informacje



piątek, 25 sierpnia 2017

Jaki może być największy atom?

Jak duży maksymalnie może być atom? Czy możliwe jest aby powiększyć go tak bardzo, że stanie się niemal widoczny gołym okiem?


Atom to zgodnie z definicjami układ składający się z elektronów krążących wokół jądra, zawierającego protony oraz neutrony (wyjątek - wodór-1 mający tylko proton). Ze względu na efekty kwantowe to w jaki sposób elektrony są wokół atomu rozmieszczone, jest dość skomplikowane, ale dla uproszczenia przyjmijmy znany wszystkim model planetarny, w którym elektrony krążą po prostu po kolistych orbitach.
Atomy są bardzo małe. Naprawdę bardzo. Ich średnice mierzymy w Angstremach, stanowiących jednostki o długości 10−10 metra, czyli obrazowo jest to 0,0000000001 metra. Ludzie właściwie nie ogarniają takich skal, bo nigdy nie stykają się takimi krotnościami wśród obiektów materialnych. Człowiek o wysokości 1,75 m jest w stosunku do Ziemi o średnicy 12 740 km zaledwie 7,3 miliona razy mniejszy, co stanowi różnicę o sześć rzędów wielkości. Tymczasem atomy są od człowieka o dziesięć rzędów wielkości mniejsze.
I choć są tak małe, atomy składają się ze składników jeszcze mniejszych. Większość ich masy jest zawarta w centralnym jądrze. Budujące jądro neutrony i protony są od elektronów 1839 razy cięższe. Jądro ma też niezwykle małą średnicę, jeśli porównać ją z rozmiarem orbity na której znajdują się elektrony, jest bowiem około sto tysięcy razy mniejsze. W zasadzie większość objętości atomu to pustka przez którą przebiegają silne oddziaływania elektryczne. Gdybyśmy powiększyli atom do średnicy Ziemi, jądro miałoby około 120 metrów średnicy.
Jako wielkość danego atomu przyjmujemy wielkość najdalszej orbity jego elektronów. Najmniejszy atom wodoru ma zaledwie 0,53 A średnicy, największy atom cezu ma średnicę 2,32 A, czyli jest tylko 5 razy większy. No chyba że weźmiemy pod uwagę szczególny stan atomu, a konkretnie jego elektronów.

Elektrony grupują się w powłokach elektronowych, przy czym w danej powłoce mieścić się może tylko pewna ich liczba. Ponieważ układ taki dąży do stanu o najniższej energii, elektrony wypełniają najbliższe możliwe orbity względem jądra. Siła przyciągania elektronu z jądrem zależy od tego jak blisko niego krąży; standardowo wyraża się ją w energii jonizacji, to jest takiej porcji która jest w stanie całkowicie oderwać elektron i utworzyć jon. Jest to energia potrzebna na to aby odchylić elektron z położenia równowagowego i oddalić go w "nieskończoność".

A co jeśli dostarczymy elektronowi nieco mniej energii? Otóż zacznie przeskakiwać na następną, wyższą energetycznie orbitę. W jego własnym miejscu zrobi się wakat, a układ w atomie stanie się niestabilny. Mówimy wtedy o stanie wzbudzonym. Zaraz więc ten sam lub inny elektron z wyższej powłoki, powróci w to miejsce, wypromieniowując kwant energii w postaci światła odpowiedniej długości fali. Na tych zjawiskach opiera się absorpcja i emisja światła, decydująca na przykład o kolorach materii czy płomieni.

Zastanówmy się jak to wygląda, na przykładzie najprostszego atomu - wodoru. Wodór ma tylko jeden elektron, na podpowłoce 1s, to jest na najbliższej orbicie. Wzbudzenie go porcją energii spowoduje że przeskoczy on na następną potencjalnie możliwą orbitę, na podpowłokę 2s. Kolejna porcja przesunie go na podpowłokę 2p a następna na 3s. Kolejność podpowłok zmienia się wedle rosnących energii wedle pewnego wzoru, zwykle rysowanego jak deszczyk na tabelce:


Jak możemy zobaczyć, po 11 przeskokach dzięki coraz większym porcjom energii, elektron znajdzie się na podpowłoce 6s, czyli znajdzie się w takim położeniu, w jakim znajdowałby się zewnętrzny elektron atomu Cezu. To już dosyć daleko. Co jednak stanie się, jeśli będziemy mu dodawać następne porcje energii, ale zbyt małe aby go po prostu zjonizować? Będzie przeskakiwał na kolejne i kolejne, aż znajdzie się na egzotycznych podpowłokach w rodzaju 17s które nie występują w żadnym istniejącym pierwiastku. Zaś wraz z kolejnymi przeskokami, rosnąć będzie też wielkość orbity, czyli odległość od jądra.
Przypomnijmy sobie teraz definicję atomu, jako układu dodatnio naładowanego jądra i krążących wokół elektronów. Atom z bardzo wzbudzonym, bardzo odległym elektronem, nadal jest formalnie atomem. A skoro tak, to jego średnica, która jest liczona jako średnica najdalszej orbity elektronowej, jest teraz bardzo duża. Tak bardzo duża, że w ekstremalnych przypadkach ze skali nano zbliża się do dużo lepiej nam znanych skal ułamków milimetra.

Tego typu atomy wzbudzone niemal do granicy jonizacji, nazywamy atomami Rydberga, wzięły nazwę od wzoru Rydberga opisującego długości fal w widmie emisyjnym wodoru. Wodór poddany działaniu wysokiej temperatury lub prądu elektrycznego, zaczyna emitować światło zawierające wiele serii pasm emisyjnych. Rydberg empirycznie opisał wszystkie te serie jednym wzorem, gdy jeszcze nie było wiadomo z czego wynikają. Gdy już ustalono model atomu, dla wszystkich stało się jasne, że bardziej oddalone serie emisyjne są wynikiem spadania na najbliższą jądru orbitę elektronu bardzo silnie wzbudzonego.

Rozmiar
Wraz ze stopniem wzbudzenia, bardzo szybko wzrasta promień orbity. Dla n=10 to jest dla dziesiątego poziomu energetycznego, średnica wzbudzonego atomu wodoru jest 200 razy większa niż w stanie podstawowym .
Przy bardzo silnym wzbudzeniu atom powiększa się tysiące a nawet miliony razy. Jednym z takich przypadków jest opisana w 2009 roku cząsteczka dwóch ultrachłodnych atomów rubidu, które po silnym wzbudzeniu utworzyły wiązanie o długości 100 nanometrów. Atomy połączone wiązaniem kowalencyjnym zatrzymują się w optymalnej odległości w której ich zewnętrzne powłoki stykają się ze sobą,zatem promień każdego z atomów wynosił 50 nm i był 25 razy większy niż normalnie.[1]

Ale to jeszcze nic. Niedawno doniesiono o zaobserwowania cząsteczki dwóch atomów cezu wzbudzonych do 44 poziomu energetycznego. Cząsteczka ta ma wielkość 1 mikrometra, co oznacza że jest większa niż wiele bakterii.[2]
Obliczenia pokazują, że w ekstremalnych przypadkach około 1000 poziomu energetycznego, średnica atomu osiąga około 1 mm.

Trwałość
Atomy wzbudzone energetycznie są generalnie nietrwałe - układ elektronowy będzie dążył do stanu podstawowego, toteż wybity daleko skrajny elektron "spadnie" z orbity możliwie najbliżej, emitując światło o długości fali odpowiadającej różnicy energii. Czas trwania takiego stanu jest zazwyczaj skrajnie krótki, w przejściach odpowiedzialnych za fluorescencje są to czasy rzędu nanosekund i krótsze. Jeśli jednak wzbudzenie jest duże, stan przedłuża się. Wynika to z prawdopodobieństwa przejścia energetycznego - im większa jest energia przejścia, tym mniejsze jest prawdopodobieństwo zajścia. Średni czas trwania stanu wzbudzonego w badanych laboratoryjnie atomach rydbergowskich, jest rzędu od milisekund do niemal sekundy. Wystarcza to aby zbadać ich właściwości, oraz aby ich obecność miała wpływ na procesy fizyczne.

