informacje



Pokazywanie postów oznaczonych etykietą napoje. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą napoje. Pokaż wszystkie posty

czwartek, 7 sierpnia 2014

Kwas co ma gaz

W letnie, upalne dni, najchętniej nic byśmy nie robili, tylko leżeli w cieniu i popijali coś chłodnego. Na przykład wodę. Taką gazowaną, z bąbelkami i szczypiącym, kwaśnym posmaku. I być może czasem zastanowi nas, jaki to gaz i jaki kwas...

Dwutlenek węgla jest bezbarwnym i w zasadzie bezwonnym gazem cięższym od powietrza, stanowiącym stale niewielki procent składu atmosfery. Został odkryty dosyć wcześnie - już w XVII wieku van Helmont zauważył, że jeśli masa popiołu po spaleniu węgla jest znacząco mniejsza od pierwotnej masy, to reszta musi ulegać zamianie w formę gazową. Ówcześni identyfikowali go z flogistonem - pierwiastkiem palności - i dalej się tą sprawą nie zajmowano. Dopiero w 1750 roku szkocki lekarz Joseph Black, znany też z badań nad ciepłem utajonym, poddał badaniom gaz powstający z potraktowania wapienia kwasem, stwierdzając, że jest różny od powietrza, ciężki i duszący, oraz że wytrąca osad z roztworu wapna gaszonego. Korzystając z tej ostatniej reakcji, stwierdził że występuje normalnie w powietrzu i w większych ilościach w tchnieniu zwierząt i ludzi. Późniejsi badacze doszli do tego, że gaz jest połączeniem tlenu i węgla i że reakcję czasem można odwrócić (przy spalaniu magnezu w dwutlenku węgla powstaje sadza), jednak dla nas istotniejsze jest odkrycie Josepha Priestly'a, trochę teologa a trochę przyrodnika-hobbysty, który badając przebieg fermentacji w miejscowym browarze, zainteresował się "zastałym powietrzem" - warstwą gazową nad fermentującą kadzią, uważaną za pracowników za niezdrową i od której zdychały myszy jeśli dostały się pod jej wpływ.
Wytwarzanie wody sodowej - rysunek Priestley'a z 1772 roku

Eksperymentując, umieścił nad kadzią miskę z wodą, chcąc sprawdzić rozpuszczalność tego gazu. Po zlaniu musującego roztworu stwierdził, że woda nabrała przyjemnego, lekko kwaśnego posmaku, a nawet dał go spróbować znajomym, twierdząc że to orzeźwiający napój bez alkoholu. Kilka lat później opisał go w artykule, dodając przepis na sztuczne otrzymanie - po zwilżeniu kredy kwasem siarkowym, powstający gaz przeprowadzał rurką do wody i po przepuszczeniu większej ilości otrzymywał napój, który uważał za bardzo podobny do naturalnych wód mineralnych i polecał na szkorbut. W zasadzie jednak nie traktował odkrycia inaczej jak ciekawostki i nie sądził, że znajdzie zastosowanie. Tymczasem producenci wód mineralnych powinni mu postawić pomnik - odkrycie, że zwykła woda staje się smacznym napojem po rozpuszczeniu w niej pospolitego gazu, do dziś przynosi im ogromne zyski.
Pierwszym, który wpadł na to, że jest to znakomity pomysł na interes, był niejako Jacob Schweppe, który w roku 1783 założył firmę Schweppes, istniejącą zresztą do dziś, produkując wody gazowane mające naśladować wody mineralne z naturalnych źródeł. Nieco później dla polepszenia smaku, do nagazowanej wody zaczęto dodawać nieco sody oczyszczonej, tworząc napój nazywany odtąd wodą sodową. I tak zaczął się przemysł napojów gazowanych.

Szybko jednak chemicy zaczęli się zastanawiać, dlaczego po rozpuszczeniu gazu, woda staje się kwaśna. Musi powstawać jakiś kwas - uznali - i nazwali go kwasem węglowym. W polskiej nomenklaturze dwutlenek węgla zaczął być z tego powodu nazywany niedokwasem węglowym. Taki też stan rzeczy trwał przez długi czas, aż zaczęły się problemy z wyizolowaniem czy choćby wykryciem tego kwasu w wodzie. Badania absorpcji w podczerwieni nie wykryły aby występował w choćby najbardziej nasyconych roztworach. W zamian za to wykrywano jony węglanowe i wodorowęglanowe, stąd też powstała koncepcja wedle której kwas węglowy nie istnieje. Jeszcze ja w technikum byłem upominany aby nie zapisywać jego cząsteczki w równaniu rozpuszczania dwutlenku węgla.


Jest to w pewnym stopniu podobna sytuacja jak z "wodorotlenkiem amonu". Rozpuszczenie amoniaku w wodzie da nam roztwór o zasadowym odczynie, toteż postulowano powstawanie w wodzie wodorotlenku amonu i przez długi czas zapisywano go w ten sposób. Dopiero potem dokładne badania wykazały, że cząsteczka taka nie powstaje - woda wymienia się protonem z amoniakiem, i tworzy się osobny jon wodorotlenkowy i osobny amonowy pozostające w równowadze. Wydawało się zatem, że tu jest podobnie - dwutlenek łączy się z wodą biorąc tlen i wodór do utworzenia jonu wodorowęglanowego, a pozostawiając wolny kation wodorowy; wodorowęglan dysocjuje dalej do anionu węglanowego, zaś kwas węglowy się nie tworzy. I wszystko było w porządku aż nie odkryto, że pogłoski o jego śmierci są mocno przesadzone.

Aby otrzymać czysty i stabilny kwas węglowy, należało zastosować dość specyficzne warunki - mieszaninę wody i dwutlenku węgla zamrożono i umieszczono pod niskim ciśnieniem, po czym napromieniowano - promieniowanie pozwoliło na połączenie dwóch różnych cząsteczek bez ogrzewania. Następnie zastosowano sublimację wody pod niskim ciśnieniem, otrzymując czysty, suchy związek.
Jak się okazało, bezwodny kwas węglowy jest dosyć trwały - obliczenia teoretyczne pokazały że czas połowicznego rozkładu to ponad sto tysięcy lat, ale śladowe ilości wody przyśpieszają ten rozkład gwałtownie, nawet milion razy[1].
Udało się także otrzymać gazowy kwas węglowy, trwały do temperatury -30 stopni, który w takiej fazie chętnie tworzy trwalszy dimer[2]

Skoro kwas ten istnieje, to jak jest z jego obecnością w wodzie mineralnej?
Gdy tylko zaczynamy nasycać wodę dwutlenkiem węgla, zaczyna on być hydratowany. W takiej formie każda cząsteczka tlenku zostaje otoczona cząsteczkami wody, lecz nie następuje pomiędzy nimi reakcja. Ilość rozpuszczającego się w ten sposób gazu zależy od ciśnienia - im wyższe, tym lepsza rozpuszczalność. W takiej formie występuje około 99% rozpuszczonego w wodzie związku.

Część jednak reaguje z wodą dając jako produkt przejściowy kwas węglowy:
CO2 + H2O → H2CO3
Jak wykazały badania, związek ten bardzo szybko i łatwo odszczepia jeden proton, przechodząc w jon wodorowęglanowy. Stała równowagi pokazuje, że kwas ten jest nawet mocniejszy od cytrynowego. Silne przesunięcie równowagi w stronę wodorowęglanów powoduje jednak, że niemal natychmiast prawie cały powstający kwas węglowy zamienia się w tą formę:
H2CO3 is in equilibrium with HCO3 + H+

Jon wodorowęglanowy może ulegać dalszej dysocjacji, rozpadając się na jon węglanowy:
 HCO3 is in equilibrium with CO32− + H+
Jednak reakcja ta następuje powoli, i zaczyna nabierać znaczenia w warunkach silnie zasadowych.

