająca do wnętrza woda zamienia go w gips, a wzrost objętości powoduje pękanie. Często więc oglądając starą cegłę z której odpadł kawałek, znajdujemy pośrodku pęknięcia białą bryłkę wewnątrz masy.

----

[1] http://hydrationcaves.com/ 

[2] https://www.atlasobscura.com/places/staufen-germany

czwartek, 17 stycznia 2019

Azuryt i malachit - ostatnio w laboratorium (65.)

Kolejny przypadek pojawienia się czegoś ciekawego w kolbie obok właściwej syntezy.

W zeszłym tygodniu obrabiałem mieszaninę po reakcji, w której użytym katalizatorem były sole miedzi. Aby usunąć z mieszaniny ją i kwaśne produkty uboczne, mieszaninę rozpuszczoną w octanie etylu ekstrahowałem roztworem węglanu sodu a potem solanką dla odciągnięcia wody. Miedź ładnie przechodziła do fazy wodnej:

Roztwór węglanu, brany z butli, w której uprzednio go przygotowałem, był niemal stężony, solanka podobnie, a ponieważ z fazy organicznej przeszedł jeszcze rozpuszczalny w wodzie acetonitryl, szybko w kolbie ze zlewkami wytrącił się osad węglanu, nad którym pozostał granatowy roztwór soli miedzi:

Kolbkę odstawiłem w kąt dygestorium i nie zajmowałem się dalej. Po weekendzie okazało się, że trochę roztworu odparowało, a z mieszaniny zaczął krystalizować osad w formie drobnych igiełek

Najwięcej zebrało się na dnie, na białej warstwie węglanu. Było to dość ciekawe. Roztwór był zasadowy, zawierał jony miedziowe, węglanowe, hydroksylowe i chlorkowe, i był właściwie nasycony. W tych warunkach wypaść z niego mogło kilka niebieskich substancji - węglan miedzi, chlorek miedzi, zasadowy węglan miedzi, zasadowy chlorek miedzi, wodorotlenek miedzi...

Aby coś rozstrzygnąć (i pobawić się) ostrożnie zlałem roztwór, zostawiając tylko zmieszane osady:

Przepłukałem je następnie zimną wodą, aby wypłukać dobrze rozpuszczalny węglan sodu. Sam niebieski osad był w wodzie raczej słabo rozpuszczalny, co raczej wykluczało chlorek miedzi. Po odsączeniu małą ilość osadu przeniosłem na szkiełko zegarkowe i zadałem paroma kroplami rozcieńczonego kwasu solnego. Osad rozpuścił się, do ostatniej grudki wydzielając bąbelki gazu. Zatem musiał to być jakiś węglan miedzi. A konkretnie azuryt.

Miedź na drugim stopniu utlenienia tworzy z jonami węglanowymi sole, jednak w normalnych warunkach nie jest to po prostu stechiometryczny węglan CuCO
3
, jak by się to mogło wydawać (i jak jest to zwykle zapisywane w podręcznikach). Wynika to z większego powinowactwa jonów hydroksylowych niż węglanowych, które słabo koordynują. W praktyce więc z wodnych roztworów wytrąca się zasadowy węglan miedzi, zawierający jony węglanowe i wodorotlenkowe. Ten jednak może występować w dwóch formach, różniących się ilością jonów węglanowych. Forma zawierająca dwa jony węglanowe i dwa hydroksylowe (Cu3(CO3)2(OH)2  ) to błękitny azuryt, zaś forma z jednym jonem węglanowym i dwoma hydroksylowymi ( Cu2CO3(OH)2 ) to zielony malachit. Ich trwałość zależy od warunków - pod ciśnieniem atmosferycznym trwalszy jest malachit, zawierający mniej jonów węglanowych. Azuryt wymaga większego ciśnienia dwutlenku węgla dla uzyskania równowagi, bez tego, zwłaszcza pod wpływem wilgoci, ulega powolnej przemianie w malachit. Często więc w złożach obserwuje się oba minerały zmieszane, z ziarnami azurytu zachowanymi wewnątrz brył malachitowych.

Podczas wytrącania węglanu miedzi w trakcie szkolnych eksperymentów zwykle otrzymuje się osad zawierający przewagę malachitu, o niebiesko-zielonym kolorze, wynika to z niedostatecznej ilości jonów węglanowych. Dalsze przetrzymywanie mokrego osadu wywołuje po pewnym czasie całkowitą konwersję w malachit, przeprowadzenie reakcji w podwyższonej temperaturze przyspiesza przemianę do jednej-dwóch godzin.
Przypuszczam, że w tym przypadkowym osadzie otrzymałem raczej przewagę azurytu. Sprzyja temu przeprowadzenie krystalizacji w nasyconym roztworze węglanu (duży nadmiar jonów węglanowych).  Jedną ze wskazówek jest wyraźnie niebieski kolor osuszonego osadu:




Azuryt występuje w naturze jako minerał wtórny towarzyszący rudom miedzi, zwykle wraz z malachitem. Już od starożytności budził zainteresowanie, ze skał z przewagą tego składnika wykonywano ozdoby, zaś on sam po rozkruszeniu służył jako pigment malarski. Niestety znaną niedogodnością było powolne zielenienie oraz mała odporność na kwaśne składniki farby lub spoiwa, dlatego bardziej ceniona była ultramaryna, otrzymywana z minerału lapis lauzuli.
Malachit syntetyczny, otrzymywany z roztworów, znany był jako verditer, a syntetyczny azuryt jako niebieski verditer.

Neutralny węglan miedzi, jaki wydawałoby się, że powinien powstawać w reakcji, jest natomiast związkiem nietrwałym w obecności wilgoci i trudno otrzymać go normalną drogą. W zasadzie dopiero w 1973 roku opublikowano syntezę w bezwodnych warunkach między zasadowym węglanem a dwutlenkiem węgla, w wysokiej temperaturze i ciśnieniu. Ma postać szarego proszku i nie znalazł jakiegoś specjalnego zastosowania. [a]

--------
[a]  Hartmut Erhardt, Wilhelm Johannes, and Hinrich Seidel (1973): "Hochdrucksynthese von Kupfer(II)-Carbonat", Z. Naturforsch., volume 28b, issue 9-10, page 682.


wtorek, 23 sierpnia 2016

Chemiczne wieści (8.)

Naturalne kompleksy szkieletowe
To akurat odkrycie nie było dla mnie zaskakujące, bo od dawna sądziłem że do niego dojdzie - geolodzy znaleźli na Syberii minerał będący naturalną formą metalo-organicznych szkieletów (MOF) materiałów o dużej porowatości na poziomie cząsteczkowym, o ciekawych właściwościach katalitycznych.

MOFy to interesująca grupa materiałów, będąca w zasadzie usieciowanymi kompleksami wielordzeniowymi - kationy metalu stanowią zworniki sieci tworzonej przez ligandy mogące łączyć się z nimi na dwóch lub więcej końcach. Między nimi powstają puste przestrzenie o zdefiniowanej, określonej wielkości i kształcie, stąd użycie MOFów jako absorbentów do gazów, ale też katalizatorów. Dotychczas wytwarzano je wyłącznie laboratoryjnie.

Przebadanie nowymi technikami rentgenowskimi słabo dotychczas poznanych minerałów stepanowitu (stepanovite) i żemczużnikowitu (zhemchuzhnikovite)* , znalezionych w syberyjskich kopalniach już w latach 60. ujawniło, że są takimi właśnie naturalnymi MOFami. Chemicznie są to mieszane szczawiany żelaza i magnezu, z występującymi w wolnych przestrzeniach jonami sodu i domieszką innych metali; w żemczużnikowicie pewna ilość jonów trójwartościowego żelaza jest wymieniona na podobne wielkością jony glinu[1]
Strukturę potwierdzono dokonując syntezy kryształów o takim składzie.



