Nawet podczas mycia próbówek można znaleźć chwilę na zabawę. Kończyły się roztwory odczynników, trzeba było umyć kolby i przygotować nowe. Jedna kolba po nadmanganianie potasu, druga po indygokarminie. Używam tego zestawu przy miareczkowaniu garbników, co zresztą szerzej omówię w innym wpisie. Dość że oba silnie zabarwione roztwory reagują do słabo żółtego produktu. Miałem więc podczas mycia trochę rozcieńczonych roztworów i mieszałem ze sobą, patrząc jak znikają kolory. A jakby udało się jeden na drugi nawarstwić?
Użyłem wąskiej probówki. Roztwór nadmanganianu okazał się lżejszy. Nakraplajac na ściankę doprowadziłem do dwuwarstwowego układu. Obie warstwy reagowały ze sobą, stąd bezbarwna granica faz. Szerokość granicy wynika z szybkości dyfuzji obu substancji - koloru nie widać w obszarze o za niskim stężeniu form barwnych. Z kolei różnice dyfuzji i stężeń molowych w warstwach wpływają na przesuwanie się granicy - w tym przypadku różowa faza wygrywała a granicą przesuwała się do dołu.
Byłoby to więc dobre doświadczenie edukacyjne.
informacje
Pokazywanie postów oznaczonych etykietą chemia fizyczna. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą chemia fizyczna. Pokaż wszystkie posty
sobota, 28 września 2019
wtorek, 28 maja 2019
Chemiczne wieści (22.)
Reakcja psuta przez teflon z mieszadeł
Mieszadła magnetyczne to obecnie jeden z najpopularniejszych sprzętów laboratoryjnych. W podstawce, często podgrzewanej, znajdują się magnesy, które działają na magnetyczny "drops" wrzucany do naczynia, pozwalając na wygodne i szybkie mieszanie. Magnes wkładany do naczynia zwykle jest chroniony warstwą białego teflonu, materiału na tyle niereaktywnego, że wytrzymuje mieszanie nim kwasów i środków utleniających.
Jak wynika z niedawnej publikacji badaczy z Rice University, teflon w takich mieszadłach czasem jest jednak niedostatecznie niereaktywny.
Prowadzili oni dodawanie grup funkcyjnych na powierzchni nanorurek, stosując jako jeden z etapów redukcję Billupsa-Bircha. To modyfikacja znanej redukcji metalicznym sodem w ciekłym amoniaku, w której następuje równoczesna alkilacja powierzchni węglowej w miejscach defektów sieci. W tym konkretnym przypadku funkcjonalizowano nanorurki borazynowe, a więc ze związku złożonego z atomów boru i azotu w stosunku 1:1. O dziwo w czasie reakcji zawiesina kremowych rurek stała się szara, natomiast magnetyczne mieszadełko stało się czarne. Standardowo używana do takich cząsteczek analiza termograwitacyjna nie wykazała, aby z rurkami stało się coś złego. Jednak nietypowy kolor był wyraźnie widoczny. Problemem było też uzyskanie spójnych wyników, które raz wskazywały na wysoki stopień podstawienia a kiedy indziej na bardzo niski.
Dokładniejsze badania wykazały, że w warunkach reakcji lit rozpuszczony w amoniaku reaguje z teflonem. Następuje to w szybkiej reakcji rodnikowej, która przeszkadza w alkilowaniu rurek, w dodatku podstawiając je dodatkowymi, nie planowanymi grupami. Dlatego te otrzymywane przy pomocy świeżych mieszadełek były słabo podstawione, a te ze starymi, już poczernionymi, reagowały lepiej. Ponieważ dotychczas używano tej reakcji do modyfikacji rurek węglowych, które są czarne, naukowcy sądzili w takich przypadkach, że zmiana koloru magnesów wynika z osadzania się rurek na teflonie. A w każdym razie, że nawet jeśli teflon się zmieniał to nie musiało to wpływać na wyniki.
Gdy badacze zamienili mieszadełka na takie o szklanej otoczce, wyniki stały się powtarzalne, a nanorurki nie ciemniały. [a]
Sam obserwowałem trwałe ciemnienie mieszadełek po reakcjach ze środkami alkilującymi i chlorującymi, ale nie stwierdziłem aby wpływało to na wydajność czy powstawanie ubocznych produktów.
Wodorek helu wreszcie wykryty
Gdy po Wielkim Wybuchu wszechświat się rozrzedzał i chłodził, początkowa plazma różnych nietrwałych, naładowanych cząsteczek zaczęła się stopniowo łączyć w obojętne cząstki. To wtedy przestrzeń nabrała dostatecznej przezroczystości dla światła, aby dało się coś zobaczyć. Najwięcej powstawało atomów wodoru, cząsteczek wodoru i atomów helu, może z domieszką litu. Wśród powstających molekuł powinien się pojawić też kation wodorku helu HeH+. Jest to nietrwałe połączenie, proton łatwo dysocjuje (pKa=63), dlatego cząsteczka istnieje bądź jako element równowagi między helem i wodorem w zagęszczonych, zjonizowanych gazach, lub jako składnik gazów tak bardzo schłodzonych i rozrzedzonych, że w trakcie swego trwania nie ma z czym zareagować.
Obserwowano ją w eksperymentach na ziemi, ale w kosmosie o dziwo nie udawało się jej wykryć. Aż do teraz. W niedawnej publikacji badaczy z Instytutu Radioastronomii Maxa Plancka potwierdzono istnienie charakterystycznej linii emisyjnej 149.1 µm, której wykrycie dotychczas uniemożliwiała słaba rozdzielność spektralna i przeszkadzające zanieczyszczenia w atmosferze. Bardzo blisko tej linii znajduje się jeden z sygnałów wiązania C-H (149.09 µm) w związku z czym proste węglowodory obecne w przestrzeni mogą maskować szukaną linię, w dodatku w zakres ten częściowo wchodzi pochłanianie przez wodę w atmosferze, co dodatkowo osłabia sygnały. Badacze skorzystali więc z udostępnionego przez NASA teleskopu na pokładzie dużego samolotu, który z wysokości 12 kilometrów przeprowadził pomiar widma w mgławicy NGC 7027. Sygnały były już dostatecznie mocne, aby możliwe było odfiltrowanie dwóch bliskich linii widmowych i potwierdzenie istnienia szukanej molekuły.[b]
Rekordowy poziom dwutlenku węgla
Średnia globalna zawartość dwutlenku węgla atmosferze przekroczyła w kwietniu 410 ppm, z kolei w obserwatorium na Mauna Loa przekroczyła 415 ppm. Teraz zapewne średnie miesięczne zaczną spadać zgodnie z rocznym cyklem:
Kształt krzywej dla danych globalnych wynika głownie ze zmian sezonowych na półkulach. Na półkuli północnej jest więcej lądów, które silniej reagują na zmiany pór roku. Rośliny na lądach zmniejszają aktywność zimą i stopniowo zwiększają z początkiem wiosny, w czerwcu ich aktywność fotosyntetyczna jest już na tyle wysoka, że obniżają stężenie CO2 w powietrzu na stacjach pomiarowych na półkuli północnej, minimum przypada na jesień, kiedy to mniejsza aktywność roślin oraz rozpoczynające się procesy butwienia ponownie zwiększają poziom CO2. W ciągu roku wahania dochodzą więc do 5 ppm, natomiast z roku na rok następuje stały wzrost stężenia tego gazu o około jedną-trzecią wahań rocznych.
Selektywny odzysk uranu z morskiej wody
Uran jest pierwiastkiem dosyć rzadkim w skorupie ziemskiej, poza rudami tlenkowymi występuje w dużym rozproszeniu. Badacze z Oak Ridge University pokazali, że mimo wszystko da się go odzyskiwać nawet z takich materiałów, jak morska woda, w której występuje w średnim stężeniu około 3 miligramów na tonę.
Inspiracją były bakterie i grzyby gromadzące w sobie żelazo. Posiadały białka połączone ze specjalnymi cząsteczkami, nazwanymi syderoforami, które bardzo selektywnie wyłapywały krążące w otoczeniu żelazo. Postanowiono sprawdzić, czy poprzez modyfikacje tych cząsteczek da się wytworzyć takie, które będą skutecznie wyłapywać inne pierwiastki. Metodą symulacji komputerowych i testów eksperymentalnych stworzono optymalną cząsteczkę - 2,6-bis[hydroksy(metylo)amino-4-morfolino-1,3,5-triazynę, która bardzo selektywnie pochłania jony uranowe i uranylowe. Potencjalnie więc możliwe byłoby użycie jej do odzysku tego pierwiastka. Musiałaby być osadzona na polimerowym nośniku w formie proszku, przez który można przepuścić wiele wody, aż do wysycenia cennym pierwiastkiem. [c]
--------
[a] Angel A. Martí et al. Adverse Effect of PTFE Stir Bars on the Covalent Functionalization of Carbon and Boron Nitride Nanotubes Using Billups–Birch Reduction Conditions. ACS Omega, 2019; 4 (3): 5098
[b] Rolf Güsten, Helmut Wiesemeyer, David Neufeld, Karl M. Menten, Urs U. Graf, Karl Jacobs, Bernd Klein, Oliver Ricken, Christophe Risacher & Jürgen Stutzki, Astrophysical detection of the helium hydride ion HeH+ , Nature volume 568, pages357–359 (2019)
[c] Ilja Popovs et al. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communications, 2019; 10 (1)
Mieszadła magnetyczne to obecnie jeden z najpopularniejszych sprzętów laboratoryjnych. W podstawce, często podgrzewanej, znajdują się magnesy, które działają na magnetyczny "drops" wrzucany do naczynia, pozwalając na wygodne i szybkie mieszanie. Magnes wkładany do naczynia zwykle jest chroniony warstwą białego teflonu, materiału na tyle niereaktywnego, że wytrzymuje mieszanie nim kwasów i środków utleniających.
Jak wynika z niedawnej publikacji badaczy z Rice University, teflon w takich mieszadłach czasem jest jednak niedostatecznie niereaktywny.
Prowadzili oni dodawanie grup funkcyjnych na powierzchni nanorurek, stosując jako jeden z etapów redukcję Billupsa-Bircha. To modyfikacja znanej redukcji metalicznym sodem w ciekłym amoniaku, w której następuje równoczesna alkilacja powierzchni węglowej w miejscach defektów sieci. W tym konkretnym przypadku funkcjonalizowano nanorurki borazynowe, a więc ze związku złożonego z atomów boru i azotu w stosunku 1:1. O dziwo w czasie reakcji zawiesina kremowych rurek stała się szara, natomiast magnetyczne mieszadełko stało się czarne. Standardowo używana do takich cząsteczek analiza termograwitacyjna nie wykazała, aby z rurkami stało się coś złego. Jednak nietypowy kolor był wyraźnie widoczny. Problemem było też uzyskanie spójnych wyników, które raz wskazywały na wysoki stopień podstawienia a kiedy indziej na bardzo niski.
Dokładniejsze badania wykazały, że w warunkach reakcji lit rozpuszczony w amoniaku reaguje z teflonem. Następuje to w szybkiej reakcji rodnikowej, która przeszkadza w alkilowaniu rurek, w dodatku podstawiając je dodatkowymi, nie planowanymi grupami. Dlatego te otrzymywane przy pomocy świeżych mieszadełek były słabo podstawione, a te ze starymi, już poczernionymi, reagowały lepiej. Ponieważ dotychczas używano tej reakcji do modyfikacji rurek węglowych, które są czarne, naukowcy sądzili w takich przypadkach, że zmiana koloru magnesów wynika z osadzania się rurek na teflonie. A w każdym razie, że nawet jeśli teflon się zmieniał to nie musiało to wpływać na wyniki.
Gdy badacze zamienili mieszadełka na takie o szklanej otoczce, wyniki stały się powtarzalne, a nanorurki nie ciemniały. [a]
Sam obserwowałem trwałe ciemnienie mieszadełek po reakcjach ze środkami alkilującymi i chlorującymi, ale nie stwierdziłem aby wpływało to na wydajność czy powstawanie ubocznych produktów.
Wodorek helu wreszcie wykryty
Gdy po Wielkim Wybuchu wszechświat się rozrzedzał i chłodził, początkowa plazma różnych nietrwałych, naładowanych cząsteczek zaczęła się stopniowo łączyć w obojętne cząstki. To wtedy przestrzeń nabrała dostatecznej przezroczystości dla światła, aby dało się coś zobaczyć. Najwięcej powstawało atomów wodoru, cząsteczek wodoru i atomów helu, może z domieszką litu. Wśród powstających molekuł powinien się pojawić też kation wodorku helu HeH+. Jest to nietrwałe połączenie, proton łatwo dysocjuje (pKa=63), dlatego cząsteczka istnieje bądź jako element równowagi między helem i wodorem w zagęszczonych, zjonizowanych gazach, lub jako składnik gazów tak bardzo schłodzonych i rozrzedzonych, że w trakcie swego trwania nie ma z czym zareagować.
Obserwowano ją w eksperymentach na ziemi, ale w kosmosie o dziwo nie udawało się jej wykryć. Aż do teraz. W niedawnej publikacji badaczy z Instytutu Radioastronomii Maxa Plancka potwierdzono istnienie charakterystycznej linii emisyjnej 149.1 µm, której wykrycie dotychczas uniemożliwiała słaba rozdzielność spektralna i przeszkadzające zanieczyszczenia w atmosferze. Bardzo blisko tej linii znajduje się jeden z sygnałów wiązania C-H (149.09 µm) w związku z czym proste węglowodory obecne w przestrzeni mogą maskować szukaną linię, w dodatku w zakres ten częściowo wchodzi pochłanianie przez wodę w atmosferze, co dodatkowo osłabia sygnały. Badacze skorzystali więc z udostępnionego przez NASA teleskopu na pokładzie dużego samolotu, który z wysokości 12 kilometrów przeprowadził pomiar widma w mgławicy NGC 7027. Sygnały były już dostatecznie mocne, aby możliwe było odfiltrowanie dwóch bliskich linii widmowych i potwierdzenie istnienia szukanej molekuły.[b]
Rekordowy poziom dwutlenku węgla
Średnia globalna zawartość dwutlenku węgla atmosferze przekroczyła w kwietniu 410 ppm, z kolei w obserwatorium na Mauna Loa przekroczyła 415 ppm. Teraz zapewne średnie miesięczne zaczną spadać zgodnie z rocznym cyklem:
Kształt krzywej dla danych globalnych wynika głownie ze zmian sezonowych na półkulach. Na półkuli północnej jest więcej lądów, które silniej reagują na zmiany pór roku. Rośliny na lądach zmniejszają aktywność zimą i stopniowo zwiększają z początkiem wiosny, w czerwcu ich aktywność fotosyntetyczna jest już na tyle wysoka, że obniżają stężenie CO2 w powietrzu na stacjach pomiarowych na półkuli północnej, minimum przypada na jesień, kiedy to mniejsza aktywność roślin oraz rozpoczynające się procesy butwienia ponownie zwiększają poziom CO2. W ciągu roku wahania dochodzą więc do 5 ppm, natomiast z roku na rok następuje stały wzrost stężenia tego gazu o około jedną-trzecią wahań rocznych.
Selektywny odzysk uranu z morskiej wody
Uran jest pierwiastkiem dosyć rzadkim w skorupie ziemskiej, poza rudami tlenkowymi występuje w dużym rozproszeniu. Badacze z Oak Ridge University pokazali, że mimo wszystko da się go odzyskiwać nawet z takich materiałów, jak morska woda, w której występuje w średnim stężeniu około 3 miligramów na tonę.
Inspiracją były bakterie i grzyby gromadzące w sobie żelazo. Posiadały białka połączone ze specjalnymi cząsteczkami, nazwanymi syderoforami, które bardzo selektywnie wyłapywały krążące w otoczeniu żelazo. Postanowiono sprawdzić, czy poprzez modyfikacje tych cząsteczek da się wytworzyć takie, które będą skutecznie wyłapywać inne pierwiastki. Metodą symulacji komputerowych i testów eksperymentalnych stworzono optymalną cząsteczkę - 2,6-bis[hydroksy(metylo)amino-4-morfolino-1,3,5-triazynę, która bardzo selektywnie pochłania jony uranowe i uranylowe. Potencjalnie więc możliwe byłoby użycie jej do odzysku tego pierwiastka. Musiałaby być osadzona na polimerowym nośniku w formie proszku, przez który można przepuścić wiele wody, aż do wysycenia cennym pierwiastkiem. [c]
--------
[a] Angel A. Martí et al. Adverse Effect of PTFE Stir Bars on the Covalent Functionalization of Carbon and Boron Nitride Nanotubes Using Billups–Birch Reduction Conditions. ACS Omega, 2019; 4 (3): 5098
[b] Rolf Güsten, Helmut Wiesemeyer, David Neufeld, Karl M. Menten, Urs U. Graf, Karl Jacobs, Bernd Klein, Oliver Ricken, Christophe Risacher & Jürgen Stutzki, Astrophysical detection of the helium hydride ion HeH+ , Nature volume 568, pages357–359 (2019)
[c] Ilja Popovs et al. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communications, 2019; 10 (1)
czwartek, 25 października 2018
Dlaczego złoto jest złote?
Proste pytanie i wcale nie tak prosta odpowiedź. Bo po to aby wyjaśnić, czemu złoto jest złote sięgnąć trzeba nie tylko po fizykę kwantową, ale i teorię względności.
Metale generalnie charakteryzują się specyficznym oddziaływaniem ze światłem, powodującym powstawanie silnego połysku, a przy odpowiedniej gładkości powierzchni także lustrzanych odbić od powierzchni. Jest to wynikiem wewnętrznej, podstawowej cechy, mianowicie istnienia w ich sieci krystalicznej elektronów nie związanych z konkretnymi atomami, mogącymi wędrować po całej sieci i tworzących tak zwaną chmurę elektronową.
Fotony padające na dany obiekt oddziałują przede wszystkim z elektronami i to od ich stanów zależy, co się z tymi fotonami stanie. Zwykle w atomach lub cząsteczkach elektrony przyjmują pewne określone poziomy energetyczne. Jeśli trafi w nie foton o energii takiej, jak potrzebna do przeskoku na wyższy poziom, to zostanie on pochłonięty. Pochłanianie fotonów o pewnych energiach, odpowiadających fali światła w pewnych długościach, powoduje że odbite światło nabiera koloru.
W przypadku metali jest inaczej - ponieważ elektrony w chmurze nie są bezpośrednio związane z określonym atomem, ich energie zawierają się w pewnym szerszym przedziale. Gdy pada na nie światło, pochłaniają fotony z szerokiego zakresu energii, po czym powracając do poprzedniego stanu emitują je z taką samą energią i w kierunku zgodnym z zasadą zachowania pędu, czas trwania stanu wzbudzonego jest bowiem w chmurze elektronowej bardzo krótki. Obserwujemy zatem odbijanie światła we wszystkich zakresach i brak określonego koloru.
Bardziej trwałe przejścia energetyczne, powodujące pochłonięcie konkretnych długości fal, w większości metali dotyczy dużo wyższych energii, przez co absorpcja zachodzi dopiero w zakresie ultrafioletu.Ultrafioletu nie widzimy, a pozostałe światło jest już odbijane, dlatego metale nie mają własnego koloru.
To znaczy nie do końca, miedź ma charakterystyczny żółto-czerwony kolor. Wynika to ze struktury elektronowej - miedź, choć nie leży na samym końcu bloku D ma całkowicie wypełnioną podpowłokę 3d. Następuje to wskutek promocji elektronowej - w drugiej połowie bloku staje się korzystniejsze energetycznie wypełnianie tej podpowłoki, kosztem elektronów z jeszcze bardziej zewnętrznej podpowłoki 4s. Ponieważ w efekcie zewnętrzna powłoka nie jest zupełnie zapełniona, elektrony z tej niższej mogą na nią przeskakiwać. Miedź jest stosunkowo lekka, więc wartość energii fotonów potrzebnej do tego procesu nie jest zbyt wysoka i mieści się w zakresie światła widzialnego. Miedź pochłania fiolet i część błękitu, co daje wypadkowy kolor pomarańczowy.