Z drugiej jednak strony, takie silnie wzbudzone atomy są bardzo wrażliwe. Znacznie oddalony elektron jest już dosyć słabo związany z jądrem atomowym, i niewiele potrzeba mu energii aby odpadł całkowicie. Wystarczać mogą zderzenia z innymi atomami, foton światła czy własne drgania termiczne. Charakterystyczną cechą takich układów jest też łatwa jonizacja pod wpływem pola elektrycznego czy magnetycznego. Dlatego zazwyczaj stan ten jest badany w wysokiej próżni i w bardzo niskich temperaturach.
Całkiem niezłe warunki do trwania takiego stanu istnieją w otwartej przestrzeni kosmicznej. Próżnia międzygwiezdna jest dużo doskonalsza od otrzymywanej w ziemskich laboratoriach, atom może przebyć w przestrzeni wiele kilometrów zanim zderzy się z innym. Jest tam też dosyć chłodno, średnia temperatura wszechświata to zaledwie kilka kelwinów. Dlatego atomy rydbergowskie o bardzo wysokich poziomach energetycznych, rzędu n=300 i więcej, mogą trwać w kosmosie tak długo, aż nie dojdzie do spontanicznego przejścia energetycznego, a to może potrwać zaskakująco długo. Ich obecność w kosmosie jest trudna do wykrycia, możliwe więc, że da się przy ich pomocy wyjaśnić choć część niedomkniętego bilansu materii we wszechświecie.

Z powodu tej delikatności trudno byłoby jednak "zobaczyć" atom rydbergowski, nawet przy użyciu mikroskopu świetlnego. Nasze działania polegające na zalaniu go strumieniem światła mogą po prostu spowodować jego rozpad. W praktyce obserwuje się je pośrednio. Możemy zaczekać aż spontanicznie powróci do stanu podstawowego i zarejestrować kwant światła o wysokiej energii. Możemy też podziałać na niego bardzo słabym polem elektrycznym. Wykrycie jonizacji, to jest pojawienia się elektronu i kationu, w sytuacji gdy działające pole było bardzo słabe, dowodzi istnienia stanu silnie wzbudzonego, w którym to słabe pole było wystarczająco silne aby elektron oderwać ostatecznie.

Materia rydbergowska
Jedną z ciekawych właściwości wysoce wzbudzonych atomów jest dość wysoki moment dipolowy. Elektron krąży bowiem tak daleko i na tyle wolno, że w skończonym czasie uwidacznia się wyróżniony wektor elektryzacji. Fakt ten powoduje, że wzbudzone atomy mają skłonność do "sklejania" się w większe grupy. Chwilowe, ukierunkowane momenty dipolowe generują między nimi odpowiednik sił Londona. Ze względu na słabe przyciąganie, w grupkach wielu atomów rydberga elektrony mogą przeskakiwać z jednego na drugi, tworząc uśredniony stan podobny do wiązania metalicznego, co dodatkowo stabilizuje układ. Tak powstałe klastry tworzą nowy stan materii, który trudno nazwać ciałem stałym, gazem czy cieczą, oraz na pewno nie plazmą, bo mimo wszystko elektrony wciąż są z jądrami związane.

Co ciekawe, klastry takie są dużo trwalsze od osobnych wzbudzonych atomów, następuje interferencja ich funkcji falowych i uwspólnienie stanu, możliwe też że wiązanie "rydbergometaliczne" tworzy mały dołek na wykresie energetycznym utrudniając elektronom powrót do stanu podstawowego jeszcze troszeczkę. Dla klastrów 12 atomowych czas życia to już około 25 sekund. Grupki po kilkadziesiąt atomów mogłyby mieć średni czas trwania rzędu minut lub godzin, o ile oczywiście udałoby się je odizolować od zewnętrznych wpływów na tak długo. Na razie otrzymujemy klastry w formie płaskich warstw na podłożu, z którym słabo oddziałują, największy zgłoszony składał się z 91 atomów. Są pewne teoretyczne ograniczenia wielkości, związane z tym że jądra atomów są sklejane przez gaz elektronowy, który uśrednia się w czasie na tyle, iż działa jak równomierna siła. Problem pojawia się jednak gdy elektronów nie ma wcale tak dużo, a sam klaster jest ogromny.
Dla układu atomów na setnym poziomie energetycznym, odległości między nimi są już większe niż 1000 nanometrów. Jeśli grupa jest więc duża to biorąc pod uwagę, że elektron nie może przekraczać prędkości światła, może się zdarzyć że w wyniku przypadkowych fluktuacji lokalnie ładunek elektronów zwiększy się w pewnym miejscu, a bardziej osamotniony atom z brzegu będzie odczuwał zbyt słabe przyciąganie i oderwie się, zaś potrzebne do jego związania elektrony zwyczajnie nie nadążą. Klaster będzie się wówczas rozpadał i jonizował.