Wszystkie te procesy są procesami równowagowymi, toteż zachodzą równocześnie w obie strony, choć z różną szybkością, a obserwowany stan jest wypadkową różnie szybkich równoczesnych reakcji. Można to porównać do szeregu naczyń do których woda może wpływać i wypływać, aż zależnie od szybkości wypływu i dopływu stabilizuje się na pewnym poziomie.
Gdy zaczniemy wprowadzać dwutlenek węgla do wody, będzie to czynił niechętnie, jednak gdy się rozpuści większość będzie występować w formie zhydratowanej. Z tej ilości pewna część będzie zamieniać się w kwas węglowy. Ten ma dwie możliwe drogi rozpadu - albo zamieni się z powrotem w dwutlenek węgla, co czyni chętnie, albo w wodorowęglan, co czyni równie szybko. To że w ogóle występuje w roztworze jest wynikiem tego, że wszystkie procesy są pewnymi równowagami odwracalnych reakcji - większe ciśnienie gazu naprodukuje więcej kwasu węglowego który natychmiast rozpada się w wodorowęglan; obniżenie ciśnienia powoduje rozpad obecnego kwasu węglowego ale jest on odtwarzany z wodorowęglanów.
Pod ciśnieniem atmosferycznym w wodzie pozostającej w kontakcie z dwutlenkiem węgla, może się rozpuścić ok. 0,1 mmol, z czego 1% przechodzi w wodorowęglan a 0,01% w kwas węglowy. Jonów węglanowych powstają niewykrywalne ilości. Roztwór taki ma pH=5,6 zatem jest lekko kwaskowaty. Pod ciśnieniem ok. 1-2 atmosfer, jakie to ciśnienia są stosowane w butelkowanej wodzie mineralnej, rozpuszcza się 8,5 mmol gazu, z czego 1% ma postać wodorowęglanu i niemal tyle samo formę kwasu węglowego. Roztwór taki ma pH =3,5 a więc podobne do soku pomarańczowego.

Co więc z tego wynika ostatecznie? Większość rozpuszczonego dwutlenku węgla występuje w wodzie w formie zhydratowanej obojętnej cząsteczki, a z pozostałej części większość w formie wodorowęglanów. A kwas? Występuje ale jako dynamiczna faza przejściowa - nieustannie tworzy się i rozpada istniejąc w ilościach tak niewielkich, że nieistotnych dla określenia kwasowości i trudnych do wykrycia. Ale jest.
------
* http://en.wikipedia.org/wiki/Carbonic_acid
* http://de.wikipedia.org/wiki/Kohlens%C3%A4ure
* http://en.wikipedia.org/wiki/Carbonated_water
* http://en.wikipedia.org/wiki/Joseph_Priestley

[1] Thomas Loerting, Christofer Tautermann, Romano T. Kroemer, Ingrid Kohl , Andreas Hallbrucker , Erwin Mayer. and Klaus R. Liedl,  On the Surprising Kinetic Stability of Carbonic Acid (H2CO3), Angewandte Chemie International Edition Volume 39, Issue 5, pages 891–894, March 3, 2000
[2] Hinrich Grothe et al.,  Spectroscopic Observation of Matrix-Isolated Carbonic Acid Trapped from the Gas Phase, Angewandte Chemie International Edition Volume 50, Issue 8, pages 1939–1943, February 18, 2011

piątek, 12 kwietnia 2013

Benzen w napojach

 Od roku nie mogę dokończyć tego wpisu a już dawno go zapowiadałem.

Reakcja jaką chcę teraz opisać, jest na tyle nietypowa, że każdy mający jakieś pojęcie o chemii słysząc o niej, zachodzi w głowę jak to możliwe. Benzoesan sodu pod wpływem witaminy C zamienia się w benzen.

O benzoesanie sodowym i jego właściwościach już pisałem w osobnym artykule - związek raczej nieszkodliwy, powszechny w kwaśnych produktach, chroniąc je przed powstawaniem pleśni. Również witamina C  w zasadzie jest dobrze znana.
Chemicznie rzecz biorąc jest to kwas askorbinowy, będący w zasadzie pochodną glukozy, najczęściej występującą w formie pięciokątnego laktonu, jest to też ciekawy przykład kwasu organicznego, który nie zawiera grupy karboksylowej. Stosunkowo łatwo ulega utlenieniu, będąc dobrym reduktorem a tym samym ma właściwości antyoksydacyjne. Jest dla naszego organizmu niezbędną substancją, biorącą udział w syntezie hormonów, wzmacnianiu naczyń krwionośnych i równowadze komórkowej, nie odpowiada natomiast za odporność na choroby, wbrew temu co mówią reklamy.

Natomiast trzecia substancja, benzen, jest związkiem szkodliwym. Ten najprostszy węglowodór aromatyczny ma cząsteczkę o kształcie regularnego sześciokąta. Odkryty w połowie XIX wieku w smole pozostałej po zgazowaniu węgla, przysporzył chemikom wielkich problemów w ustaleniu struktury. Jest najbardziej charakterystycznym przedstawicielem grupy związków aromatycznych - to jest zawierających sprzężone układy elektronów Pi zdelokalizowanych w całym pierścieniu. Zgodnie z nazwą wiele związków o takich właściwościach posiada  charakterystyczny aromat - benzen ma słaby zapach, określany jako słodki; z dodaną grupą aldehydową staje się migdałowym benzaldehydem, który po dodaniu naprzeciwko grupy metoksylowej staje się aldehydem anyżowym.
W tej historii jednak najistotniejsze są jego właściwości zdrowotne. Podobnie jak inne lotne rozpuszczalniki organiczne jest trujący przy wdychaniu. Ponadto już dawno temu udowodniono że jego metabolity uszkadzają szpik i prowokują rozwój białaczki. Z tego powodu jego dawniej powszechne stosowanie w przemyśle, zostało w znacznym stopniu ograniczone, jest też niedozwolony w dydaktyce szkolnej, przez co przez całe studia nie miałem okazji go nawet powąchać.

Pierwsze informacje o benzenie w napojach pochodziły z lat 80 i początku 90. lecz dotyczyły przypadków użycia do ich produkcji zanieczyszczonej nim wody. Jednak niektórych przypadków nie dawało się w ten sposób wytłumaczyć. Woda użyta do produkcji niektórych napoi była czysta, czyste były składniki, a tymczasem badania gotowych produktów wykazywało istnienie w nich śladowych ilości tego węglowodoru. Jedynym wyjaśnieniem było to, że musi w jakiś sposób powstawać w samym produkcie.
Zaczęto więc sprawdzać różne napoje pod kątem kombinacji składników, stwierdzając, że za każdym razem chodziło o połączenie: kwaśny napój + woda źródlana + witamina C + benzoesan sodu[1]. Co takiego jednak zachodziło?

Pierwsza praca z 1993[2] roku proponowała dosyć nieoczekiwany mechanizm. Na pierwszym etapie mający właściwości redukujące kwas askorbinowy, reagował z kationem metalu przejściowego, obecnego w wodzie, powodując jego redukcję do formy o niższym stopniu utlenienia. Ta z kolei reaguje z tlenem rozpuszczonym w napoju, powodując jego częściową redukcję do anionu nadtlenkowego. Ten przyjmuje pprotony z kwaśnego środowiska tworząc nadtlenek wodoru - czyli wodę utlenioną.
Nadtlenek wodoru reaguje z obecnymi w roztworze zredukowanymi kationami metalu, rozpadając się na jon hydroksylowy i rodnik hydroksylowy. Ostatni etap jest identyczny z zachodzącym w odczynniku Fentona - mieszaninie wody utlenionej i soli żelaza II, używanej do utleniania zanieczyszczeń.


Rodniki to takie atomy lub cząsteczki, które posiadają jeden elektron nie do pary. Każdy elektron jest obdarzony spinem - a więc momentem magnetycznym wynikłym z wewnętrznych ruchów ładunku. Spin ten może przyjmować dwie wartości: +1/2 i -1/2, odpowiadające przeciwnym zwrotom momentu magnetycznego. W takiej sytuacji elektrony zachowują się jak dwa magnesy sztabkowe, obrócone o 180 stopni - przyciągają się, mimo odpychania elektrostatycznego. Z tego powodu elektrony w powłokach wokół atomu najchętniej łączą się w pary. Powstawanie takich par jest przyczyną powstawania wiązań chemicznych.
Jeśli jednak zdarzy się taki wypadek, że jakaś para zostanie rozdzielona, osamotniony elektron poszukuje partnera - i znajdując go w innej cząsteczce doprowadza do reakcji.

Rodnik hydroksylowy należy tutaj do najbardziej agresywnych - ma bardzo dużą skłonność do odbierania elektronów innym cząsteczkom - a więc utleniania ich. Pół biedy gdy takiej reakcji poddaje się cząsteczka wody czy cukru, ale gdy rodnik taki powstanie wewnątrz organizmu, powoduje uszkodzenie białek, lipidów i cząsteczek DNA. Z tego powodu są to cząsteczki najbardziej niebezpieczne dla ustroju.