Najlżejsza cząsteczka pi-aromatyczna
Aromatyczność to szczególny przykład stabilizowania cząsteczki przez rezonans struktur elektronowych.  Wolne pary elektronowe tworzą w takich cząsteczkach płaski, pierścieniowaty orbital na którym ładunek jest równomiernie rozprowadzony, a elektrony wirują jak po karuzeli. Najlepiej przebadana jest aromatyczność związków węgla, natomiast słabiej przebadane są tego typu połączenia zbudowane wyłącznie z innych pierwiastków.

W szeregu węglowodorów aromatycznych najmniejszą cząsteczkę miał kation cyklopropenyliowy, ze zdelokalizowanym układem dwóch elektronów na trójkątnej cząsteczce. Wykazano, że podobny układ mogą tworzyć też inne pierwiastki, krzem, fosfor, glin

Obecnie odkryto prawdopodobnie najlżejszy możliwy taki układ - kation borocyklopropyliowy stabilizowany lekkimi ligandami. Badania spektroskopowe oparów boru poddanych działaniu lasera w obecności odpowiednich gazów, wykazały istnienie względnie stabilnych kationów [B3(NN)3]+ i  [B3(CO)3]+ . Ze względu na małą masę atomową boru, mniejszą niż dla węgla, i małą masę stabilizujących ligandów, są to najlżejsze cząsteczki pi-aromatyczne. [2]

Nieco wcześniej utworzono stabilne kompleksy zawierający pierścień triborocyklopropyliowy, zobojętnione kationami sodu, ale ligandy były dość rozbudowane a pierścienie tworzyły dimer w formie kompleksu kanapkowego, przez co powstała molekuła była dużo cięższa.[3]


------------
* Nazwa minerału Zhemchuzhnikovite pochodzi od angielskiej transkrypcji nazwiska mineraloga Żemczużnikowa, polska transkrypcja nazw rosyjskich jest inna ze względu na istnienie w języku tych samych głosek.

[1] Tomislav Friščić, Minerals with metal-organic framework structures, Sciences Advances,  Vol. 2, no. 8, e1600621, DOI: 10.1126/sciadv.1600621
[2] Gernot Frenking et.al. The [B3(NN)3]+ and [B3(CO)3]+ Complexes Featuring the Smallest π-Aromatic Species B3+Angew. Chem. Int. Ed. Volume 55, Issue 6, Pages 2078–2082
[3] Holger Braunshweid et.al The Triboracyclopropenyl Dianion: The Lightest Possible Main-Group-Element Hückel π Aromatic, Angew. Chem. Int. Ed. Volume 54, Issue 50,  Pages 15084–15088

czwartek, 19 maja 2016

Sita molekularne

Z sitami molekularnymi student chemii zwykle spotyka się na pierwszych pracowniach laboratoryjnych, gdzie zawsze przy ogrzewaniu cieczy do wrzenia upomina się go "ale najpierw wrzuć do kolby sita molekularne" mające postać małych, twardych kuleczek. I bardzo możliwe, że aż do końca studiów będzie znał tylko takie ich zastosowanie. Niemniej co niektórych może jednak zastanowić, czym też są i czemu nazywa się je sitami, skoro wyglądają raczej jak małe granulki jakiejś masy ceramicznej?
Sita molekularne to granulki o tak dobranym składzie i metodzie produkcji, że są bardzo porowate, zaś te pory mają określoną wielkość pozwalającą wnikać wgłąb materiału cząsteczkom odpowiednio małym, zatrzymując cząsteczki za duże. Po prostu tylko cząsteczki mniejsze niż średnica poru będą w niego wchodzić i tym samym będą "odsiewane" od większych. Z tego też powodu najczęściej używa się sit do oddzielania niepożądanych, małocząsteczkowych zanieczyszczeń od cieczy i gazów.

Materiałem budującym sito molekularne są najczęściej syntetyczne minerały podobne do zeolitów posiadające w strukturze pory i kanały o dobrze zdefiniowanej wielkości. Najściślejsze mają pory o średnicy 3,4 i 5 Angstremów, czyli odpowiednio 0,3; 0,4 i 0,5 nanometra. Większe pory mają sita z porowatego szkła od 10 Å w górę. Sita o porach od 20 do 500 Angstremów mogą być stworzone z krzemionki koloidalnej, a te o jeszcze większych z krzemionki mezoporowatej. Ponadto w podobnym celu użyty może być węgiel aktywowany i niektóre porowate tworzywa sztuczne.
Generalnie więc w większości są to materiały niereaktywne, o dobrej wytrzymałości chemicznej i termicznej.

Jakie jest główne zastosowanie? Osuszanie.
 Cząsteczka wody jest bardzo mała, szerokość na jaką odsunięte są atomy tlenu to 1,6 A, dlatego dość łatwo wchodzi w kanały porowatego materiału. Dodatkowo glinokrzemiany dość chętnie wiążą wodę czy to wiązaniami wodorowymi w grupach Si-H czy to przez przyciąganie do jonów.  Dzięki temu po dodaniu sit do materiału normalnie słabo adsorbowanego, jak olej mineralny czy gaz ziemny, woda jest skutecznie odciągana.
Najdrobniejsze sita 3A mogą odciągać wodę od alkoholu i rozpuszczalników, których cząsteczki są zbyt duże aby wnikać w ich strukturę. Jest to jeden ze stosunkowo prostych sposobów uzyskania bezwodnego alkoholu - zwykle sprzedawany 95% alkohol zasypuje się odpowiednią ilością sit (pochłaniają wodę do 15-20% masy własnej) i zostawia w szczelnym pojemniku na kilkanaście godzin, potem odsącza lub destyluje aby oddzielić od pojawiającej się mineralnej zawiesiny.

Większe sita 4A i 5A mogą też wchłaniać alkohol etylowy, etan, eten i bywają używane do oddzielenia ich śladów z wielkocząsteczkowych rozpuszczalników. Chętnie korzysta z nich przemysł rafineryjny. Służą do usuwania z gazu ziemnego wody, kwasu mrówkowego, tlenków siarki, siarkowodoru a w odpowiednich warunkach też dwutlenku węgla. Jest to o tyle ważne, że nawet niewielkie ilości wody mogą zapychać instalacje podczas przetaczania gazu skroplonego, oraz wpływają korozyjnie na gazociągi.
Odmiany o porach 10-15 A mogą oddzielać węglowodory aromatyczne od ciekłych węglowodorów, a także służyć do rozdziału gazów. Odmiany mezoporowe, powyżej 100 A, mogą być użyte do rozdziału biomolekuł i krótkich peptydów.
Sita o odpowiednio dobranym składzie działają też jako wymieniacze jonowe, mogą pochłaniać z wody i ścieków metale ciężkie, chętnie też chłoną amoniak i jony amonowe.

Obok granulek żelu krzemionkowego sita molekularne są też jednymi z najczęściej używanych pochłaniaczy wilgoci w opakowaniach leków, żywności i elektroniki.

