informacje



Pokazywanie postów oznaczonych etykietą kofeina. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą kofeina. Pokaż wszystkie posty

wtorek, 2 kwietnia 2013

Spektrofotometryczne oznaczanie kofeiny w kawie.

Kolejny raz zajmowałem się na zajęciach oznaczaniem kofeiny, ale tym razem w całkiem inny sposób. Poprzednio, jak to pisywałem, wyodrębniałem kofeinę z naparu herbacianego techniką SPE a zawartość wyznaczałem chromatograficznie przez porównanie ze wzorcem. Tym razem postąpiłem jednak inaczej.

Kawa, to napój robiony ze zmielonych nasion krzewu kawowego. Najstarsze wzmianki o niej pochodzą dopiero z końcówki średniowiecza, bez wątpienia jednak musiała być znana od dawna w plemionach górzystej Etiopii. Krzew owocuje czerwonymi jagodami o dużej pestce, która jest wyłuskiwana i suszona (w niektórych łagodnych odmianach pestki poddaje się enzymatycznej fermentacji podobnie jak w przypadku herbaty).  Pestki, nazywane teraz ziarnem kawowym, są następnie poddawane procesowi palenia - przypiekanie w wysokiej temperaturze powoduje częściową degradację substancji o roślinnym posmaku. Jednak powodem dla którego kawę się praży, jest nadanie jej właściwego smaku i zapachu.
W pierwszej fazie następuje karmelizacja cukrów prostych i skrobi w ziarnie; dalsze pieczenie powoduje, że cukry zaczynają reagować z białkami w ciągu skomplikowanych reakcji Maillarda. Powstające produkty tych często nieprzewidywalnych reakcji odpowiadają za silny i zróżnicowany aromat i smak ostatecznego produktu. Czas palenia i temperatura wpływają na stopień przemiany a tym samym na siłę i bukiet aromatu, toteż zależnie od techniki wyróżnia się różne odmiany kawy - na przykład kawa lekka (New England) była pieczona do momentu pierwszego pęknięcia ziarna. Pestki mogą być podpiekane długo w niskich temperaturach, lub szybko w wysokich; palone dwa razy w różnych temperaturach; szybko schładzane lub powoli. To wszystko wpływa na jakość ostatecznego produktu.
Kawa bezkofeinowa jest otrzymywana przez ekstrakcję nadkrytycznym dwutlenkiem węgla zmielonej kawy zielonej. Kawa rozpuszczalna przez zagęszczanie i liofilizację naparu. Ja sam osobiście nie piję kawy.

Spektrofotometria UV/VIS, podobnie jak innozakresowe techniki tego typu, opiera się na jednej podstawowej zasadzie - prawie Lamberta-Beera.W zasadzie są to dwa prawa dotyczące absorpcji w roztworach, które można połączyć w jedno. Zanim je objaśnię przejdę jednak do podstaw.
Różne ciała oddziałują ze światłem w różny sposób. Mogą całkowicie nie przepuszczać go przez siebie, mogą przepuszczać ale częściowo albo mogą przepuszczać całkowicie, jedynie załamując je zależnie od kształtu i gęstości. Aby jakoś ilościowo to opisać, porównujemy natężenia wiązki która wchodzi do ciała i wiązki która przezeń przechodzi, wedle rysunku:

Transmitancja (T) to po prostu stosunek natężeń, często wyrażany w procentach, mówiący jaka część światła przenika przez ciało. Częściej jednak stosuje się wartość nazywaną Absorbancją, będącą ujemnym logarytmem transmitancji, która jest o tyle wygodniejsza, że absorbancje różnych substancji w roztworze, można wprost dodawać do siebie tworząc A. ogólną.

Znając te podstawowe prawidła, możemy zrozumieć w jaki sposób próbowano powiązać absorpcję światła przez ciała, z ich rozmiarami lub stężeniem.
Na samym początku, w roku 1729, Pierre Bougher stwierdził, że natężenie światła przechodzącego przez ciało, maleje wykładniczo z jego grubością. A więc czym grubsza warstwa pochłaniająca, tym mniej światła przez nią przechodzi. Kilka dekad po nim to samo prawo opublikował niejaki Lambert. Z matematycznego opisu tego prawa wymikało, że różne substancje muszą posiadać charakterystyczny dla siebie wspólczynnik mówiący o ich zdolności do pochłaniania światła.
Następnym badaczem był August Beer, który badając absorpcję światła przez roztwory tych samych substancji, w naczyniu tej samej grubości, ogłosił w 1852 roku że absorpcja w takim przypadku zależy z grubsza liniowo od stężenia.
Jeśli uznać za ciało pochłaniające warstwę zabarwionego roztworu, to oba prawa można złożyć w jedno mówiące, że absorbancja roztworu zależy liniowo od - grubości warstwy roztworu l ; stężenia C ; i własnej zdolności absorpcyjnej ε , co określa się wzorem:

A = ε l C
Jest to prawo raczej przybliżone, z odchyleniami dla stężeń bardzo małych i bardzo dużych, jest jednak wystarczająco użyteczne, aby wykorzystać je w chemii analitycznej. Już po koniec XIX wieku zbudowano pierwszy użyteczny przyrząd pozwalający, w oparciu o te prawa, porównać stężenia roztworów - Kolorymetr Duboscq:

Było to proste urządzenie - do jednej z dwóch, jednakowo jasno podświetlonych rurek wlewano roztwór wzorca o znanym stężeniu, do drugiej roztwór badany i do obu wprowadzano szklane pręty. Patrząc na natężenie światła przechodzącego opuszczano bądź jeden, bądź drugi pręt dopóty, aż jasności po obu stronach się zrównały. Głębsze zanurzenie pręta, zmniejszało grubość warstwy między dnem rurki a końcem pręta, a tym samym grubość warstwy roztworu przez jaką przechodziło światło. Ze znanego stężenia roztworu wzorcowego i stosunku grubości warstw roztworów, można było wyliczyć stężenie nieznanego roztworu.
Urządzenie stało się pierwszym przyrządem analitycznym, używanym na przykład w medycynie - po przeprowadzeniu odpowiednich reakcji, zamieniającej składniki moczu lub osocza w barwne produkty, można było oznaczać zawartość białka w moczu lub cukru we krwi.

Współcześnie jednak technika znacznie ułatwiła nam pomiar i zwiększyła jego dokładność, używając fotometrów mierzących natężenie wiązki przechodzącej. Takiego też przyrządu używaliśmy na ćwiczeniu.

Pierwszym krokiem dla wykonania oznaczenia było wybranie kawy - na stanie laboratorium była tylko rozpuszczalna Pedros firmy Ellite:

Z niej odważyliśmy ok 0,05 g w trzech próbkach i zalaliśmy 10 ml gorącej wody, tworzac napar:

zawierający całą kofeinę, ale też resztki białek, polifenole i inne silnie zabarwione substancje, które przeszkadzałyby w oznaczaniu. Należało więc tą kofeinę od całej reszty oddzielić, jednak zamiast techniki SPE, jakiej używałem na ćwiczeniu z herbatą, skorzystałem z techniki bardziej klasycznej - ekstrakcji rozpuszczalnikiem organicznym.
Napar po przestudzeniu wlewaliśmy do rozdzielacza i dodawaliśmy chlorku metylenu - bardzo lotnego rozpuszczalnika. Zamiast jednak zazwyczaj wykonywanego silnego wstrząsania, jedynie "przelewaliśmy" ciecze we wnętrzu, pozwalając się im niezbyt gwałtownie przelewać. Kofeina jest w chlorku metylenu stosunkowo dobrze rozpuszczalna, ale ciemne barwniki kawy także; ostrożne mieszanie miało jak najbardziej zmniejszyć ten niepożądany efekt.

Gdy już wytrząsnęliśmy pierwszą porcję odlewaliśmy cięższy roztwór organiczny i do  tej samej raz ekstrahowanej cieczy dolewaliśmy następną porcję rozpuszczalnika. A gdy podobnie przemieszaliśmy je i odlaliśmy chlorek metylenu, powtórzyliśmy ekstrakcję po raz trzeci. Chodziło po prostu o to, aby wyciągnąć z naparu praktycznie całą kofeinę.
Każdy napar z każdej próbki ekstrahowaliśmy osobno, zbierając warstwę organiczną do trzech osobnych próbówek. Jak widać nie zawsze udawało się uniknąć zanieczyszczenie naparem wodnym. Ostatnie kropelki odciągnęliśmy pipetką


Mając już roztwór zawierający kofeinę, należało nią z niego wyodrębnić - toteż przelaliśmy go do porcelanowej parownicy i odparowaliśmy niskowrzący rozpuszczalnik na łaźni piaskowej. Tak, wiem, że to mało oszczędny sposób, ale tak było w przepisie. Gdy rozpuszczalnik wrzał zauważyłem na jego powierzchni ciekawe zjawisko "pływającej kropli" - czy też raczej pół-antybańki.
Normalna bańka składa się z gazu oddzielonego od gazu zewnętrznego cienką błonką cieczy, napiętą przez detergent powierzchniowo czynny. W szczególnych warunkach można jednak stworzyć układ dokładnie odwrotny - kropla cieczy oddzielona od reszty błonką powietrza. Taka antybańka unosi się swobodnie wewnątrz roztworu.
Zjawisko jakie obserwowałem stanowiło coś pośredniego - kropelka cieczy unosiła się na powierzchni roztworu, będąc od niego oddzielona błonką powietrza, ale tylko na spodniej stronie. Powietrze to zmniejsza tarcie między kroplą a resztą roztworu na tyle, że kropla bardzo szybko śmiga począwszy od miejsca powstania. Jest to zjawisko obserwowane bardzo często, widziałem je na kałużach do których wpadał strumień deszczówki, na mieszanej herbacie, u podnóża wodospadów a nawet wewnątrz muszli klozetowej podczas załatwiania małej potrzeby fizjologicznej. Także gdy kran w laboratorium kapie na cienką warstwę wody na dnie zlewów, też widzę kropelki szybko śmigające po tej warstewce.
Te "połkrople" czy też jak ja nazywam, pływające krople, na powierzchni wrzącego chlorku metylenu zaciekawiły mnie dlatego, że spontanicznie rosły - najwyraźniej na niestabilnej powierzchni w warunkach minimalnej lepkości, małe porcje cieczy przechodziły do kropli, powiększając ją.