W naszym jednak przypadku reaktywność rodników jest przyczyną takiego a nie innego przebiegu dalszej reakcji. Gdy rodnik zetknie się z naszym benzoesanem, odbierze mu elektron, przez co cząsteczka ta sama staje się rodnikiem benzylowym. Jest to rodnik bardzo nietrwały - łatwo ulega przegrupowaniu z odszczepieniem dwutlenku węgla. Po tej dekarboksylacji w roztworze pozostaje jedynie nasz benzen.
Czy jednak ten efekt, symulowany w warunkach laboratoryjnych, rzeczywiście występuje w tak skomplikowanych mieszaninach, jak napoje? Skrupulatne badania pokazały, że tak.
W pewnym belgijskim badaniu [3] po sprawdzeniu 134 dostępnych na rynku napoi, benzen wykryto w 20%, z czego w kilku ilość przekraczała maksymalny dopuszczalny poziom dla wody pitnej (1 ppb dla Europy). W podobnym badaniu w USA benzen wykryto w kilkunastu procentach napoi, w czterech przekroczony został amerykański dopuszczalny poziom 5 ppb, w dwóch przypadkach norma ta została przekroczona w koncentratach owocowych aż 20-krotnie[4]. Napoje te zostały wycofane. Podobne wyniki uzyskali kanadyjczycy[5].
A w Polsce?

Na szczęście pod względem badań analitycznych, nie jest u nas tak źle. W badaniu w 2008 roku sprawdzono 60 napoi, śladowe ilości benzenu wykryto w prawie połowie, jednak tylko 11 zawierało go więcej niż dopuszcza polska norma dla wody pitnej. Najwyższe poziomy stwierdzono w "Snipp orange" i "Hoop fruti pomarańcza" a z soków owocowych w soku żurawinowym, zawierającym naturalne benzoesany[6]
 Zatem benzen istotnie pojawia się w tej reakcji. Pozostaje jednak pytanie, czy te wartości są szkodliwe?
Dzienne pobranie benzenu tą drogą oceniono na 10% pobrania z innych źródeł. Ze względu na występowanie w ropie naftowej i podobną temperaturę wrzenia, benzen występuje w benzynie. Opary rozlanej benzyny będą więc go zawierały. Stąd wraz z niespalonymi resztkami przedostaje się do spalin, będąc stale obecny w miejskim powietrzu. Jeszcze więcej benzenu zawiera dym papierosowy, zatem palenie czy też czynne czy bierne, zwiększa narażenie kilkunastokrotnie. Wobec tych ilości, to co mogą zawierać napoje stanowi tak małą ilość, że dla nawet najbardziej zanieczyszczonych trzeba by wypić 20 litrów dziennie, aby tym samym dostarczyć sobie go tyle, ile daje go nam całodzienne oddychanie miejskim powietrzem[7].
Dokładne wyliczenia pokazują, że wzrost ryzyka nowotworu w wyniku ekspozycji z tego źródła jest ledwie istotny statystycznie, i nie przekracza prawdopodobieństwa 1:1000000.[8] Oznacza to że pijąc takie napoje nie dostaniemy skrętu kiszek czy raka żołądka.

Skoro tak - zapyta ktoś - skoro to jest tak mały efekt, to o co cały ten szum? A o to, że z kancerogenami jest tak, że im ich mniej, tym lepiej. Może nie uda się nam natychmiast radykalnie poprawić powietrza w miastach ani skłonić ludzi do rzucenia palenia, ale obligując producentów aby przeciwdziałali tej reakcji robimy mały i szybki krok w dobrą stronę.

Amerykańska FDA zobowiązała producentów do działań, mających zmniejszyć występowanie tej reakcji. reakcję można zahamować przez dodatek EDTA - środka chelatującego metale, uniemożliwiając im katalizowanie produkcji rodników. Inna opcja to napełnianie butelek w atmosferze azotu, aby do środka nie dostał się tlen. Niektóre firmy, jak Coca Cola wycofują benzoesan sodu, na rzecz sorbinianu lub bardziej sterylnej linii produkcyjnej. Nie wiem natomiast czy w Polsce ten problem jest w jakiś sposób zwalczany. Nie znalazłem na ten temat żadnych informacji.
Jeśli zaś chcecie ustrzec się przed takimi napojami, to uważajcie też na żurawinę - zawiera bardzo dużo naturalnych benzoesanów, wystarczy więc zmieszać ją z sokiem pomarańczowym i...
--------
ResearchBlogging.org Źródła:
[1] Department of Health and Human Services. Summary of Information on Benzene Formation inFood Products. Memorandum, January 18, 1991
[2] Gardner, L., & Lawrence, G. (1993). Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst Journal of Agricultural and Food Chemistry, 41 (5), 693-695 DOI: 10.1021/jf00029a001
[3] Van Poucke, C., Detavernier, C., Van Bocxlaer, J., Vermeylen, R., & Van Peteghem, C. (2008). Monitoring the Benzene Contents in Soft Drinks Using Headspace Gas Chromatography−Mass Spectrometry: A Survey of the Situation on the Belgian Market Journal of Agricultural and Food Chemistry, 56 (12), 4504-4510 DOI: 10.1021/jf072580q
[4] http://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm055815.htm
[5] http://www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/securit/benzene_follow_hra-ers-eng.pdf
[6] Małgorzata Jędra, Andrzej Starski, Halina Gawarska, Dorota Sawilska-Rautenstrauch , WYSTĘPOWANIE BENZENU W NAPOJACH BEZALKOHOLOWYCH,  BROMAT. CHEM. TOKSYKOL. – XLI, 2008, 3, str. 382–388 
[7] http://www.nzfsa.govt.nz/consumers/food-safety-topics/chemicals-in-food/benzene/index.htm
[8] Haws, L., Tachovsky, J., Williams, E., Scott, L., Paustenbach, D., & Harris, M. (2008). Assessment of Potential Human Health Risks Posed by Benzene in Beverages Journal of Food Science, 73 (4) DOI: 10.1111/j.1750-3841.2008.00730.x  

O benzoesanie i tym dlaczego nie jest taki straszny Tutaj.

wtorek, 2 kwietnia 2013

Spektrofotometryczne oznaczanie kofeiny w kawie.

Kolejny raz zajmowałem się na zajęciach oznaczaniem kofeiny, ale tym razem w całkiem inny sposób. Poprzednio, jak to pisywałem, wyodrębniałem kofeinę z naparu herbacianego techniką SPE a zawartość wyznaczałem chromatograficznie przez porównanie ze wzorcem. Tym razem postąpiłem jednak inaczej.

Kawa, to napój robiony ze zmielonych nasion krzewu kawowego. Najstarsze wzmianki o niej pochodzą dopiero z końcówki średniowiecza, bez wątpienia jednak musiała być znana od dawna w plemionach górzystej Etiopii. Krzew owocuje czerwonymi jagodami o dużej pestce, która jest wyłuskiwana i suszona (w niektórych łagodnych odmianach pestki poddaje się enzymatycznej fermentacji podobnie jak w przypadku herbaty).  Pestki, nazywane teraz ziarnem kawowym, są następnie poddawane procesowi palenia - przypiekanie w wysokiej temperaturze powoduje częściową degradację substancji o roślinnym posmaku. Jednak powodem dla którego kawę się praży, jest nadanie jej właściwego smaku i zapachu.
W pierwszej fazie następuje karmelizacja cukrów prostych i skrobi w ziarnie; dalsze pieczenie powoduje, że cukry zaczynają reagować z białkami w ciągu skomplikowanych reakcji Maillarda. Powstające produkty tych często nieprzewidywalnych reakcji odpowiadają za silny i zróżnicowany aromat i smak ostatecznego produktu. Czas palenia i temperatura wpływają na stopień przemiany a tym samym na siłę i bukiet aromatu, toteż zależnie od techniki wyróżnia się różne odmiany kawy - na przykład kawa lekka (New England) była pieczona do momentu pierwszego pęknięcia ziarna. Pestki mogą być podpiekane długo w niskich temperaturach, lub szybko w wysokich; palone dwa razy w różnych temperaturach; szybko schładzane lub powoli. To wszystko wpływa na jakość ostatecznego produktu.
Kawa bezkofeinowa jest otrzymywana przez ekstrakcję nadkrytycznym dwutlenkiem węgla zmielonej kawy zielonej. Kawa rozpuszczalna przez zagęszczanie i liofilizację naparu. Ja sam osobiście nie piję kawy.