Jako materiał dla wytwarzania sit molekularnych najczęściej używa się zeolitów, bądź to naturalnych bądź otrzymywanych sztucznie. Sama nazwa "zeolit" znaczy dosłownie "wrzący kamień" i wywodzi się z ciekawej właściwości zbitych form. Aby z uwodnionego zeolitu usunąć wodę musimy go ogrzewać do odpowiednio dużej temperatury przez pewien czas. Jak zauważył  pod koniec XIX wieku szwedzki mineralog Axel Frederik Cronstedt, proces odwrotny po polaniu wodą dobrze wysuszonego minerału przebiegał z wydzieleniem na tyle dużej ilości ciepła, że powstawała para a woda którą go polano zapieniła się.
Zeolity powstają najczęściej w skałach wulkanicznych i piroklastycznych w wyniku reakcji roztworów bogatych w krzem, glin i kationy alkaliczne z zasadami, często w warunkach hydrotermalnych. Krystalizują w pustkach skalnych i kanałach tworząc skupienia włókniste, szczotkowate lub kuliste. Mogą też powstawać jako spoiwo między ziarnami osadów zagrzebanych na dużej głębokości. Obecnie najwięcej zeolitów wydobywa się w Chinach, Korei Południowej i Japonii, w Europie najwięcej wydobywa ich Słowacja.

Jednak naturalne zeolity nie nadają się do niektórych zastosowań, głównie z powodu obecności zanieczyszczeń, stąd też zaczęto produkować je syntetycznie.
Produkcja generalnie rzecz biorąc jest dość prosta - strukturalnie są to klatkowe glinokrzemiany z domieszką kationów metali alkalicznych. Do syntezy bierze się więc żel wodny zawierający tlenek glinu i łączy ze szkłem wodnym czyli rozpuszczalnym w wodzie krzemianem sodu. Mieszaninę alkalizuje się wodorotlenkiem sodu lub potasu aby spolimeryzować powstające glinokrzemiany. Wielkość i układ porów zależy od rodzaju kationu alkalicznego, stającego się "rusztowaniem" dla pierścienia glinokrzemianowego odpowiedniej wielkości, toteż mieszanina domieszkowana jest odpowiednimi kationami, w tym także organicznymi jak tetraetyloamoniowy.
Teraz gęstniejący żel jest mieszany i ogrzewany w odpowiednich warunkach. Przy czym te "odpowiednie warunki" to w istocie klucz do sukcesu. Proces nie może przebiegać zbyt szybko bo powstaną nam po prostu zbite kryształy. Zależnie od stosunku krzemu do glinu, obecności metali alkalicznych, odczynu mieszaniny, rodzaju kationu stanowiącego wzorzec, szybkości procesowania, temperatury i innych czynników otrzymujemy zeolity o różnych strukturach. Jak na razie opisano ponad 250 struktur zeolitowych a wciąż nie jest to koniec.
Atomy podczas krystalizacji organizują się w klatkowate "bloczki" z których układana jest sieć. Połączone wielościany o strukturze sodalitu tworzą pomiędzy sobą kanały złożone z pierścieni. Rodzaj struktury determinuje wielkość pierścieni a co za tym idzie wielkość porów.
Po przeprowadzeniu procesu w "odpowiednich" warunkach otrzymujemy wilgotną masę drobnych cząstek zeolitu, która następnie jest granulowana lub wyciskana do formy pręcików i suszona.

Oprócz usuwania wody i innych małocząsteczkowych zanieczyszczeń zeolity znalazły szerokie zastosowanie w zmiękczaniu wody, mogą bowiem pochłaniać i wiązać jony wapnia i magnezu. Akwaryści powinni kojarzyć zeolity w takim zastosowaniu. Znaleźć je możemy w ekologicznych proszkach do prania, gdzie zastępują używane zwykle do zmiękczania fosforany, które trafiając do ścieków wywoływały przenawożenie wód i zakwity glonów. Granulki sit molekularnych są też używane do wzbogacania podłoża, długo bowiem trzymają wilgoć oraz mogą stopniowo uwalniać wchłonięte nawozy.
Inne zastosowanie to katalizatory zwłaszcza w krakingu ropy naftowej. Podejmowane są też próby użycia jako nośniki leków. Ze względu na wysoką energię hydratacji i możliwość zregenerowania wilgotnych sit, zaczęto używać ich także do długotrwałego przechowywania ciepła - sita są suszone przy pomocy ciepła na przykład z kolektorów słonecznych. Zamknięte w szczelnym opakowaniu nie tracą mogą być przechowywane dość długo, a pod wpływem wody ponownie wydzielają ciepło.

Jak jednak mają się te właściwości do zastosowania sit w laboratoriach podczas ogrzewania cieczy?

Stan wrzenia to sytuacja gdy ciecz pod wpływem wysokiej temperatury jest w stanie przechodzić w parę w całej objętości, wytwarzając bąble gazu. W praktyce jednak powstanie pęcherzyka ot tak wewnątrz cieczy jest mało prawdopodobne. Najpierw cząsteczki cieczy muszą zostać rozepchane na boki, gdy utworzy się faza gazowa na pęcherzyk działa zarówno ciśnienie hydrostatyczne jak i napięcie powierzchniowe. W efekcie bardzo małe pęcherzyki odczuwają ciśnienie większe od atmosferycznego, to hamuje parowanie wody do wnętrza pęcherzyka a ten może zaniknąć zanim nie stanie się na tyle duży aby wypłynąć na powierzchnię.
Sytuacja zostaje bardzo ułatwiona gdy podgrzana woda zetknie się z nierówną, chropowatą powierzchnią, wtedy ciśnienie działa na powstający przylegający pęcherzyk tylko od jednej strony, dzięki czemu łatwiej jest mu urosnąć. Analogiczna sytuacja dotyczy wydzielania się gazu z wody mineralnej - pęcherzyki powstają na ściankach i wybiegają stale z pewnych sprzyjających punktów.

Inną sytuacją która bardzo ułatwia wrzenie są bąbelki powietrza, stanowiące "zarodek" bąbelków pary. W przypadku materiałów porowatych mogą być to zarówno bąbelki przyczepione do nierównej powierzchni jak i zawarte wewnątrz materiału, stąd właśnie użycie różnych porowatych materiałów w charakterze "kamyków wrzennych". Mogą być to kawałki porcelany (na pracowni magisterskiej używałem drobnych okruchów rozbitej filiżanki), mogą to być granulki ceramiczne i mogą to być też sita molekularne, które zawsze gdzieś tam stoją na pracowni.

A dlaczego w takim razie musimy ułatwiać wrzenie?
Cóż, to utrudnienie powstawania pierwszych pęcherzyków powoduje, że gdy podgrzewana ciecz jest bardzo czysta i ogrzewamy ją w gładkim naczyniu, możliwe staje się jej przegrzanie powyżej temperatury normalnego wrzenia. Wodę można w ten sposób ogrzać do temperatury 120-130 *C, w sprzyjających warunkach i przy szybkim ogrzewaniu aż do 160 stopni.
W takiej sytuacji drobne zaburzenie, w rodzaju pierwszego pęcherzyka, zamieszania czy wibracji może spowodować dość gwałtowne zawrzenie, często połączone ze spienieniem się i wychlapaniem naszej cieczy. Pół biedy gdy ogrzewana mieszanina pójdzie chłodnicą, ale równie dobrze może prysnąć na rękę eksperymentatora. Problem ten upowszechnił się w ostatnim czasie wraz z mikrofalówkami - wiele osób używa ich do podgrzewania wody na herbatę. Jeśli użyją do tego czystej wody i wstawią wodę w gładkiej szklance, woda może nie zawrzeć mimo, że będzie bardzo gorąca. Wrzucenie do niej teraz herbaty i cukru może spowodować wytryśnięcie z kubka i poparzenia.



