informacje



Pokazywanie postów oznaczonych etykietą reakcje. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą reakcje. Pokaż wszystkie posty

wtorek, 23 lutego 2021

Kiedyś w laboratorium (82.)

 Jak pokazać reakcję Chemicznego Ogrodu bez szkła wodnego? Trzeba wysilić pamięć i przypomnieć sobie, w jakiej reakcji powstawały żelowate, zwięzłe osady. A nuż któryś będzie tworzył odpowiedniej jakości błonkę.


W takiej sytuacji znalazłem się w poprzedniej firmie, gdy przygotowywałem doświadczenia na pokaz chemiczny podczas dni otwartych. Byłoby fajnie to doświadczenie pokazać, ale brakowało podstawowego odczynnika. Znów więc należało uciec się do improwizacji. Najpierw próbowałem z żelazocyjankami, i wyszło bardzo dobrze. Potem postanowiłem poszukać czegoś jeszcze prostszego i przypomniałem sobie ze studiów, że odpowiedniej, galaretowatej konsystencji były osady niektórych wodorotlenków. Należało tylko wybrać takie, które nie rozpuszczały się w nadmiarze zasady.

Przygotowałem około 20% roztwór wodorotlenku sodu i najpierw wrzuciłem do niego kryształek soli niklu. Nic szczególnego się nie stało. Sól zaczęła się rozpuszczać, tworząc zielonkawą warstewkę. Cóż, nie jest to właściwy pierwiastek. Aby nie marnować roztworu do tej samej zlewki wrzuciłem kryształek chlorku żelaza. Wokół niego powstał rdzawy pęcherzyk. Który zaczął rosnąć i rosnąć. Wyglądało to lepiej niż się spodziewałem. Ostatecznie siła wzrostu rośliny przyhamowała, pęd zaczął się zaginać i grubieć w nieregularne gruzła. Ze względu na ciemnozielone tło skojarzył mi się z konikiem morskim; dlatego tę modyfikację pozwolę sobie nazwać Reakcją Żelaznego Konika.
 


Efekt tak grubego pędu powstaje przy wysokich stężeniach zasady. Roślinka wzrasta wtedy powoli i z wyraźnymi epizodami pękania błonki.Zarazem jednak przy małym krysztale wyrównanie gęstości następuje szybko, i dlatego z czasem pęd staje się za ciężki i zagina się pod powierzchnią.


 Reakcja w bardziej rozcieńczonym roztworze (5-10%) jest mniej efektowna. Wokół kryształka powstaje przylepiony do dna bąbel, z którego zaczynają wyrastać cienkie "wąsy". W ich formowaniu spory udział mają bąbelki powietrza, które przywarły do powierzchni bąbla. Wąs powstaje dość szybko, ale poza tym nic się z nim nie dzieje. 



czwartek, 11 lipca 2019

Ostatnio w laboratorium (69.)

Nigdzie się tak bardzo nie pobrudzisz, jak w dobrze wyposażonym laboratorium chemicznym. Zwłaszcza wtedy, gdy przydarzy ci się pracować z nieszczelną rękawiczką, jak to zdarzyło mi się ostatnio podczas pracy ze stężonym kwasem azotowym. Oczywiście szybko umyłem palec, na którym poczułem w pewnej chwili podejrzaną śliskość. Efekt: żółta plama na skórze, której już się nie dało zmyć.
W sumie nie pierwszyzna, ale jeszcze o tym na blogu nie pisałem.

Plama to wynik znanej z podręczników szkolnych reakcji ksantoproteinowej, często przedstawianej jako reakcja charakterystyczna dla białek, co nie jest zupełnie słuszne. Polega ona w zasadzie na nitrowaniu grup aromatycznych w niektórych aminokwasach poprzez podgrzewanie ze stężonym kwasem azotowym. Po zalkalizowaniu środowiska żółta plama staje się ciemnopomarańczowa.
.
Kilka spośród aminokwasów budujących białka, w tym te w naszym organizmie, zawiera aromatyczne grupy, to jest węglowodorowe pierścienie o odpowiednim układzie wiązań podwójnych. Ze względu na bliskość atomu azotu, a także często inne dodatkowe grupy, pierścień aromatyczny jest dość aktywny i stosunkowo łatwo ulega nitrowaniu. Dotyczy to w zasadzie tyrozyny i tryptofanu, o tym aby w takich warunkach reaktywna była Prolina nie znalazłem informacji. Pierścień fenylowy w Tyrozynie nitruje się głównie w pozycji meta:

Aminokwas fenyloalanina nie daje w tej reakcji zabarwienia, ze względu na to, że grupa fenylowa jest w nim nieaktywna. Od azotu dzieli ją dłuższy odcinek.
W przypadku białek obfitujących w aromatyczne aminokwasy, nitrowanie można doprowadzić do dość wysokiego poziomu. Jednym z niekiedy używanych typów amatorskich materiałów wybuchowych jest znitrowane mleko w proszku, zawierające głównie nitrokazeinę. [1]

Nitroaminokwasy mogą też powstawać w organizmie w wyniku metabolizmu. Jedną z odmian wolnych rodników, jakim bacznie przygląda się medycyna, są reaktywne formy azotu (RFA), wywodzące się zwykle od tlenku azotu II (NO) będącego wolnym rodnikiem. Jest on ważnym sygnalizatorem chemicznym, regulującym procesy zapalne i napięcie mięśni, i wytwarzanym przez specjalny enzym. Z drugiej jednak strony może on reagować z białkami i DNA, zaburzając ich funkcję. W organizmie szybko ulega przemianie do innych reaktywnych cząsteczek, jak dwutlenek azotu czy nadtlenoazotyn. W pewnych procesach chorobowych RFA są wytwarzane w nadmiernych ilościach, prowadząc do stanu stresu nitrozacyjnego.
Znitrowana tyrozyna, powstająca w takich reakcjach, mogłaby być wskaźnikiem natężenia tego procesu.[2]
Canary Girls

Reakcja podobna do ksantoproteinowej może też zachodzić w wyniku kontaktu z innymi reaktywnymi nitrozwiązkami. W okresie I wojny światowej w USA zwrócono uwagę na skutki przewlekłego narażenia na trotyl. U pracujących nad przerobem tego wybuchowego materiału robotnic rozwijało się przewlekłe, żółte zabarwienie skóry całego ciała. Zaczęto je przez to nazywać Kanarkowymi Dziewczynami. Bardziej groźny okazał się jednak wpływ trotylu na inne organy, często wywoływał uszkodzenie wątroby, niedokrwistość i powiększenie śledziony. U 400 pracownic pojawiła się żółtaczka związana z niewydolnością wątroby, która zabijała co czwartą. Niektóre z nich rodziły żółte dzieci.
Na szczęście po pewnym czasie od zaprzestaniu kontaktu z chemikaliami, kolor skóry zanikał.[3]

Ot takie dodatkowe ciekawostki na temat znanej i "nieciekawej" reakcji.
----------
[1]  https://www.aristatek.com/newsletter/0512December/TechSpeak.aspx
[2] https://www.pnas.org/content/101/12/4003
[3] https://en.m.wikipedia.org/wiki/Canary_Girls

środa, 18 lipca 2018

Chemiczne wieści (18.)

Najcięższy porfirynoid
Porfiryna to naturalny związek pierścieniowy, składający się z czterech mniejszych pierścieni pirolu, połączonych mostkami. Jej motyw jest zawarty w wielu ważnych biologicznie cząsteczkach, w tym w chlorofilu, hemoglobinie czy witaminie B12.  Przez lata poznano wiele cząsteczek o analogicznej budowie, czasem też podobnych właściwościach. Teraz poznano najcięższy analog.
Badacze z Uniwersytetu w Marburgu donoszą o odkryciu dokonanym metodą syntezy jonotermalnej. W wyniku rozkładu tellurortęcianu sodu ( Na2[HgTe2] ) powstały kryształy, w których warstwach pojawia się skomplikowany jon nieorganiczny  [Hg8Te16]8−  o strukturze naśladującej pierścień porfiryny.
Związek nie ma charakteru aromatycznego, jak jego organiczny odpowiednik, jedynie pięciokątne pierścienie składowe wykazują lokalną sigma-aromatyczność. [1]