W przypadku złota nie ma tak łatwo. Jego konfiguracja elektronowa to [Xe]4f145d106s1 , ma zatem podobnie jak miedź całkowicie zapełnioną podpowłokę f i d i tylko jeden elektron na podpowłoce 6s. Niezupełne zapełnienie ostatniej podpowłoki umożliwiałoby przeskok elektronu z najbliższej podpowłoki 5d. Jednak z wyliczeń na podstawie praw okresowości wynika, że odstęp energetyczny między tymi poziomami w dużo cięższym i większym złocie wymagałby kwantu energii odpowiadającego światłu z zakresu ultrafioletu. Zatem złoto powinno, jak wiele innych metali, pochłaniać ultrafiolet zaś światło widzialne odbijać bez wpływu na kolor. Tak rzecz wygląda choćby dla leżącego nad nim srebra, o konfiguracji elektronowej [Kr]4d105s1 , które ma czysty, metaliczny wygląd.
Tymczasem jednak pomiary energii jonizacji wskazują na to, że w złocie odstęp energetyczny między podpowłokami jest mniejszy i mieści się w zakresie kwantów światła fioletowego i niebieskiego. Wyjaśnienie tej prawidłowości okazało się dla fizyków bardzo trudne, zarówno na gruncie fizyki klasycznej jak i kwantowej. Nic dziwnego więc, że trzeba było zaprząc do pracy trzecią dziedzinę - fizykę relatywistyczną opartą o efekty przewidziane przez teorię względności.
Ze względu na dwojaką naturę cząstek podlegającym prawom fizyki kwantowej, w ich zachowaniu się wyróżnić można cechy związane z falową formią jak i cechy związane z postacią cząstkową. Wprawdzie więc zrezygnowaliśmy z planetarnego modelu Bohra na rzecz bardziej rozmytych przestrzennie orbitali, ale wciąż przypisujemy elektronom moment orbitalny i pęd.
Im cięższy jest atom oraz im więcej ma łącznie powłok, tym jest większy i tym szybciej musi poruszać się jego najdalszy elektron, na który działa większe przyspieszenie. W przypadku masywnych i dużych atomów z szóstego okresu, prędkości liniowe zewnętrznych elektronów zaczynają stawać się istotnymi ułamkami prędkości światła.* Co zaś zbliża się do tej prędkości, to musi też nabierać relatywistycznych cech. Jednym z efektów, które się obserwuje, jest masa relatywistyczna - zwiększenie bezwładności, czyli pozorny wzrost masy oddziałujący wzdłuż kierunku ruchu.
Efekty te najsilniej odczuwają elektrony podpowłoki 6s, najbardziej zewnętrznej. Relatywistyczny wzrost masy pociąga za sobą zmniejszenie rozmiaru tejże powłoki i spadek energii orbitalnej. W związku z tym odstęp energetyczny między całkowicie wypełnioną podpowłoką 5d a częściowo 6s zmniejsza się. W efekcie zwęża się pasmo energetyczne populacji elektronów w metalu, zaś do przeskoku z niższej podpowłoki do wyższej wystarcza już mniejsza energia - odpowiadająca fotonom z zakresu światła fioletowego i niebieskiego. Obserwowanym więc efektem jest żółty kolor metalu, który w pozostałych zakresach odbija światło bez zmian.
To zresztą nie jedyny efekt. Przybliżenie zewnętrznych elektronów powoduje też zwiększenie energii potrzebnej do wyrwania ich z atomu. Osłabia to skłonność złota do tworzenia związków chemicznych, skutkując jego szlachetnością. Mniejszy rozmiar zewnętrznej, niezupełnie wypełnionej powłoki, skutkuje też większą elektroujemnością i pojawieniem się pewnych cech podobnych do niemetali. Na przykład złoto stosunkowo łatwo tworzy aniony w solach międzymetalicznych z cezem i rubidem. Mniej chętne tworzenie wiązań metalicznych skutkuje słabszym przyciąganiem się do ciebie atomów w metalu, a co za tym idzie dużą miękkością i kowalnością. Efekty te powodują też wysoką przewodność cieplną i elektryczną.
Efekty relatywistyczne wpływają też na inne pierwiastki, najsilniej ujawniając się w tych na dole układu okresowego, w zaczynających zapełniać lub kończących zapełniane nowej podpowłoki. Ten sam efekt zmiany pasma elektronowego, co u złota, występuje też w przypadku cezu, który w stanie czystym, bez warstewki tlenków, jest jasno-złoty. Zaczynający 7 okres frans także powinien mieć taki kolor, jest jednak pierwiastkiem silnie radioaktywnym, którego nie uzyskano w makroskopowych ilościach, gdyby zaś nawet, to odparowałby pod wpływem własnej aktywności.
Następująca zaraz po złocie rtęć korzysta z tych efektów w odmienny sposób - znajdując się na końcu bloku D ma całkowicie wypełnione podpowłoki 5f i 6s, niechętnie więc tworzy wiązania - również sama ze sobą. Pierwiastki nad nią są stosunkowo niskotopliwe. Relatywistyczne zwiększenie masy dotyczy u niej całej pary elektronowej na najbardziej zewnętrznej podpowłoce, co jeszcze bardziej osłabia wiązania metaliczne. Wiązanie Hg-Hg jest więc na tyle słabe i długie, że już w temperaturze pokojowej drgania termiczne je zrywają. W efekcie rtęć jest metalem płynnym nie tylko w temperaturze pokojowej, ale nawet jeszcze do -39 ° C gdy to ostatecznie krzepnie.
W następujących dalej pierwiastkach z bloku P, relatywistyczne obciążenie dotyczące całej pary podpowłoki s powoduje, że pierwiastki te dużo mniej chętnie oddają te dwa elektrony. Następuje więc stabilizacja poziomów utleniania o 2 mniejszych niż typowo dla grupy. Grupa 13, borowców, ma typowy stopień utlenienia 3, z najtrwalszymi związkami zawierającymi kationy 3+; leżący na samym dole tal, tworzy natomiast trwałe związki na stopniu utlenienia 1 co ma wpływ na jego silne właściwości toksyczne. W grupie azotowców typowym trwałym stopniem utlenienia jest 5, z wyjątkiem leżącego na samym dole bizmutu o preferowanym stopniu 3.
Efekt ten skutkuje też osłabieniem metaliczności i wzrostem elektroujemności metali, przez co ołów jest dość miękki, a bizmut ma wysoką oporność elektryczną.
Relatywistyczne zmniejszenie orbitalu s stanowi też około 10% zjawiska kontrakcji lantanowcowej, czyli nie powiększania się średnic atomów lantanowców, mimo zwiększania się ilości elektronów, za które głownie odpowiada słaba siła ekranująca ładunek jądra podpowłoki f.
--------
* przybliżony wzór na prędkość elektronu na ostatniej orbicie, to liczba atomowa Z, podzielona przez stałą struktury subtelnej, razy prędkość światła.
https://pl.wikipedia.org/wiki/Efekt_biernej_pary_elektronowej
https://en.wikipedia.org/wiki/Relativistic_quantum_chemistry
Największy na świecie blok złota o masie 250 kg. Wikipedia |
Metale generalnie charakteryzują się specyficznym oddziaływaniem ze światłem, powodującym powstawanie silnego połysku, a przy odpowiedniej gładkości powierzchni także lustrzanych odbić od powierzchni. Jest to wynikiem wewnętrznej, podstawowej cechy, mianowicie istnienia w ich sieci krystalicznej elektronów nie związanych z konkretnymi atomami, mogącymi wędrować po całej sieci i tworzących tak zwaną chmurę elektronową.
Fotony padające na dany obiekt oddziałują przede wszystkim z elektronami i to od ich stanów zależy, co się z tymi fotonami stanie. Zwykle w atomach lub cząsteczkach elektrony przyjmują pewne określone poziomy energetyczne. Jeśli trafi w nie foton o energii takiej, jak potrzebna do przeskoku na wyższy poziom, to zostanie on pochłonięty. Pochłanianie fotonów o pewnych energiach, odpowiadających fali światła w pewnych długościach, powoduje że odbite światło nabiera koloru.
W przypadku metali jest inaczej - ponieważ elektrony w chmurze nie są bezpośrednio związane z określonym atomem, ich energie zawierają się w pewnym szerszym przedziale. Gdy pada na nie światło, pochłaniają fotony z szerokiego zakresu energii, po czym powracając do poprzedniego stanu emitują je z taką samą energią i w kierunku zgodnym z zasadą zachowania pędu, czas trwania stanu wzbudzonego jest bowiem w chmurze elektronowej bardzo krótki. Obserwujemy zatem odbijanie światła we wszystkich zakresach i brak określonego koloru.
Bardziej trwałe przejścia energetyczne, powodujące pochłonięcie konkretnych długości fal, w większości metali dotyczy dużo wyższych energii, przez co absorpcja zachodzi dopiero w zakresie ultrafioletu.Ultrafioletu nie widzimy, a pozostałe światło jest już odbijane, dlatego metale nie mają własnego koloru.
Miedź |
W przypadku złota nie ma tak łatwo. Jego konfiguracja elektronowa to [Xe]4f145d106s1 , ma zatem podobnie jak miedź całkowicie zapełnioną podpowłokę f i d i tylko jeden elektron na podpowłoce 6s. Niezupełne zapełnienie ostatniej podpowłoki umożliwiałoby przeskok elektronu z najbliższej podpowłoki 5d. Jednak z wyliczeń na podstawie praw okresowości wynika, że odstęp energetyczny między tymi poziomami w dużo cięższym i większym złocie wymagałby kwantu energii odpowiadającego światłu z zakresu ultrafioletu. Zatem złoto powinno, jak wiele innych metali, pochłaniać ultrafiolet zaś światło widzialne odbijać bez wpływu na kolor. Tak rzecz wygląda choćby dla leżącego nad nim srebra, o konfiguracji elektronowej [Kr]4d105s1 , które ma czysty, metaliczny wygląd.
Tymczasem jednak pomiary energii jonizacji wskazują na to, że w złocie odstęp energetyczny między podpowłokami jest mniejszy i mieści się w zakresie kwantów światła fioletowego i niebieskiego. Wyjaśnienie tej prawidłowości okazało się dla fizyków bardzo trudne, zarówno na gruncie fizyki klasycznej jak i kwantowej. Nic dziwnego więc, że trzeba było zaprząc do pracy trzecią dziedzinę - fizykę relatywistyczną opartą o efekty przewidziane przez teorię względności.
Ze względu na dwojaką naturę cząstek podlegającym prawom fizyki kwantowej, w ich zachowaniu się wyróżnić można cechy związane z falową formią jak i cechy związane z postacią cząstkową. Wprawdzie więc zrezygnowaliśmy z planetarnego modelu Bohra na rzecz bardziej rozmytych przestrzennie orbitali, ale wciąż przypisujemy elektronom moment orbitalny i pęd.
Im cięższy jest atom oraz im więcej ma łącznie powłok, tym jest większy i tym szybciej musi poruszać się jego najdalszy elektron, na który działa większe przyspieszenie. W przypadku masywnych i dużych atomów z szóstego okresu, prędkości liniowe zewnętrznych elektronów zaczynają stawać się istotnymi ułamkami prędkości światła.* Co zaś zbliża się do tej prędkości, to musi też nabierać relatywistycznych cech. Jednym z efektów, które się obserwuje, jest masa relatywistyczna - zwiększenie bezwładności, czyli pozorny wzrost masy oddziałujący wzdłuż kierunku ruchu.
Efekty te najsilniej odczuwają elektrony podpowłoki 6s, najbardziej zewnętrznej. Relatywistyczny wzrost masy pociąga za sobą zmniejszenie rozmiaru tejże powłoki i spadek energii orbitalnej. W związku z tym odstęp energetyczny między całkowicie wypełnioną podpowłoką 5d a częściowo 6s zmniejsza się. W efekcie zwęża się pasmo energetyczne populacji elektronów w metalu, zaś do przeskoku z niższej podpowłoki do wyższej wystarcza już mniejsza energia - odpowiadająca fotonom z zakresu światła fioletowego i niebieskiego. Obserwowanym więc efektem jest żółty kolor metalu, który w pozostałych zakresach odbija światło bez zmian.
To zresztą nie jedyny efekt. Przybliżenie zewnętrznych elektronów powoduje też zwiększenie energii potrzebnej do wyrwania ich z atomu. Osłabia to skłonność złota do tworzenia związków chemicznych, skutkując jego szlachetnością. Mniejszy rozmiar zewnętrznej, niezupełnie wypełnionej powłoki, skutkuje też większą elektroujemnością i pojawieniem się pewnych cech podobnych do niemetali. Na przykład złoto stosunkowo łatwo tworzy aniony w solach międzymetalicznych z cezem i rubidem. Mniej chętne tworzenie wiązań metalicznych skutkuje słabszym przyciąganiem się do ciebie atomów w metalu, a co za tym idzie dużą miękkością i kowalnością. Efekty te powodują też wysoką przewodność cieplną i elektryczną.
Cez |
Efekty relatywistyczne wpływają też na inne pierwiastki, najsilniej ujawniając się w tych na dole układu okresowego, w zaczynających zapełniać lub kończących zapełniane nowej podpowłoki. Ten sam efekt zmiany pasma elektronowego, co u złota, występuje też w przypadku cezu, który w stanie czystym, bez warstewki tlenków, jest jasno-złoty. Zaczynający 7 okres frans także powinien mieć taki kolor, jest jednak pierwiastkiem silnie radioaktywnym, którego nie uzyskano w makroskopowych ilościach, gdyby zaś nawet, to odparowałby pod wpływem własnej aktywności.
Następująca zaraz po złocie rtęć korzysta z tych efektów w odmienny sposób - znajdując się na końcu bloku D ma całkowicie wypełnione podpowłoki 5f i 6s, niechętnie więc tworzy wiązania - również sama ze sobą. Pierwiastki nad nią są stosunkowo niskotopliwe. Relatywistyczne zwiększenie masy dotyczy u niej całej pary elektronowej na najbardziej zewnętrznej podpowłoce, co jeszcze bardziej osłabia wiązania metaliczne. Wiązanie Hg-Hg jest więc na tyle słabe i długie, że już w temperaturze pokojowej drgania termiczne je zrywają. W efekcie rtęć jest metalem płynnym nie tylko w temperaturze pokojowej, ale nawet jeszcze do -39 ° C gdy to ostatecznie krzepnie.
W następujących dalej pierwiastkach z bloku P, relatywistyczne obciążenie dotyczące całej pary podpowłoki s powoduje, że pierwiastki te dużo mniej chętnie oddają te dwa elektrony. Następuje więc stabilizacja poziomów utleniania o 2 mniejszych niż typowo dla grupy. Grupa 13, borowców, ma typowy stopień utlenienia 3, z najtrwalszymi związkami zawierającymi kationy 3+; leżący na samym dole tal, tworzy natomiast trwałe związki na stopniu utlenienia 1 co ma wpływ na jego silne właściwości toksyczne. W grupie azotowców typowym trwałym stopniem utlenienia jest 5, z wyjątkiem leżącego na samym dole bizmutu o preferowanym stopniu 3.
Efekt ten skutkuje też osłabieniem metaliczności i wzrostem elektroujemności metali, przez co ołów jest dość miękki, a bizmut ma wysoką oporność elektryczną.
Relatywistyczne zmniejszenie orbitalu s stanowi też około 10% zjawiska kontrakcji lantanowcowej, czyli nie powiększania się średnic atomów lantanowców, mimo zwiększania się ilości elektronów, za które głownie odpowiada słaba siła ekranująca ładunek jądra podpowłoki f.
--------
* przybliżony wzór na prędkość elektronu na ostatniej orbicie, to liczba atomowa Z, podzielona przez stałą struktury subtelnej, razy prędkość światła.
https://pl.wikipedia.org/wiki/Efekt_biernej_pary_elektronowej
https://en.wikipedia.org/wiki/Relativistic_quantum_chemistry
wtorek, 29 maja 2018
Krystalografia czekolady
... czyli o praktycznych zastosowaniach bardzo ścisłej, i zmatematyzowanej dziedziny, z których efektami spotykamy się na co dzień.
Krystalografia to dziedzina na pograniczu chemii fizycznej i fizyki ciała stałego, zajmująca się badaniem właściwości kryształów i niektórych innych faz uporządkowanych, oraz ich teoretycznym opisem. Wedle definicji utworzonych w ramach tych badań, stan krystaliczny to forma materii charakteryzująca się wysokim uporządkowaniem struktury przestrzennej tworzonej przez pojedyncze cząsteczki lub jony. Cząstki tworzące kryształ są tak ułożone, iż tworzą pewien podstawowy schemat, mogący powtarzać się w trzech wymiarach praktycznie w nieskończoność - przynajmniej aż do zewnętrznej ściany ziarna krystalicznego.
Niech to będzie powiedzmy przestrzenny kwinkunks z ośmioma cząsteczkami w rogach domyślnego sześcianu i jedną w geometrycznym środku między nimi:
Kryształ mający za swój podstawowy wzór, nazywany komórką elementarną, taki właśnie układ, będzie zatem powtarzał go tworząc ścisłą sieć podobnych połączonych komórek:
Wedle tego typu komórki krystalicznej, szeregujemy struktury kryształów w grupy oparte na konkretnej geometrii, czyli układy krystalograficzne, jest ich kilka: oparty na sześcianie układ regularny, układ heksagonalny oparty na heksagonie itp.
Dodatkowo w każdym typie możliwe jest że między narożami komórki pojawią się dodatkowe cząsteczki w centrum ścian lub w środku, stąd możliwość dodatkowych typów "centrowanych". Łącznie 7 układów wraz z centrowanymi kombinacjami daje 32 typy sieci krystalicznych, nazywane sieciami Bravais'go (czyt: 'brawego').
Wiele substancji może tworzyć kryształy różnego rodzaju, o różnej strukturze krystalicznej, zależnie od warunków krystalizacji. Jeden rodzaj sieci krystalicznej może przechodzić w drugi gdy zmienią się warunki. Znanym przykładem jest choćby siarka, która krystalizowana ze stopu tworzy igiełkowate kryształki o symetrii jednoskośnej, które w temperaturze poniżej 95 stopni powoli zamieniają się w kryształki o symetrii rombowej. Formy te różnią się też rozpuszczalnością w dwusiarczku węgla. Podobną sytuację widać w przypadku węgla, gdzie drastycznie różne właściwości mają dwie formy krystaliczne - czarny i miękki grafit oraz przezroczysty i twardy diament.
Istnienie różnych form krystalicznych tej samej substancji nazywane jest polimorfizmem.
Odmiany krystaliczne tej samej substancji, poza geometrią i symetrią, różnią się też właściwościami fizycznymi. Mogą różnić się twardością, kolorem, przewodnością a także temperaturą topnienia.
Co to wszystko ma do czekolady?
Czekolada to mieszanina otrzymywana ze zmieszania kakao i tłuszczu kakaowego, także z mlekiem i cukrem; często zamiast kakao używa się miazgi kakaowej. Cząstki kakao i kropelki wodnistej części mleka tworzą zawiesinę w masie stałego masła kakaowego. Masło to w formie stałej składa się z drobnych ziaren krystalicznych, czego gołym okiem nie widać z powodu ich niewielkich rozmiarów. Kryształy masła z kolei mogą występować w kilku odmianach polimorficznych, różniącym się między innymi wytrzymałością mechaniczną i temperaturą topnienia.
Zatem znajomość własności kryształów tłuszczu kakaowego, pozwala na otrzymanie czekolady o właściwych parametrach.
