informacje



Pokazywanie postów oznaczonych etykietą pH. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą pH. Pokaż wszystkie posty

poniedziałek, 31 sierpnia 2015

Soda na raka czyli ciastko z trucizną i komórka która gryzie

Pomysł walki z rakiem przy pomocy sody mieszanej z miodem jest w ostatnim czasie bardzo popularny w internecie. I pełen manipulacji. Dlatego też warto się z nim tutaj, po chemicznemu, rozprawić.



Cała "terapia" opiera się na kilku założeniach realnych i kilku wnioskach nie prawdziwych. Po pierwsze jak wiadomo, wewnątrz guza nowotworowego często pojawia się istotne zakwaszenie. Wynika to stąd, że komórki nowotworowe rosną szybko i potrzebują dużo tlenu i środków odżywczych. W centrum guza potrzeby stają się za duże w stosunku do podaży z krwią, przez co komórki guza stają się niedotlenione i zaczynają w pewnym stopniu przechodzić na metabolizm beztlenowy. Ich metabolity zakwaszają wnętrze guza.
Po drugie wiadomo, że komórki odżywiają się głównie glukozą, którą przetwarzają na energię. To jest jeszcze względnie prawdziwe. Ale problem zaczyna się z resztą punktów, które są już wnioskami.

Otóż teoretycy tej "terapii" mylą przyczynę ze skutkiem i twierdzą, że jeśli wewnątrz guza jest kwaśno, to znaczy że guzy biorą się z zakwaszenia. Aha. Czyli jeśli w marskości wątroby pojawia się wodobrzusze, to znaczy, że marskość jest wywoływana przez picie wody. Fajnie.
I opierając się na tym błędnym wniosku budują kolejny - skoro rak się bierze z zakwaszenia to można go zabić odkwaszeniem. Konkretnie przez spożywanie sody oczyszczonej zmieszanej z syropem klonowym.

Komórka która gryzie
Ciąg rozumowania jest tutaj następujący: komórki rakowe bardzo chętnie chłoną cukier. Więc jeśli połkniemy mieszankę cukru z sodą, to komórki przy okazji wchłaniana cukru wchłoną sodę. Ot tak mimochodem. Bo otworzą wakuole na glukozę i się im ta soda przypałęta.
Problem polega na tym, że pochłanianie glukozy przez komórkę to nie jest taki prosty mechanizm. Komórka nie ma na powierzchni żadnych "porów" które wyczuwszy, że w pobliżu jest dużo cukru otwierają się szerzej i dzięki temu może wpaść coś jeszcze. A dokładnie tak to tłumaczą artykuły - że gdy rak poczuje we krwi glukozę, to nabiera "superwchłanialności" i zaczyna tak szybko zaciągać cukier, że wsysa coś jeszcze.

Brzmi to zupełnie tak, jakby komórka pobierała substancje kęsami. Jeśli podsuniemy jej smakowite ciastko z kapsułką trucizny, to połknie kęs i się otruje bo ta kapsułka się w środku zawieruszyła. No niestety, ale to zupełnie nie tak.