Spektrofotometria UV/VIS, podobnie jak innozakresowe techniki tego typu, opiera się na jednej podstawowej zasadzie - prawie Lamberta-Beera.W zasadzie są to dwa prawa dotyczące absorpcji w roztworach, które można połączyć w jedno. Zanim je objaśnię przejdę jednak do podstaw.
Różne ciała oddziałują ze światłem w różny sposób. Mogą całkowicie nie przepuszczać go przez siebie, mogą przepuszczać ale częściowo albo mogą przepuszczać całkowicie, jedynie załamując je zależnie od kształtu i gęstości. Aby jakoś ilościowo to opisać, porównujemy natężenia wiązki która wchodzi do ciała i wiązki która przezeń przechodzi, wedle rysunku:

Transmitancja (T) to po prostu stosunek natężeń, często wyrażany w procentach, mówiący jaka część światła przenika przez ciało. Częściej jednak stosuje się wartość nazywaną Absorbancją, będącą ujemnym logarytmem transmitancji, która jest o tyle wygodniejsza, że absorbancje różnych substancji w roztworze, można wprost dodawać do siebie tworząc A. ogólną.

Znając te podstawowe prawidła, możemy zrozumieć w jaki sposób próbowano powiązać absorpcję światła przez ciała, z ich rozmiarami lub stężeniem.
Na samym początku, w roku 1729, Pierre Bougher stwierdził, że natężenie światła przechodzącego przez ciało, maleje wykładniczo z jego grubością. A więc czym grubsza warstwa pochłaniająca, tym mniej światła przez nią przechodzi. Kilka dekad po nim to samo prawo opublikował niejaki Lambert. Z matematycznego opisu tego prawa wymikało, że różne substancje muszą posiadać charakterystyczny dla siebie wspólczynnik mówiący o ich zdolności do pochłaniania światła.
Następnym badaczem był August Beer, który badając absorpcję światła przez roztwory tych samych substancji, w naczyniu tej samej grubości, ogłosił w 1852 roku że absorpcja w takim przypadku zależy z grubsza liniowo od stężenia.
Jeśli uznać za ciało pochłaniające warstwę zabarwionego roztworu, to oba prawa można złożyć w jedno mówiące, że absorbancja roztworu zależy liniowo od - grubości warstwy roztworu l ; stężenia C ; i własnej zdolności absorpcyjnej ε , co określa się wzorem:

A = ε l C
Jest to prawo raczej przybliżone, z odchyleniami dla stężeń bardzo małych i bardzo dużych, jest jednak wystarczająco użyteczne, aby wykorzystać je w chemii analitycznej. Już po koniec XIX wieku zbudowano pierwszy użyteczny przyrząd pozwalający, w oparciu o te prawa, porównać stężenia roztworów - Kolorymetr Duboscq:

Było to proste urządzenie - do jednej z dwóch, jednakowo jasno podświetlonych rurek wlewano roztwór wzorca o znanym stężeniu, do drugiej roztwór badany i do obu wprowadzano szklane pręty. Patrząc na natężenie światła przechodzącego opuszczano bądź jeden, bądź drugi pręt dopóty, aż jasności po obu stronach się zrównały. Głębsze zanurzenie pręta, zmniejszało grubość warstwy między dnem rurki a końcem pręta, a tym samym grubość warstwy roztworu przez jaką przechodziło światło. Ze znanego stężenia roztworu wzorcowego i stosunku grubości warstw roztworów, można było wyliczyć stężenie nieznanego roztworu.
Urządzenie stało się pierwszym przyrządem analitycznym, używanym na przykład w medycynie - po przeprowadzeniu odpowiednich reakcji, zamieniającej składniki moczu lub osocza w barwne produkty, można było oznaczać zawartość białka w moczu lub cukru we krwi.

Współcześnie jednak technika znacznie ułatwiła nam pomiar i zwiększyła jego dokładność, używając fotometrów mierzących natężenie wiązki przechodzącej. Takiego też przyrządu używaliśmy na ćwiczeniu.

Pierwszym krokiem dla wykonania oznaczenia było wybranie kawy - na stanie laboratorium była tylko rozpuszczalna Pedros firmy Ellite:

Z niej odważyliśmy ok 0,05 g w trzech próbkach i zalaliśmy 10 ml gorącej wody, tworzac napar:

zawierający całą kofeinę, ale też resztki białek, polifenole i inne silnie zabarwione substancje, które przeszkadzałyby w oznaczaniu. Należało więc tą kofeinę od całej reszty oddzielić, jednak zamiast techniki SPE, jakiej używałem na ćwiczeniu z herbatą, skorzystałem z techniki bardziej klasycznej - ekstrakcji rozpuszczalnikiem organicznym.
Napar po przestudzeniu wlewaliśmy do rozdzielacza i dodawaliśmy chlorku metylenu - bardzo lotnego rozpuszczalnika. Zamiast jednak zazwyczaj wykonywanego silnego wstrząsania, jedynie "przelewaliśmy" ciecze we wnętrzu, pozwalając się im niezbyt gwałtownie przelewać. Kofeina jest w chlorku metylenu stosunkowo dobrze rozpuszczalna, ale ciemne barwniki kawy także; ostrożne mieszanie miało jak najbardziej zmniejszyć ten niepożądany efekt.

Gdy już wytrząsnęliśmy pierwszą porcję odlewaliśmy cięższy roztwór organiczny i do  tej samej raz ekstrahowanej cieczy dolewaliśmy następną porcję rozpuszczalnika. A gdy podobnie przemieszaliśmy je i odlaliśmy chlorek metylenu, powtórzyliśmy ekstrakcję po raz trzeci. Chodziło po prostu o to, aby wyciągnąć z naparu praktycznie całą kofeinę.
Każdy napar z każdej próbki ekstrahowaliśmy osobno, zbierając warstwę organiczną do trzech osobnych próbówek. Jak widać nie zawsze udawało się uniknąć zanieczyszczenie naparem wodnym. Ostatnie kropelki odciągnęliśmy pipetką


Mając już roztwór zawierający kofeinę, należało nią z niego wyodrębnić - toteż przelaliśmy go do porcelanowej parownicy i odparowaliśmy niskowrzący rozpuszczalnik na łaźni piaskowej. Tak, wiem, że to mało oszczędny sposób, ale tak było w przepisie. Gdy rozpuszczalnik wrzał zauważyłem na jego powierzchni ciekawe zjawisko "pływającej kropli" - czy też raczej pół-antybańki.
Normalna bańka składa się z gazu oddzielonego od gazu zewnętrznego cienką błonką cieczy, napiętą przez detergent powierzchniowo czynny. W szczególnych warunkach można jednak stworzyć układ dokładnie odwrotny - kropla cieczy oddzielona od reszty błonką powietrza. Taka antybańka unosi się swobodnie wewnątrz roztworu.
Zjawisko jakie obserwowałem stanowiło coś pośredniego - kropelka cieczy unosiła się na powierzchni roztworu, będąc od niego oddzielona błonką powietrza, ale tylko na spodniej stronie. Powietrze to zmniejsza tarcie między kroplą a resztą roztworu na tyle, że kropla bardzo szybko śmiga począwszy od miejsca powstania. Jest to zjawisko obserwowane bardzo często, widziałem je na kałużach do których wpadał strumień deszczówki, na mieszanej herbacie, u podnóża wodospadów a nawet wewnątrz muszli klozetowej podczas załatwiania małej potrzeby fizjologicznej. Także gdy kran w laboratorium kapie na cienką warstwę wody na dnie zlewów, też widzę kropelki szybko śmigające po tej warstewce.
Te "połkrople" czy też jak ja nazywam, pływające krople, na powierzchni wrzącego chlorku metylenu zaciekawiły mnie dlatego, że spontanicznie rosły - najwyraźniej na niestabilnej powierzchni w warunkach minimalnej lepkości, małe porcje cieczy przechodziły do kropli, powiększając ją.

Gdy cały rozpuszczalnik odparował, na dnie parowniczki pozostał osad, zawierający kofeinę i zanieczyszczenia:

Osad rozpuszczaliśmy w niewielkiej ilości wody, przelewaliśmy ją do kolby miarowej i po uzupełnieniu do kreski otrzymywaliśmy 100 ml roztworu kofeiny z kawy. Czynności wykonaliśmy osobno dla każdej próbki, uważając aby ich nie pomieszać. Z powodu zanieczyszczeń roztwór był lekko zabarwiony:

Niestety nasz spektrofotometr akurat się zepsuł i oznaczenie musieliśmy odłożyć na następne ćwiczenia.
Na kolejnych ćwiczeniach zaczęliśmy od przygotowania serii roztworów wzorcowych, o stężeniach kofeiny zmieniających się od 0 do 0,9 mikromola/ml, następnie wybraliśmy jeden z nich i po przelaniu do kwarcowej kuwety mierzyliśmy zależność absorbancja/długość foli, aby znaleźć warunki w których pochłanianie światła jest największe. W naszym przypadku była to fala 279 nm.