Z kilku najważniejszych form krystalicznych tłuszczu w czekoladzie, trzy topią się w temperaturze poniżej 25 stopni, jedna (forma IV) w 27 stopniach, jedna (V) przy około 33 stopniach i jedna (VI) przy około 36-38 stopniach. Przy złym wykonaniu i schłodzeniu masy albo otrzymamy czekoladę, która pozostaje miękka w temperaturze pokojowej i łatwo topi się w dłoni, albo otrzymamy produkt twardy i z trudem rozpuszczający się nawet w ustach. W dodatku niskotopliwe formy chętnie tworzą duże kryształy, które rozpychają na boki cząstki kakao, powstaje wówczas czekolada o matowej, nierówno zabarwionej powierzchni.
Aby otrzymać czekoladę z przewagą formy krystalicznej właściwej, należy przeprocesować ją w odpowiedniej temperaturze. Proces ten nazywany jest temperowaniem.
Typowym sposobem temperowania jest najpierw stopienie masy czekoladowej w temperaturze, w której topią się wszystkie formy krystaliczne, czyli około 45 stopni. Następnie masa jest szybko schładzana do temperatury nieco poniżej topnienia średniotopliwej formy, około 26-27 stopni. W tej temperaturze w mieszanej szybko masie powstać mogą drobne kryształki trzech typów - formy IV o temperaturze topnienia 27 stopni, formy V i formy VI - które to drobne kryształki działają jak zarodki dla powstawania kolejnych kryształów w tych typach. Gdybyśmy teraz pozwolili masie powoli ostygać, zawierałaby mieszankę trzech form krystalicznych i miałaby wciąż niską temperaturę mięknięcia i topnienia.
Dlatego teraz masa jest precyzyjnie ogrzewana do temperatury około 30-31 stopni. Kryształki formy IV, topiące się w 27 stopniach, zanikną. Pozostaną więc już tylko kryształki form V i VI. Masa od tego momentu jest dość powoli ochładzana, na tyle, że gdy jej temperatura spadnie do około 25 stopni, większość masła kakaowego będzie już skrystalizowana i nie będą nam powstawały nowe kryształki form o niskich temperaturach topnienia. Tak otrzymanym ideałem jest masa topiąca się w temperaturze 34-35 stopni, czyli znana z reklam "czekolada rozpływająca się w ustach a nie w dłoni".
Dla otrzymania równomiernej masy o pożądanych właściwościach stosuje się precyzyjną kontrolę temperatury i szybkie mieszanie. Dokładne wartości temperatur zależą też od składu, dla czekolady ciemnej są wyższe, dla mlecznej niższe (ze względu na domieszkę tłuszczu mlecznego). Większy dodatek wody zwiększa miękkość czekolady.
Otrzymana w przewadze forma średniotopliwa V jest jednak w temperaturze pokojowej nie do końca stabilna termodynamicznie. Dłuższe przechowywanie powoduje, że część masła kakaowego ulega przemianie w formę VI. Odbywa się to najczęściej w warstwach powierzchniowych przy nieco podwyższonej temperaturze. Powstające kryształki nowej formy wyrastają z powierzchni czekolady, tworząc jaśniejszą warstwę, widoczną dobrze zwłaszcza na tabliczkach w pobliżu okresu ważności. Sam w sobie ten jasny osad nie jest oznaką zepsucia, ale może wskazywać na niezbyt dobre warunki przechowywania. Gdy tabliczka leżała w sklepie w warunkach tak ciepłych, że częściowo się nadtopiła, efekt ten wywołuje powstanie nieregularnych cętek, plam białych i żółtawych złożonych głównie z samego tłuszczu, które mogą nie smakować za dobrze.
---------
* Klaus Roth, Chocolate - The Noblest Polymorphism,
* https://en.wikipedia.org/wiki/Chocolate
Krystalografia to dziedzina na pograniczu chemii fizycznej i fizyki ciała stałego, zajmująca się badaniem właściwości kryształów i niektórych innych faz uporządkowanych, oraz ich teoretycznym opisem. Wedle definicji utworzonych w ramach tych badań, stan krystaliczny to forma materii charakteryzująca się wysokim uporządkowaniem struktury przestrzennej tworzonej przez pojedyncze cząsteczki lub jony. Cząstki tworzące kryształ są tak ułożone, iż tworzą pewien podstawowy schemat, mogący powtarzać się w trzech wymiarach praktycznie w nieskończoność - przynajmniej aż do zewnętrznej ściany ziarna krystalicznego.
Niech to będzie powiedzmy przestrzenny kwinkunks z ośmioma cząsteczkami w rogach domyślnego sześcianu i jedną w geometrycznym środku między nimi:
Wedle tego typu komórki krystalicznej, szeregujemy struktury kryształów w grupy oparte na konkretnej geometrii, czyli układy krystalograficzne, jest ich kilka: oparty na sześcianie układ regularny, układ heksagonalny oparty na heksagonie itp.
Dodatkowo w każdym typie możliwe jest że między narożami komórki pojawią się dodatkowe cząsteczki w centrum ścian lub w środku, stąd możliwość dodatkowych typów "centrowanych". Łącznie 7 układów wraz z centrowanymi kombinacjami daje 32 typy sieci krystalicznych, nazywane sieciami Bravais'go (czyt: 'brawego').
Wiele substancji może tworzyć kryształy różnego rodzaju, o różnej strukturze krystalicznej, zależnie od warunków krystalizacji. Jeden rodzaj sieci krystalicznej może przechodzić w drugi gdy zmienią się warunki. Znanym przykładem jest choćby siarka, która krystalizowana ze stopu tworzy igiełkowate kryształki o symetrii jednoskośnej, które w temperaturze poniżej 95 stopni powoli zamieniają się w kryształki o symetrii rombowej. Formy te różnią się też rozpuszczalnością w dwusiarczku węgla. Podobną sytuację widać w przypadku węgla, gdzie drastycznie różne właściwości mają dwie formy krystaliczne - czarny i miękki grafit oraz przezroczysty i twardy diament.
Istnienie różnych form krystalicznych tej samej substancji nazywane jest polimorfizmem.
Dwa zupełnie różnego kształtu i koloru kryształy tej samej substancji (kobalto-karboran) różniące się wzajemnym ułożeniem cząsteczek w komórce elementarnej. (publikacja) |
Odmiany krystaliczne tej samej substancji, poza geometrią i symetrią, różnią się też właściwościami fizycznymi. Mogą różnić się twardością, kolorem, przewodnością a także temperaturą topnienia.
Co to wszystko ma do czekolady?
Czekolada to mieszanina otrzymywana ze zmieszania kakao i tłuszczu kakaowego, także z mlekiem i cukrem; często zamiast kakao używa się miazgi kakaowej. Cząstki kakao i kropelki wodnistej części mleka tworzą zawiesinę w masie stałego masła kakaowego. Masło to w formie stałej składa się z drobnych ziaren krystalicznych, czego gołym okiem nie widać z powodu ich niewielkich rozmiarów. Kryształy masła z kolei mogą występować w kilku odmianach polimorficznych, różniącym się między innymi wytrzymałością mechaniczną i temperaturą topnienia.
Zatem znajomość własności kryształów tłuszczu kakaowego, pozwala na otrzymanie czekolady o właściwych parametrach.
Z kilku najważniejszych form krystalicznych tłuszczu w czekoladzie, trzy topią się w temperaturze poniżej 25 stopni, jedna (forma IV) w 27 stopniach, jedna (V) przy około 33 stopniach i jedna (VI) przy około 36-38 stopniach. Przy złym wykonaniu i schłodzeniu masy albo otrzymamy czekoladę, która pozostaje miękka w temperaturze pokojowej i łatwo topi się w dłoni, albo otrzymamy produkt twardy i z trudem rozpuszczający się nawet w ustach. W dodatku niskotopliwe formy chętnie tworzą duże kryształy, które rozpychają na boki cząstki kakao, powstaje wówczas czekolada o matowej, nierówno zabarwionej powierzchni.
Aby otrzymać czekoladę z przewagą formy krystalicznej właściwej, należy przeprocesować ją w odpowiedniej temperaturze. Proces ten nazywany jest temperowaniem.
Typowym sposobem temperowania jest najpierw stopienie masy czekoladowej w temperaturze, w której topią się wszystkie formy krystaliczne, czyli około 45 stopni. Następnie masa jest szybko schładzana do temperatury nieco poniżej topnienia średniotopliwej formy, około 26-27 stopni. W tej temperaturze w mieszanej szybko masie powstać mogą drobne kryształki trzech typów - formy IV o temperaturze topnienia 27 stopni, formy V i formy VI - które to drobne kryształki działają jak zarodki dla powstawania kolejnych kryształów w tych typach. Gdybyśmy teraz pozwolili masie powoli ostygać, zawierałaby mieszankę trzech form krystalicznych i miałaby wciąż niską temperaturę mięknięcia i topnienia.
Dlatego teraz masa jest precyzyjnie ogrzewana do temperatury około 30-31 stopni. Kryształki formy IV, topiące się w 27 stopniach, zanikną. Pozostaną więc już tylko kryształki form V i VI. Masa od tego momentu jest dość powoli ochładzana, na tyle, że gdy jej temperatura spadnie do około 25 stopni, większość masła kakaowego będzie już skrystalizowana i nie będą nam powstawały nowe kryształki form o niskich temperaturach topnienia. Tak otrzymanym ideałem jest masa topiąca się w temperaturze 34-35 stopni, czyli znana z reklam "czekolada rozpływająca się w ustach a nie w dłoni".
Dla otrzymania równomiernej masy o pożądanych właściwościach stosuje się precyzyjną kontrolę temperatury i szybkie mieszanie. Dokładne wartości temperatur zależą też od składu, dla czekolady ciemnej są wyższe, dla mlecznej niższe (ze względu na domieszkę tłuszczu mlecznego). Większy dodatek wody zwiększa miękkość czekolady.
Otrzymana w przewadze forma średniotopliwa V jest jednak w temperaturze pokojowej nie do końca stabilna termodynamicznie. Dłuższe przechowywanie powoduje, że część masła kakaowego ulega przemianie w formę VI. Odbywa się to najczęściej w warstwach powierzchniowych przy nieco podwyższonej temperaturze. Powstające kryształki nowej formy wyrastają z powierzchni czekolady, tworząc jaśniejszą warstwę, widoczną dobrze zwłaszcza na tabliczkach w pobliżu okresu ważności. Sam w sobie ten jasny osad nie jest oznaką zepsucia, ale może wskazywać na niezbyt dobre warunki przechowywania. Gdy tabliczka leżała w sklepie w warunkach tak ciepłych, że częściowo się nadtopiła, efekt ten wywołuje powstanie nieregularnych cętek, plam białych i żółtawych złożonych głównie z samego tłuszczu, które mogą nie smakować za dobrze.
---------
* Klaus Roth, Chocolate - The Noblest Polymorphism,
* https://en.wikipedia.org/wiki/Chocolate
czwartek, 15 marca 2018
Chemiczne wieści (16.)
Galfen
Były już monoatomowe warstwy węgla (grafen), krzemu, azotku boru i tego typu materiałów, teraz czas na rzadki metal przejściowy gal.
Gal znany jest jako metal o wyjątkowo niskiej temperaturze topnienia, mogący roztopić się w dłoni; jego stopy z cyną i indem pozostają ciekłe w temperaturze pokojowej i zastępują w pewnych zastosowaniach toksyczną rtęć. Niektóre jego związki, jak azotek i arsenek znane są jako dobre półprzewodniki, mające zastosowanie w elektronice, stąd po otrzymaniu grafenu zastanawiano się nad możliwością wytwarzania podobnych warstw analogu z galem.
Stosowana w podobnych sytuacjach technika osadzania na fazie stałej nie dawała dobrych rezultatów, gal miał skłonność albo do tworzenia ciekłej fazy nieuporządkowanej albo drobnych kryształków. Trudno było też liczyć na oddzielenie warstw, jakie gal tworzy w czystych kryształach odmiany alfa, te bowiem za mocno ze sobą oddziałują. Indyjscy badacze spróbowali więc jeszcze jednej, dość zabawnej metody. Ogrzali oni gal do temperatury 29,7 °C , czyli odrobinkę ponad temperaturę topnienia. Do kropli przyłożyli podłoże, którym mógł być kwarc, grafit lub krzem, o temperaturze niewiele niższej, po czym szybko wyciągnęli. Na podłożu została warstewka galu o grubości kilku atomów.
Przy czym nie polegało to po prostu na tym, że rozprowadzili na powierzchni bardzo cienką warstwę a ona już zastygła. W temperaturach bliskich topnieniu, warstwy galu były na tyle słabo związane, że nastąpiło oderwanie ich od siebie - część powstającego podczas ochładzania stałego metalu została na powierzchni kropli, część na podłożu. Otrzymana warstwa jest lepiej związana z podłożem niż grafen i zależnie od typu podłoża wykazuje różne właściwości. [1]
Rekordowe wiązanie węglowe
Typowa długość pojedynczego wiązania C-C w związkach organicznych, wynosi 1,54 A, wiązania podwójne i potrójne są krótsze. Niedawno uzyskano związek, w którym geometria wymusza na wiązaniu, aby wyraźniej się rozciągnęło.
Badania krystalograficzne potwierdziły, że w tym
prostym węglowodorze między grupami metylenowymi wiązanie ma długość
1,806 A, największą odnotowaną w stabilnym związku organicznym.[2] Rzecz dotyczy oczywiście klasycznego wiązania kowalencyjnego. W niektórych badaniach notowano dłuższe przypadki bardziej nietypowych wiązań, na przykład wiązanie dwuelektronowe-czterocentrowe w dimerze rodników tetranitryloetylenu, o długości 2,98 A.[3]
Biopaliwo z drewna w mikrofalówce
Grupa badaczy z Chin opublikowała informacje o obiecującej metodzie syntezy lewulinianu metylu z biomasy zawierającej celulozę. Estry kwasu lewulinowego używane są jako nietoksyczne, mało lotne rozpuszczalniki oraz dodatki do paliwa, zwłaszcza diesla i biodiesla, można je otrzymać przez termiczny rozkład glukozy w warunkach odwadniających i estryfikację powstałego kwasu. Dotychczasowe przemysłowe metody używały jako katalizatorów bądź stężonego kwasu siarkowego, bądź związków metali ciężkich.
W opublikowanej metodzie konwersja celulozy (będącej przecież polimerem glukozy) dokonuje się przy pomocy siarczanu glinu z ogrzewaniem mikrofalowym, co pozwala przyspieszyć reakcję bardziej niż konwencjonalne ogrzewanie. Reakcja prowadzona jest w metanolu z dodatkiem wody, która hamuje tworzenie zesmołowanych produktów ubocznych i formację eteru dimetylowego. W najbardziej optymalnym układzie reakcja prowadzona przez 40 minut w temperaturze 180 stopni, pozwala na przekształcenie w lewulinian 70% celulozy, co oznacza, że metoda najpewniej znajdzie zastosowanie przemysłowe.[4]
Hel w ciśnieniowych solach
Po ostatnim doniesieniu o wysokociśnieniowym połączeniu helu z sodem, w którym kationy sodu i pary elektronowe utworzyły sól elektrydową z wnękami zawierającymi hel, zaczęto badać możliwość występowania innych takich "soli-nie soli". Pisałem o nich w zeszłym roku (Link).
W ostatnim doniesieniu z Nature analizuje się wyniki eksperymentów z wysokociśnieniowymi formami związków jonowych, do których wprowadzono hel. Udało się w ten sposób otrzymać połączenia MgF2-He i MgO-He.
Ściśle rzecz traktując, nie są to związki chemiczne helu, nie doszło bowiem do powstania wiązań czy przeniesienia części ładunku. Również badania rozkładu ładunku stwierdziły, że orbitale helu są jedynie nieco zdeformowane atomami wokół. Niemniej wprowadzenie dodatkowych atomów do struktury krystalicznej dość wyraźnie ją zmienia, zmianie ulega symetria sieci oraz liczba koordynacyjna jonów. Najbardziej wyraźne jest to w przypadku tlenku magnezu, który w normalnej postaci tworzy sieć krystaliczną typu halitu (F/m3m) w układzie regularnym. W formie "nahelowanej" tworzy sieć w układzie heksagonalnym (P63/mmc) podobnym do molibdenitu.
Oczywiście zastanawiającą sprawą jest przyczyna dla której w ogóle hel tworzy takie połączenia. Z obliczeń wynika, że hel obniża energię związaną z odpychaniem pewnych fragmentów sieci. W kryształach zawierających jeden jon o podwójnym ładunku i dwa o pojedynczym ładunku przeciwnym, w strukturze można wyróżnić linie atomów w których jon jednego rodzaju przedzielony jest dwoma drugiego rodzaju. Te dwa jony obok siebie nieco się odpychają. W warunkach wysokociśnieniowych, gdy atomy są do siebie przybliżane przez nacisk, odpychanie to nabiera znaczenia.
Włączenie w strukturę helu, który wchodzi pomiędzy pary takich samych jonów oddala od siebie te fragmenty sieci, zmniejszając energię związaną z odpychaniem, nie zmieniając natomiast pozostałych sił przyciągających w pozostałych fragmentach sieci. Zatem w warunkach wysokiego ciśnienia, obojętna przekładka helu może być korzystna energetycznie dla stabilizacji sieci.
Badacze wskazują przy okazji, że tworzenie takich połączeń może sprzyjać wiązaniu w głębinach ziemi, w minerałach płaszcza, dużych ilości helu, w który nasza planeta może się okazać bardziej zasobna, niż to się dotychczas wydawało.[5]
-------
[1] Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick, Praveena Manimunda, Syed Asif S. Asif, Anthony Stender, Robert Vajtai, Abhishek K. Singh, Chandra S. Tiwary and Pulickel M. Ajayan; Atomically thin gallium layers from solid-melt exfoliation, Science Advances 09 Mar 2018: Vol. 4, no. 3, e1701373 DOI: 10.1126/sciadv.1701373
[2] Yusuke Ishigaki, Takuya Shimajiri, Takashi Takeda, Ryo Katoono, Takanori Suzuki; Longest C–C Single Bond among Neutral Hydrocarbons with a Bond Length beyond 1.8 Å, Chem. (2018.)
[3] Novoa J. J.; Lafuente P.; Del Sesto R. E.; Miller J. S. (2001-07-02). "Exceptionally Long (2.9 Å) C–C Bonds between [TCNE]− Ions: Two-Electron, Four-Center π*–π* C–C Bonding in π-[TCNE]22−". Angewandte Chemie International Edition. 40 (13): 2540–2545
[4] Yao-Bing Huang, Tao Yang,a Yu-Ting Lin, Ying-Zhi Zhu, Li-Cheng Li and Hui Pan, Facile and high-yield synthesis of methyl levulinate from cellulose, Green Chem., 2018, Advance Article
[5] Zhen Liu. et. al.; Reactivity of He with ionic compounds under high pressure, Nature Communications volume 9, Article number: 951 (2018)
Były już monoatomowe warstwy węgla (grafen), krzemu, azotku boru i tego typu materiałów, teraz czas na rzadki metal przejściowy gal.
Gal znany jest jako metal o wyjątkowo niskiej temperaturze topnienia, mogący roztopić się w dłoni; jego stopy z cyną i indem pozostają ciekłe w temperaturze pokojowej i zastępują w pewnych zastosowaniach toksyczną rtęć. Niektóre jego związki, jak azotek i arsenek znane są jako dobre półprzewodniki, mające zastosowanie w elektronice, stąd po otrzymaniu grafenu zastanawiano się nad możliwością wytwarzania podobnych warstw analogu z galem.
Stosowana w podobnych sytuacjach technika osadzania na fazie stałej nie dawała dobrych rezultatów, gal miał skłonność albo do tworzenia ciekłej fazy nieuporządkowanej albo drobnych kryształków. Trudno było też liczyć na oddzielenie warstw, jakie gal tworzy w czystych kryształach odmiany alfa, te bowiem za mocno ze sobą oddziałują. Indyjscy badacze spróbowali więc jeszcze jednej, dość zabawnej metody. Ogrzali oni gal do temperatury 29,7 °C , czyli odrobinkę ponad temperaturę topnienia. Do kropli przyłożyli podłoże, którym mógł być kwarc, grafit lub krzem, o temperaturze niewiele niższej, po czym szybko wyciągnęli. Na podłożu została warstewka galu o grubości kilku atomów.