Żołądek i to co po drodze
Etap który zwykle jest w tym rozumowaniu pomijany to kwestia trawienia. W "terapii" używana jest mieszanka sody z syropem klonowym lub miodem, zależnie od wersji w formie gęstego kleiku, roztworu w szklance wody czy też syropku otrzymanego przez gotowanie syropu z sodą. I mieszanka ta jest połykana, po czym w niezmienionym składzie ma się magicznie pojawiać w okolicach guza.
Tylko, że niestety każda połknięta substancja trafia do żołądka. A w żołądku jest niestety całkiem kwaśno.
Gdy nasza mieszanka znajdzie się w żołądku, soda przereaguje z kwasem żołądkowym i ulegnie zobojętnieniu. Powstanie chlorek sodu a reszta, czyli rozwodniony syrop, przejdzie do jelita, gdzie zostanie wchłonięta. Wizja sody, która w jakimś dziwnym połączeniu z cukrem niezmieniona przejdzie do krwi jest zatem błędna.
Zresztą - gdybyśmy nawet zażyli tak duże ilości sody, że zupełnie zobojętnilibyśmy kwas żołądkowy, to i tak mało prawdopodobne aby zaczęła ona przenikać do krwi i być rozprowadzaną po całym organizmie. Krew aby mogła prawidłowo odżywiać organizm, musi mieć ściśle określony odczyn, około pH 7,35-7,45. Gdyby do krwi dostała się soda, zalkalizowałaby krew wywołując groźną dla życia zasadowicę. Z którą organizm zacząłby walczyć przez spłycenie oddechu. Mniejsze wyrzucanie dwutlenku węgla z płuc zakwasza krew, nadmiar węglanów się rozkłada i sytuacja wraca do normy. Dodatkowo wykrycie przez organizm nadmiaru wodorowęglanów w osoczu powoduje wzmożone wydalanie ich do moczu przez nerki, w ten sposób soda jest wydalana zanim zdąży dotrzeć do jakiegoś tam nowotworu.

Jak komórka wchłania cukry
Wchłanianie jakichkolwiek cząsteczek do wnętrza komórki nie jest sprawą łatwą, ze względu na błonę komórkową. Błona ta zasadniczo jest lipofilowa, czyli przypomina nieco tłuszcz. A glukoza w tłuszczach się nie rozpuszcza. Dlatego aby jej tak pożądane cząsteczki mogły być wchłonięte, muszą być do komórki wciągnięte.
Gdy cząsteczka glukozy zbliża się do błony komórki, łączy się ze specjalnym białkiem nazywanym transporterem glukozy (GLUT). Białko to rozpoznaje cząsteczkę glukozy i owija się dokoła niej, po czym wciąga ją przez błonę kanałem jonowym.



Przy czym zauważmy, że białko transportowe chwyta tylko za cząsteczkę glukozy. Nic więcej nie zostanie wciągnięte. Gdyby wciągnięcie czegokolwiek innego "przy okazji" było możliwe, to wtedy do komórki trafiałyby różne przypadkowe cząsteczki, w tym także te niepotrzebne. Organizm jednak tak skonstruował kanał transportowy, że nie jest to możliwe.
Zamiast bowiem otworku w błonie, czy jakiegoś "poru" kanał transportowy ma postać szpulki białka tkwiącej w warstwie lipidowej. Wchłaniana cząsteczka ma rozmiary porównywalne z grubością łańcuchów białkowych, te zaś przylegają do siebie i na dodatek cały czas drgają termicznie. Zamiast połykania kęsa przypomina to raczej wpychanie kluski do zlewu zapchanego makaronem:
Struktura vSLGT z pracy Faham S et al.: Science 321(8): 810, 2008
Żeby zaś lepiej to zobrazować - przypomina to próbę dostania się na koncert, na który ma dodatkową wejściówkę nasza znajoma z obsługi koncertu, przez bramę przed którą czeka tłum fanów. Koleżanka dostrzega nas w tłumie, łapie za rękę i wymachując wejściówkami przeciąga nas przez tłum, składający się z osobników wprawdzie nie połączonych, ale dostatecznie ściśle przylegających, aby nie było to łatwe. Po przepchnięciu się łokciami trafiamy więc pod bramę, gdzie ochroniarz wpuszcza nas i tylko nas do środka. Żadna soda się za naszymi plecami nie prześlizgnie.

Glukoza zanim dostanie się do docelowej komórki przechodzi zresztą tą drogę trzy razy. Naczynia krwionośne oplatające jelito cienkie nie mają bowiem z nim bezpośrednego połączenia, zwykle od wnętrza jelita oddziela je przynajmniej jedna warstwa komórek nabłonka płaskiego. Glukoza z jelita zostaje zatem najpierw wchłonięta do komórek nabłonka za pomocą innego białka transportującego SGLT, stamtąd transporterem GLUT jest transportowana do krwi. Gdy znajdzie się we krwi, do kolejnej komórki, tej potrzebującej, jest ponownie wciągana białkiem GLUT.
 