 Bez kamyków wrzennych ciecze wrą nieregularnie, z uderzeniami gwałtowniejszych wrzeń co jakiś czas, i właśnie dlatego dla bezpieczeństwa i większej kontroli nad procesem należy wrzucać do kolby dwie-trzy granulki sit lub kawałki porcelany.

środa, 2 kwietnia 2014

Nietypowe minerały

Kilka przykładów minerałów, które zdecydowanie wyróżniają się spośród reszty.


Arkanit
Minerał zawiera w sumie dosyć pospolite pierwiastki, jest to bowiem po prostu krystaliczny siarczan potasu, jest jednak minerałem rzadkim - znajduje się go na terenach hydrotermalnych, na przykład w Lacjum we Włoszech, w pobliżu złóż guano ale też w jaskiniach. Po raz pierwszy opisany jako kryształy na drewnianych podkładach toru wagoników w nieczynnej kopalni, został znaleziony w zaledwie kilku jaskiniach na świecie.
Jego nazwa bierze się z łacińskiego Arcanum co oznacza tajemnicę i nawiązuje zapewne do nie zbyt chętnego pojawiania się na powierzchni. Nazwa ta spodobała się fantastom, i pojawia się w kilku grach komputerowych, jako magiczny, cenny materiał.
Graczy jednak zapewne nie ucieszy wiadomość, że w jaskiniach arkanit powstaje z odparowywania nietoperzego moczu.

Urycyt
Innym minerałem którego powstanie wiąże się z moczem zwierzęcym, jest urycyt, czyli po prostu krystaliczny mocznik. Występuje w jaskiniach suchego klimatu





Karpatyt
Minerał organiczny stanowiący naturalną formę koronenu - węglowodoru aromatycznego w formie pierścienia złożonego z pierścieni benzenowych.

Po raz pierwszy opisany na Ukrainie, znany też ze Słowacji, został nazwany od gór Karpat. Ma postać żółtych igieł i dość wyraźnie świeci w ultrafiolecie na jasno niebiesko.
Sam węglowodór budzi zainteresowanie chemików ze względu na skłonność do samoorganizacji w kolumny ustawionych na płask cząsteczek, jak stos talerzy, co może znaleźć zastosowanie w chemii supramolekularnej.


Minerały płonących hałd
Zapłon skały płonnej wewnątrz pokopalnianej hałdy wywołuje powstanie specyficznych warunków, przypominających tereny wulkaniczne, zaś w miejscach gdzie z wnętrza hałdy wydobywają się gorące gazy, może dochodzić do krystalizacji nietypowych minerałów.
Hałdy zawierające siarczki mogą w ten sposób wytworzyć siarkę rodzimą, te powęglowe także  minerały amoniaku, jak siarczan glinowo-amonowy czyli Czermigit, stanowiący naturalną formę ałunu amonowego. Bardzo nietypowym minerałem jest Kladnoit, znaleziony po raz pierwszy w czeskim Kladnie, stanowiący skrystalizowany ftalimid, ważny odczynik w chemii organicznej. Ma postać przezroczystych płatków:
Towarzyszy mu niekiedy Hoelit, czyli 9,10 antrachinon, związek stanowiący prekursor barwników alizarynowych:


Ponieważ łatwo zamienia się w formę fenolową może stanowić dobry reduktor. Jest też używany w przemysłowej produkcji wody utlenionej. Jako minerał przybiera postać żółtych igieł:

Podobny minerał tworzy acetamid, czyli amid kwasu octowego.


Abelsonit
Jedyny minerał porfiryny.

Porfiryny to ważna grupa związków zawierający obszerny pierścień z czterech cząsteczek pirolu, skierowanych atomami azotu do środka. Pierścień chętnie tworzy kompleksy z atomami metalu, co ma znaczenie dla właściwości związku - porfiryna kompleksująca żelazo to hem, stanowiący aktywnie przenoszącą tlen częścią hemoglobiny we krwi. Chloryna kompleksująca magnez to chlorofil, zielony barwnik roślin. A Abelsonit to krystaliczny kompleks z niklem:
Porfiryny są na tyle trwałe, że często pozostają nierozłożone w pozostałościach po rozpadzie materii roślinnej. Wykrywa się je w torfie, węglu a zwłaszcza w ropie i asfalcie. Częściowo shydrolizowany chlorofil może rozpuszczać się w wodzie i w zetknięciu z solami niklu tworzyć ten specyficzny minerał. Ma postać czerwonych lub pomarańczowych igieł.

Mellit
Mellit nazywany jest też miodowym kamieniem. Ma postać charakterystycznych kryształków powstających w pobliżu złóż węgla brunatnego. Nietypowy jest jego skład - to sól glinowa kwasu melitowego, będącego pochodną benzenu z kwasową grupą karboksylową przy każdym węglu:
Diomignit
Jedyny dotychczas uznany płynny minerał. Ma postać mikroskopijnych płynnych inkluzji wewnątrz kryształów spodumenu i berylu, chemicznie rzecz biorąc to tetraboran litu.

środa, 4 września 2013

Skąd ten zapach?

Każdego kto co nieco liznął na temat mechanizmów odczuwania zapachu, musiało zastanowić jak to się dzieje, że wyraźny i charakterystyczny zapach mają substancje zdecydowanie nielotne, jak żelazo, miedź czy kawałek wapienia.

Zapach żelaza
W znanej powieści "Pachnidło" jedną z pierwszych prób uzyskania nietypowych zapachów otoczenia, jest uzyskanie ekstraktu o zapachu miedzianej gałki u drzwi. Gałka była moczona w chłodnym tłuszczu, z którego po zagęszczaniu uzyskał bohater substancję pachnącą właśnie tak jak metal. Nie jest to ze strony autora taka zupełna fantazja, bo metalowe przedmioty z jakimi się często spotykamy, rzeczywiście mają swój specyficzny, metaliczny zapach, porównywany niekiedy do zapachu zaschniętej krwi. Co takiego jednak pachnie, skoro metal i jego tlenki są nielotne?
Jak można zauważyć, woni takiej nabiera metal używany, często dotykany, nie będzie go miał natomiast dobrze oczyszczony. Zapach ten jest w istocie bardziej związany z nasza skórą. Skóra jest w naturalny sposób natłuszczona za sprawą pracy odpowiednich gruczołów łojowych. Łój jest mieszaniną zawierającą między innymi krótkołańcuchowe nienasycone kwasy tłuszczowe. Kwasy te mają to do siebie, że pod wpływem powietrza i światła łatwo utleniają się do nadtlenków, te z kolei pod wpływem jonów metali na niższych stopniach utlenienia, chętnie redukują się, tworząc rozmaite ketony i alkohole. Wśród nich 1-okten-3-on, związek o silnym, łatwo wyczuwalnym zapachu, choć pewne znaczenie mają też inne ketony. Na powierzchni metalu zawsze obecna jest pewna ilość wolnych jonów, zwłaszcza gdy jest pokryty warstewką zabrudzeń; jony reagują z nadtlenkami i metal zaczyna pachnieć. Aby uzyskać podobny efekt, wystarczy nasmarować dłonie niewielką ilością roztworu żelaza II. Dostarczycielem jonów może być też zaschnięta krew, w czym też naukowcy widzą wytłumaczenie dużego wyczulenia naszych nosów na takie związki.