Credit: Ajayan Research Group/Rice University |
Przy czym nie polegało to po prostu na tym, że rozprowadzili na powierzchni bardzo cienką warstwę a ona już zastygła. W temperaturach bliskich topnieniu, warstwy galu były na tyle słabo związane, że nastąpiło oderwanie ich od siebie - część powstającego podczas ochładzania stałego metalu została na powierzchni kropli, część na podłożu. Otrzymana warstwa jest lepiej związana z podłożem niż grafen i zależnie od typu podłoża wykazuje różne właściwości. [1]
Rekordowe wiązanie węglowe
Typowa długość pojedynczego wiązania C-C w związkach organicznych, wynosi 1,54 A, wiązania podwójne i potrójne są krótsze. Niedawno uzyskano związek, w którym geometria wymusza na wiązaniu, aby wyraźniej się rozciągnęło.
Credit: Ishigaki Y. et al., Chem, March 8, 2018 |
Biopaliwo z drewna w mikrofalówce
Grupa badaczy z Chin opublikowała informacje o obiecującej metodzie syntezy lewulinianu metylu z biomasy zawierającej celulozę. Estry kwasu lewulinowego używane są jako nietoksyczne, mało lotne rozpuszczalniki oraz dodatki do paliwa, zwłaszcza diesla i biodiesla, można je otrzymać przez termiczny rozkład glukozy w warunkach odwadniających i estryfikację powstałego kwasu. Dotychczasowe przemysłowe metody używały jako katalizatorów bądź stężonego kwasu siarkowego, bądź związków metali ciężkich.
W opublikowanej metodzie konwersja celulozy (będącej przecież polimerem glukozy) dokonuje się przy pomocy siarczanu glinu z ogrzewaniem mikrofalowym, co pozwala przyspieszyć reakcję bardziej niż konwencjonalne ogrzewanie. Reakcja prowadzona jest w metanolu z dodatkiem wody, która hamuje tworzenie zesmołowanych produktów ubocznych i formację eteru dimetylowego. W najbardziej optymalnym układzie reakcja prowadzona przez 40 minut w temperaturze 180 stopni, pozwala na przekształcenie w lewulinian 70% celulozy, co oznacza, że metoda najpewniej znajdzie zastosowanie przemysłowe.[4]
Hel w ciśnieniowych solach
Po ostatnim doniesieniu o wysokociśnieniowym połączeniu helu z sodem, w którym kationy sodu i pary elektronowe utworzyły sól elektrydową z wnękami zawierającymi hel, zaczęto badać możliwość występowania innych takich "soli-nie soli". Pisałem o nich w zeszłym roku (Link).
W ostatnim doniesieniu z Nature analizuje się wyniki eksperymentów z wysokociśnieniowymi formami związków jonowych, do których wprowadzono hel. Udało się w ten sposób otrzymać połączenia MgF2-He i MgO-He.
Ściśle rzecz traktując, nie są to związki chemiczne helu, nie doszło bowiem do powstania wiązań czy przeniesienia części ładunku. Również badania rozkładu ładunku stwierdziły, że orbitale helu są jedynie nieco zdeformowane atomami wokół. Niemniej wprowadzenie dodatkowych atomów do struktury krystalicznej dość wyraźnie ją zmienia, zmianie ulega symetria sieci oraz liczba koordynacyjna jonów. Najbardziej wyraźne jest to w przypadku tlenku magnezu, który w normalnej postaci tworzy sieć krystaliczną typu halitu (F/m3m) w układzie regularnym. W formie "nahelowanej" tworzy sieć w układzie heksagonalnym (P63/mmc) podobnym do molibdenitu.
Oczywiście zastanawiającą sprawą jest przyczyna dla której w ogóle hel tworzy takie połączenia. Z obliczeń wynika, że hel obniża energię związaną z odpychaniem pewnych fragmentów sieci. W kryształach zawierających jeden jon o podwójnym ładunku i dwa o pojedynczym ładunku przeciwnym, w strukturze można wyróżnić linie atomów w których jon jednego rodzaju przedzielony jest dwoma drugiego rodzaju. Te dwa jony obok siebie nieco się odpychają. W warunkach wysokociśnieniowych, gdy atomy są do siebie przybliżane przez nacisk, odpychanie to nabiera znaczenia.
Włączenie w strukturę helu, który wchodzi pomiędzy pary takich samych jonów oddala od siebie te fragmenty sieci, zmniejszając energię związaną z odpychaniem, nie zmieniając natomiast pozostałych sił przyciągających w pozostałych fragmentach sieci. Zatem w warunkach wysokiego ciśnienia, obojętna przekładka helu może być korzystna energetycznie dla stabilizacji sieci.
Badacze wskazują przy okazji, że tworzenie takich połączeń może sprzyjać wiązaniu w głębinach ziemi, w minerałach płaszcza, dużych ilości helu, w który nasza planeta może się okazać bardziej zasobna, niż to się dotychczas wydawało.[5]
-------
[1] Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick, Praveena Manimunda, Syed Asif S. Asif, Anthony Stender, Robert Vajtai, Abhishek K. Singh, Chandra S. Tiwary and Pulickel M. Ajayan; Atomically thin gallium layers from solid-melt exfoliation, Science Advances 09 Mar 2018: Vol. 4, no. 3, e1701373 DOI: 10.1126/sciadv.1701373
[2] Yusuke Ishigaki, Takuya Shimajiri, Takashi Takeda, Ryo Katoono, Takanori Suzuki; Longest C–C Single Bond among Neutral Hydrocarbons with a Bond Length beyond 1.8 Å, Chem. (2018.)
[3] Novoa J. J.; Lafuente P.; Del Sesto R. E.; Miller J. S. (2001-07-02). "Exceptionally Long (2.9 Å) C–C Bonds between [TCNE]− Ions: Two-Electron, Four-Center π*–π* C–C Bonding in π-[TCNE]22−". Angewandte Chemie International Edition. 40 (13): 2540–2545
[4] Yao-Bing Huang, Tao Yang,a Yu-Ting Lin, Ying-Zhi Zhu, Li-Cheng Li and Hui Pan, Facile and high-yield synthesis of methyl levulinate from cellulose, Green Chem., 2018, Advance Article
[5] Zhen Liu. et. al.; Reactivity of He with ionic compounds under high pressure, Nature Communications volume 9, Article number: 951 (2018)
poniedziałek, 24 kwietnia 2017
Chemiczne wieści (10.)
Aldehydy w elektronicznych papierosach
Elektroniczne papierosy pojawiły się na rynku stosunkowo niedawno, i wciąż nie do końca znane są ich skutki zdrowotne. Na pewno, ze względu na brak substancji smolistych, nie są tak bardzo szkodliwe jak papierosy tytoniowe, jednak badań długotrwałego wpływu jest generalnie niewiele.
Chemicy wskazują, że skład mgiełki produkowanej przez te urządzenia, nie jest tak zupełnie bezpieczny, jak to się mogło wydawać.
Głównym składnikiem liquidów będących wkładem, jest gliceryna lub glikol propylenowy. Związki te są nieszkodliwe. Jednak podczas ich odparowywania na grzałce mogą zachodzić dodatkowe reakcje, prowadzące do powstawania reaktywnych aldehydów, głównie akroleiny, aldehydu mrówkowego i acetaldehydu. Wdychanie ich może zwiększać ryzyko chorób serca i układu krwionośnego. Dotychczasowe badania wskazywały, że mgiełka elektronicznych papierosów zawiera pewną niewielką ilość aldehydów, co jednak trudno było ocenić z powodu z powodu nietrwałości tych związków. Czasem pojawiały się pojedyncze badania wskazujące na wysokie stężenia, być może związane z niewłaściwą techniką poboru próbek (za wolne zaciąganie lub za duże grzanie).
W nowych badaniach mgiełkę wytwarzaną przez dostępne na rynku urządzenia pochłaniano na podłożu z krzemionki pokrytej cząsteczkami alkilowej pochodnej hydroksyloaminy. Ta reagowała z aldehydami tworząc charakterystyczne oksymy, które są dużo trwalsze, dzięki czemu w dalszych analizach łatwiej było odtworzyć rzeczywiste stężenie aldehydów i sprawdzić od jakiś czynników zależy.
Okazało się, że urządzenia nowsze wytwarzają większe stężenia aldehydów niż starsze. Efekt ten był związany z mocniejszymi bateriami i mocniejszymi grzałkami; między mocą grzałki a aldehydami istniała wyraźna zależność. Pewien wpływ miał też czas zaciągania powietrza.
W dodatkowym badaniu przy pomocy techniki NMR sprawdzono powstawanie hemiacetali, mogących ukrywać faktyczne stężenia aldehydów. W przypadku jednego liquidu smakowego wykryto hemiacetale, ale bez przekroczenia bezpiecznych norm, u pozostałych badanych smakowych i bezsmakowych taka reakcja nie zachodziła.
W ostatecznym rozrachunku poziomy aldehydów w aerozolu z e-papierosów są dużo niższe niż w dymie papierosowym (z wyjątkiem przypadków tzw. "suchego zaciągu"), niemniej fakt że jednak w nim występują, oznacza że nie jest to używka dla zdrowia całkiem obojętna.[1]
Spolaryzowana fluorescencja
Fluorescencja to szybki proces w wyniku którego wzbudzone cząsteczki lub atomy wypromieniowują energię w postaci światła. Najbardziej znanym jest świecenie pod wpływem ultrafioletu, wykorzystywane w wybielaczach optycznych. Teraz przedstawiono nietypową tego procesu modyfikację - fluorescencję świecącą od razu światłem spolaryzowanym.
Czynnikiem świecącym były jony rzadkiego pierwiastka europu. Jego sól została rozpuszczona w cieczy jonowej, to jest płynnym związku złożonym tylko z jonów (w zasadzie są to ciekłe sole), w tym przypadku był to kation tetrabutyloamoniowy i anion proliny. Po naświetleniu ultrafioletem roztwór świecił światłem spolaryzowanym kołowo. Kierunek obrotu polaryzacji zależał od tego czy użyta prolina była prawoskrętna czy lewoskrętna. [2]
Ładna demonstracja równowag chemicznych
Czasopismo Journal of Chemical Education mogłoby być w zasadzie zaliczone do pedagogicznych, poświęcone jest bowiem nauczaniu chemii, jednak robi to w ciekawy sposób - większość artykułów to nie biadolenie nad poziomem nauczania, tylko bardzo konkretne propozycje co takiego można uczniom pokazać, aby lepiej wyjaśnić im daną kwestię. Dlatego w zasadzie jest to skarbnica propozycji doświadczeń. W jednym z ostatnich numerów najbardziej wizualnie spodobał mi się artykuł na temat pokazywania równowag kwasowo-zasadowych.
Do czterech próbówek z wodą wsypano kationit kwasowy - to jest granulki specjalnego polimeru, mającego na powierzchni reszty kwasu siarkowego, skłonne oddawać protony. W zasadzie trzeba o nim myśleć jak o kwasie siarkowym osadzonym w plastiku. Do wody dodano odczynnik kwasowo-zasadowy błękit tymolowy. W warunkach obojętnych przybiera kolor żółty. Wprawdzie na dnie znajduje się polimer o właściwościach kwasowych, ale wcale nie oddaje on swoich protonów tak chętnie, musi je podmienić na jakieś inne kationy. Do jednej z próbówek dodajemy więc roztwór soli kuchennej i po chwili obserwujemy jak od dna rozwija się coraz wyraźniejsza różowa barwa, świadcząca o warunkach silnie kwaśnych. Do drugiej dodajemy niedużą ilość roztworu wodorotlenku sodu - w alkalicznym środowisku odczynnik zmienia kolor na błękitny. Jednak wodorotlenek zawiera też kationy sodowe, które mogą podmienić protony w kationicie. Dlatego od dna roztwór zaczyna się zabarwiać na żółto, świadcząc o zakwaszeniu roztworu, a w warstwach najbliżej dna na różowo. Mamy więc roztwór z trzema kolorami - różowym na dole, żółtym powyżej i błękitnym u góry.
Kolorowa równowaga. Udostępnione przez ACS Publications. |
Co ma tłumaczyć doświadczenie? W próbówce pojawiają się nam dwie równowagi - jedna to równowaga odłączania protonów od kationitu, zależna od stężenia kationów metali w roztworze. Druga to równowaga między trzema różnobarwnymi formami odczynnika, zależna od odczynu. Wreszcie przesuwająca się od dna granica między kolorami ukazuje naocznie szybkość dyfuzji jonów hydroniowych. Po pewnym czasie cały roztwór stanie się różowo-żółty ale wtedy można dodać wodorotlenku jeszcze raz, powtarzając cykl; dla zaproponowanej ilości substratów można tak zrobić do siedmiu razy.
Takie rzeczy powinni pokazywać w szkołach, a nie tylko kreda i tablica. [3]
--------
[1] Mumiye A. Ogunwale et al. Aldehyde Detection in Electronic Cigarette Aerosols, ACS Omega (2017). DOI: 10.1021/acsomega.6b00489
[2] Ben Zercher and Todd A. Hopkins, Induction of Circularly Polarized Luminescence from Europium by Amino Acid Based Ionic Liquids, Inorg. Chem., 2016, 55 (21), pp 10899–10906
[3] Ingo Eilks and Ozcan Gulacar, A Colorful Demonstration to Visualize and Inquire into Essential Elements of Chemical Equilibrium, J. Chem. Educ., 2016, 93 (11), pp 1904–1907
piątek, 7 kwietnia 2017
Chemiczne rekordy (1.)
Czyli krótki opis substancji, które w czymś są wyjątkowe. Na razie rekordy bardziej fizyko-chemiczne.
Największa rozpuszczalność w wodzie i najgęstszy roztwór wodny
Rozpuszczalność jest miarą określającą jaka masa danego związku jest w stanie rozpuścić się w rozpuszczalniku. Silnie zależy od temperatury, zwykle jest podawana w gramach substancji na 100 gramów rozpuszczalnika. To jak duża będzie jej wartość oprócz zupełnie oczywistej kwestii siły oddziaływań między cząsteczkami, zależy też od masy molowej związku. Im większa będzie masa molowa, tym cięższa będzie ta sama ilość cząsteczek związku. Dla lekkiej wody jeden mol to 18 gramów, co przy gęstości około 1 g/cm3 daje nam mniej niż kieliszek. Dla azotanu potasu taka sama ilość cząsteczek waży 101 gramów. W 100 g wody rozpuścić się może ponad 300 g tego związku, czyli całe trzy mole.
Aby uzyskać wysoką rozpuszczalność w gramach na 100 g wody, należy więc znaleźć sól o stosunkowo wysokiej masie molowej, która dobrze się rozpuszcza. Palmę pierwszeństwa dzierży wśród prostych soli octan cezu. Wprawdzie molowa rozpuszczalność nie jest duża, bo wynosi około 5 mol/dm3 ale dzięki dużej masie molowej cezu, rozpuszczalność wynosi 1010 g/100g wody.
Oznacza to, że w szklance wody, rozpuścić mogą się ponad dwa kilogramy tej soli!
W mineralogii jedną z prostych metod rozpoznawania minerałów jest badanie gęstości względnej wobec gęstych cieczy - minerały mniej gęste pływają a gęstsze toną. Używa się w tym celu odpowiednio gęstych fluorowcowodorów, ale także roztworów wodnych o wysokiej gęstości, w tym nasyconego octanu cezu.
Nieco mniej rozpuszczalny od octanu mrówczan cezu, używany jest też jako płyn w płuczkach do głębokich odwiertów, na przykład ropy naftowej, aby utrzymywać w nich nacisk zapobiegający nagłym wyrzutom gazów. Nasycony roztwór ma gęstość 2,3 g/cm3.
Jeszcze większą gęstość, mimo mniejszej rozpuszczalności, można uzyskać dla nasyconego roztworu wolframianu cezu WO4Cs2, wynosi ona 2,9 g/cm3 co oznacza, że pływa w nim beton. Następny w kolejności jest poliwolframian sodu którego roztwór osiąga 3,1 g/cm3. Ale rekordzistą pod tym względem jest tzw. roztwór Clerici.
Jest to roztwór mieszaniny mrówczanu i malonianu talu, innego ciężkiego pierwiastka o własnościach podobnych do metali alkalicznych. Przy odpowiednio dobranej proporcji roztwór ma w temperaturze pokojowej gęstość 4,25 g/cm3, co oznacza że pływa w nim diament a tonie cyrkonia.
W praktyce jest rzadko używany ze względu na korozyjność i fakt, że rozpuszczalne sole talu są silnie trujące.
Najcięższy gaz
Najlżejszym gazem w warunkach standardowych jest wodór, znany z baloników hel jest od niego nieco bardziej gęsty. A jaki gaz jest najcięższy?
Gazem o największej gęstości w warunkach standardowych, jest sześciofluorek wolframu. Jego gęstość to 13 g/l jest więc około 11 razy cięższy od powietrza. To gaz bezbarwny, trujący, hydrolizujący w wodzie z wydzieleniem fluorowodoru, powodujący obrzęk płuc. Poniżej temperatury 17*C skrapla się do żółtawej cieczy.
W przemyśle jest używany do osadzania warstewki wolframu na ogrzanych powierzchniach, jego wytwarzanie i destylacja są też sposobem na otrzymanie metalu wysokiej czystości.
Innym bardzo gęstym gazem jest czysty radon, nietrwały pierwiastek promieniotwórczy z grupy gazów szlachetnych. Jego gęstość to 9 g/l.
Najbardziej znanym gęstym gazem, który wdychany powoduje niesamowite pogrubienie głosu, jest sześciofluorek siarki, obojętny i nietoksyczny gaz o gęstości 6 g/l. Możliwe jest na przykład umieszczenie łódki z folii tak, aby pływała na zebranej w naczyniu warstwie.
Najgęstsza ciecz
Najgęstszą cieczą (w warunkach standardowych) jest metaliczna rtęć o gęstości 13,5 g/cm3. Jak na metal tworzy bardzo słabe wiązania metaliczne stąd bardzo niska temperatura topnienia -38,8*C. Zastanawiałem się czy nieco gęstsze nie będą niektóre ciekłe amalgamaty, ale wygląda na to, że dodatek jakiegokolwiek metalu zmniejsza gęstość powstałego połączenia.
-------
* https://en.wikipedia.org/wiki/Clerici_solution
* https://en.wikipedia.org/wiki/Density
Największa rozpuszczalność w wodzie i najgęstszy roztwór wodny
Rozpuszczalność jest miarą określającą jaka masa danego związku jest w stanie rozpuścić się w rozpuszczalniku. Silnie zależy od temperatury, zwykle jest podawana w gramach substancji na 100 gramów rozpuszczalnika. To jak duża będzie jej wartość oprócz zupełnie oczywistej kwestii siły oddziaływań między cząsteczkami, zależy też od masy molowej związku. Im większa będzie masa molowa, tym cięższa będzie ta sama ilość cząsteczek związku. Dla lekkiej wody jeden mol to 18 gramów, co przy gęstości około 1 g/cm3 daje nam mniej niż kieliszek. Dla azotanu potasu taka sama ilość cząsteczek waży 101 gramów. W 100 g wody rozpuścić się może ponad 300 g tego związku, czyli całe trzy mole.
Aby uzyskać wysoką rozpuszczalność w gramach na 100 g wody, należy więc znaleźć sól o stosunkowo wysokiej masie molowej, która dobrze się rozpuszcza. Palmę pierwszeństwa dzierży wśród prostych soli octan cezu. Wprawdzie molowa rozpuszczalność nie jest duża, bo wynosi około 5 mol/dm3 ale dzięki dużej masie molowej cezu, rozpuszczalność wynosi 1010 g/100g wody.
Oznacza to, że w szklance wody, rozpuścić mogą się ponad dwa kilogramy tej soli!