Gdy długość fali była już ustalona, reszta oznaczania była prosta - najpierw zmierzyliśmy absorbancje kolejnych roztworów wzorcowych a następnie naszych roztworów otrzymanych z kolejnych próbek. I już tutaj pojawił się pierwszy zgrzyt - absorbancja próbek badanych wyszła większa niż roztworów wzorcowych i powyżej 1, a więc pochłanianie w tej długości fali było bardzo silne. Nie lepiej było gdy doszło do opracowywania wyników.
Najpierw wykonałem wykres zależności stężenie/absorbancja, nie wyglądał zbyt dobrze:

Uznałem więc że wartość w punkcie 2 to błąd gruby i usunąłem go, uzyskując ładną linię prostą:

wraz z równaniem tejże prostej. Wiedząc że Y to absorbancja, a X to stężenie, mogłem wyliczyć z tego wzoru stężenie kofeiny w trzech roztworach badanych - o ile oczywiście nadal stosowała się do nich zależność prostoliniowego odcinka krzywej.
Po przeliczeniu otrzymałem stężenie kofeiny w roztworach w mikromol/ml. Znając objętość roztworów przeliczyłem stężenie na ilość a tą, znając masę molową kofeiny, na masę. Znając teraz masy odważonych próbek kawy i masy wyliczonej kofeiny w nich zawartej, mogłem policzyć procentową zawartość kofeiny w kawie. Po uśrednieniu zbliżonych wyników wyniosła ona 4,28%

Siła kawy jest zatem niczego sobie, tyle tylko, czy jest to wartość realna? Jak wynikałoby z badań, w większości przypadków kawy dostępne na rynku zawierają od 1 do maksymalnie 2,5% kofeiny [1] zatem w moim przypadku wynik jest dwa razy większy.
Co mogło być źródłem błędu? Jakiś wpływ może mieć błąd ujemny, związany z niecałkowitą ekstrakcją kofeiny, ale zdecydowanie większy wpływ ma błąd dodatni wywołany ciemnymi zanieczyszczeniami z pierwotnego ekstraktu. Ostrożna ekstrakcja miała pomóc ich uniknąć, ale najwyraźniej nie była wystarczająca. We wcześniejszym ćwiczeniu z herbatą kofeina została oddzielona i zatężona przy pomocy techniki SPE a właściwa analiza była przeprowadzane przez porównanie powierzchni pod wykrytym przez detektor pikiem kofeiny z próbki i z roztworu wzorcowego. Zatem przed dojściem do detektora kofeina została oddzielona od zanieczyszczeń i sygnał pochodził tylko od niej.
Wiem że inne grupy badające tą kawę otrzymały niższe wartości, rzędu 2,5-3% więc widocznie etap ekstrakcji wykonały ostrożniej. Bywa.

------------
[1] Marcin Frankowski, Artur Kowalski, Agnieszka Ociepa, Jerzy Siepak, Przemysław Niedzielski, Kofeina w kawach i ekstraktach kofeinowych i odkofeinizowanych dostępnych na polskim rynku, BROMAT. CHEM. TOKSYKOL. – XLI, 2008, 1, str. 21 – 27

sobota, 30 czerwca 2012

Z cytryną czy bez?



Ponieważ wpis o zmianach koloru herbaty okazał się sukcesem idę za ciosem i kontynuuję wątek, a dokładniej jeden z wątków dodatkowych, jaki pojawił się w międzyczasie - mianowicie kwestię zakwaszania, dokwaszania, cytrynienia czy jak tam nazwiecie. Czy herbata z cytryną jest szkodliwa? A może zdrowsza? Krążą na ten temat sprzeczne opinie, często nie poparte faktami. Doprawdy bardzo trudno powiedzieć o tym coś konkretnego, badania na ten temat wydają się bowiem rozbieżne - jedne sugerują większą szkodliwość takiego połączenia, inne dowodzą wręcz czegoś przeciwnego. W miarę moich skromnych możliwości mogłem się więc głównie opierać na przeglądach podsumowujących ważniejsze badania, próbując wyciągnąć z tego jakieś wnioski - dla leniwych podsumowanie na samym końcu.
 Ale zanim zagłębię się w zawiłości badań, teorii i domniemywań, opowiem o samym przedmiocie dyskusji:

Herbata, to napar z liści krzewu herbacianego (Camellia sinensis (L.) Kuntze ), niedużej krzewinki z rodzaju Camellia, do którego należą także sadzone w ogrodach ozdobne kamelie, pochodzącej zapewne z górskich obszarów Azji środkowej. W dobrych warunkach urasta do rozmiarów niedużego drzewa, zwykle jednak intensywne przycinanie sprowadza krzew do formy przywodzącej na myśl niski kępiasty żywopłot. Zakwita białymi kwiatami, po przekwitnieniu tworzącymi owoce z dużą tłustą pestką, z której w regionach upraw uzyskuje się dobrej jakości olej spożywczy.
Oczywiście najbardziej cenną częścią rośliny są jej liście, szczyty pąków a nawet zielone łodyżki. Wedle jednej z chińskich legend odkrywcą herbaty miał być Cesarz Schennong - postać na pół legendarna, nosząca cechy mitycznego protoplasty-założyciela, któremu przypisuje się wynalezienie wielu przydatnych rzeczy, jak radło, całe chińskie ziołolecznictwo czy też wreszcie zwyczaj picia herbaty. Podobno gdy zatrzymał się na postój w górach, postanowił napić się przegotowanej wody. Gdy rozpalił ognisko do kociołka spadło kilka wysuszonych w cieple listków pobliskiego krzewu, zaś cesarz stwierdził że powstały napar jest doskonałym napojem. Inna buddyjska tym razem legenda opisuje jak to założyciel tej religii Budda Siakjamuni medytując w górach, zapewne jeszcze przez osiągnięciem oświecenia, tak zirytował się opadającymi ze zmęczenia powiekami, że odciął je, zaś w miejscu gdzie padły wyrósł krzew, dający napar powstrzymujący senność. Jakkolwiek by nie było ludzie już bardzo dawno odkryli właściwości herbaty. Pierwsze wzmianki w chińskich kronikach pochodzą z początków pierwszego tysiąclecia przed naszą erą. Niedługo potem zwyczaj przeniknął do Birmy, Wietnamu i Korei. W IX wieku herbata pojawiła się w Japonii gdzie już wkrótce powstał skomplikowany ceremoniał jej picia. równocześnie z herbatą spotkali się Indyjczycy a za ich pośrednictwem Arabowie. Od drugiej strony herbata zawędrowała do Rosji. Wreszcie w XVII wieku trafiła do Holandii i Wielkiej Brytanii.
Jak się wydaje zwyczaj dodawania cytryny przyszedł do nas z Rosji wraz z tanią herbatą, przedtem dostępną tylko w bogatych domach, w każdym razie jeszcze w latach 20. polskie gazety uważały to za zwyczaj rosyjski. We Włoszech także jest to popularny sposób picia. Z kolei Anglicy lubią herbatę z mlekiem, u nas nazywaną "bawarką". W Chinach i Tybecie do herbaty dodaje się masła i przypraw. W niektórych krajach, na przykład w Indiach, pije się ją na ostro, dodając pieprzu, kardamonu, goździków a nawet curry.