Otrzymywanie
Znanych jest kilka metod otrzymywania takich atomów. W każdym chodzi o to aby wzbudzać atomy silnie ale jednak precyzyjnie, poniżej progu jonizacji. Jednym ze sposobów jest bombardowanie atomów elektronami przyspieszonymi w polu elektrycznym. Energia elektronów zależy wtedy od przyłożonego potencjału i można ją z dużą dokładnością określić, stąd możliwość przekazania atomom konkretnej jej porcji.
Inny sposób to zderzanie obojętnego atomu z jonem. Zachodzi wtedy między nimi wymiana elektronu. Zostaje on wzbudzony za sprawą energii kinetycznej zderzanych jąder.
Obecnie najbardziej badanym sposobem jest jednak wzbudzanie elektronów światłem - pochłonięcie przez atom kwantu światła wzbudza jego zewnętrzne elektrony do stanu o dokładnie takiej energii jaką miał tamten foton. Precyzyjnie dobierając długość fali można zatem otrzymać atom na takim poziomie energetycznym jaki jest nam potrzebny.

Zastosowanie
Czy atomy rydbergowskie, to tylko taka sobie ciekawostka, bez praktycznych zastosowań? Wprawdzie jest to stan dość egzotyczny i nietrwały, ale w niektórych sytuacjach okazuje się idealny. Przede wszystkim są idealnym obiektem do badań fizycznych, mogących potwierdzić przewidywania co do oddziaływań fizycznych w zwyczajnych atomach. Bardziej jednak interesującym zastosowaniem, jest użycie ich jako qubitów w komputerach kwantowych. Stany kwantowe wzbudzonych atomów można zmieniać przy pomocy odpowiednio dobranych impulsów światła bez jonizacji Ponieważ zaś stany takie trwają w tym przypadku dosyć długo, można zdążyć wykonać kwantowe obliczenia zanim układ się rozpadnie.
W zeszłorocznym artykule z Nature Communications donoszono o przeprowadzeniu obliczeń na układzie 40 atomów rydbergowskich, co stanowi jeden z największych zbudowanych układów.[3]
---------
*  https://en.wikipedia.org/wiki/Rydberg_atom
*  http://www.princeton.edu/~mlittman/SciAmer.pdf
*  https://en.wikipedia.org/wiki/Rydberg_matter

[1] Vera Bendkowsky, Bjorn Butscher, Johannes Nipper, James P. Shaffer, Robert Low & Tilman Pfau. "Observation of ultralong-range Rydberg molecules." Nature, Vol 458, 23 April 2009, doi:10.1038/nature07945.
[2] Heiner Saßmannshausen et al. Observation of Rydberg-Atom Macrodimers: Micrometer-Sized Diatomic Molecules, Physical Review Letters (2016). DOI: 10.1103/PhysRevLett.117.083401
[3]  https://www.nature.com/articles/ncomms13449

8 komentarzy:

  1. Bardzo dobry tekst!

    Pozdrawia kolega (kwantowiec) po fachu ;)

    OdpowiedzUsuń
  2. "na prawdę" można się załamać...

    OdpowiedzUsuń
    Odpowiedzi
    1. nie no ktoś nie miał 6 z polskiego w gimnazjum, ja jebr można sie zajebac po chujj żyją ludzie bez wykształcenia wyższego z języka polskiego

      Usuń
    2. @Sub Ojej! Toż to takie straszne... oczy krwawio

      Usuń
  3. Bardzo ciekawy tekst. W sam raz do śniadania :)

    OdpowiedzUsuń
  4. Bardzo dobry tekst. Chcę tylko sprostować, że promień atomu wodoru to około 0,5 angstrema. Tu ta wartość jest omyłkowo przypisana średnicy.

    OdpowiedzUsuń