W mineralogii jedną z prostych metod rozpoznawania minerałów jest badanie gęstości względnej wobec gęstych cieczy - minerały mniej gęste pływają a gęstsze toną. Używa się w tym celu odpowiednio gęstych fluorowcowodorów, ale także roztworów wodnych o wysokiej gęstości, w tym nasyconego octanu cezu.
Nieco mniej rozpuszczalny od octanu mrówczan cezu, używany jest też jako płyn w płuczkach do głębokich odwiertów, na przykład ropy naftowej, aby utrzymywać w nich nacisk zapobiegający nagłym wyrzutom gazów. Nasycony roztwór ma gęstość 2,3 g/cm3.
Jeszcze większą gęstość, mimo mniejszej rozpuszczalności, można uzyskać dla nasyconego roztworu wolframianu cezu WO4Cs2, wynosi ona 2,9 g/cm3 co oznacza, że pływa w nim beton. Następny w kolejności jest poliwolframian sodu którego roztwór osiąga 3,1 g/cm3. Ale rekordzistą pod tym względem jest tzw. roztwór Clerici.
Jest to roztwór mieszaniny mrówczanu i malonianu talu, innego ciężkiego pierwiastka o własnościach podobnych do metali alkalicznych. Przy odpowiednio dobranej proporcji roztwór ma w temperaturze pokojowej gęstość 4,25 g/cm3, co oznacza że pływa w nim diament a tonie cyrkonia.
W praktyce jest rzadko używany ze względu na korozyjność i fakt, że rozpuszczalne sole talu są silnie trujące.
Najcięższy gaz
Najlżejszym gazem w warunkach standardowych jest wodór, znany z baloników hel jest od niego nieco bardziej gęsty. A jaki gaz jest najcięższy?
Gazem o największej gęstości w warunkach standardowych, jest sześciofluorek wolframu. Jego gęstość to 13 g/l jest więc około 11 razy cięższy od powietrza. To gaz bezbarwny, trujący, hydrolizujący w wodzie z wydzieleniem fluorowodoru, powodujący obrzęk płuc. Poniżej temperatury 17*C skrapla się do żółtawej cieczy.
W przemyśle jest używany do osadzania warstewki wolframu na ogrzanych powierzchniach, jego wytwarzanie i destylacja są też sposobem na otrzymanie metalu wysokiej czystości.
Innym bardzo gęstym gazem jest czysty radon, nietrwały pierwiastek promieniotwórczy z grupy gazów szlachetnych. Jego gęstość to 9 g/l.
Najbardziej znanym gęstym gazem, który wdychany powoduje niesamowite pogrubienie głosu, jest sześciofluorek siarki, obojętny i nietoksyczny gaz o gęstości 6 g/l. Możliwe jest na przykład umieszczenie łódki z folii tak, aby pływała na zebranej w naczyniu warstwie.
Najgęstsza ciecz
Najgęstszą cieczą (w warunkach standardowych) jest metaliczna rtęć o gęstości 13,5 g/cm3. Jak na metal tworzy bardzo słabe wiązania metaliczne stąd bardzo niska temperatura topnienia -38,8*C. Zastanawiałem się czy nieco gęstsze nie będą niektóre ciekłe amalgamaty, ale wygląda na to, że dodatek jakiegokolwiek metalu zmniejsza gęstość powstałego połączenia.
-------
* https://en.wikipedia.org/wiki/Clerici_solution
* https://en.wikipedia.org/wiki/Density
niedziela, 30 października 2016
Dlaczego osm jest najgęstszym pierwiastkiem?
Witam po dłuższej przerwie.
Jak to mamy możliwość obserwować na co dzień, substancje i materiały różnią się między sobą między innymi tym, że podobnej wielkości kawałki mają różny ciężar. Klocki drewna rzucone na wodę pływają łatwo, bryły lodu wynurzają nad powierzchnię tylko końcówki a kamień tonie. Miarą tej właściwości jest gęstość, czyli masa mieszcząca się w danej objętości. Na gęstość wpływają różne cechy, na przykład porowatość potrafiąca znacznie zmniejszyć gęstość materiału (niektóre aerożele są niemal tak lekkie jak powietrze), zawartość wody, ale w większym stopniu rodzaj substancji.
Najgęstszym materiałem na ziemi jest metaliczny osm, metal szlachetny podobny do platyny. Jego gęstość to ok. 22,65 g/cm3, co oznacza, że kostka o boku 10 cm waży 22,5 kg. Jest dwa razy gęstszy od ołowiu, który już jest uważany za bardzo ciężki. Gęstością dorównuje mu tylko iryd (niektóre pomiary pokazują nawet nieco większą gęstość irydu ale to już zależy od sposobu pomiaru). W związku z tym rodzi się oczywiste pytanie - dlaczego osm jest aż tak ciężki?
Jedną z oczywistych przyczyn, jest jego wysoka masa atomowa - 190,23 u. Jego atomy są więc ciężkie i ta sama ich ilość waży więcej niż dla wielu innych metali. Jednakowoż nie jest osm wcale najcięższym pierwiastkiem, większą masę atomową (207 u) ma choćby ołów, który ma przecież dwa razy mniejszą gęstość
Kolejnym czynnikiem warunkującym jest promień atomowy, czyli wielkość atomu liczona do ostatniej powłoki elektronowej. Im mniejsze są atomy tym więcej może się ich zmieścić w tej samej objętości. W układzie okresowym dają się zauważyć dwie ogólne reguły wielkości atomów - pierwsza jest dość oczywista - w dół wielkość atomów rośnie, mają bowiem coraz bardziej dodatnie jądro, coraz większą ilość elektronów a w związku z regułami ich upakowania w przestrzeni, coraz więcej sięgających dalej powłok na których mogą się pomieścić.
Druga jest natomiast mniej intuicyjna - wzdłuż okresu, od lewej do prawej, atomy się zmniejszają, mimo że krąży wokół nich coraz więcej elektronów. Wynika to stąd, że w okresie nie przybywają nowe zewnętrzne powłoki elektronowe, a elektrony zapełniają jedynie odpowiednie dla danego bloku podpowłoki, najpierw s, potem p, a dla cięższych pierwiastków też d i f. Natomiast ze wzrostem masy jądra rośnie ładunek przyciągający elektrony, co zmniejsza całkowitą średnicę atomu.
Efekt ten najwyraźniejszy jest w górnych okresach. W dolnych okresach zmniejszanie się średnic atomów jest nawet większe niż by to wynikało z samego zwiększenia ładunku jądra. Tłumaczy się to bardzo słabym osłanianiem ładunku jądra przez orbital f, przez co najbardziej zewnętrzne elektrony czują przyciąganie nieco silniej.
Osm znajduje się w najniższym okresie z trwałymi pierwiastkami, mając w sobie także słabo ekranujący orbital f, jest zatem bardzo masywnym atomem, którego średnica nie jest tak duża jak to by można oczekiwać. Tyle tylko, że jeszcze mniejsze atomy ma wspomniany ołów, więc musi tu dokładać się jeszcze dodatkowy efekt.
Metale w stanie stałym nie stanowią po prostu atomów ułożonych jeden obok drugiego. Są połączone wiązaniami poprzez uwspólnione elektrony, związane na tyle słabo. że przeskakują z atomu na atom, tworząc zdezorganizowany "gaz elektronowy". To dzięki nim metale przewodzą prąd i ciepło, oraz dobrze odbijają światło. Połączenie dwóch atomów wiązaniem przybliża je do siebie, i to tym bardziej im większa jest energia tego wiązania. Na to więc jak dużo masy możemy zmieścić w objętości, będzie wpływała długość wiązania metalicznego.
Osm znajduje się w układzie okresowym w bloku D, co oznacza że zewnętrzne elektrony walencyjne pochodzą z orbitalu d mieszczącego 10 elektronów w 5 powiązanych parach. Podczas tworzenia wiązań z innymi atomami w metalu tworzą się orbitale molekularne, na które wchodzą elektrony, odchodząc od stanu podstawowego. W kolejnych, coraz cięższych atomach, na orbital molekularny wchodzi coraz więcej elektronów, przez co wzrasta uśredniona siła wiązania. Jednak po minięciu połowy pojemności orbitalu, w cięższych atomach elektrony zaczynają tworzyć pary co zmniejsza ich zdolność do wiązania. W efekcie najsilniej związane są atomy w metalach leżących w połowie bloku D a najsłabiej te leżące na początku i końcu. Silniej związane atomy leżą bliżej siebie i więcej się ich zmieści w danej objętości.
Miarą tych oddziaływań jest energia kohezji, która wzrasta w dół grupy i do środka bloku. Największą energię kohezji ma wolfram, zaraz za nim tantal, ren, osm i iryd, potem energia dość szybko spada. Przekłada się to wprost na temperatury topnienia i wrzenia - najtrudniej topliwym metalem jest wolfram, po nim ren, tantal i osm.
Podsumowując
Spróbujmy więc podsumować wszystkie efekty - osm leży w dość daleko w układzie okresowym i ma wysoką masę atomową, ale ze względu na wysoki ładunek jądra wielkość jego atomów nie jest tak duża. Znajduje w najniższym okresie z trwałymi pierwiastkami i tuż za środkiem bloku D, co przekłada się na wysoką energię kohezji i krótkie wiązania metaliczne. W związku z tym w danej objętości zmieścić się może dużo jego masywnych atomów. Wprawdzie są pierwiastki o większej od niego energii kohezji, ale po pierwsze o nieco mniejszej masie atomowej a po drugie o nieco większej średnicy atomów w stanie podstawowym. Są też pierwiastki o dużo mniejszych atomach i większej masie, ale wyraźnie mniejszej energii kohezji.
Po prostu trzy funkcje regulujące gęstość pierwiastków przebiegają tak, że ich suma osiąga minimum dla tego pierwiastka. Dla któregoś musiało się trafić. Ze względnie dużej, mimo pewnego spadku, energii kohezji korzysta jeszcze iryd, który jest drugim najgęstszym pierwiastkiem.
Czy to już koniec? Nie stworzymy jeszcze gęstszych materiałów? Cóż, sztucznie otrzymaliśmy jeszcze cięższe pierwiastki, uzupełniające 7 okres. Jeśli powyższe prawa stosują się do nich tak samo, to pierwiastki pośrodku okresu powinny być bardzo ciężkie i z wysoką energią kohezji. Teoretyczne obliczenia pokazują, że metaliczny has (Hs) o liczbie atomowej 108, który leży w układzie okresowym pod osmem, powinien mieć gęstość 41 g/cm3, a więc dwa razy większą. Jednak ze względu na bardzo krótki okres półtrwania, wynoszący około minuty dla najtrwalszych izotopów, zmierzenie tego bezpośrednio jest niemożliwe.
ed.
Gęstość metali rośnie wraz ze spadkiem temperatury. Dla irydu współczynnik objętościowej kurczliwości temperaturowej jest nieco większy niż dla osmu, a ponieważ ich gęstości są zbliżone pojawiają się przypuszczenia, że w bardzo niskich temperaturach, rzędu 50 K iryd może jednak wyprzedzać osm.[1] Pomiar gęstości w tak niskich temperaturach jest jednak nieco kłopotliwy i nie wiele było takich badań a teoretyczne wartości na tyle się zbliżają, że różnica staje się mniejsza niż granica błędu. Kto wie, może jednak przy dokładniejszych badaniach okaże się, że osm jest najgęstszy tylko w pewnym zakresie temperatur?
------------
* https://en.wikipedia.org/wiki/Lanthanide_contraction
* https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Metals_and_Alloys:_Structure,_Bonding,_Electronic_and_Magnetic_Properties
* https://www.itp.tu-berlin.de/fileadmin/a3233/upload/SS12/TheoFest2012/Kapitel/Chapter_6.pdf
http://pubs.acs.org/doi/pdf/10.1021/ct500532v
Jak to mamy możliwość obserwować na co dzień, substancje i materiały różnią się między sobą między innymi tym, że podobnej wielkości kawałki mają różny ciężar. Klocki drewna rzucone na wodę pływają łatwo, bryły lodu wynurzają nad powierzchnię tylko końcówki a kamień tonie. Miarą tej właściwości jest gęstość, czyli masa mieszcząca się w danej objętości. Na gęstość wpływają różne cechy, na przykład porowatość potrafiąca znacznie zmniejszyć gęstość materiału (niektóre aerożele są niemal tak lekkie jak powietrze), zawartość wody, ale w większym stopniu rodzaj substancji.
Najgęstszym materiałem na ziemi jest metaliczny osm, metal szlachetny podobny do platyny. Jego gęstość to ok. 22,65 g/cm3, co oznacza, że kostka o boku 10 cm waży 22,5 kg. Jest dwa razy gęstszy od ołowiu, który już jest uważany za bardzo ciężki. Gęstością dorównuje mu tylko iryd (niektóre pomiary pokazują nawet nieco większą gęstość irydu ale to już zależy od sposobu pomiaru). W związku z tym rodzi się oczywiste pytanie - dlaczego osm jest aż tak ciężki?
Jedną z oczywistych przyczyn, jest jego wysoka masa atomowa - 190,23 u. Jego atomy są więc ciężkie i ta sama ich ilość waży więcej niż dla wielu innych metali. Jednakowoż nie jest osm wcale najcięższym pierwiastkiem, większą masę atomową (207 u) ma choćby ołów, który ma przecież dwa razy mniejszą gęstość
Kolejnym czynnikiem warunkującym jest promień atomowy, czyli wielkość atomu liczona do ostatniej powłoki elektronowej. Im mniejsze są atomy tym więcej może się ich zmieścić w tej samej objętości. W układzie okresowym dają się zauważyć dwie ogólne reguły wielkości atomów - pierwsza jest dość oczywista - w dół wielkość atomów rośnie, mają bowiem coraz bardziej dodatnie jądro, coraz większą ilość elektronów a w związku z regułami ich upakowania w przestrzeni, coraz więcej sięgających dalej powłok na których mogą się pomieścić.
Druga jest natomiast mniej intuicyjna - wzdłuż okresu, od lewej do prawej, atomy się zmniejszają, mimo że krąży wokół nich coraz więcej elektronów. Wynika to stąd, że w okresie nie przybywają nowe zewnętrzne powłoki elektronowe, a elektrony zapełniają jedynie odpowiednie dla danego bloku podpowłoki, najpierw s, potem p, a dla cięższych pierwiastków też d i f. Natomiast ze wzrostem masy jądra rośnie ładunek przyciągający elektrony, co zmniejsza całkowitą średnicę atomu.
Efekt ten najwyraźniejszy jest w górnych okresach. W dolnych okresach zmniejszanie się średnic atomów jest nawet większe niż by to wynikało z samego zwiększenia ładunku jądra. Tłumaczy się to bardzo słabym osłanianiem ładunku jądra przez orbital f, przez co najbardziej zewnętrzne elektrony czują przyciąganie nieco silniej.
Osm znajduje się w najniższym okresie z trwałymi pierwiastkami, mając w sobie także słabo ekranujący orbital f, jest zatem bardzo masywnym atomem, którego średnica nie jest tak duża jak to by można oczekiwać. Tyle tylko, że jeszcze mniejsze atomy ma wspomniany ołów, więc musi tu dokładać się jeszcze dodatkowy efekt.
Metale w stanie stałym nie stanowią po prostu atomów ułożonych jeden obok drugiego. Są połączone wiązaniami poprzez uwspólnione elektrony, związane na tyle słabo. że przeskakują z atomu na atom, tworząc zdezorganizowany "gaz elektronowy". To dzięki nim metale przewodzą prąd i ciepło, oraz dobrze odbijają światło. Połączenie dwóch atomów wiązaniem przybliża je do siebie, i to tym bardziej im większa jest energia tego wiązania. Na to więc jak dużo masy możemy zmieścić w objętości, będzie wpływała długość wiązania metalicznego.
Osm znajduje się w układzie okresowym w bloku D, co oznacza że zewnętrzne elektrony walencyjne pochodzą z orbitalu d mieszczącego 10 elektronów w 5 powiązanych parach. Podczas tworzenia wiązań z innymi atomami w metalu tworzą się orbitale molekularne, na które wchodzą elektrony, odchodząc od stanu podstawowego. W kolejnych, coraz cięższych atomach, na orbital molekularny wchodzi coraz więcej elektronów, przez co wzrasta uśredniona siła wiązania. Jednak po minięciu połowy pojemności orbitalu, w cięższych atomach elektrony zaczynają tworzyć pary co zmniejsza ich zdolność do wiązania. W efekcie najsilniej związane są atomy w metalach leżących w połowie bloku D a najsłabiej te leżące na początku i końcu. Silniej związane atomy leżą bliżej siebie i więcej się ich zmieści w danej objętości.
Miarą tych oddziaływań jest energia kohezji, która wzrasta w dół grupy i do środka bloku. Największą energię kohezji ma wolfram, zaraz za nim tantal, ren, osm i iryd, potem energia dość szybko spada. Przekłada się to wprost na temperatury topnienia i wrzenia - najtrudniej topliwym metalem jest wolfram, po nim ren, tantal i osm.
Podsumowując
Spróbujmy więc podsumować wszystkie efekty - osm leży w dość daleko w układzie okresowym i ma wysoką masę atomową, ale ze względu na wysoki ładunek jądra wielkość jego atomów nie jest tak duża. Znajduje w najniższym okresie z trwałymi pierwiastkami i tuż za środkiem bloku D, co przekłada się na wysoką energię kohezji i krótkie wiązania metaliczne. W związku z tym w danej objętości zmieścić się może dużo jego masywnych atomów. Wprawdzie są pierwiastki o większej od niego energii kohezji, ale po pierwsze o nieco mniejszej masie atomowej a po drugie o nieco większej średnicy atomów w stanie podstawowym. Są też pierwiastki o dużo mniejszych atomach i większej masie, ale wyraźnie mniejszej energii kohezji.
Po prostu trzy funkcje regulujące gęstość pierwiastków przebiegają tak, że ich suma osiąga minimum dla tego pierwiastka. Dla któregoś musiało się trafić. Ze względnie dużej, mimo pewnego spadku, energii kohezji korzysta jeszcze iryd, który jest drugim najgęstszym pierwiastkiem.
Czy to już koniec? Nie stworzymy jeszcze gęstszych materiałów? Cóż, sztucznie otrzymaliśmy jeszcze cięższe pierwiastki, uzupełniające 7 okres. Jeśli powyższe prawa stosują się do nich tak samo, to pierwiastki pośrodku okresu powinny być bardzo ciężkie i z wysoką energią kohezji. Teoretyczne obliczenia pokazują, że metaliczny has (Hs) o liczbie atomowej 108, który leży w układzie okresowym pod osmem, powinien mieć gęstość 41 g/cm3, a więc dwa razy większą. Jednak ze względu na bardzo krótki okres półtrwania, wynoszący około minuty dla najtrwalszych izotopów, zmierzenie tego bezpośrednio jest niemożliwe.
ed.
Gęstość metali rośnie wraz ze spadkiem temperatury. Dla irydu współczynnik objętościowej kurczliwości temperaturowej jest nieco większy niż dla osmu, a ponieważ ich gęstości są zbliżone pojawiają się przypuszczenia, że w bardzo niskich temperaturach, rzędu 50 K iryd może jednak wyprzedzać osm.[1] Pomiar gęstości w tak niskich temperaturach jest jednak nieco kłopotliwy i nie wiele było takich badań a teoretyczne wartości na tyle się zbliżają, że różnica staje się mniejsza niż granica błędu. Kto wie, może jednak przy dokładniejszych badaniach okaże się, że osm jest najgęstszy tylko w pewnym zakresie temperatur?
------------
[1] John W. Arblaster, Is Osmium Always the Densest Metal?, Johnson Matthey Technol. Rev., 2014, 58, (3), 137 doi:10.1595/147106714x682337
* https://en.wikipedia.org/wiki/Lanthanide_contraction
* https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Metals_and_Alloys:_Structure,_Bonding,_Electronic_and_Magnetic_Properties
* https://www.itp.tu-berlin.de/fileadmin/a3233/upload/SS12/TheoFest2012/Kapitel/Chapter_6.pdf
http://pubs.acs.org/doi/pdf/10.1021/ct500532v
sobota, 30 kwietnia 2016
Chemiczne wieści (6.)