W przypadku stali i żeliwa, pewne znaczenie mają też zanieczyszczenia metalu. Stal zawiera węgiel oraz domieszki fosforu. W obecności wilgoci cząstki węgla stają się półogniwami z pewnym ładunkiem elektrycznym, na których fosfor może utleniać się do fosforowodoru i organicznych fosfin o nieprzyjemnym zapachu, stąd dodatkowa nuta.[1] Zapach ma też duże znaczenie dla wyczuwania metalicznego smaku - w badaniach z ochotnikami, metaliczny smak wyczuwalny dla soli żelaza znikał po zatkaniu nosa, dla miedzi wyniki były niejednoznaczne.[2] Pewne znaczenie dla smaku metalu ma też powstawanie słabych prądów gdy jeden metal, na przykład kawałek folii aluminiowej, zetknie się z amalgamatową plombą.

Swój własny, nieprzyjemny zapach ma natomiast osm, a to z powodu powstawania na powierzchni lotnego czterotlenku.

Zapach kredy...
Zapach mokrej kredy, bądź świeżego wapienia, jest bardzo charakterystyczny. I smaczny. Trudno dokładnie określić dlaczego, ale często miałoby się ochotę zjeść taki kamień. Jedni opisują go jako "mineralny" inni jako "roślinny" ale spotkałem się też ze stwierdzeniami, że naturalny wapień pachnie jabłkiem i pieczonym chlebem. Moje skojarzenia są raczej synestetyczne, bo kojarzy mi się z wyglądem zmąconej wody,  chociaż niedawno jednak stwierdziłem że kreda z kopalni w Mielniku ma miękki zapach mąki.
Niekiedy mówi się, że ochota na zjedzenie kredy, to skutek niedoboru wapnia. Gdyby ta zasada odnosiła się też do innych substancji, musiałbym stwierdzić w swym organizmie przewlekły niedobór czekolady...
Ale właściwie czym pachnie kreda? Kwesta ta nie została chyba zbyt dokładnie zbadana, skoro żadnego "oficjalnego" wyjaśnienia nie znalazłem. Najczęstsze przypuszczenie odnosi się do tego, że zapach ma kreda bądź pyląca się bądź wilgotna. Prawdopodobnie podczas wysychania tworzą się drobne cząstki, które dostając się do nosa wywołują odczuwane wrażenie.
Dlaczego jednak te drobne cząstki miałyby wywoływać takie nietypowe wrażenia? Sama alkalizacja czy obecność węglanów nie wystarczy, skoro soda oczyszczona nie ma takiej woni, zapewne więc znaczenie ma tutaj wapń. Pierwiastek ten jest ważny dla utrzymania równowagi elektrycznej komórek nerwowych, w tym komórek węchowych. W normalnym przypadku poburzenie receptorów na powierzchni komórki węchowej, powoduje napływ do jej wnętrza jonów wapnia i odpływ jonów chlorkowych; powstająca zmiana potencjału tworzy sygnał przekazywany przez nerw. Mogę zatem domniemywać że dostarczenie wapnia bez jonów chlorkowych na powierzchnię z komórkami węchowymi w jakiś sposób zmienia bądź inicjuje ten proces, przez co mózg odczuwa jakby mieszankę wszystkich zapachów. Myślę że byłby to ciekawy temat badań dla jakiegoś biochemika.

... i innych minerałów
Własny, specyficzny zapach posiadać mogą też inne minerały. Siarka rodzima ma charakterystyczny zapach, szczególnie silny przy pocieraniu, biorący się po trosze z oparów siarki jak i z jej tlenków. Podobnie pachnieć mogą minerały siarczkowe jak piryt, co też jest związane z powolnym utlenianiem, w jakimś stopniu może też z powodu wydzielania siarkowodoru. Minerały arsenu, jak arsenopiryt, mają dla odmiany czosnkowy zapach powstający przy rozdrabnianiu i kruszeniu - chętnie wówczas iskrzą - wywołany arsenowodorem i siarczkiem arsenu. Łupki bitumiczne i pewne odmiany wapieni zawierających domieszki substancji organicznych, przy rozłupywaniu dają niemiły zapach siarkowodoru, skąd też doczekały się nazwy śmierdząca kreda (Stinkstone).
Wśród minerałów szczególnym przypadkiem jest Anozonit - minerał fluoru. Zapach jaki wydziela jest ostry i niezupełnie przyjemny; bywa porównywany do zapachu ozonu albo przepalonej elektroniki. Wiadomo że jest to fluoryt, który utworzył się w pobliżu promieniotwórczych skał, których oddziaływanie zaburzyło jego sieć krystaliczną. Przez długi czas sądzono, że zapach jest wynikiem wybijania przez promieniowanie fluoru, który natychmiast reagował z powietrzem w porach minerału, tworząc ostro pachnący fluorek tlenu i ślady ozonu - niedawno jednak odkryto, że przyczyna jest jeszcze bardziej interesująca.
Fluor jest pierwiastkiem tak ogromnie reaktywnym, że Moissan chcąc go po raz pierwszy wyodrębnić, musiał użyć aparatury wykonanej z platyny, bo ze szkłem reagował bardzo szybko. W mieszaninie z powietrzem bardzo chętnie przechodzi w fluorki tlenu i azotu, reaguje z wodą. Dla wszystkich jest więc oczywiste, że nie występuje w naturze w stanie rodzimym. Albo może inaczej - dotychczas dla wszystkich był to fakt najzupełniej oczywisty. Jednak badania jakim poddał anozonit Florian Kraus, powinny zmienić tą opinię.

Postanowił on sprawdzić dawne teorie przyczyn zapachu tego minerału, ale w sposób nie niszczący - rozkruszenie wystawia wnętrze na działanie wilgoci. Dlatego też zbadał kilka kryształków za pomocą spektrometrii magnetycznego rezonansu jądrowego NMR. Ponieważ jądra atomów fluoru posiadają spin i moment magnetyczny, ich sygnały mogą być obserwowane w ten sposób. Wyniki badania pokazały jednoznacznie, że obserwowany sygnał pochodzi od wolnego, cząsteczkowego fluoru, zamkniętego w mikroporach minerału[3]
To zatem co czuć od kryształków, to mieszanka zapachów fluoru, fluorku tlenu i ozonu. Ciekawe swoją drogą co by przyniosło zbadanie pewnej odmiany halitu, która a sprawą bliskości promieniotwórczych minerałów przybrała fioletowawy kolor - efekt taki może dawać stały koloid sodu.

Zapach karbidu
Każdy kto zetknął się z karbidem pewnie zauważył też niemiły zapach tej substancji. Nie każdy jednak zastanowił się, że bezwonny jest zarówno powstający w reakcji acetylen jak i wodorotlenek wapnia.
 CaC2 + 2H2OCa(OH)2 + C2H2
W tym przypadku sprawa jest łatwa do wyjaśnienia - karbid wytwarza się prażąc wapień z węglem. Wapień naturalny zawiera domieszki innych niż węglan soli wapnia, a więc siarczanu i fosforanu, które po zredukowaniu zamieniają się w siarczek i fosforek wapnia. Te podczas reakcji z wodą wydzielają siarkowodór i związki fosforowodorowe (głównie difosfina, sam fosforowodór jest bezwonny), pierwszy o zapachu zgniłych jaj a drugie o zapachu zepsutego czosnku.
-------
ResearchBlogging.org
* http://www.mindat.org/forum.php?read,6,284681,284731
[1] Glindemann D, Dietrich A, Staerk HJ, & Kuschk P (2006). The two odors of iron when touched or pickled: (skin) carbonyl compounds and organophosphines. Angewandte Chemie (International ed. in English), 45 (42), 7006-9 PMID: 17009284  
[2] Harry T. Lawless, Serena Schlake, John Smythe, Juyun Lim, Heidi Yang, Kathryn Chapman and Bryson Bolton (2004). Metallic Taste and Retronasal Smell Chem. Senses, 29 (1) DOI: 10.1093/chemse/bjh003  
[3] http://www.nature.com/news/stinky-rocks-hide-earth-s-only-haven-for-natural-fluorine-1.10992

środa, 12 września 2012

Kiedyś w laboratorium (14.)