Tak że wygląda na to, że cała ta "terapia" oparta jest na totalnym niezrozumieniu fizjologii człowieka i zadziała najwyżej jako placebo.
---------
* http://www.pepsieliot.com/krotka-kuracja-leczenia-raka-wg-vernona-johnstona/
* https://en.wikipedia.org/wiki/Alkalosis
* Salem Faham, Akira Watanabe, Gabriel Mercado Besserer, Duilio Cascio, Alexandre Specht, Bruce A. Hirayama, Ernest M. Wright, Jeff Abramson, The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar SymportScience 8 August 2008:
Vol. 321 no. 5890 pp. 810-814

niedziela, 15 marca 2015

Roztwory przekorne


Nie wiedzieć czemu w dydaktyce szkolnej temat buforów jakoś nie jest wiązany z regułą przekory, choć przecież ich działanie jest tej zasady najlepszym przykładem. Wydaje się, że ponieważ zwykle omawia się ją przed omówieniem praw gazowych i traktuje się ją wraz z prawem działania mas jako wstęp do tego działu, stąd działanie reguły uczniowie poznają na przykładzie przemian tlenku azotu II z formy jednocząsteczkowej w dimeryczną, lub syntezy amoniaku z pierwiastków. Potem jednak nie powraca się do niej w działach dotyczących innych typów i środowisk reakcji, w efekcie wiedza zamiast się kumulować i syntetyzować, ulega podziałowi na odosobnione bloki.

Tak zwana Reguła Przekory (ściślej zaś reguła le Chateliera-Browna), to dość arbitralne stwierdzenie, że pewne układy znajdujące się w stanie równowagi, reagują na bodźce zaburzające tą równowagę tak, jakby opierały się zmianie, dążąc do zmniejszenia skutków zmian. W tym sensie przekornie na dodatek wody reaguje układ soli na dnie naczynia z nasyconym jej roztworem - część soli się rozpuszcza i stężenie roztworu nie ulega zmianie. Zasada daje się zresztą uogólnić i na inne dziedziny, jako dotyczące również układów nie chemicznych, na przykład do przemian społecznych czy równowag ekonomicznych.

Równowaga w jakiej znajdują się układy podlegające tej regule, jest równowagą dynamiczną, co nie polega na tym, że nie zachodzą w nich żadne reakcje, lecz że reakcje przeciwstawne zachodzą z taką samą prędkością. Najlepszą ilustracją będzie tu układ naczyń połączonych, w których w prawdzie poziom wody pozostaje taki sam, lecz wskutek chaotycznych ruchów cząstek, co chwila małe porcje przedostają się z jednego naczynia do drugiego.
Jeśli podniesiemy jedno naczynie, woda będzie tak długo przepływała z niego do niższego, aż zrównoważy ją woda wpychana z powrotem. To chyba zrozumiałe. Chemicznym tego odpowiednikiem będzie na przykład równowaga między na przykład wodą, dwutlenkiem węgla i kwasem węglowym:
H2O + CO2 H2CO3

dwutlenek węgla reaguje z wodą tworząc kwas węglowy, jednak równocześnie kwas węglowy rozkłada się na wodę i dwutlenek węgla. W normalnych warunkach równowaga jest silnie przesunięta w lewo, co oznacza że samego kwasu jest niewiele, a zresztą de facto występuje w postaci jonów jako że jego cząsteczka jest bardzo nietrwała. Jeśli zwiększymy ciśnienie gazu, tym samym zwiększając odczuwane przez roztwór stężenie (a więc ilość cząsteczek skorych do reakcji w jednostce czasu), równowaga przesunie się w prawo - część gazu się rozpuści a nadane ciśnienie opadnie. Jeśli zmniejszymy ciśnienie, bądź rozcieńczymy gaz nad roztworem na przykład azotem, część kwasu węglowego się rozpadnie i troszeczkę skompensuje spadek stężenia. Oto i przekorność.