Dzisiejszy odcinek wypadł bardziej kwantowo-fizyczny. Bo tak.
Czterowymiarowy kryształ?
Tlenki żelaza choć znane od wieków, wciąż budzą zainteresowanie technologów i fizyków i niekiedy nadal daje się odkryć nowe, ciekawe ich właściwości. W 2011 roku doniesiono o odkryciu, że mieszanina tleneku żelaza II i żelaza II/III (FeO+Fe3O4) poddany działaniu wysokiego ciśnienia zamienia się w unikalny tlenek Fe4O5. Faza ta wykazywała silne właściwości ferrimagnetyczne podobne do magnetytu.
Wiadomo było już, że magnetyt w niskich temperaturach ulega przejściu fazowemu II rodzaju, w wyniku którego atomy o różnym stopniu utlenienia tworzą równoległe struktury (Wervey phase). W typowym magnetycie atomy żelaza II i żelaza III są przemieszane statystycznie, nie tworząc regularnych struktur, zaś elektrony mogą przeskakiwać od jednego jonu do drugiego dzięki czemu materiał wykazuje przewodność elektryczną. Po przejściu fazowym następuje samoorganizacja - atomy o danym stopniu utlenienia tworzą w sieci krystalicznej struktury liniowe lub płaszczyzny.
W przypadku magnetytu wiązało się to z utrudnieniem ruchu elektronów i wzrostem oporu, ale w innych materiałach może to doprowadzać do pojawiania się nadprzewodnictwa, ferromagnetyczności lub gigantycznego magnetooporu stosowanego dziś w elektronicznych nośnikach danych.
Nic też dziwnego, że postanowiono sprawdzić czy w podobny sposób zachowa się nowy materiał. Rosyjski zespół stwierdził zachodzenie podobnej przemiany poniżej temperatury 150 K. Materiał zmieniał właściwości magnetyczne a opór elektryczny rósł o dwa rzędy wielkości. Problematyczne okazało się natomiast przypisanie mu określonej struktury. Zakładano, że mamy do czynienia z takim samym zjawiskiem organizacji stopni utlenienia, ale wyniki pomiarów nie dawały się złożyć w prosty model. Wyglądało na to, że struktury atomów o jednakowym stopniu utlenienia falują i statystycznie może się wydawać, że są rozmieszczone przypadkowo.
Porządek pojawił się dopiero gdy symulowano rozkład ładunków w przestrzeni czterowymiarowej. Z tego też powodu informacje o tym odkryciu często powtarzają że odkryto "czterowymiarowy kryształ". W tym przypadku chodzi jednak jedynie o matematyczny model rozkładu ładunków, opisywany funkcją nie dającą rozwiązania w normalnej przestrzeni.[1]
Kwantowa woda
Nietypowe zachowanie się wody zamkniętej w wąskich kapilarach odkryli właśnie amerykańscy badacze. Badali oni właściwości wody w kapilarnych kanałach struktury berylu, ważnego minerału magmowego, przy pomocy techniki rozpraszania neutronów. Średnica kanału na tyle ograniczała cząsteczki, że w przekroju mieściła się tylko jedna. Zamiast jednak struktur cząsteczek uzyskali nietypowe, heksagonalne pierścienie. Sygnał obecności atomu tlenu pojawiał się w sześciu miejscach, a każdego z dwóch wodorów także w sześciu. Ponieważ zaś sześć cząsteczek by się w przekroju kanału nie zmieściło, zaś dla tej jednej bariera energetyczna obrotu jest zbyt duża aby wynik wywoływało ustawianie się jej w różnych pozycjach w trakcie badania, jako wyjaśnienie tych obserwacji zaproponowali nietypowy model - jest to w istocie nadal jedna cząsteczka, tylko kwantowo interferująca sama ze sobą.[2]
Jedną z konsekwencji teorii kwantowej była hipoteza de Brogile'a, że każdej cząstce materialnej można przypisać właściwości falowe które wpływają na jej oddziaływania i zachowania. Za sprawą tych właściwości obserwujemy dyfrakcję cząstek na dwóch szczelinach lub siatkach dyfrakcyjnych, powodującą że prawdopodobieństwo znalezienia się cząstki z danym miejscu zależy od wzoru jej "fali materii". Przepuszczając odpowiednio dużo cząstek przez szczeliny i badając w jakie miejsce na detektorze uderzą, otrzymujemy w końcu wzór właściwy interferującym falom.
Jedną ze szczególnie interesujących konsekwencji tego zjawiska są kwantowe miraże, czyli wzory oddziaływań, jakie tworzy cząstka zamknięta w niewiele od niej większym ograniczeniu przestrzennym. Wewnątrz okręgu ułożonego z atomów na podłożu powstaje wzór podobny do fal na wodzie z centralną górką stanowiącą złudzenie istnienia tam jakiegoś atomu:
Po umieszczeniu atomu w jednym z ognisk elipsy, w drugim ognisku pojawia się jego słaby miraż:
Jak się wydaje w opisywanym przypadku zachodzi coś podobnego. Cząsteczka wody wewnątrz niewiele od niej większego, heksagonalnego kanału interferuje. Próby określenia położenia jej atomów kończą się więc stwierdzeniem sześciokątnego wzoru na który składają się zagęszczenia fal prawdopodobieństwa obecności atomu w tej niewielkiej przestrzeni. Poprzednio udało się zmierzyć podobny efekt dla atomów wodoru, ale woda to już zupełnie inna sprawa. Pory tych rozmiarów (4 A) występują w minerałach budujących skorupę ziemską, zatem kwantowy efekt może mieć znaczenie dla modelowania właściwości gleby i skał.
Nowy rodzaj wiązania?
Obliczenia kwantowomechaniczne dokonane przez badaczy z amerykańskiego Southern Methodist University w Dallas wskazują na istnienie jeszcze jednego rzadkiego rodzaju wiązania chemicznego - jest to odmiana wiązania wodorowego z oddziaływaniem między atomem wodoru połączonym z borem a układem aromatycznym. Znane były tego rodzaju połączenia dla układów w których wodór połączony był z węglem i azotem, mające pewne znaczenie w biologii molekularnej, jednak dotychczas wydawało się, że nie powinny zachodzić dla boranów. Bor ma mniejszą elektroujemność niż wodór, toteż wiązanie między nimi jest tak spolaryzowane, że na protonie pojawia się lekki ładunek ujemny. Bardziej naładowany elektronami wodór powinien być więc odpychany przez pełen elektronów pierścień aromatyczny.
Z drugiej strony związki boru są często połączeniami elektrono-deficytowymi, z pojawiającymi się wiązaniami trójcentrowymi a w takiej sytuacji na wodorze powinien pojawić się cząstkowy ładunek dodatni.
Wedle ostatnich wyliczeń diborany oraz karborany powinny na tej zasadzie tworzyć słabe wiązania B-H--Ar o długości 2,65-2,50 A . Pewnym potwierdzeniem tych przewidywań może być struktura pewnego kompleksu irydu, w którym między wodorem grupy karboranowej a pierścieniem z grupy trifenylometylowej występuje trudne do wytłumaczenia w inny sposób zbliżenie na zbliżoną odległość.[3]
---------
[1] Ovsyannikov V. S.; Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016; DOI: 10.1038/NCHEM.2478
[2] Kolesnikov A.I. et al. Quantum Tunneling of Water in Beryl: A New State of the Water Molecule. Physical Review Letters, 2016; 116 (16) DOI: 10.1103/PhysRevLett.116.167802
[3] X Zhang et al, B–H···π Interaction: A New Type of Nonclassical Hydrogen Bonding
J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b01249
Czterowymiarowy kryształ?
Tlenki żelaza choć znane od wieków, wciąż budzą zainteresowanie technologów i fizyków i niekiedy nadal daje się odkryć nowe, ciekawe ich właściwości. W 2011 roku doniesiono o odkryciu, że mieszanina tleneku żelaza II i żelaza II/III (FeO+Fe3O4) poddany działaniu wysokiego ciśnienia zamienia się w unikalny tlenek Fe4O5. Faza ta wykazywała silne właściwości ferrimagnetyczne podobne do magnetytu.
Wiadomo było już, że magnetyt w niskich temperaturach ulega przejściu fazowemu II rodzaju, w wyniku którego atomy o różnym stopniu utlenienia tworzą równoległe struktury (Wervey phase). W typowym magnetycie atomy żelaza II i żelaza III są przemieszane statystycznie, nie tworząc regularnych struktur, zaś elektrony mogą przeskakiwać od jednego jonu do drugiego dzięki czemu materiał wykazuje przewodność elektryczną. Po przejściu fazowym następuje samoorganizacja - atomy o danym stopniu utlenienia tworzą w sieci krystalicznej struktury liniowe lub płaszczyzny.
W przypadku magnetytu wiązało się to z utrudnieniem ruchu elektronów i wzrostem oporu, ale w innych materiałach może to doprowadzać do pojawiania się nadprzewodnictwa, ferromagnetyczności lub gigantycznego magnetooporu stosowanego dziś w elektronicznych nośnikach danych.
Nic też dziwnego, że postanowiono sprawdzić czy w podobny sposób zachowa się nowy materiał. Rosyjski zespół stwierdził zachodzenie podobnej przemiany poniżej temperatury 150 K. Materiał zmieniał właściwości magnetyczne a opór elektryczny rósł o dwa rzędy wielkości. Problematyczne okazało się natomiast przypisanie mu określonej struktury. Zakładano, że mamy do czynienia z takim samym zjawiskiem organizacji stopni utlenienia, ale wyniki pomiarów nie dawały się złożyć w prosty model. Wyglądało na to, że struktury atomów o jednakowym stopniu utlenienia falują i statystycznie może się wydawać, że są rozmieszczone przypadkowo.
Porządek pojawił się dopiero gdy symulowano rozkład ładunków w przestrzeni czterowymiarowej. Z tego też powodu informacje o tym odkryciu często powtarzają że odkryto "czterowymiarowy kryształ". W tym przypadku chodzi jednak jedynie o matematyczny model rozkładu ładunków, opisywany funkcją nie dającą rozwiązania w normalnej przestrzeni.[1]
Kwantowa woda
Nietypowe zachowanie się wody zamkniętej w wąskich kapilarach odkryli właśnie amerykańscy badacze. Badali oni właściwości wody w kapilarnych kanałach struktury berylu, ważnego minerału magmowego, przy pomocy techniki rozpraszania neutronów. Średnica kanału na tyle ograniczała cząsteczki, że w przekroju mieściła się tylko jedna. Zamiast jednak struktur cząsteczek uzyskali nietypowe, heksagonalne pierścienie. Sygnał obecności atomu tlenu pojawiał się w sześciu miejscach, a każdego z dwóch wodorów także w sześciu. Ponieważ zaś sześć cząsteczek by się w przekroju kanału nie zmieściło, zaś dla tej jednej bariera energetyczna obrotu jest zbyt duża aby wynik wywoływało ustawianie się jej w różnych pozycjach w trakcie badania, jako wyjaśnienie tych obserwacji zaproponowali nietypowy model - jest to w istocie nadal jedna cząsteczka, tylko kwantowo interferująca sama ze sobą.[2]
Jedną z konsekwencji teorii kwantowej była hipoteza de Brogile'a, że każdej cząstce materialnej można przypisać właściwości falowe które wpływają na jej oddziaływania i zachowania. Za sprawą tych właściwości obserwujemy dyfrakcję cząstek na dwóch szczelinach lub siatkach dyfrakcyjnych, powodującą że prawdopodobieństwo znalezienia się cząstki z danym miejscu zależy od wzoru jej "fali materii". Przepuszczając odpowiednio dużo cząstek przez szczeliny i badając w jakie miejsce na detektorze uderzą, otrzymujemy w końcu wzór właściwy interferującym falom.
Jedną ze szczególnie interesujących konsekwencji tego zjawiska są kwantowe miraże, czyli wzory oddziaływań, jakie tworzy cząstka zamknięta w niewiele od niej większym ograniczeniu przestrzennym. Wewnątrz okręgu ułożonego z atomów na podłożu powstaje wzór podobny do fal na wodzie z centralną górką stanowiącą złudzenie istnienia tam jakiegoś atomu:
Po umieszczeniu atomu w jednym z ognisk elipsy, w drugim ognisku pojawia się jego słaby miraż:
Jak się wydaje w opisywanym przypadku zachodzi coś podobnego. Cząsteczka wody wewnątrz niewiele od niej większego, heksagonalnego kanału interferuje. Próby określenia położenia jej atomów kończą się więc stwierdzeniem sześciokątnego wzoru na który składają się zagęszczenia fal prawdopodobieństwa obecności atomu w tej niewielkiej przestrzeni. Poprzednio udało się zmierzyć podobny efekt dla atomów wodoru, ale woda to już zupełnie inna sprawa. Pory tych rozmiarów (4 A) występują w minerałach budujących skorupę ziemską, zatem kwantowy efekt może mieć znaczenie dla modelowania właściwości gleby i skał.
Nowy rodzaj wiązania?
Obliczenia kwantowomechaniczne dokonane przez badaczy z amerykańskiego Southern Methodist University w Dallas wskazują na istnienie jeszcze jednego rzadkiego rodzaju wiązania chemicznego - jest to odmiana wiązania wodorowego z oddziaływaniem między atomem wodoru połączonym z borem a układem aromatycznym. Znane były tego rodzaju połączenia dla układów w których wodór połączony był z węglem i azotem, mające pewne znaczenie w biologii molekularnej, jednak dotychczas wydawało się, że nie powinny zachodzić dla boranów. Bor ma mniejszą elektroujemność niż wodór, toteż wiązanie między nimi jest tak spolaryzowane, że na protonie pojawia się lekki ładunek ujemny. Bardziej naładowany elektronami wodór powinien być więc odpychany przez pełen elektronów pierścień aromatyczny.
Z drugiej strony związki boru są często połączeniami elektrono-deficytowymi, z pojawiającymi się wiązaniami trójcentrowymi a w takiej sytuacji na wodorze powinien pojawić się cząstkowy ładunek dodatni.
@ American Chemical Society |
---------
[1] Ovsyannikov V. S.; Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016; DOI: 10.1038/NCHEM.2478
[2] Kolesnikov A.I. et al. Quantum Tunneling of Water in Beryl: A New State of the Water Molecule. Physical Review Letters, 2016; 116 (16) DOI: 10.1103/PhysRevLett.116.167802
[3] X Zhang et al, B–H···π Interaction: A New Type of Nonclassical Hydrogen Bonding
J. Am. Chem. Soc., 2016, DOI: 10.1021/jacs.6b01249
poniedziałek, 15 lutego 2016
Chemiczne wieści (4.)
Asfalt który sam się soli
Jak to po raz kolejny przekonaliśmy się w tym roku, drogowcy zawsze są zaskakiwani zimą. Niech tylko mocniej sypnie a okaże się, że pługosolarki gdzieś utknęły po drodze a powrót do domu staje się mocno utrudniony. Na ciekawy pomysł aby rozwiązać ten problem i przyspieszyć odladzanie dróg wpadli inżynierowie z Turcji - postanowili dodać sól do asfaltu.
Mrówczan potasu - sól stosowaną do odladzania w bardzo niskich temperaturach, uważany za substancję mniej szkodliwą dla środowiska od zwykłej soli - zmieszano z polimerem styrenowo-butadienowo-styrenowym, otrzymując żel w którym drobne cząstki soli zostały otoczone polimerem. Taki granulat połączono z masą bitumiczną będącą głównym składnikiem asfaltu drogowego. Następnie badano utrzymywanie się lodu i śniegu na powierzchni pokrytej testową mieszanką. Stwierdzono istotne opóźnienie pojawiania się oblodzenia i warstwy śliskiego śniegu, zarazem uwalnianie soli z materiału było dosyć niskie, rzędu 1-10% w ciągu 67 dni testu.[1]
Rozwiązanie to wydaje się jednak wiązać z problemami, podobnymi co solenie dróg z wierzchu - migracja uwalnianych soli wewnątrz mieszanki asfaltowej i krystalizacja w szczelinach może pogarszać wytrzymałość materiału. W dodatku sól będzie się zapewne uwalniała nie tylko w sezonie zimowym ale też podczas każdego deszczu, co spowoduje, że szybko wypłucze się cała i wzbogaci w sód glebę wokół drogi. Tak że niekoniecznie jest to udany pomysł.
Białkowe LEDy
Diody LED zrobiły w ostatnich latach wielką karierę w technice oświetleniowej. Będąc układami półprzewodników w których światło powstaje nie w wyniku żarzenia się jak w żarówkach, lecz podczas rekombinacji elektronów przewodnika z dziurami elektronowymi półprzewodnika typu p, osiągają większa sprawność energetyczną, i zużywają mniej prądu na wytworzenie tej samej ilości światła. Zarazem jednak są urządzeniami dosyć drogimi, na co składa się między innymi koszt wytworzenia dobrej jakości półprzewodników z tak egzotycznych materiałów jak domieszkowany arsenek galu. Tym bardziej, że jeden rodzaj półprzewodnika wytwarza światło w jednym kolorze, aby otrzymać światło białe zdatne do oświetlenia należy więc użyć przynajmniej trzech półprzewodników upakowanych jeden obok drugiego, tak aby ich zmieszane kolory tworzyły wrażenie światła białego. Podraża to koszty produkcji i zwiększa ilość pierwiastków zawartych w produkcie. Może się to jednak zmienić, jeśli do produkcji zostaną wprowadzone diody białkowe.
Zespół hiszpańsko-niemieckich technologów wykorzystał znane w biologii białka fluorescencyjne i zmieszał je z tworzywem sztucznym, tworząc masę o konsystencji gumy. Masa ta świeci na różne kolory pod wpływem niebieskiego światła. Wystarczy więc użyć we właściwej diodzie jedynie półprzewodnik świecący na niebiesko i dodać do niego warstwy białkowych gum zielonych i czerwonych, aby otrzymać białe światło.
Zmniejsza to zapotrzebowanie na rzadkie pierwiastki i potencjalnie zmniejsza koszty produkcji.[2]
Dobry chrom zamienia się w zły
Jak to już było na tym blogu wielokrotnie wspominane, ta sama substancja może być zarówno korzystna jak i trująca, przy czym zazwyczaj zależy to od dawki. Wiele metali w niewielkich ilościach jest potrzebnych dla organizmu, zaś w zbyt dużych stają się truciznami. Szczególnym przypadkiem jest chrom, którego oddziaływanie na organizm zależy też od stopnia utlenienia. Nisko utlenione sole na III stopniu utlenienia są przyswajane przez organizm i używane jako kofaktory wielu enzymów stanowiących ważne elementy metabolizmu.
Sole na VI stopniu utlenienia są natomiast toksyczne, od dawna wiadomo także, że mają działanie rakotwórcze. Jest to jedna z przyczyn przez które obecnie studenci na zajęciach chemii nie myją naczyń chromianką.
W związku z poszerzaniem się wiedzy o dobrych skutkach chromu III, a zwłaszcza o potencjalnym wpływie na masę ciała, producenci suplementów zaczęli produkować najrozmaitsze preparaty z solami chromu. Co rodziło dość oczywiste obawy, czy aby przypadkiem taki suplement nie będzie się gdzieś utleniał do toksycznej formy. Aby temu zaradzić suplemenciarze odpowiednio modyfikowali skład tabletek, chętnie używając organicznych soli i chelatów, które oprócz większej stabilności dodatkowo lepiej się wchłaniały. Ponieważ zaś w organizmie chrom nie utleniał się, wydawało się, że w takim razie suplementy te są całkiem bezpieczne.