Gdy cały rozpuszczalnik odparował, na dnie parowniczki pozostał osad, zawierający kofeinę i zanieczyszczenia:

Osad rozpuszczaliśmy w niewielkiej ilości wody, przelewaliśmy ją do kolby miarowej i po uzupełnieniu do kreski otrzymywaliśmy 100 ml roztworu kofeiny z kawy. Czynności wykonaliśmy osobno dla każdej próbki, uważając aby ich nie pomieszać. Z powodu zanieczyszczeń roztwór był lekko zabarwiony:

Niestety nasz spektrofotometr akurat się zepsuł i oznaczenie musieliśmy odłożyć na następne ćwiczenia.
Na kolejnych ćwiczeniach zaczęliśmy od przygotowania serii roztworów wzorcowych, o stężeniach kofeiny zmieniających się od 0 do 0,9 mikromola/ml, następnie wybraliśmy jeden z nich i po przelaniu do kwarcowej kuwety mierzyliśmy zależność absorbancja/długość foli, aby znaleźć warunki w których pochłanianie światła jest największe. W naszym przypadku była to fala 279 nm.

Gdy długość fali była już ustalona, reszta oznaczania była prosta - najpierw zmierzyliśmy absorbancje kolejnych roztworów wzorcowych a następnie naszych roztworów otrzymanych z kolejnych próbek. I już tutaj pojawił się pierwszy zgrzyt - absorbancja próbek badanych wyszła większa niż roztworów wzorcowych i powyżej 1, a więc pochłanianie w tej długości fali było bardzo silne. Nie lepiej było gdy doszło do opracowywania wyników.
Najpierw wykonałem wykres zależności stężenie/absorbancja, nie wyglądał zbyt dobrze:

Uznałem więc że wartość w punkcie 2 to błąd gruby i usunąłem go, uzyskując ładną linię prostą:

wraz z równaniem tejże prostej. Wiedząc że Y to absorbancja, a X to stężenie, mogłem wyliczyć z tego wzoru stężenie kofeiny w trzech roztworach badanych - o ile oczywiście nadal stosowała się do nich zależność prostoliniowego odcinka krzywej.
Po przeliczeniu otrzymałem stężenie kofeiny w roztworach w mikromol/ml. Znając objętość roztworów przeliczyłem stężenie na ilość a tą, znając masę molową kofeiny, na masę. Znając teraz masy odważonych próbek kawy i masy wyliczonej kofeiny w nich zawartej, mogłem policzyć procentową zawartość kofeiny w kawie. Po uśrednieniu zbliżonych wyników wyniosła ona 4,28%

Siła kawy jest zatem niczego sobie, tyle tylko, czy jest to wartość realna? Jak wynikałoby z badań, w większości przypadków kawy dostępne na rynku zawierają od 1 do maksymalnie 2,5% kofeiny [1] zatem w moim przypadku wynik jest dwa razy większy.
Co mogło być źródłem błędu? Jakiś wpływ może mieć błąd ujemny, związany z niecałkowitą ekstrakcją kofeiny, ale zdecydowanie większy wpływ ma błąd dodatni wywołany ciemnymi zanieczyszczeniami z pierwotnego ekstraktu. Ostrożna ekstrakcja miała pomóc ich uniknąć, ale najwyraźniej nie była wystarczająca. We wcześniejszym ćwiczeniu z herbatą kofeina została oddzielona i zatężona przy pomocy techniki SPE a właściwa analiza była przeprowadzane przez porównanie powierzchni pod wykrytym przez detektor pikiem kofeiny z próbki i z roztworu wzorcowego. Zatem przed dojściem do detektora kofeina została oddzielona od zanieczyszczeń i sygnał pochodził tylko od niej.
Wiem że inne grupy badające tą kawę otrzymały niższe wartości, rzędu 2,5-3% więc widocznie etap ekstrakcji wykonały ostrożniej. Bywa.

------------
[1] Marcin Frankowski, Artur Kowalski, Agnieszka Ociepa, Jerzy Siepak, Przemysław Niedzielski, Kofeina w kawach i ekstraktach kofeinowych i odkofeinizowanych dostępnych na polskim rynku, BROMAT. CHEM. TOKSYKOL. – XLI, 2008, 1, str. 21 – 27