Nano-Saturn
Japońscy chemicy otrzymali związek o na prawdę nietypowym kształcie - fullerenowa kula wewnątrz płaskiego dysku, przypominająca Saturna z pierścieniami.
© Wiley-VCH

Podobne układy już próbowano wytwarzać, ale wówczas pierścień był zwykle dość szeroki. Strukturę starano się stabilizować przez oddziaływania pi-pi. W tym przypadku najzupełniej wystarczające okazały się oddziaływania między elektronami pi fullerenu a wodorami pierścienia (jest to jedna z odmian wiązania wodorowego). Powstały kompleks supramolekularny okazał się dość trwały, udało się go nawet wykrystalizować, dzięki czemu potwierdzono strukturę przy pomocy rentgenografii strukturalnej.[2]

Nanografen z młyna
Jedną z przeszkód w stosowaniu grafenu i podobnych mu cząstek jest trudność w otrzymaniu cząstek o odpowiedniej, pożądanej wielkości. Frakcjonowanie zawiesin otrzymanych z rozwarstwionego grafitu jest nieco kłopotliwe, zwłaszcza przy większej skali, a powstałe fragmenty mogą mimo identycznej masy wyraźnie różnić się kształtami. Dlatego chemicy najchętniej zastosowaliby po prostu syntezę fragmentów grafenu ze związków organicznych.
Ostatnio niemieccy chemicy z politechniki w Dreźnie opisali jeden z takich przypadków. Syntezowali fragment grafenopodobny (w zasadzie była to cząsteczka dużego WWA), poprzez sprzęganie sześciofenylobenzenu, to jest związku w którym sześciokątny pierścień benzenowy jest podstawiony kolejnymi sześcioma takimi pierścieniami. Wystarczy połączyć podstawniki ze sobą aby otrzymać płaską cząsteczkę złożoną z 13 sprzężonych pierścieni. Jeśli z kolei te boczne grupy fenylowe same byłyby podstawione takimi grupami, poprzez sprzężenie można otrzymywać fragmenty grafenowe o większych rozmiarach i ściśle określonych kształtach.
© Sven Grätz

Problemem w tym przypadku było jednak dobranie warunków reakcji. Silnie podstawione pochodne benzenu (heksa-trifenylo-fenylo-fenylo...) miały formę ciała stałego, które nie bardzo chciało się w czymkolwiek rozpuszczać. Ciężko więc było przeprowadzać reakcję sprzęgania w typowych warunkach reakcji w roztworze. Skoro tak, to należało użyć warunków nietypowych.
Sprzężenia dokonano przy pomocy reakcji Scholla, wytwarzającej wiązania między pierścieniami aromatycznymi przy pomocy chlorku żelaza jako katalizatora. Do przeprowadzenia syntezy użyto młyna kulowego, w układzie bez dodawanych żadnych rozpuszczalników. Podczas mieszania i mielenia, kule młyna uderzają w ziarna mieszaniny, zderzając je z siłą tak dużą, że możliwe jest zajście reakcji normalnie wymagających bardzo wysokich temperatur. Równocześnie intensywne mielenie zapewnia dobre wymieszanie składników. Tego typu reakcje mechanochemiczne są w ostatnich latach intensywnie badane.
W tym przypadku reakcja zaszła z zadowalającą wydajnością, prowadząc do powstania węglowodorów grafenopodobnych tak dużych, jak trójkątna cząsteczka złożona z 60 węgli w układzie 19 sprzężonych pierścieni.[3]

Niezwykłe klastry borków
Natomiast chińscy badacze donoszą o otrzymaniu ciekawych klastrów boru z lantanowcami. Lantanowce zawierają na powłoce walencyjnej f dość dużo elektronów, mogą więc tworzyć wiązki o wysokich liczbach koordynacyjnych. W tym przypadku otrzymano klastry o wzorze ogólnym Ln2B8, w którym atomy boru tworzą pierścień ośmiokątny i są połączone z dwoma atomami lantanowca po przeciwnych stronach, tworząc bipiramidę ośmiokątną. Jest to rzadka symetria. Ze względu na pewne podobieństwo do kompleksów kanapkowych, nazwano cząsteczkę "odwróconą kanapką".
 Tak powstała cząsteczka ma interesujące właściwości magnetyczne i może posłużyć do budowy molekularnych magnesów.[4]
© Wang Lab/Brown University