Najnowsze badane międzynarodowego zespołu podważa jednak ten pogląd. Badacze potraktowali wyizolowane komórki tkanki tłuszczowej roztworami zawierającymi związki chromu III takie jak używane w suplementach, a więc na przykład octan, azotan lub kompleks z cysteiną, i przy pomocy spektroskopii fluorescecyjnej stwierdzili, że w komórkach zachodziło częściowe utlenienie do chromu VI.
Wybrano akurat adipocyty, to jest komórki tkanki tłuszczowej, z powodu znanej właściwości wydzielania nadtlenku wodoru w reakcji na insulinę. Nadtlenek jest silnym utleniaczem, zdolnym utlenić chrom III do chromu VI, co teraz udało się zaobserwować na żywych komórkach. To zaś oznaczałoby, że długotrwałe zażywanie dużych ilości suplementów chromu III niesie większe ryzyko zdrowotne, niż to dotychczas przypuszczano.[3]
Organiczny filtr na gazy bojowe.
Metal-Organic Frameworks czyli, jak to się tłumaczy metalo-organiczne szkielety (dokładniej byłoby tłumaczyć "kraty") to szczególny rodzaj materiałów który wywołuje coraz większe zainteresowanie. Jest to właściwie usieciowany, wielocentrowy kompleks zawierający rozgałęzione ligandy organiczne łączące się z wieloma jonami centralnymi. Struktura materiału jest na tyle regularna i dobrze zdefiniowana, że może on tworzyć kryształy. Pomiędzy częściami szkieletu powstają stosunkowo duże przestrzenie, otrzymana struktura jest zatem niezwykle porowata.
Ze względu na to, że tak usieciowane kompleksy mogą selektywnie pochłaniać inne substancje, a także wchodzić z nimi w reakcje, badania nad MOF-ami są dość intensywne, coraz pojawiają się nowe informacje o nowych zastosowaniach, a ja będę musiał poświęcić im osobny artykuł.
Na razie jednak nowinka - wynaleziono metalo-organiczny szkielet który mógłby został użyty do ochrony przed gazami bojowymi.
Szkieletowy kompleks cyrkonu z kwasem tereftalowym, w tym także wersje wzbogacone o tertbutanolan litu, okazały się być dobrymi katalizatorami które przy obecności śladów wody hydrolizują związki fosforoorganiczne, podobne do gazu musztardowego. Ponieważ związkiem tym można pokrywać włókna i materiały, dość oczywista jest przydatność nowo odkrytego związku w filtrach powietrza, mających neutralizować gazy bojowe.[4]
Cytryny i siarka do oczyszczania wody
Chemicy na świecie poszukują jak najprostszych metod produkcji przydatnych substancji, tak aby były one w miarę możliwości jak najtańsze. Tym tropem poszedł zespół chemików z Australii, którzy pokazali jak z siarki i składnika skórki cytrynowej stworzyć substancję oczyszczającą wodę z metali ciężkich.
D-Limonen to monoterpen będący główną substancją zapachową zawartą w skórce cytryny, jest częstym składnikiem mieszanej zapachowych i środków czystości. Ponieważ odzyskuje się go ze zmielonej skórki, której obtarcie jest jednym z etapów produkcji soku cytrynowego, przy dość dużej produkcji rocznej jest związkiem względnie tanim. Badacze szukający nowych materiałów chelatujących jony metali ciężkich zainteresowali się doniesieniami o tym, że limonen może utworzyć połączenia wielosiarczkowe. Wiadomym było, że liniowe wielosiarczki chętnie kompleksują jony metali, dlatego taka właściwość łatwej w otrzymaniu pochodnej taniego związku naturalnego byłaby bardzo korzystna.
Wzięto czystą siarkę i ogrzano do stopienia. W temperaturze 170 stopni, w której pękają pierścieniowe cząsteczki siarki, dodano do niej odpowiednią ilość limonenu. Z powstałej brunatnej masy oddzielono nieprzereagowaną siarkę, będący wynikiem utlenienia cymen i inne produkty uboczne, otrzymując czerwoną woskowatą substancję będącą cyklicznymi połączeniami dwóch cząsteczek limonenu, połączonych mostkami wielosiarczkowymi.
Jak się okazało substancja ta chętnie wychwytuje z wody jony metali ciężkich, w przypadku jonów rtęci II dodatkowo reagując wyraźną zmianą zabarwienia, co może mieć zastosowanie analityczne. [5]
---------
[1] D. Aydin et al.; Gelation-Stabilized Functional Composite-Modified Bitumen for Anti-icing Purposes, Ind. Eng. Chem. Res., 2015, 54 (50), pp 12587–12596
[2] Weber M. D.; Bioinspired Hybrid White Light-Emitting Diodes. Advanced Materials, 2015; 27 (37): 5493
[3] Wu L.E. et al.; Carcinogenic Chromium(VI) Compounds Formed by Intracellular Oxidation of Chromium(III) Dietary Supplements by Adipocytes, Angew. Chem. Int. Ed. Volume 55, Issue 5
Pages 1742–1745
[4] Subendu S.M., Hans-Jürgen H.; Breaking Down Chemical Weapons by Metal–Organic Frameworks, Angew. Chem. Int. Ed. Volume 55, Issue 1, Pages 42–44
[5] M.P. Crockett et. al, Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil, Angewandte Chemie International Edition, 55, 5 [Open Acces]
Jak to po raz kolejny przekonaliśmy się w tym roku, drogowcy zawsze są zaskakiwani zimą. Niech tylko mocniej sypnie a okaże się, że pługosolarki gdzieś utknęły po drodze a powrót do domu staje się mocno utrudniony. Na ciekawy pomysł aby rozwiązać ten problem i przyspieszyć odladzanie dróg wpadli inżynierowie z Turcji - postanowili dodać sól do asfaltu.
Mrówczan potasu - sól stosowaną do odladzania w bardzo niskich temperaturach, uważany za substancję mniej szkodliwą dla środowiska od zwykłej soli - zmieszano z polimerem styrenowo-butadienowo-styrenowym, otrzymując żel w którym drobne cząstki soli zostały otoczone polimerem. Taki granulat połączono z masą bitumiczną będącą głównym składnikiem asfaltu drogowego. Następnie badano utrzymywanie się lodu i śniegu na powierzchni pokrytej testową mieszanką. Stwierdzono istotne opóźnienie pojawiania się oblodzenia i warstwy śliskiego śniegu, zarazem uwalnianie soli z materiału było dosyć niskie, rzędu 1-10% w ciągu 67 dni testu.[1]
Rozwiązanie to wydaje się jednak wiązać z problemami, podobnymi co solenie dróg z wierzchu - migracja uwalnianych soli wewnątrz mieszanki asfaltowej i krystalizacja w szczelinach może pogarszać wytrzymałość materiału. W dodatku sól będzie się zapewne uwalniała nie tylko w sezonie zimowym ale też podczas każdego deszczu, co spowoduje, że szybko wypłucze się cała i wzbogaci w sód glebę wokół drogi. Tak że niekoniecznie jest to udany pomysł.
Białkowe LEDy
Diody LED zrobiły w ostatnich latach wielką karierę w technice oświetleniowej. Będąc układami półprzewodników w których światło powstaje nie w wyniku żarzenia się jak w żarówkach, lecz podczas rekombinacji elektronów przewodnika z dziurami elektronowymi półprzewodnika typu p, osiągają większa sprawność energetyczną, i zużywają mniej prądu na wytworzenie tej samej ilości światła. Zarazem jednak są urządzeniami dosyć drogimi, na co składa się między innymi koszt wytworzenia dobrej jakości półprzewodników z tak egzotycznych materiałów jak domieszkowany arsenek galu. Tym bardziej, że jeden rodzaj półprzewodnika wytwarza światło w jednym kolorze, aby otrzymać światło białe zdatne do oświetlenia należy więc użyć przynajmniej trzech półprzewodników upakowanych jeden obok drugiego, tak aby ich zmieszane kolory tworzyły wrażenie światła białego. Podraża to koszty produkcji i zwiększa ilość pierwiastków zawartych w produkcie. Może się to jednak zmienić, jeśli do produkcji zostaną wprowadzone diody białkowe.
@ M. D. Weber/University of Erlangen-Nuremberg |
Zmniejsza to zapotrzebowanie na rzadkie pierwiastki i potencjalnie zmniejsza koszty produkcji.[2]
Dobry chrom zamienia się w zły
Jak to już było na tym blogu wielokrotnie wspominane, ta sama substancja może być zarówno korzystna jak i trująca, przy czym zazwyczaj zależy to od dawki. Wiele metali w niewielkich ilościach jest potrzebnych dla organizmu, zaś w zbyt dużych stają się truciznami. Szczególnym przypadkiem jest chrom, którego oddziaływanie na organizm zależy też od stopnia utlenienia. Nisko utlenione sole na III stopniu utlenienia są przyswajane przez organizm i używane jako kofaktory wielu enzymów stanowiących ważne elementy metabolizmu.
Sole na VI stopniu utlenienia są natomiast toksyczne, od dawna wiadomo także, że mają działanie rakotwórcze. Jest to jedna z przyczyn przez które obecnie studenci na zajęciach chemii nie myją naczyń chromianką.
W związku z poszerzaniem się wiedzy o dobrych skutkach chromu III, a zwłaszcza o potencjalnym wpływie na masę ciała, producenci suplementów zaczęli produkować najrozmaitsze preparaty z solami chromu. Co rodziło dość oczywiste obawy, czy aby przypadkiem taki suplement nie będzie się gdzieś utleniał do toksycznej formy. Aby temu zaradzić suplemenciarze odpowiednio modyfikowali skład tabletek, chętnie używając organicznych soli i chelatów, które oprócz większej stabilności dodatkowo lepiej się wchłaniały. Ponieważ zaś w organizmie chrom nie utleniał się, wydawało się, że w takim razie suplementy te są całkiem bezpieczne.
Najnowsze badane międzynarodowego zespołu podważa jednak ten pogląd. Badacze potraktowali wyizolowane komórki tkanki tłuszczowej roztworami zawierającymi związki chromu III takie jak używane w suplementach, a więc na przykład octan, azotan lub kompleks z cysteiną, i przy pomocy spektroskopii fluorescecyjnej stwierdzili, że w komórkach zachodziło częściowe utlenienie do chromu VI.
Wybrano akurat adipocyty, to jest komórki tkanki tłuszczowej, z powodu znanej właściwości wydzielania nadtlenku wodoru w reakcji na insulinę. Nadtlenek jest silnym utleniaczem, zdolnym utlenić chrom III do chromu VI, co teraz udało się zaobserwować na żywych komórkach. To zaś oznaczałoby, że długotrwałe zażywanie dużych ilości suplementów chromu III niesie większe ryzyko zdrowotne, niż to dotychczas przypuszczano.[3]
Organiczny filtr na gazy bojowe.
Metal-Organic Frameworks czyli, jak to się tłumaczy metalo-organiczne szkielety (dokładniej byłoby tłumaczyć "kraty") to szczególny rodzaj materiałów który wywołuje coraz większe zainteresowanie. Jest to właściwie usieciowany, wielocentrowy kompleks zawierający rozgałęzione ligandy organiczne łączące się z wieloma jonami centralnymi. Struktura materiału jest na tyle regularna i dobrze zdefiniowana, że może on tworzyć kryształy. Pomiędzy częściami szkieletu powstają stosunkowo duże przestrzenie, otrzymana struktura jest zatem niezwykle porowata.
Ze względu na to, że tak usieciowane kompleksy mogą selektywnie pochłaniać inne substancje, a także wchodzić z nimi w reakcje, badania nad MOF-ami są dość intensywne, coraz pojawiają się nowe informacje o nowych zastosowaniach, a ja będę musiał poświęcić im osobny artykuł.
Na razie jednak nowinka - wynaleziono metalo-organiczny szkielet który mógłby został użyty do ochrony przed gazami bojowymi.
Szkieletowy kompleks cyrkonu z kwasem tereftalowym, w tym także wersje wzbogacone o tertbutanolan litu, okazały się być dobrymi katalizatorami które przy obecności śladów wody hydrolizują związki fosforoorganiczne, podobne do gazu musztardowego. Ponieważ związkiem tym można pokrywać włókna i materiały, dość oczywista jest przydatność nowo odkrytego związku w filtrach powietrza, mających neutralizować gazy bojowe.[4]
Cytryny i siarka do oczyszczania wody
Chemicy na świecie poszukują jak najprostszych metod produkcji przydatnych substancji, tak aby były one w miarę możliwości jak najtańsze. Tym tropem poszedł zespół chemików z Australii, którzy pokazali jak z siarki i składnika skórki cytrynowej stworzyć substancję oczyszczającą wodę z metali ciężkich.
D-Limonen to monoterpen będący główną substancją zapachową zawartą w skórce cytryny, jest częstym składnikiem mieszanej zapachowych i środków czystości. Ponieważ odzyskuje się go ze zmielonej skórki, której obtarcie jest jednym z etapów produkcji soku cytrynowego, przy dość dużej produkcji rocznej jest związkiem względnie tanim. Badacze szukający nowych materiałów chelatujących jony metali ciężkich zainteresowali się doniesieniami o tym, że limonen może utworzyć połączenia wielosiarczkowe. Wiadomym było, że liniowe wielosiarczki chętnie kompleksują jony metali, dlatego taka właściwość łatwej w otrzymaniu pochodnej taniego związku naturalnego byłaby bardzo korzystna.
Wzięto czystą siarkę i ogrzano do stopienia. W temperaturze 170 stopni, w której pękają pierścieniowe cząsteczki siarki, dodano do niej odpowiednią ilość limonenu. Z powstałej brunatnej masy oddzielono nieprzereagowaną siarkę, będący wynikiem utlenienia cymen i inne produkty uboczne, otrzymując czerwoną woskowatą substancję będącą cyklicznymi połączeniami dwóch cząsteczek limonenu, połączonych mostkami wielosiarczkowymi.
Jak się okazało substancja ta chętnie wychwytuje z wody jony metali ciężkich, w przypadku jonów rtęci II dodatkowo reagując wyraźną zmianą zabarwienia, co może mieć zastosowanie analityczne. [5]
---------
[1] D. Aydin et al.; Gelation-Stabilized Functional Composite-Modified Bitumen for Anti-icing Purposes, Ind. Eng. Chem. Res., 2015, 54 (50), pp 12587–12596
[2] Weber M. D.; Bioinspired Hybrid White Light-Emitting Diodes. Advanced Materials, 2015; 27 (37): 5493
[3] Wu L.E. et al.; Carcinogenic Chromium(VI) Compounds Formed by Intracellular Oxidation of Chromium(III) Dietary Supplements by Adipocytes, Angew. Chem. Int. Ed. Volume 55, Issue 5
Pages 1742–1745
[4] Subendu S.M., Hans-Jürgen H.; Breaking Down Chemical Weapons by Metal–Organic Frameworks, Angew. Chem. Int. Ed. Volume 55, Issue 1, Pages 42–44
[5] M.P. Crockett et. al, Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil, Angewandte Chemie International Edition, 55, 5 [Open Acces]
sobota, 7 listopada 2015
Chemiczne wieści (3.)
Tlen na komecie
Misja Rosetta badająca kometę 67/P Churymov-Gerasimenko budzi dziś mniejsze zainteresowanie, zwłaszcza od czasu nieszczęśliwie przedwczesnego końca lądownika, niemniej instrumenty sondy wciąż wysyłają ciekawe dane. Najnowsza publikacja Nature donosi o wykryciu w gazach wytryskujących z powierzchni jądra kometarnego molekularnego tlenu.
Jednym z instrumentów badawczych sondy jest spektrometr masowy ROSINA-DFMS. Przyrząd ten jonizuje gazy i wykrywa masy składających się nań cząsteczek, wykorzystując skłonność jonów do ruchu w polu elektrycznym z prędkością zależną od stosunku masy do ładunku. Dzięki temu możliwa jest szybka identyfikacja składu.
Dzięki niemu wiadomo było, że większość składu gazów emitowanych przez jądro kometarne (do 95%) stanowiła para wodna oraz tlenek i dwutlenek węgla. Bardziej interesujące okazały się składniki stanowiące resztę. Głównym okazał się być cząsteczkowy tlen, po nim elementarna siarka i metanol, ponadto ślady tlenków azotu i hydrazyny.
Skąd jednak tlen na komecie?
Jego zawartość porównano ze stężeniem dwutlenku węgla, tlenku i pary wodnej, wykazując że tylko w tym trzecim przypadku zachodzi wyraźna korelacja stężeń. Jeśli stężenia tlenu są powiązane ze stężeniami wody, to widocznie gazy te uwalniane są razem. Najprawdopodobniej promieniowanie ultrafioletowe wywołuje radiolizę lodu wodnego na powierzchni komety, powodując powstanie tlenu, który miesza się z lodem i wraz z nim sublimuje. Zachodzenie takiej reakcji potwierdzono zresztą eksperymentalnie. [1]
Fraktalne trójkąty
Fraktale to struktury samopodobne. Matematycznie ujmując, strukturę opisuje pewien prosty algorytm, którego nieskończone iteracje tworzą coraz mniejsze elementy, zachowujące podobieństwo do całości. Ta prostota sprawiająca, że rozległy i wydawałoby się skomplikowany wzór da się wywieść z kilku powtarzanych wciąż reguł sprawia, że struktury fraktalne bardzo często pojawiają się w przyrodzie, jako podstawa dla na przykład organizacji kolonii, układu żyłkowania liści, rozkładu pierzastych listków paproci czy form krystalicznych.
Jednym z pierwszych opisanych matematycznie fraktali, jest trójkąt Sierpińskiego. Ten polski matematyk zaproponował w 1915 roku figurę, otrzymaną wedle następującego algorytmu:
- Weź trójkąt równoboczny i łącząc środki boków podziel go na cztery mniejsze trójkąty
- Usuń trójkąt w środku
- Podziel w taki sam sposób trójkąty które pozostały
- Usuń trójkąciki po środku
- Powtórz operację w nieskończoność.
Wydawałoby się że w takiej sytuacji nic na z tego trójkąta powinno nie pozostać, w rzeczywistości jednak, ponieważ operujemy tutaj matematycznie na figurach teoretycznych, po nieskończonych podziałach i usuwaniach trójkątów otrzymamy zbiór punktów matematycznych o charakterystycznym, stałym układzie, który powtarza się w kolejnych powiększeniach w dowolnym miejscu tego trójkąta. Pole takiej figury jest zerowe.
Później wymyślono jeszcze inne podobne figury, jak dywan Sierpińskiego oparty o kwadraty, czy też bardziej dziś znane drzewkowate fraktale używane do tworzenia pięknych grafik komputerowych.
Ale co to ma wspólnego z chemią? Otóż chemicy od dawna zastanawiali się nad produkcją materiałów o strukturze fraktalnej. Jednym z rozwiązań są dendrymery, czyli cząsteczki o wielu rozgałęzieniach, które rozgałęziają się na mniejsze rozgałęzienia a te na jeszcze mniejsze i tak dalej dopóki tylko atomy gałązek jeszcze się w kolejnej warstwie mieszczą. Cząsteczki takie mają formę kulek, których modele przypominają nieco skonfundowanego jeża. Ta oparta jest o etylenodiaminę i amid kwasu propanowego:
Dendrymery bada się obecnie intensywnie pod kątem użycia jako nośniki leków, zewnętrzna warstwa gałązek tworzy bowiem powłoczkę z małymi porami, lecz wewnątrz pojawiają się znaczne, puste przestrzenie w których umieścić można pewną ilość potrzebnej substancji, jaką należy przetransportować w organizmie w pewne określone miejsca.
Tym ciekawsze są próby stworzenia płaskiej cząsteczki o strukturze Trójkąta Sierpińskiego.