Gdy mieliśmy zajęcia z radiochemii, prowadzący pokazał nam pouczającą rzecz - sprawdził stopień zjonizowania wykrywany w pomieszczeniu - wynosił ok. 2 miliremów/h. Po czym wziął opakowanie soli dla nadciśnieniowców, o zawartości sodu obniżonej przez dodatek potasu - i tutaj czujnik pokazał prawie 6 mR/h:

Zatem sól jest promieniotwórcza bardziej niż tło. Z czego to wynika? Oczywiście z dodatku potasu.
Naturalny potas zawiera 0,012% izotopu K-40, będącego izotopem nietrwałym. Rozpada się z wydzieleniem cząstek beta z okresem półtrwania  1,27 mld lat zamieniając się w argon. Sól zawierająca większą ilość potasu jest też bardziej promieniotwórcza, zbyt jednak mało aby nam przez samo to tylko  zaszkodziła (na pewno nam zaszkodzi jeśli będziemy jej nadużywali).
Ta właściwość dosyć przecież pospolitego pierwiastka jest używana w radiodatowaniu skał i skamielin - jeśli wiemy jaka powinna być zawartość potasu w skale, to znając różnicę między ilością teoretyczną a rzeczywistą i wiedząc ile argonu nagromadziło się wewnątrz ziaren mineralnych, możemy policzyć wiek próbki w zakresie setek milionów - miliardów lat.

ps. a za niedługo zdaję egzamin licencjacki i będę składał papiery na magisterkę.
ps2. - postanowiłem trochę uporządkować posty i te ze stałego cyklu kiedyś w laboratorium ponumerowałem
ps3. - egzamin zaliczyłem, papiery złożyłem. A że link dawany w komentarzu jest ciekawy, wkleję go w formie aktywnej:
 http://xkcd.com/radiation/
infografika porównująca dawki promieniowania z różnych źródeł. Dawka dla zamieszkania 50 mil od elektrowni węglowej jest większa niż dla zamieszkania 50 mil od elektrowni jądrowej.

niedziela, 15 lipca 2012

Ałun

Na trop dzisiejszego tematu wpadłem podczas zbierania informacji do wpisu o herbacie. Związki glinu są bowiem często stosowane w antyperspirantach, o czym wówczas nie napisałem, bo nijak się to miało do popularnych napojów. Wiele osób ma wątpliwości co do tego na ile takie środki są obojętne dla zdrowia i szukają innych rozwiązań. W sumie powstał cały przemysł kosmetyków, suplementów i innych środków mających zabić zapach ciała i usunąć pot - jest swoistym znakiem naszych czasów że wszelkie zewnętrzne przejawy czynności fizjologicznych ciała są dziś zwalczane z równym zapałem, co oznaki świadczące o istnieniu płci w społecznościach purytańskich, toteż nasze ciało nie może okazać że trawi, metabolizuje i od czasu do czasu musi wydalać, a burczenie w brzuchu, potliwość czy ślinienie są uważane za ogromnie wstydliwe przypadłości które należy szybko usunąć.
Ale wracając do tematu - wielu z tych poszukujących bardziej naturalnych sposobów na zabicie naturalnych woni cielesnych natyka się w końcu na dziwne, lśniące sztyfty, wykonane z krystalicznej masy, mające być naturalnymi minerałami zastępującymi dezodoranty. Czasem ktoś określa je nazwą ałunu. Krążą na ich temat różne opinie, ja zaś starałem się je jakoś podsumować - oczywiście po chemicznemu.

A zatem - czym jest krystaliczny ałun stosowany w takich sztyftach? Czy na prawdę działa? I czy na pewno jest taki naturalny...


Ałuny to ciekawa grupa soli podwójnych - a więc takich które zawierają jeden tylko rodzaj anionu kwasowego ale dwa rodzaje mogących się z nimi połączyć kationów. W zasadzie więc jest to mieszanina dwóch soli, jednak ałuny wyróżniają się tu szczególną cechą - po zmieszaniu nie da się oddzielić (klasycznymi metodami) jednej soli od drugiej, jakby tworzyły jeden związek. Wszystkie ałuny są siarczanami - a więc zawierają aniony siarczanowe VI dwu-ujemne - zaś kationy są różne, jeden (A) jednowartościowy, drugi (B) trójwartościowy. Obie sole składowe tworzą kryształy tego samego typu i mają podobną rozpuszczalność, dlatego gdy odparowujemy roztwór ałunu otrzymujemy kryształ mieszany w którego węzłach na przemian pojawia się kation A i kation B; ogólny wzór takich związków wygląda zatem:
AB(III) (SO4)2 * 12 H2O
Na każdy mol soli podwójnej przypada średnio 12 moli wody, zależy to jednak od związku, w niektórych stosunek wynosi 1:6 a w innych nawet 1:24. .
 Kationem jednowartościowym może być metal alkaliczny, na przykład potas lub sód, ale także kation amonowy a nawet organiczne kationy trimetyloamioniowe czy hydrazynowe. Kationem trójwartościowym jest najczęściej glin, możliwy jest też gal, chrom, tytan czy żelazo. Bardzo podobne związki tworzą seleniany, nazywane selene-alum co można by przetransponować na Polski jako "selałun". Istnieje zatem bardzo duża liczba kombinacji. Niekiedy błędnie do ałunów zalicza się sól Mohra.
Ałuny łatwo krystalizują tworząc przezroczyste kryształy, czasem zabarwione jeśli zawierają odpowiedni kation - ałun żelazowo-potasowy jest pomarańczowy a chromowo-potasowy fioletowy niczym ametyst. Dlatego jeśli szukacie dobrego materiału do zrobienia sobie kryształków, to oprócz polecanego przeze mnie kwasku cytrynowego możecie użyć ałunu. Ponieważ wszystkie ałuny krystalizują tak samo wykazując idealny izomorfizm, różne ich odmiany mogą krystalizować na sobie - Sękowski w jednej z książek proponował krystalizację w której rosnący zarodek był co kilka godzin przekładany z jednego roztworu do drugiego, i zależnie od użytych soli, po przecięciu kryształka i wyszlifowaniu przełomu pokazywał się wzór warstewek zielono-fioletowych, lub fioletowo-bezbarwnych. Jeszcze tego nie próbowałem ale kiedyś będę musiał.

Ałuny były znane już w starożytności, ich nazwa pochodzi od greckiego słowa "alum" oznaczającego cierpki smak. Były używane w farbiarstwie, ułatwiały bowiem związanie barwnika z tkaniną, a także w garbarstwie do wyprawiania skór. Znamy też zapisy mówiące o użyciu ałunu do impregnacji drewna, na przykład palisad lub dachów twierdz, dzięki któremu stawały się trudnopalne.
Najstarsze wzmianki sugerujące iż znano wówczas tą sól - choć nie została wymieniona z nazwy - pochodzą z Egiptu aż z 2 tysiąclecia p.n.e., w babilońskich tabliczkach glinowych jest wymieniana ok. XVIII-XVI wieku p.n.e. Szerszy opis podaje Piliniusz w Historii naturalnej, wymieniając kilka rodzajów ałunów. Głównym źródłem pozostawał Egipt, gdzie wydobywano złoża z wyschniętych okresowych jezior, w pewnym stopniu pozyskiwano go z ałunitu i skorupiastych wystąpień naskalnych
 Znajdowała szerokie zastosowanie w średniowiecznej europie, będąc często składnikiem leków i kosmetyków. Arabowie wprowadzili go do alchemii. Duże złoża odkryto w Azji, głównie na pustyniach, inne odkryto w Hiszpanii. Przez pewien czas Anglia była pozbawiona tego surowca z powodu embarga nałożonego po aferze z Henrykiem XVIII, produkowano go wówczas z łupków i ludzkiego moczu. [1]
 Jakoś tak się jednak stało że dopiero na początku XIX wieku zaczęto się domyślać, że ałuny są solami zawierającymi nie znany pierwiastek metaliczny, nazwany od nich właśnie Aluminium. Polska nazwa "glin" pochodzi od gliny w której występuje bardzo często.