-----------
[1] Carsten Donsbach, Kevin Reiter ,Prof. Dr. Dage Sundholm, Priv.‐Doz. Dr. Florian Weigend, Prof. Dr. Stefanie Dehnen; [Hg4Te8(Te2)4]8−: A Heavy Metal Porphyrinoid Embedded in a Lamellar Structure ;Angew. Chem. Int. Ed Volume57Issue28 July 9, 2018 Pages 8770-8774

[2] Yuta Yamamoto Dr. Eiji Tsurumaki Prof. Dr. Kan Wakamatsu Prof. Dr. Shinji Toyota; Nano‐Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60, Angew Chem Int Ed. Volume 57, Issue 27 Pages 8199-8202

[3] Sven Grätz, Doreen Beyer, Valeriya Tkachova, Sarah Hellmann, Reinhard Berger, Xinliang Feng, Lars Borchardt. The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool. Chemical Communications, 2018; 54 (42): 5307

[4] Wan-Lu Li, Teng-Teng Chen, Deng-Hui Xing, Xin Chen, Jun Li, Lai-Sheng Wang. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proceedings of the National Academy of Sciences, 2018; 201806476

piątek, 6 października 2017

Skąd ten akrylamid?

Co jakiś czas media donoszą o wykryciu tego związku chemicznego w różnych produktach, a to w chipsach, a to w prażonych orzeszkach a to znów w ciasteczkach czy solonych paluszkach. To silna trucizna o działaniu rakotwórczym. I wówczas może was zastanowić, skąd się właściwie w jedzeniu ten akrylamid wziął. Specjalnie go dodają? Czy może sam powstaje?

Chemicznie rzecz ujmując, akrylamid to amid kwasu akrylowego, związek nienasycony zawierający wiązanie podwójne, grupę karbonylową i aminową. Każda z tych grup składowych może wchodzić w różnorodne reakcje, toteż cząsteczka będąca najściślejszym z możliwych ich połączeniem musi być bardzo reaktywna. Na tyle, że po dostaniu się do organizmu reaguje z białkami, lipidami i DNA wywołując różnorodne rozproszone uszkodzenia. Podczas metabolizmu jest utleniany przez komórkowy cytochrom 450 do formy epoksydowej czyli glicydamidu, który jest cząsteczką jeszcze bardziej reaktywną.

Glicydamid
Jako silny środek alkilujący działa mutagennie mogąc wywoływać nowotwory. W modelach zwierzęcych przewlekła ekspozycja na akrylamid w wysokich stężeniach, wywoływała nowotwory nadnerczy, tarczycy, płuc i jąder, oraz działała toksycznie na układ nerwowy.

Związek ten odkryto już bardzo dawno. Ze względu na skłonność do polimeryzacji zaczął być używany do produkcji tworzyw sztucznych o specjalnym przeznaczeniu. Polimeryzacja w roztworze wodnym tworzy twardy hydrożel o dużej przepuszczalności, będący jednym ze standardowych materiałów w elektroforezie białek i DNA. Ponadto używano go jako składnika różnych polimerów, substratu do produkcji pestycydów czy barwników. Przez długi czas wydawało się więc, że jedynym problemem toksykologicznym jest zanieczyszczenie środowiska przez zakłady które go używały, przenikał bowiem do ścieków a stamtąd do wody. Dlatego zaskoczeniem było odkrycie w 2002 roku, że w wyniku specyficznej reakcji może powstawać także w żywności.