Roztwór buforowy natomiast opiera się zmianom odczynu. Dodając kwas nie zakwasimy go do pewnych granic, dodając zasady również do pewnego stopnia go nie zalkalizujemy. Czysta przekora! Natomiast przyczyna takiego się ich zachowania jest paradoksalna - roztwory buforowe są mieszaninami kwasów z zasadami.

Żeby rzecz wyjaśnić, trzeba cofnąć się do tak podstawowej sprawy, jak definicja "kwasu" i "zasady" - a nie jest to rzecz oczywista. Pierwotnie kwasami nazywano substancje o kwaśnym smaku, zaś alkaliami nazywano produkty ługowania wodą popiołów i spalonych metali . Nieco później próbowano rzecz uściślić, przez stwierdzenie, że zasadami są substancje, które zobojętniają kwasy co jednak prowadziło do tautologii, bo dla odmiany "kwasy" definiowano jako substancje zobojętniające zasady.
Zasady, czy raczej alkalia otrzymywano z popiołów przez ługowanie wodą - skąd nazwa od arabskiego "al kali" - "popiół". Taki przesącz, nazywany potażem składał się głównie z węglanów  potasu i sody z domieszką wodorotlenków. Dopiero po przereagowaniu z wapnem gaszonym (kaustyfikacji) otrzymywało się wodorotlenki, które po rozpuszczeniu w wodzie dawały "potaż żrący".

Aby nie wpaść w błędne koło w XVIII wieku ustalono ogólną definicję kwasów jako lotnych substancji zawierających niemetale, których roztwory w dużym stężeniu mają właściwości żrące i roztwarzają metale, natomiast zasadami były substancje nielotne, które reagując z kwasami usuwają ich właściwości żrące. Zasady uznano zatem za substancje będące podstawami, które zatrzymywały lotne kwasy i dawały obojętne sole i inne związki - to trochę jeszcze trącące alchemią twierdzenie przyczyniło się w pewnym stopniu do obecnego nazewnictwa. W języku angielskim, niemieckim, francuskim i w wielu innych, zasada to "baza", przy czym słowo to używane jest prawie zawsze również w niechemicznym kontekście jako "podstawa" lub "zasada działania".
Antoine Lavoisier, wybitny chemik tamtych czasów, uściślił definicję, dodając że kwasy zawierają centralny atom o wysokim stopniu utlenienia, otoczony przez atomy tlenu i powstają z tlenków niemetali, zaś z tlenków metali powstają zasady. Dla kwasów siarkowego czy fosforowego reguła się sprawdza bardzo ładnie, niestety wynika z niej, że wszystkie kwasu muszą być tlenowe. Autorytet francuskiego chemika był tak duży, że gdy Sheele odkrył chlor, dający z czystym wodorem substancję silnie kwasową, uznano że jest to tlenek nieznanego pierwiastka, nazwanego Murium. Skoro tlen miał być pierwiastkiem charakterystycznym dla kwasów, toteż gdy przyszło nadać mu nazwę naukową podkreślono ten fakt, i z połączenia łacińskich oxis - kwas - i gennao - tworzyć, utworzono nazwę oxygenium, co nasz Śniadecki, tworząc polskie nazewnictwo, próbował tłumaczyć jako Kwasoród. Na szczęście nazwa się nie przyjęła, bo już w 1810 roku Humphry Davy udowodnił , że kwas solny, a także siarkowodorowy i selenowodorowy, nie zawierają tlenu.