Liczne odmiany herbat, oprócz różnic regionalnych, wiążą się ze sposobem przetwarzania. Zasadniczo herbaty zielone składają się z listków ususzonych, zaś czarne z listków poddanych fermentacji - to znaczy formalnie jest to przemiana enzymatyczna, ale zwykło się mówić że to fermentacja, choć nie wspomagają jej drobnoustroje. Liście są najpierw lekko podsuszane a następnie ugniatane i zawijane w ruloniki. Zagniatanie, bądź ocieranie, będące uszkodzeniem tkanek roślinnych, wywołuje uwolnienie enzymów degradacyjnych - w tym znanej już nam oksydazy polifenolowej, prowokującej powstanie żółto-brunatnych kondensatów garbników, decydujących o kolorze naparu. Inne enzymy rozkładają chlorofile i karoteny, przez co liść zmienia kolor. Zależnie od stopnia sfermentowania i sposobu przygotowania listków, otrzymuje się odpowiednie odmiany. I tak herbata zielona to liście tylko ususzone, herbata "biała" to ususzone szczytowe pączki i listki osłonięte od słońca, dzięki czemu się nie zazieleniły; herbata "żółta" to listki którym pozwolono więdnąć przez dłuższy czas, przez co zdążyły zżółknąć. Herbata Oolong lub Ulung, co jest właściwie różnymi fonetycznymi odmianami chińskiej nazwy Wulong, była poddana częściowej fermentacji w stopniu zależnym od odmiany, wahając się od 20% do 80% i tym samym dzieląc się na odmiany lżejsze i mocniejsze; tego typu herbaty bywają nazywane niebieskimi. Herbata Pu-erh, u nas nazywana czerwoną, to jedna z odmian herbat zielonych poddanych "starzeniu" w stosach, gdzie pod wpływem wilgoci osiedlają się na niej kultury bakterii i grzybów, prowokując dalszą degradację i faktyczną fermentację. Proces może trwać wiele miesięcy lub lat i zależnie od stopnia przemiany a nawet składu mikroflory, powstają różne odmiany; sami Chińczycy nazywają ją herbatą ciemną lub czarną. Natomiast właściwa Herbata czarna jest poddana całkowitej przemianie, ma mocniejszy smak i aromat.
Rodzaje herbat. Od lewej: zielona, żółta, Oolong i czarna

Wszystkie herbaty są bogate w polifenole, czy flawonole - na przykład kwercetynę znaną nam już jako barwnik do pisanek z łupin cebuli - i inne garbniki, głównie w formie katechin i pochodnych kwasu galusowego. Jak to już objaśniałem związki tego typu mogą występować w dwóch odmianach - chinonowej i fenolowej. Przemiana z jednej w drugą jest zależna od odczynu środowiska i zawartości utleniaczy; ponieważ zaś jedna odmiana przechodzi w drugą bardzo chętne, polifenole łatwo reagują z wolnymi rodnikami, zarówno kationo- jak i anionorodnikowymi, będąc ich "wymiataczami". Herbata zawiera też dużo kofeiny - w suchych liściach może jej być tyle samo lub nawet więcej niż w suchej kawie, jednak zwykle nie cała jest uwalniana podczas zaparzania, na co pewien wpływ mają przeszkadzające garbniki. Z innych substancji można wymienić aminokwas L-teaninę , będący analogiem kwasu glutaminowego, której przypisuje się właściwości uspokajające. Często można się spotkać z informacjami, że samo tylko zażycie teaniny wprowadza w stan relaksu i skupienia, że automatycznie wywołuje w mózgu fale alfa a więc niejako stan medytacji bez medytowania. Moim zdaniem to raczej wymysł suplemenciarzy, bo oczywiście teanina jest już dostępna w drogich tabletkach, i nawet reklamuje się ją jako szybki i prosty sposób na osiągnięcie medytacji bez potrzeby żadnych tam ćwiczeń duchowych, oczyszczania umysłu czy innych trudnych czynności, jakich się człowiekowi sukcesu wykonywać nie chce. Jedyne badanie na ten temat, miało za cel potwierdzenie założonej tezy i polegało na badaniu aktywności mózgu w stanie odpoczynku, wobec czego jeśli teanina na działanie uspokajające, to zwiększona aktywność fal charakterystycznych dla odprężenia powinna być oczywista.[1]


Glin
Glin, znany powszechnie pod techniczną nazwą aluminium, to pierwiastek chemiczny w grupie borowców, będący lekkim, srebrzystym metalem o dużej aktywności chemicznej, zazwyczaj bezpieczny w użytkowaniu za sprawą cienkiej warstwy tlenku, zabezpieczającej metal przed korozją. Choć występuje na ziemi powszechnie, stanowiąc blisko szóstą część masy, odkryto go dopiero na początku XIX wieku.
Nie od dziś wiadomo, że różne rośliny mają skłonność do akumulacji określonych składników mineralnych, na przykład marchew kumuluje azotyny a owies kumuluje mangan. Krzewy herbaciane chętnie rosną na glebach kwaśnych, gdzie często uwolniony z minerałów glin występuje w dużych ilościach. Ponieważ zaś może łatwo tworzyć kompleksy z garbnikami, liście herbaty kumulują go dosyć dużo. Dane na ten temat są różnorodne, ale zasadniczo najmniej zawierają go herbaty z listków młodych, a najwięcej ze starych, wedle jednego z ostatnich badań osiągając stężenia odpowiednio 380 μg/1g dla młodych i aż 6866 μg/1g dla starych[2]. Jeszcze wyższe wartości stwierdza się w herbatach zawierających części gałązek, w tym w herbatach prasowanych typu "cegła" bardzo popularnych w Tybecie.
Zawartości aluminium w herbacie czarnej i zielonej są podobne - nic dziwnego, to w końcu te same liście - czasem podaje się trochę wyższą zawartość w czarnej ale to zapewne wynik mniejszej masy tej odmiany, przez co na tą samą masę przypada nieco więcej listków. Najniższą zawartość glinu ma herbata biała właśnie dlatego, że robi się ją z listków najmłodszych.

Na szczęście nie całe obecne w liściach aluminium przechodzi do naparu, zwykle będąc związane w kompleksach garbników i białek. Nie znalazłem artykułów gdzie stopień ługowania określono liczbowo, ale przeliczając dane z pewnego Kenijskiego badania wychodzi, że do naparu przechodzi 17-23% metalu a dodatek kwasu cytrynowego zwiększał te wartości o ok. 1%[3]

Ciekawe jest tu pewne meksykańskie badanie, gdzie badano wpływ cukru i kwasu askorbinowego na stopień ługowania. Różnice były tu niewielkie, jednak po posłodzeniu ługowało się nieco więcej aluminium a po dodaniu witaminy C ługowało się trochę mniej, przy czym rzecz zastanawiająca - z herbaty zielonej do naparu zaparzanego krótko przedostawało się więcej metalu niż z czarnej w tym samym czasie, co może być wynikiem różnej wielkości agregatów garbnikowych[4]

Jednak co ten cały glin, który przejdzie do naparu, ma do naszego zdrowia?
 Zasadniczo toksyczność związków glinu jest niska. Zdaje się że dawka śmiertelna ałunu dla dorosłego człowieka to prawie pół kilograma. Wchłanialność z przewodu pokarmowego jest słaba. Badanie sugerują biodostępność rzędu 0,3% z wodą pitną i 0,1-0,3% z jedzeniem. W przypadku herbaty biodostępność glinu z naparów wynosiła ok. 0,37% [5] Kwas cytrynowy, dzięki możliwości tworzenia rozpuszczalnych kompleksów, zwiększa wchłanianie, dla preparatów zobojętniających dwukrotnie[6] Zastanawiającą sprawą wynikającą z tej pracy jest to, że przyjmowanie samego tylko kwasu cytrynowego także zwiększało wydalanie glinu, co sugeruje że w jakimś stopniu może on przyspieszyć usuwanie jego nadmiaru z organizmu.
 Cały glin wchłonięty w jelicie cienkim, trafia żyłą wrotną do wątroby, która wydala go z żółcią do jelita grubego, skąd wydostaje się na świat z kałem.
To w połączeniu z niską wchłanialnością powodowało, że glin uznano za bezpieczny dopuszczając jego stosowanie w kosmetykach i lekach. Z drugiej strony było wiadomo że bardzo duże dawki związków tego pierwiastka mogą uszkadzać nerki i układ nerwowy. Ponadto ponieważ co do wchłaniania konkuruje on z wapniem, zażywanie jego soli może przynieść negatywne skutki u osób z osteoporozą lub u dzieci w okresie dojrzewania, które powinny przyjmować dużo wapnia. Ponieważ zaś glin jest bardzo często spotykany zaczęto zastanawiać się, czy aby przewlekła ekspozycja na małe dawki, nie przynosi aby jakiegoś nieprzewidzianego, długofalowego skutku.