Jeśli chodzi o zastosowanie jako dezodorant to prawdopodobnie po raz pierwszy użyto go w tym celu w Starożytności - znajdujemy luźne wzmianki o kamieniach na brzydki zapach i zapewne chodziło o tą sól. Działanie mają tutaj przede wszystkim sole glinu to zaś z dwóch powodów - z jednej strony działają bakteriobójczo, a więc zabijają bakterie, które rozkładając składniki potu nadają mu charakterystyczny zapach, z drugiej zaś mają działanie ściągające, zatem zmniejszają pory skóry a tym samym potliwość. Stosowany często w kosmetykach hydroksychlorek glinu hydrolizuje po rozpuszczeniu, zatykając gruczoły potowe i uniemożliwiając pocenie; podobne działanie ma hydroksochlorek glinowo-cyrkonowy. Oba te związki a dokładnie powstające z nich osady wodorotlenków zostawiają na ubraniu białe plamy. Niekiedy stosuje się sole organiczne, jak kompleks z glicyną.

Działanie dezodoryzujące ałunów wynika z obecności w nich glinu i opiera się głównie na zabijaniu wspomnianych bakterii, natomiast wpływ na potliwość jest nie wielki. Sam mam taki sztyft ale nie używam go często, zrobiłem jednak kilka eksperymentów, na przykład smarując nim jedną pachę i porównując zapach w ciągu dnia. Zauważalne było osłabienie zapadu ale nie było całkowite. Zresztą nie należę do osobników o szczególnie śmierdzącym pocie, więc dla mnie różnica była niewielka. Różnicy w potliwości nie zauważyłem. Co do czasu działania - przy normalnej pogodzie starcza na cały dzień, w upały zmywa się po kilku godzinach.
Sądząc z opinii użytkowników o ile większość jest zachwycona, to jednak niektórym nie pomaga, ci o dużej potliwości narzekają że przestaje działać po paru godzinach, bo zwyczajnie się zmywa. Niektórzy donoszą też o podrażnieniach, nawet bardzo dokuczliwych - pamiętajmy że pewien procent ludzkości jest uczulony na glin w każdej postaci.W szczególnych przypadkach oprócz podrażnień stosowanie ałunu może prowadzić do zapalenia skóry - notowano takie sytuacje[2] Warto też pamiętać że podrażnia tkanki, więc lepiej nie dotykać nim ust i uważać aby nie dostał się do oka. Ałun ścina białko i koaguluje krew - dawniej w czasach brzytew normą było posiadanie "kamyków do golenia" czy pałeczek ałunowych, którymi tamowano skaleczenia. Miałem okazję to sprawdzić - działa ale okropnie piecze.
Biodostępność glinu przez skórę pach oceniono na 0,012% - dla porównania biodostępność z wodą pitną to 0,3% [3]

[Dopisek 2015: komentujący zwrócił moją uwagę na jeszcze jedno miejsce gdzie jest użyty ałun - chodzi o ayurwedyjski proszek do zębów Vicco Vajradanti który ma w składzie ałun, co tłumaczy dlaczego powstrzymuje krwawienia dziąseł. W takim użyciu, ałun rozpuszczony w ślinie styka się z błonami śluzowymi i ma dużo większą szansę być wchłoniętym do organizmu niż w przypadku naniesienia na skórę. W zasadzie to tak jakby połknąć. Sprawdzałem pod tym kątem inne proszki i pasty ale często, zwłaszcza te indyjskie, nie mają pełnego składu. Ałun zawiera jeszcze chyba proszek na krwawiące dziąsła Gum Tone]

Bez aluminium
Aluminium i glin to to samo. Używane w sztyftach związki to ałun glinowo-potasowy lub glinowo-amonowy. Zatem kryształ na pot zawiera aluminium i to całkiem sporo. Mimo to wciąż natykam się na opisy, najczęściej na stronach promujących "naturalne" i "organiczne" kosmetyki ze stwierdzeniem, że akurat ten go nie zawiera. Czasem jednak ktoś pójdzie po rozum do głowy i zajrzy na skład, gdzie zobaczy łacińską nazwę alum ammonium, nabierając w tej sprawie podejrzeń. Gdy zaczyna szukać czegoś na ten temat, być może znajdzie stronę firmy NajMar, polskiego producenta, a tam w dziale FAQ taki uroczy fragment:
 W składzie jest: ammonium alum. Czy to oznacza aluminium?
- Nie. Nazwy składników należy podawać w języku angielskim. Przetłumaczenie nazwy polskiej jedynego składnika: amonowy ałun, znacza po angielsku: ammonium alum.
  Fragment jest uroczy bo dokładnie odpowiada na pytanie. Czy Alum w nazwie to aluminium? - nie to angielska nazwa ałunu. Natomiast o tym że kosmetyk aluminium jednak zawiera producent nie zająknął się w ani fragmencie, a ten kawałek może zmylić wielu poszukujących sugerując, że nie zwiera. Jeszcze dalej idzie producent "Crystal Body Deodorant" który w polskojęzycznych nalepkach zapewnia, że jego produkt nie zawiera soli Al, co jest już oczywistym fałszerstwem.

Na dobrą sprawę producent Deo Kryształu nigdzie o tym nie pisze a jednak jakoś ciągle natykam się na teksty w których takie absurdalne stwierdzenie się pojawia, co pewnie jest skutkiem niewiedzy. Zapewne przyczynia się do tego omawiany już schemat myślowy "chemiczne-sztuczne-szkodliwe / naturalne-zdrowe". Jeśli aluminium jest szkodliwe, to jest chemiczne i pojawia się w sztucznych kosmetykach, więc jeśli jakiś kosmetyk jest naturalny, to tego sztucznego aluminium nie zawiera.

Czasem jednak ktoś poczyta dokładniej i dowie się, że ten metal w ałunie amonowym także jest zawarty. I czy teraz należy odrzucić cały produkt? Przecież jest zachwalany jako naturalny, więc to musi być różnica. W efekcie pojawiają się czasem objaśnienia - ałun naturalny ma naturalną strukturę krystaliczną, więc nie jest wchłaniany; albo że to są naturalne cząsteczki które są duże, i nie wnikają w skórę. Tak tłumaczy to Alepia, jeden z producentów. Niestety, ałun naturalny to siarczan amonowo-glinowy a ałun syntetyczny to siarczan  amonowo-glinowy, czyli dokładnie to samo. Jak niby struktura krystaliczna ma wpływać na wnikanie w skórę nie wiem, a zważywszy że ta "unikalna struktura" musi się najpierw podczas aplikacji rozpuścić w wodzie i ulec rozpadowi na jony, raczej wpływu to nie ma żadnego.
Różnica owszem jest, ale nikt na to nie wpadł - skóra z reguły jest tłusta i nieprzepuszczalna dla jonowych soli nieorganicznych. Jeśli posmarujemy się solanką nie wchłoniemy chloru, ale gdy użyjemy w tym celu chloroformu szybko zacznie się nam kręcić w głowie. Polarne rozpuszcza się w polarnym a niepolarne, w niepolarnym - proste.