Erytryjska badaczka Eden Tareke, zatrudniona na wydziale chemii żywności Uniwersytetu Sztokholmskiego, wprowadzała nową bardziej dokładną metodę badania żywności. Podczas testów z różnymi próbkami zauważyła niepokojący poziom akrylamidu w chipsach ziemniaczanych. Wydawał się zbyt duży aby wytłumaczyć to zanieczyszczeniami przemysłowymi. Wykonała więc prosty eksperyment - przygotowała chipsy z ziemniaków, które wcześniej przebadała pod kątem zawartości akrylamidu. Chipsy smażone w temperaturze przekraczającej 120 stopni nabierały wysokich poziomów akrylamidu, którego nie było w ziemniakach. A więc musiał on w jakiś sposób podczas smażenia powstawać. [1]

Kluczem okazała się znana od dawna reakcja Maillarda. W rzeczywistości jest to zespół reakcji o podobnym przebiegu, podczas których cukry redukujące reagują z aminami w podwyższonej temperaturze. Powstałe produkty ulegają izomeryzacji, dekarboksylacji, dehydratacji, kondensacji itp. w najrozmaitszych możliwych kombinacjach. 20 aminokwasów i jeden cukier redukujący tworzą setki produktów. W żywności zachodzą podczas każdej termicznej obróbki produktów zawierających białka i węglowodany, a więc podczas pieczenia, smażenia, duszenia czy wędzenia; podczas gotowania w mniejszym stopniu.
Powstałe wielkocząsteczkowe produkty kondensacji odpowiadają za brązowy kolor dobrze podpieczonego jedzenia, natomiast te mniejsze wpływają wyraźnie na smak i zapach. Większość składników aromatu pieczonego mięsa, pieczonego chleba czy prażonych ziaren kawy to właśnie produkty reakcji Mailarda, są więc niezbędne aby żywność nabrała pożądanych właściwości smakowych. Jak się jednak okazało, nie każde z możliwych reakcji są dobre.

W jednej z możliwych dróg grupa aminowa aminokwasu reaguje z grupą aldehydową cukru redukującego, a więc na przykład glukozy. Powstaje przejściowy produkt w którym dwie części połączone przez azot zawierają grupę karboksylowa i hydroksylową w pobliżu tego połączenia. W wysokiej temperaturze następuje odszczepienie cząsteczki wody i powstanie iminy w formie zasady Schiffa. Ta z kolei dekarboksyluje odszczepiając cząsteczkę dwutlenku węgla. Powstały nietrwały produkt bądź rozpada się z wytworzeniem podwójnego wiązania, bądź hydrolizuje. Jednym z produktów ostatecznych jest akrylamid. Ze względu na budowę najlepszym substratem do reakcji jest aminokwas asparagina, zaś cukrem redukującym jest najczęściej glukoza występująca w formie wolnej lub powstająca w wyniku rozpadu skrobi.[2]
W odpowiednio wysokich temperaturach możliwa jest też formacja bez cukrów, z gliceryny towarzyszącej tłuszczom. Gliceryna utlenia się do akroleiny, będącej aldehydem; ta reaguje z wolnymi aminami i w podobny sposób jak opisane wcześniej reakcje, zamienia się w akrylamid.
Reakcje te wymagają odpowiedniej temperatury, zaczynają ruszać w temperaturach powyżej 120 stopni i w większości produktów zachodzą najwydajniej około 140-150 stopni.

Największe stężenia wykrywa się w takich produktach jak frytki, chipsy ziemniaczane, mocno palona kawa, kawa rozpuszczalna, przypalone tosty, prażone orzechy. Ogółem są to zatem połączenia typu "skrobia + białko". Ważnym źródłem jest też dym papierosowy i dym ze spalania śmieci w niskich temperaturach.

Toksyczność
Jak już wspominałem, w badaniach na zwierzętach wykazano, że ekspozycja na akrylamid wywołuje różnego rodzaju nowotwory. Tymczasem w przypadku ludzi wpływy są najwyraźniej dużo subtelniejsze i trudne do precyzyjnego wyrażenia. Jak wracają uwagę krytycy, w badaniach na zwierzętach efekty kancerogenne pojawiały się przy stężeniach wielokrotnie większych niż spotykane w jedzeniu i ciężko jest je przełożyć na skutki dla ludzkiego organizmu. Zakładając liniową zależność prawdopodobieństwa dodatkowych nowotworów od stężenia, przy przeciętnej diecie wzrost ryzyka staje się tak mały, że mniejszy niż wpływ narażenia na dym.