Pierwszym takim doniesieniem była obserwacja struktur w pewnym stopniu podobnych do tego fraktala w agregatach DNA na odpowiednim podłożu. Fragmenty DNA ukształtowane w formie molekularnych płytek łączyły się końcami tworząc wzór, który badano mikroskopem sił atomowych.[2]
W zeszłym roku dwaj badacze z UMCS przedstawili symulacje, pokazujące że struktury Trójkąta Sierpińskiego powinny powstawać w warstwach zawierających sztywne cząsteczki organiczne zgięte pod odpowiednim kątem i łączące się na obu końcach za pośrednictwem jonów metalu, jako wynik spontanicznej samoorganizacji.[3]
Pomysł ten okazał się chyba bardzo obiecujący, skoro wyraźnie opierają się na nim najnowsze doniesienia. Najpierw podano informację o tym, że kompleksy terpirydyny z jonami miedzi tworzą struktury stanowiące fragment trójkąta Sierpińskiego.[4] W marcu pojawiła się praca chińskich chemików opisujących tworzenie się rozległych płatów fraktalnego wzoru w wyniku osadzania na powierzchni srebra dwóch podstawowych "cegiełek" - pochodnej terfenylu, z trzema pierścieniami benzenowymi połączonymi wiązaniem w zagiętą cząsteczkę i dwoma atomami bromu na końcach; oraz pochodnej kwaterfenylu zawierającej jeden pierścień benzenu więcej. Cząsteczki te łączyły się ze sobą przez oddziaływania między bromem a wodorem.[5]
Najnowsza praca opisuje płaty kompleksów dwunitrylu terfenylu z niklem na powierzchni srebra, w których pojawiają się płaty wzoru Trójkąta Sierpińskiego. [6]
Barwnik z ery jurajskiej
Skamieniałości dawnych zwierząt i roślin w większości wyglądają jak specyficznie ukształtowana skała, są szare, białe, niekiedy opalizują jak perła. Dlatego zachowanie się pewnych barwników sprzed milionów lat stanowi ciekawy przypadek. Tak jest ze skamieniałościami wymarłych jurajskich alg Solenopora o wapiennych skorupkach, które tworzyły gąbczaste kolonie, z czasem kamieniejące, z przerastającymi rocznymi warstwami. W przypadku niektórych okazów daje się zauważyć wyraźne różowe zabarwienie, będące najwyraźniej pozostałościami pierwotnego pigmentu. W niedawno opublikowanej pracy zbadano właściwości tego barwnika, stwierdzając że to bardzo nietypowa substancja.
Barwnik otrzymany ze skamielin Solenopora jurassica sprzed około 150 milionów lat, składa się z dwóch fragmentów węglowodorowych, stanowiących najwyraźniej nie znaną pochodną antybiotyku klostrubiny A (clostrubin A) i połączonych przez atom boru ugrupowaniem spiroboranowym. Związki organiczne zawierające bor są w naturze ogółem dosyć rzadkie.
Klostrubina jest antybiotykiem wykazującym aktywność przeciwko wielu szczepom odpornych drobnoustrojów i dlatego wzbudza duże nadzieje. Jest substancją poznaną całkiem niedawno, wyizolowaną w zeszłym roku z bakterii z rodzaju Clostridium. Duże podobieństwo struktur nowego antybiotyku i cząsteczki skamieniałego barwnika, nazwanego borolitochromem (czyli dosłownie borowym barwnikiem kamieni) jest o tyle ciekawe, że dotyczy różnych grup organizmów. Najwyraźniej geny odpowiedzialne za syntezę od dawna krążą w ekosystemie, gdzieniegdzie ujawniając się wyraźnie.
[7]
Ile atomów tworzy metal?
Wraz z przyjęciem i potwierdzeniem atomowej teorii budowy materii, chemicy i fizycy o bardziej filozoficznym zacięciu zaczęli zastanawiać się nad w sumie dość oczywistym pytaniem - ile potrzeba atomów bądź cząsteczek, aby z materii utworzyć materiał? Pojedynczy atom węgla ma inne właściwości niż choćby najmniejszy diament, trudno jest jednak wskazać moment, gdy następuje to przejście. Jest to swoisty odpowiednik "paradoksu łysego" - dwa stany skrajne, to jest łysina i pełne owłosienie, są od siebie bardzo wyraźnie różne; zarazem jednak jeśli osobie o pełnym owłosieniu zaczną pojedynczo wypadać włosy, trudno będzie nam wyznaczyć dokładną granicę od kiedy można już mówić o łysinie a kiedy jeszcze jest to tylko przerzedzenie włosów.
Ostatnie badania klastrów atomów metali pokazują jednak, że granicę naszej niepewności można w dużym stopniu zawęzić.
Metale to substancje stałe charakteryzujące się obecnością swobodnych elektronów poruszających się po sieci krystalicznej i tworzących wspólną, dużą chmurę elektronową. Właśnie dlatego metale dobrze przewodzą ciepło i elektryczność oraz odbijają światło ze srebrzystym, metalicznym połyskiem. Odpowiednio duże skupiska atomów metali też będą tworzyły swoją chmurę elektronową ale już pozostałe właściwości metaliczne niekoniecznie mogą być realizowane. Bardzo małe klastry zachowują się jak cząsteczki jakiegoś związku, często wykazując dość nieoczekiwane właściwości, przykładowo klastry 13 atomów glinu zachowują się jakby były atomem halogenku, mogąc oddawać elektrony i tworzyć aniony.
Fińscy chemicy z Uniwersytetu Jyväskylä badali takie właśnie graniczne klastry atomów złota, sprawdzając w jaki sposób reagują ze światłem. Klastry małe, mniejsze niż 102 atomy, zachowywały się jak cząsteczki. Pod wpływem fotonów przybierały pewne stany energetyczne obejmujące cały klaster, a wypromieniowanie i rozproszenie energii następowało stosunkowo (jak na atomową skalę) wolno. Grupy powyżej 144 atomów zachowywały się tak jak makroskopowe kawałki metalu, to jest szybko rozpraszały energię padającego światła, odbijały je zgodnie z prawem odbicia od lustra i nie przyjmowały ogólnoklastrowych stanów energetycznych.
Różnica była dość drastyczna - klastry większe o 42 atomy rozpraszały energię fotonów 100 razy szybciej. Natomiast klastry o wielkościach pośrednich wykazywały pośrednie własności, szybko zmieniające się z dodawaniem kolejnych atomów.
Tym samym w pewnym stopniu możliwe staje się wyznaczenie granicy między światem praw kwantowych a światem zjawisk fizyki klasycznej.[8]
-------------------
Źródła:
[1] A Bieler et al, Nature, 2015, DOI: 10.1038/nature15707
[2] Paul W K Rothemund, Nick Papadakis, Erik Winfree; Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2004 Dec 7;2(12):e424. Epub 2004 Dec 7. [Open Acces]
[3] D. Nieckarz, P. Szabelski; Simulation of the self-assembly of simple molecular bricks into Sierpiński triangle, Chem. Commun., 2014,50, 6843-6845
[4] Rajarshi S. et al.; One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality. Angew Chem Int Ed Engl 2014 Nov 11;53(45):12182-5.
[5] Shang J. et al.; Assembling molecular Sierpiński triangle fractals, Nature Chemistry 7, 389–393
On-surface construction of a metal–organic Sierpiński triangle, Chem. Commun., 2015,51, 14164-14166
[7] Klaus Wolkenstein et al. Structure and Absolute Configuration of Jurassic Polyketide-Derived Spiroborate Pigments Obtained from Microgram Quantities, J. Am. Chem. Soc., 2015, 137 (42), pp 13460–13463 (2015).[Open Access]
[8] Mustalhi S. et al.; Molecule-like Photodynamics of Au102(pMBA)44 Nanocluster, ACS Nano, 2015, 9 (3), pp 2328–2335
Misja Rosetta badająca kometę 67/P Churymov-Gerasimenko budzi dziś mniejsze zainteresowanie, zwłaszcza od czasu nieszczęśliwie przedwczesnego końca lądownika, niemniej instrumenty sondy wciąż wysyłają ciekawe dane. Najnowsza publikacja Nature donosi o wykryciu w gazach wytryskujących z powierzchni jądra kometarnego molekularnego tlenu.
Jednym z instrumentów badawczych sondy jest spektrometr masowy ROSINA-DFMS. Przyrząd ten jonizuje gazy i wykrywa masy składających się nań cząsteczek, wykorzystując skłonność jonów do ruchu w polu elektrycznym z prędkością zależną od stosunku masy do ładunku. Dzięki temu możliwa jest szybka identyfikacja składu.
Dzięki niemu wiadomo było, że większość składu gazów emitowanych przez jądro kometarne (do 95%) stanowiła para wodna oraz tlenek i dwutlenek węgla. Bardziej interesujące okazały się składniki stanowiące resztę. Głównym okazał się być cząsteczkowy tlen, po nim elementarna siarka i metanol, ponadto ślady tlenków azotu i hydrazyny.
Skąd jednak tlen na komecie?
Jego zawartość porównano ze stężeniem dwutlenku węgla, tlenku i pary wodnej, wykazując że tylko w tym trzecim przypadku zachodzi wyraźna korelacja stężeń. Jeśli stężenia tlenu są powiązane ze stężeniami wody, to widocznie gazy te uwalniane są razem. Najprawdopodobniej promieniowanie ultrafioletowe wywołuje radiolizę lodu wodnego na powierzchni komety, powodując powstanie tlenu, który miesza się z lodem i wraz z nim sublimuje. Zachodzenie takiej reakcji potwierdzono zresztą eksperymentalnie. [1]
Fraktalne trójkąty
Fraktale to struktury samopodobne. Matematycznie ujmując, strukturę opisuje pewien prosty algorytm, którego nieskończone iteracje tworzą coraz mniejsze elementy, zachowujące podobieństwo do całości. Ta prostota sprawiająca, że rozległy i wydawałoby się skomplikowany wzór da się wywieść z kilku powtarzanych wciąż reguł sprawia, że struktury fraktalne bardzo często pojawiają się w przyrodzie, jako podstawa dla na przykład organizacji kolonii, układu żyłkowania liści, rozkładu pierzastych listków paproci czy form krystalicznych.
Jednym z pierwszych opisanych matematycznie fraktali, jest trójkąt Sierpińskiego. Ten polski matematyk zaproponował w 1915 roku figurę, otrzymaną wedle następującego algorytmu:
- Weź trójkąt równoboczny i łącząc środki boków podziel go na cztery mniejsze trójkąty
- Usuń trójkąt w środku
- Podziel w taki sam sposób trójkąty które pozostały
- Usuń trójkąciki po środku
- Powtórz operację w nieskończoność.
Wydawałoby się że w takiej sytuacji nic na z tego trójkąta powinno nie pozostać, w rzeczywistości jednak, ponieważ operujemy tutaj matematycznie na figurach teoretycznych, po nieskończonych podziałach i usuwaniach trójkątów otrzymamy zbiór punktów matematycznych o charakterystycznym, stałym układzie, który powtarza się w kolejnych powiększeniach w dowolnym miejscu tego trójkąta. Pole takiej figury jest zerowe.
Później wymyślono jeszcze inne podobne figury, jak dywan Sierpińskiego oparty o kwadraty, czy też bardziej dziś znane drzewkowate fraktale używane do tworzenia pięknych grafik komputerowych.
Ale co to ma wspólnego z chemią? Otóż chemicy od dawna zastanawiali się nad produkcją materiałów o strukturze fraktalnej. Jednym z rozwiązań są dendrymery, czyli cząsteczki o wielu rozgałęzieniach, które rozgałęziają się na mniejsze rozgałęzienia a te na jeszcze mniejsze i tak dalej dopóki tylko atomy gałązek jeszcze się w kolejnej warstwie mieszczą. Cząsteczki takie mają formę kulek, których modele przypominają nieco skonfundowanego jeża. Ta oparta jest o etylenodiaminę i amid kwasu propanowego:
Dendrymery bada się obecnie intensywnie pod kątem użycia jako nośniki leków, zewnętrzna warstwa gałązek tworzy bowiem powłoczkę z małymi porami, lecz wewnątrz pojawiają się znaczne, puste przestrzenie w których umieścić można pewną ilość potrzebnej substancji, jaką należy przetransportować w organizmie w pewne określone miejsca.
Tym ciekawsze są próby stworzenia płaskiej cząsteczki o strukturze Trójkąta Sierpińskiego.
Pierwszym takim doniesieniem była obserwacja struktur w pewnym stopniu podobnych do tego fraktala w agregatach DNA na odpowiednim podłożu. Fragmenty DNA ukształtowane w formie molekularnych płytek łączyły się końcami tworząc wzór, który badano mikroskopem sił atomowych.[2]
W zeszłym roku dwaj badacze z UMCS przedstawili symulacje, pokazujące że struktury Trójkąta Sierpińskiego powinny powstawać w warstwach zawierających sztywne cząsteczki organiczne zgięte pod odpowiednim kątem i łączące się na obu końcach za pośrednictwem jonów metalu, jako wynik spontanicznej samoorganizacji.[3]
Pomysł ten okazał się chyba bardzo obiecujący, skoro wyraźnie opierają się na nim najnowsze doniesienia. Najpierw podano informację o tym, że kompleksy terpirydyny z jonami miedzi tworzą struktury stanowiące fragment trójkąta Sierpińskiego.[4] W marcu pojawiła się praca chińskich chemików opisujących tworzenie się rozległych płatów fraktalnego wzoru w wyniku osadzania na powierzchni srebra dwóch podstawowych "cegiełek" - pochodnej terfenylu, z trzema pierścieniami benzenowymi połączonymi wiązaniem w zagiętą cząsteczkę i dwoma atomami bromu na końcach; oraz pochodnej kwaterfenylu zawierającej jeden pierścień benzenu więcej. Cząsteczki te łączyły się ze sobą przez oddziaływania między bromem a wodorem.[5]
Najnowsza praca opisuje płaty kompleksów dwunitrylu terfenylu z niklem na powierzchni srebra, w których pojawiają się płaty wzoru Trójkąta Sierpińskiego. [6]
Barwnik z ery jurajskiej
Skamieniałości dawnych zwierząt i roślin w większości wyglądają jak specyficznie ukształtowana skała, są szare, białe, niekiedy opalizują jak perła. Dlatego zachowanie się pewnych barwników sprzed milionów lat stanowi ciekawy przypadek. Tak jest ze skamieniałościami wymarłych jurajskich alg Solenopora o wapiennych skorupkach, które tworzyły gąbczaste kolonie, z czasem kamieniejące, z przerastającymi rocznymi warstwami. W przypadku niektórych okazów daje się zauważyć wyraźne różowe zabarwienie, będące najwyraźniej pozostałościami pierwotnego pigmentu. W niedawno opublikowanej pracy zbadano właściwości tego barwnika, stwierdzając że to bardzo nietypowa substancja.
Barwnik otrzymany ze skamielin Solenopora jurassica sprzed około 150 milionów lat, składa się z dwóch fragmentów węglowodorowych, stanowiących najwyraźniej nie znaną pochodną antybiotyku klostrubiny A (clostrubin A) i połączonych przez atom boru ugrupowaniem spiroboranowym. Związki organiczne zawierające bor są w naturze ogółem dosyć rzadkie.
Klostrubina jest antybiotykiem wykazującym aktywność przeciwko wielu szczepom odpornych drobnoustrojów i dlatego wzbudza duże nadzieje. Jest substancją poznaną całkiem niedawno, wyizolowaną w zeszłym roku z bakterii z rodzaju Clostridium. Duże podobieństwo struktur nowego antybiotyku i cząsteczki skamieniałego barwnika, nazwanego borolitochromem (czyli dosłownie borowym barwnikiem kamieni) jest o tyle ciekawe, że dotyczy różnych grup organizmów. Najwyraźniej geny odpowiedzialne za syntezę od dawna krążą w ekosystemie, gdzieniegdzie ujawniając się wyraźnie.
[7]
Borolitochrom i skała z której go otrzymano. |
Ile atomów tworzy metal?
Wraz z przyjęciem i potwierdzeniem atomowej teorii budowy materii, chemicy i fizycy o bardziej filozoficznym zacięciu zaczęli zastanawiać się nad w sumie dość oczywistym pytaniem - ile potrzeba atomów bądź cząsteczek, aby z materii utworzyć materiał? Pojedynczy atom węgla ma inne właściwości niż choćby najmniejszy diament, trudno jest jednak wskazać moment, gdy następuje to przejście. Jest to swoisty odpowiednik "paradoksu łysego" - dwa stany skrajne, to jest łysina i pełne owłosienie, są od siebie bardzo wyraźnie różne; zarazem jednak jeśli osobie o pełnym owłosieniu zaczną pojedynczo wypadać włosy, trudno będzie nam wyznaczyć dokładną granicę od kiedy można już mówić o łysinie a kiedy jeszcze jest to tylko przerzedzenie włosów.
Ostatnie badania klastrów atomów metali pokazują jednak, że granicę naszej niepewności można w dużym stopniu zawęzić.
Metale to substancje stałe charakteryzujące się obecnością swobodnych elektronów poruszających się po sieci krystalicznej i tworzących wspólną, dużą chmurę elektronową. Właśnie dlatego metale dobrze przewodzą ciepło i elektryczność oraz odbijają światło ze srebrzystym, metalicznym połyskiem. Odpowiednio duże skupiska atomów metali też będą tworzyły swoją chmurę elektronową ale już pozostałe właściwości metaliczne niekoniecznie mogą być realizowane. Bardzo małe klastry zachowują się jak cząsteczki jakiegoś związku, często wykazując dość nieoczekiwane właściwości, przykładowo klastry 13 atomów glinu zachowują się jakby były atomem halogenku, mogąc oddawać elektrony i tworzyć aniony.
Fińscy chemicy z Uniwersytetu Jyväskylä badali takie właśnie graniczne klastry atomów złota, sprawdzając w jaki sposób reagują ze światłem. Klastry małe, mniejsze niż 102 atomy, zachowywały się jak cząsteczki. Pod wpływem fotonów przybierały pewne stany energetyczne obejmujące cały klaster, a wypromieniowanie i rozproszenie energii następowało stosunkowo (jak na atomową skalę) wolno. Grupy powyżej 144 atomów zachowywały się tak jak makroskopowe kawałki metalu, to jest szybko rozpraszały energię padającego światła, odbijały je zgodnie z prawem odbicia od lustra i nie przyjmowały ogólnoklastrowych stanów energetycznych.
Różnica była dość drastyczna - klastry większe o 42 atomy rozpraszały energię fotonów 100 razy szybciej. Natomiast klastry o wielkościach pośrednich wykazywały pośrednie własności, szybko zmieniające się z dodawaniem kolejnych atomów.
Tym samym w pewnym stopniu możliwe staje się wyznaczenie granicy między światem praw kwantowych a światem zjawisk fizyki klasycznej.[8]
-------------------
Źródła:
[1] A Bieler et al, Nature, 2015, DOI: 10.1038/nature15707
[2] Paul W K Rothemund, Nick Papadakis, Erik Winfree; Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2004 Dec 7;2(12):e424. Epub 2004 Dec 7. [Open Acces]
[3] D. Nieckarz, P. Szabelski; Simulation of the self-assembly of simple molecular bricks into Sierpiński triangle, Chem. Commun., 2014,50, 6843-6845
[4] Rajarshi S. et al.; One-step multicomponent self-assembly of a first-generation Sierpiński triangle: from fractal design to chemical reality. Angew Chem Int Ed Engl 2014 Nov 11;53(45):12182-5.
[5] Shang J. et al.; Assembling molecular Sierpiński triangle fractals, Nature Chemistry 7, 389–393
On-surface construction of a metal–organic Sierpiński triangle, Chem. Commun., 2015,51, 14164-14166
[7] Klaus Wolkenstein et al. Structure and Absolute Configuration of Jurassic Polyketide-Derived Spiroborate Pigments Obtained from Microgram Quantities, J. Am. Chem. Soc., 2015, 137 (42), pp 13460–13463 (2015).[Open Access]
[8] Mustalhi S. et al.; Molecule-like Photodynamics of Au102(pMBA)44 Nanocluster, ACS Nano, 2015, 9 (3), pp 2328–2335
Subskrybuj:
Posty (Atom)