Mimo to natknąłem się na badanie wskazujące, że sole glinu - konkretnie chlorek - mogą być wchłaniane przez skórę. Co prawda badanie dotyczyło ogolonej myszy a efekty stały się wyraźne po czterech miesiącach, ale zawsze jest to wskazówka że jakieś wchłanianie nieorganicznego glinu zachodzi i tak[4]

Naturalny
Naturalność sztyftu jest jego główną zaletą. W każdym razie sądząc z opinii, wiele osób kupiło go właśnie dlatego. Ałuny jak łatwo się domyśleć z powyższych rozważań, występują w przyrodzie. Ałun glinowo-potasowy jest najpospolitszy, nieco rzadszy jest ałun glinowo-sodowy. Natomiast ałun glinowo-amonowy to bardzo rzadki minerał.
Jony amonowe powstają w przyrodzie wskutek gnicia materii organicznej jednak ich żywot jest raczej krótki, bo albo są utleniane albo w zasadowym środowisku zamieniają się w lotny amoniak, dlatego nie zbyt dużo jest minerałów które go zawierają, pojawiają się głównie w okolicy otworów hydrotermalnych oraz w pobliżu szczelin którymi ulatują gazy z podziemnych pożarów węgla. Zatem ałun amonowy, występujący w formie Tschermigitu, nie może występować w dużych złożach. Stanowiło to dla mnie pierwszy zgrzyt.
Jeśli sztyfty robi się z minerału który jest rzadki, a sądząc z ilości ofert, produkuje się je na skalę masową, to chyba powinny być bardzo drogie?
Anglo i hiszpańskojęzyczne strony piszą zwykle, że ałun w tych sztyftach pochodzi z Tajlandii i jest wydobywany "z wygasłego wulkanu", zacząłem zatem szukać informacji na temat złóż Tschermigitu (Czermigit) w tamtym kraju i nie znalazłem, dopiero wzmianka o skale z której przerobu uzyskuje się ałun[5] rozjaśniła sytuację. W Tajlandii w skałach wulkanicznych znajdują się całkiem spore złoża Ałunitu - skały będącej hydroksysiarczanem glinowo-potasowym będącej efektem wietrzenia trachitu. Z niego właśnie otrzymuje się ałun - skałę należy rozkruszyć, pogotować z kwasem siarkowym i wykrystalizować gotowy związek - związkiem tym będzie oczywiście ałun glinowo-potasowy.
A amoniak? Jak widać w tym minerale nie występuje, dlatego aby otrzymać sól amonową należy dodać do roztworu siarczan amonu. Tan akurat jest łatwy do zdobycia - jest ubocznym produktem przy produkcji kaprolaktamu i powstaje go tak dużo, że zakłady szukają pomysłów gdzie go tylko zbyć. A więc łączymy przesącz z ałunitu rozgotowanego w kwasie z odpadowym siarczanem amonu, zagęszczamy i otrzymujemy kryształy zbijające się w jednolitą masę z której można wycinać bloki, pałeczki i sztfty.
Jak zatem widać wszystko wskazuje na to, że dostępny na rynku ałun amonowy jest o tyle tylko naturalny, że jeden z jego składników kiedyś widział jakąś skałę. Powstaje w związku z tym pytanie, czy aby reklamowanie go jako naturalnego minerału nie jest aby wprowadzaniem konsumentów w błąd?

Rzecz zresztą wyłapała konkurencja - producenci sztyftów z ałunem potasowym zaczynają pisać w reklamach, że w odróżnieniu od syntetycznej soli amonowej ich produkt jest naturalniejszy - co niekoniecznie musi być prawdą.

Ogółem zatem - sztyfty ałunowe działają jeśli chodzi o zapobieganie powstawaniu przykrych zapachów, są pozbawione dodatków i dlatego dla wielu osób mogą być idealnym rozwiązaniem, zawsze jednak byłem za ty, aby wybierać z głową i wiedzą. Jeśli ktoś wybrał ałun bo jest naturalny i bo nie zawiera aluminium, to się przejechał. Kupujący powinien wiedzieć wszystko o tym co mu wciskają i powinien sobie rozważyć, czy chce się zdecydować na dany produkt.
Tymczasem producenci robią wszystko co się da aby stworzyć ludziom w głowach fałszywy obraz, całkiem pomijając kwestię składu. I choć produkt działa, nie są to działania uczciwe. Nie informowanie o składzie i sugerowanie różnymi sztuczkami że produkt nie zawiera aluminium to chwyt nie zbyt chwalebny, natomiast oszukiwanie tak jak producent "Crystal Body Deodorant" w polskich etykietkach, zasługuje już na zgłoszenie do urzędu ochrony konsumenta. Coś podobnego pojawia się na ałunach serii N& B.

ps. 11.03.13
Ponieważ od tej publikacji dostałem kilka e-maili od ludzi, czujących się oszukanymi, bo po reklamach sądzili że ałuny są całkiem innymi preparatami, postanowiłem działać - wysłałem do UOKiK list z zauważonymi nieprawidłowościami. Co oni z tym zrobią to się zobaczy - najpierw muszą rozpatrzyć czy sprawa leży w ich kompetencjach i zrobić kontrole w sklepach. Jakby coś do mnie przysłali, to poinformuję.
ps. 2014
Ponieważ reakcji brak, wysyłam zapytanie do Rossmanna czy wiedzą że źle oznakowali sprzedawany kosmetyk. Zobaczymy co odpowie.
kwiecień 2014
Odpisali że przekażą uwagi producentowi odpowiedzialnemu za rozprowadzanie. Teraz poczekam - jeśli za kilka miesięcy nowe partie dalej będą zawierały błędną informację, to zainteresuję tym jakąś gazetę.

Listopad 2014
Mały sukces - nowe partie sztyftów ałunowych mają zmienioną etykietkę. Zamiast twierdzeń iż nie zawierają aluminium, jest tylko "nie zawiera aluminium chlorohydrate" - czyli z jednej strony usunęli wprowadzający w błąd napis ale z drugiej strony zdecydowali się nie tłumaczyć na polski nazwy związku. Teraz tylko pozostaje sprawić, aby opis zmienił się w internetowych sklepach, gdzie stara wersja nadal funkcjonuje i wprowadza w błąd.
-----
ResearchBlogging.org [1] http://www.wovepaper.co.uk/alumessay1.html - obszerna historia ałunu

[2] Gallego H, Lewis EJ, & Crutchfield CE 3rd (1999). Crystal deodorant dermatitis: irritant dermatitis to alum-containing deodorant. Cutis; cutaneous medicine for the practitioner, 64 (1), 65-6 PMID: 10431678
[3] Yokel RA, & McNamara PJ (2001). Aluminium toxicokinetics: an updated minireview. Pharmacology & toxicology, 88 (4), 159-67 PMID: 11322172
[4] Anane R, Bonini M, Grafeille JM, & Creppy EE (1995). Bioaccumulation of water soluble aluminium chloride in the hippocampus after transdermal uptake in mice. Archives of toxicology, 69 (8), 568-71 PMID: 8534202
[5]  http://www.alliumherbal.com/es/articulos/43-cosmetica-belleza-natural/410-piedra-de-alumbre.html