Aluminium a Alzheimer
Cała ta sprawa jest bardzo niejasna - niektóre badania sugerowały korelację między narażeniem na aluminium a Alzheimerem a inne nie. Pierwsze doniesienia o neurotoksyczności aluminium dotyczyły wstrzykiwania soli do mózgu lub krwi zwierząt badanych, a więc nie za bardzo zgadzały się z sytuacją rzeczywistą.  Podobne były badania które wykazały podwyższoną zawartość glinu w zmienionych chorobowo tkankach mózgu, zaraz jednak ktoś inny stwierdził że podobne poziomy rejestruje się u osób zdrowych. Częściej obserwowano choroby otępienne u pacjentów dializowanych, narażonych na zatrucie glinem, ale były to głównie encefalopatie toksyczne a zachorowalność na Alzheimera nie wzrastała. Ostatnio pojawiło się kilka metaanaliz wskazujących na przewagę badań potwierdzających związek Al z Alzheimerem, choć nie jest to związek zdecydowany (w sensie - istnieje pewien wpływ ale nie wykazano że glin jest przyczyną bezpośrednią) [7],[8]
Równocześnie Federalny Instytut Oceny Ryzyka w Niemczech opublikował raport w którym korelacja jest uznawana za nieudowodnioną[9]

Jeszcze ciekawiej wyglądają badania między wpływem aluminium przyjmowanego z herbatą na ryzyko tej choroby; kanadyjskie badanie trybu życia nowo zdiagnozowanych chorych nie stwierdziło korelacji zachorowania z piciem herbaty[10] z kolei w badaniu australijskim stwierdzono słaby związek, zarazem nie potwierdzając go dla narażenia na glin w preparatach zobojętniających na zgagę[11] na dokładkę pojawiło się kilka badań wykazujących, że zawarte w herbacie polifenole zmniejszają ryzyko dzięki właściwościom ochronnym [12].

Fluor
Niestety herbata gromadzi w sobie także fluor. Jest to pierwiastek chemiczny z grupy VII Fluorowców, pierwszym w tej grupie, skąd nazwa, będący bliskim krewniakiem chloru. Jego rola w organizmie sprowadza się właściwie do wzmacniania szkliwa zębów, oraz w pewnym stopniu kośćca. Pomaga on wapniowi w przenikaniu do wnętrza szkliwa, tym samym wspomagając odbudowywanie kryształów hydroksyapatytu decydujących o jego twardości. Zatem niedobór fluoru sprzyja uszkodzeniom zębów, ale jak to często bywa, to co w pewnych dawkach pomaga w zbyt dużych szkodzi. Zalecane spożycie wynosi 1 mg/dzień dla dzieci i 4mg/dzień dla dorosłych.
Nadmierna ilość fluoru zmienia strukturę szkliwa, powodując powstanie białych plamek, w których jest ono znacznie bardziej kruche, w ciężkich przypadkach plamki stają się brązowe. Bardziej poważne są skutki na kości - duże ilości fluoru wychwytują wapń z organizmu, odkładając go w kościach w formie fluorku. Kości stają się przez to twardsze i bardziej sztywne, co u dzieci u których kości są zwykle elastyczne może doprowadzać do deformacji w okresie szybkiego wzrostu. Równocześnie takie utwardzone kości stają się bardzo kruche, przez co u dorosłych i ludzi starszych wywołuje to skutki podobne do osteoporozy - częstsze i trudniejsze w leczeniu złamania mimo dużej gęstości tkanki kostnej.
Za maksymalną dopuszczalną dawkę, powyżej której może rozwijać się fluoroza, uważa się 10 mg/dzień[13]

Po świecie od dłuższego czasu krąży plotka, że fluor ogłupia, że powoduje osłabienie woli i większą podatność na manipulację. Powtarza to nawet, bez źródeł, polska Wikipedia. Wszyscy powołują się tu na doświadczenia nazistów, którzy mieli dodawać fluor do wody w obozach koncentracyjnych i gettach aby uczynić Żydów bezwolnymi - problem w tym że nigdzie nie da się znaleźć dla tej informacji potwierdzenia. Były owszem, doświadczenia typu zakażania bakteriami, wstrzykiwania nafty, kwasu siarkowego, ropy i masy innych chemikaliów do krwi, mięśni, otrzewnej - wszystko pod nadzorem nieczułego doktora Mengele. Więźniów gazowano na różne sposoby, sprawdzano jak duże grupy reagują na brak snu przez kilka dni z rzędu, wycinano narządy i sprawdzano jak więźniom się żyje, ale jakoś tak o fluorycznym otępianiu i chemicznych manipulacjach umysłem nic a nic książki historyków opisujące takie eksperymenty nie wspominają. Bodaj po raz pierwszy opowieść pojawiła się w mało wiarogodnym piśmie Nexus, w artykule opartym o zeznania anonimowego szpiega, który nie chce się ujawniać i podać źródeł swych informacji [14] ładne pół wieku po wojnie i od tego czasu mit rozszedł się po świecie. Jak się wydaje jest to tylko przeróbka wcześniejszych mitów mówiących, ze fluoryzacja wody w USA wprowadzona w latach 50. była wynikiem spisku komunistów chcących ogłupić amerykanów i łatwiej skłonić do wprowadzenia marksistowskiej ideologii - gdy jednak czas "polowania na czarownice" w Ameryce się skończył i mówienie o komunistycznych spiskach zaczęło być odbierane jako dziwactwo, zamieniono komunistów na nazistów[15].
Analogiczny mit opowiada się o rosyjskim wojsku i gułagach - fluor dodany do wody miał tłumaczyć wierność Armii Czerwonej i ekscesy jakich się dopuszczała po "wyzwoleniu", z kolei w gułagach miał wywoływać u więźniów schizofrenię, dzięki czemu można ich było zamknąć w odpowiednim zakładzie. Niektórzy powołują się tu na fakt, że fluor jest składnikiem Prozacu - co ma akurat tyle samo sensu co wywodzenie szkodliwości soli z faktu, że zawarty w niej chlor jest składnikiem Domestosu, mimo że pierwiastek i jego związki to dwie różne substancje.

Liście herbaty gromadzą fluor podobnie jak glin - starsze liście zawierają go więcej, młodsze mniej. Jest tutaj ciekawe polskie badanie, sprawdzające zawartość obu pierwiastków w 16 dostępnych na rynku herbatach czarnych, dla fluoru stwierdzono poziomy 30-340 ppm ze średnią 141 +/- 81 ppm, a dla glinu maksymalne poziomy nie przekraczały 1500 ppm, co wobec poziomów z innych badań nie jest tak dużą ilością[16] Spotkałem się też z informacją że zielone herbaty mogą zawierać o połowę więcej fluoru niż czarne, ale nie mogłem znaleźć twardego dowodu. Zawartość fluoru w naparach waha się zwykle w zakresie 0,5-2 mg/l wobec czego 4-5 szklanek odpowiada dziennej zalecanej dawce. Najwyższe poziomy fluorków stwierdza się w herbatach prasowanych "cegła" bardzo popularnych w Tybecie, gdzie sięgają 7 mg/l naparu. Herbata z masłem jest tam bardzo popularna a fusy bywają zjadane z innymi potrawami, w efekcie zaawansowana fluoroza jest tam zjawiskiem częstym - fluoroza zębów dotyczy 51% dzieci poniżej 16 lat, a fluoroza szkieletu 31%. Dzienne pobranie dla osób dorosłych może przekraczać w Tybecie może zatem znacznie przekraczać maksymalny dopuszczalny poziom[17] Wobec faktu że ten typ herbaty zawiera też najwyższe notowane stężenia glinu pozostaje zastanowić się jak to wpływa na umysłowość tybetańskich mnichów. Zważywszy na trwającą od pół wieku cichą walkę z Chińczykami i opór przed zchińszczeniem, jakiegoś osłabienia woli i zwiększonej podatności na manipulację to ja u nich nie widzę.

Z tego co znalazłem wynika, że dodatek cytryny nie większa przenikania fluoru z liści herbacianych do naparu ani biodostępności. Pewien wpływ ma natomiast twardość wody - w twardej wodzie do naparu może przenikać aż o jedną czwartą mniej fluoru[18], co skądinąd uzasadniałoby praktykowane przez niektórych wykorzystywanie do napojów wyłącznie wód źródlanych

Polifenole
Kwestii czy dodatek cytryny do herbaty wpływa na stopień ekstrakcji polifenoli nie udało mi się ustalić, znalazłem jednak informacje że kwaśne środowisko i obecność witaminy C chroni je przed degradacją podczas trawienia, kilkukrotnie zwiększając biodostępność[19], jednak w soku z cytryny jest raczej mało kwasu askorbinowego.Spotkałem się też z informacją, że biodostępność katechin znacznie się zwiększa, jeśli pić herbatę z pieprzem co w niektórych krajach jest popularne[20]

Z innych substancji herbata zawiera też dość dużo manganu, jednak nie przekracza żadnych poziomów toksycznych. Nie znalazłem też informacji aby stwierdzono w niej jakieś szczególnie duże ilości metali ciężkich.