Badania populacyjne osób narażonych na tą substancję w jedzeniu są niejednoznaczne. Chętnie spożywający chipsy i frytki mają zwiększoną częstość różnych chorób, ale ciężko przypisać to wyłącznie temu składnikowi a nie spożyciu tłuszczów, nadmiaru soli czy narażeniu na utlenione nienasycone kwasy tłuszczowe. Badania pracowników narażonych w pracy na akrylamid w większych niż w żywności stężeniach dawały różne wyniki, od większej częstości chorób po brak efektu. Ze względu na to, że stykamy się z nim od początków gatunku, gdy tylko zaczęliśmy piec mięso mamutów nad ogniskiem, możliwe że wykształciliśmy sobie jakiś sposób detoksyfikacji. Dlatego też formalnie składnik ten jest klasyfikowany jako substancja podejrzewana o rakotwórczość u ludzi.[3]
Przesadne są więc internetowe artykuły straszące szybkimi skutkami zdrowotnymi i wysoką toksycznością, czy opinie w rodzaju "zjadłem smażeninę, od razu rozbolała mnie głowa, to przez akrylamid". No nie, raczej od okazjonalnego zjadania czegoś mocno podpieczonego wiele się nam nie stanie, niemniej warto pamiętać o tym, że pewne trudne do określenia ryzyko faktycznie jest. I wobec tego może jednak trochę się ograniczyć ze spożywaniem czegoś przypalonego, podpieczonego do ciemnego brązu czy podprażonego. 

Redukcja
Czy da się tak produkować żywność, aby z jednej strony nie utracić wartości smakowych a z drugiej zredukować poziomy akrylamidu do możliwie najniższych wartości? Da się, i to na kilka różnych sposobów. Zauważono na przykład, że reakcji w której powstaje sprzyjają sole amonowe, w związku z czym więcej jest go w ciasteczkach w których jako spulchniacza użyto amoniaczku (węglan amonu) niż proszku do pieczenia (wodorowęglan sodu), można więc zastąpić jeden spulchniacz innym i zauważalnie zmniejszyć zawartość niepożądanego składnika.
Innym czynnikiem hamującym są sole zawierające kationy dwudodatnie, w przypadku pieczywa możliwe jest więc wzbogacenie ciasta w sole wapnia. Kolejny inhibitor to aminokwas glicyna. Ma on najprostszą możliwą budowę, tylko dwa węgle w cząsteczce. Ulega reakcji Maillarda ale nie może zamienić się w akrylamid. Wzbogacenie glicyną pierwotnego produktu przed obróbką termiczną powoduje, że część wolnych cukrów redukujących łączy się z nią zamiast z innymi aminokwasami co zużywa niezbędny substrat. Ma to jednak tą wadę, że produkty reakcji z glicyną powodują dużo mocniejsze zbrązowienie oraz niekiedy niepożądany posmak, więc nie wszędzie da się ją zastosować.

Najbardziej oczywistym sposobem jest obniżenie temperatury tak aby nie przekraczała 120 stopni lub skrócenie czasu ogrzewania. (jeśli macie wrażenie, że w ostatnich latach ciastka kruche i herbatniki są jakby mało wypieczone, to możliwe że to jest tego przyczyną). W przypadku chipsów i frytek pewne znaczenie ma też branie do produkcji bulw krótko przechowywanych. Podczas przechowywania, w ziemniakach zachodzi proces rozpadu skrobi z powstaniem wolnej glukozy, będącej przecież cukrem redukującym. W skrajnych przypadkach długo przechowywane ziemniaki mogą się stać słodkawe w smaku.[4]
-------
*  http://www.efsa.europa.eu/en/topics/topic/acrylamide

[1] Eden Tareke et. al., Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs,
. Agric. Food Chem., 2002, 50 (17), pp 4998–5006

[2] Maria D. Villagran et al. Acrylamide Formation Mechanism in Heated Foods, J. Agric. Food Chem. 2003, 51, 4782−4787
[3]  https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/acrylamide-fact-sheet
[4]  Guidance on reducing acrylamide in food, FDE