Podsumowując:
Liście herbaty zawierają dużo glinu, pierwiastka wprawdzie nie trującego ale podejrzanego o wpływ na rozwój chorób neurodegradacyjnych. Większość glinu nie przechodzi do roztworu, zaś z tej części jaka się rozpuści 99% nie zostanie wchłonięte. Dodatek cytryny do wody w której zaparza się herbata powoduje nie zbyt duży wzrost rozpuszczalności pierwiastka, jednak ta część jaka znajdzie się w naparze będzie blisko dwukrotnie lepiej wchłanialna.
To czy glin wywołuje chorobę Alzheimera nie jest wciąż jednoznaczne, zatem nie ulegajmy panice gdy ktoś nam wmawia, że to absolutnie pewny związek; jeśli jednak ktoś chce się zabezpieczyć może postarać się ograniczyć codzienną dawkę tego metalu, przez wyeliminowanie naczyń aluminiowych. Jak jednak zaparzać herbatę aby móc jakoś ograniczyć ekspozycję tą drogą?
Wszystkie badania jednoznacznie pokazują, że najwięcej aluminium mają herbaty z liści starych zwłaszcza te z kawałkami gałązek, lepiej więc unikać tanich, gorzkich herbat z grubych listków, a już tym bardziej tanich herbat granulowanych w których na dobrą sprawę nie wiadomo co z listkami jeszcze zostało zmielone. Uwalnianie omawianych pierwiastków do naparu jest stopniowe, dlatego najlepiej jest zaparzać krótko 3-5 minut i oddzielać fusy od naparu - w przypadku herbat w torebkach można po prostu wyjąć torebkę, dla sypanych można zaparzyć w jednym naczyniu i odlać do kubka przez sitko; są też takie wynalazki jak perforowane kapsułki na sznureczku, gdzie sypie się herbatę, zaparza i wyjmuje, albo specjalne dzbanki w przegrodą, którą można oddzielić fusy od napoju. Cytrynę najlepiej dodać po zaparzeniu, dzięki czemu w napoju nie znajdzie się więcej glinu niż zwykle. Można też zastąpić cytrynę innymi dodatkami, na przykład jeśli ktoś ma dostęp, plasterkami pigwy, wprawdzie zawiera ona także kwasy organiczne, ale również pektyny które zasadniczo zmniejszają wchłanianie metali. Ja często dodaję plasterki świeżego korzenia imbiru - świeżo przekrojony korzeń ma lekko cytrynowy zapach i nadaje napojowi intrygujący, piekący smak, a ponadto korzystnie wpływa na krążenie.
Nie wierzmy gdy zapewnia się nas, że dana herbata jest wolna od chemii, bo jest "organiczna" i "ekologiczna" - kumulacja pierwiastków jest jej właściwością gatunkową, nie związaną z rodzajem produkcji ani z tym czy uprawiają ją biedni rolnicy czy wielkie korporacje.

Zastanawia mnie jak na zawartość tych metali wpływa stosowane w tradycji chińskiej krótkotrwałe przepłukiwanie listków herbaty niewielką ilością wrzątku - najwięcej aluminium jest w zewnętrznych warstwach liścia więc powinno być spłukiwane. Badań na ten temat nie znalazłem.


Jako ciekawostkę dodam że nie tylko herbata kumuluje omawiane pierwiastki - bardzo dużo glinu gromadzą też rośliny z rodzaju Symplocos, w tym gatunek Symplocos Racemosa nazywany nawet przez tubylców drzewem ałunowym i wykorzystywanym jako źródło zaprawy do farbowania tkanin. Roślinę jako jedno z górskich azjatyckich ziół dodaje się do kosmetyków i mieszanek ziołowych (na przykład w serii Himalaya).

Uff...! Trzy tygodnie nie mogłem skończyć tego wpisu.
-------------
ResearchBlogging.orgŹródła:


[1] Gomez-Ramirez, M., Higgins, B., Rycroft, J., Owen, G., Mahoney, J., Shpaner, M., & Foxe, J. (2007). The Deployment of Intersensory Selective Attention Clinical Neuropharmacology, 30 (1), 25-38 DOI: 10.1097/01.WNF.0000240940.13876.17
[2] Carr, H. P.; Lombi, Enzo; Küpper, Hendrik; McGrath, Steve P.; Wong, Ming H. "Accumulation and distribution od aluminium and other element in tea (Camellia silesins) leaves" Agronomie 23 (2003) , pp. 705 710
[3] Njogu Paul Mwangi, Determination of heavy metals in tea leaves, their infusions and effects of citric acid on thei extraction, praca na stronach Kenyatta Uniwersity
[4] Diego Armando Bárcena-Padilla, Marisela Bernal-González, Amalia Panizza-de-León, Rolando Sal-vador García-Gómez, Carmen Durán-Domínguez-de-Bazúa (2011). Aluminum Contents in Dry Leaves and Infusions of Commercial Black and Green Tea Leaves: Effects of Sucrose and Ascorbic Acid Added to Infusions Natural Resources, 2, 141-145 DOI: 10.4236/nr.2011.23019
[5] Yokel RA , Florene RL (2008). Aluminum bioavailability from tea infusion Food Chem Toxicol DOI: 10.1016/j.fct.2008.09.041
[6] Slanina P, Frech W, Ekström LG, Lööf L, Slorach S, & Cedergren A (1986). Dietary citric acid enhances absorption of aluminum in antacids. Clinical chemistry, 32 (3), 539-41 PMID: 3948402
[7] Krewski D , Cham RA , Nieboer E , Borchelt D , Cohen J , Harry J , Kacew S , Lindsay J , Mahfouz AM , Rondeau V (2007). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev DOI: 10.1080/10937400701597766
[8] Ferreira PC , Piai Kde , Takayanagui AM , Segura-Muñoz SI (2008). Aluminum as a risk factor for Alzheimer's disease Ap Lat Am Enfermagem. DOI: 10.1590/S0104-11692008000100023
[9] http://www.bfr.bund.de/cm/343/keine_alzheimer_gefahr_durch_aluminium_aus_bedarfsgegenstaenden.pdf
[10] Rogers MA , Simon DG . A preliminary study of dietary aluminium intake and risk of Alzheimer's diesease , Age Ageing. 1999 Mar; 28 (2) :205-9.
[11] Broe GA , Henderson AS , Creasey H , Mccusker E , Korten AE , Jorm AF , Longley W , Anthony JC . A case-control study of Alzheimer's disease in Australia, Neurology. 1990 Nov; 40 (11) :1698-707
[12] Bastianetto S, Yao ZX, Papadopoulos V, & Quirion R (2006). Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. The European journal of neuroscience, 23 (1), 55-64 PMID: 16420415

 F

[13] http://en.wikipedia.org/wiki/Dental_fluorosis

[14]  http://www.politifact.com/florida/statements/2011/oct/06/critics-water-fluoridation/truth-about-fluoride-doesnt-include-nazi-myth/
[15] http://onespeedbikerpolitico.blogspot.com/2010/05/debunking-fluoride-use-by-nazis.html
[16]  Nabrzyski M, & Gajewska R (1995). Aluminium and fluoride in hospital daily diets and in teas. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung, 201 (4), 307-10 PMID: 8525696
[17] Cao J, Bai X, Zhao Y, Liu J, Zhou D, Fang S, Jia M, & Wu J (1996). The relationship of fluorosis and brick tea drinking in Chinese Tibetans. Environmental health perspectives, 104 (12), 1340-3 PMID: 9118877
[18] Şükrü Kalaycı, Güler Somer,  Factor affecting the extraction fluoride  from tea, Vol. Fluoride. 36 nr 4 267-270 research from 2003 r. report 267 
[19] Peters CM, Green RJ, Janle EM, & Ferruzzi MG (2010). Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food research international (Ottawa, Ont.), 43 (1), 95-102 PMID: 20161530
[20] http://inhumanexperiment.blogspot.com/2009/01/how-black-pepper-increases.html
 
- Opinia organizacji zajmującej się chorobą Alzeimera:
http://alzheimers.org.uk/site/scripts/documents_info.php?documentID=99
- obszerny przegląd w pracy:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2449821/
- przegląd badań na temat herbaty:
http://lpi.oregonstate.edu/infocenter/phytochemicals/tea/
- rośliny akumulujące glin:
 http://findarticles.com/p/articles/mi_hb3474/is_2_68/ai_n28945288/