Dopiero w 1838 roku Justus von Liebig badając kwasy organiczne stwierdził, że dla kwasów charakterystyczna jest obecność wodoru, który łatwo ulega odszczepieniu i może być zastąpiony przez zawarty w zasadach atom metalu. Również w reakcji z aktywnymi metalami, jak żelazo czy cynk, wodór jest wypierany z kwasów. Ponieważ w podobny sposób w podwyższonej temperaturze aktywne metale reagują z wodą, o której było wiadome, że składa się z dwóch atomów wodoru i jednego atomu tlenu, po sprawdzeniu mas można było dojść do wniosku, o istnieniu "powodorowej pozostałości" - jonów OH. Z tą wiedzą w 1884 roku Svante Arrhenius sformułował teorię, że kwasami są substancje, które rozpuszczone w wodzie uwalniają jony wodorowe, zaś zasadami te, które uwalniają jony hydroksylowe. Zatem do zasad i kwasów zaliczały się zarówno kwasy i wodorotlenki, jak i tlenki metali i niemetali.
Kwasy:
HCl = H + + Cl -

SO2 + H2O = 2H + + SO3-

Zasady:

NaOH = Na+ + OH-
MgO + H2O = Mg(OH)2


Niestety nie dawało się w ten sposób wyjaśnić właściwości niektórych substancji. Głównie amoniaku, który po rozpuszczeniu nie oddawał lecz odbierał wodzie wodór, uwalniając jony hydroksylowe i wywołując odczyn alkaliczny. Można tu podać jeszcze przykład kwasu borowego, który rozpuszczając się w wodzie, odbiera od niej grupę OH, pozostawiając jony wodorowe i nadając roztworowi odczyn kwaśny. Jako uzupełnienie należy dodać, że de facto wolnych jonów wodorowych się nie obserwuje - byłyby swobodnymi protonami o dosyć krótkim czasie życia - łączą się jednak z następną cząsteczką wody w jony H3O+ .

Aby trochę uzupełnić te braki, w 1923 roku dwaj badacze Johannes Nicolaus Brønsted i Martin Lowry, całkiem zresztą niezależnie, sformułowali inną teorię. Kwasami miały być te substancje, które oddają protony, zaś zasadami te, które je przyjmują. No tak, amoniak przyjmuje wodór, i jego roztwór jest zasadowy - jest zasadą. Wodorotlenki wiążą protony kwasów. Kwasy oddają protony. Wszystko się w sumie zgadza. Ponieważ jednak nie wszystkie rzeczy pasowały, stworzono inne teorie, aby objaśnić zachowanie się substancji w rozpuszczalnikach innych niż woda, i w stopionych solach, ale nimi nie będę się zajmował.
I cóż z tego wszystkiego wynika? Jak powiedziałem, bufory są mieszaninami kwasów i zasad. Ale Brønsteda. W roztworze są zarówno substancje oddające jak i przyjmujące protony, a więc zarówno takie, które zobojętniają kwasy, jak i te, które zobojętniają zasady. Wyobraźmy sobie, że w zlewce mamy wstawione dwie mniejsze zleweczki, w jednej kwas, na przykład siarkowy, a w drugiej zasadę, na przykład wodorotlenek sodu, i powiedzmy że będziemy przyjmować sumaryczny odczyn zlewki jako różnicę odczynów w zleweczkach. Teraz do tej z zasadą dodajmy trochę kwasu - porcja zostanie zobojętniona, zaś nadmiar zasady sprawi ze pH roztworu nie zmieni się znacząco. Albo inaczej - dodajmy trochę zasady do zleweczki z kwasem - porcja się nam zobojętni a obecny nadmiar... itp.
No ale w końcu jednak to nasze "wypadkowe pH" trochę się zmieniło, w pierwszym przypadku ubyło nam trochę kwasu a drugim zasady. Więc teraz wyobraźmy sobie, że przy pomocy magicznego zaklęcia odwracamy reakcje tak aby poziomy powróciły do wyjściowych i wszystko jest w porządku. Tym naszym magicznym zaklęciem może być tu reguła przekory, zachodzi to jednak w tych specyficznych warunkach, gdy zasada zamienić się może w kwas, a kwas w zasadę.
\>
Jak już pisałem, wedle Broensteda kwas to substancja oddająca proton. Gdy proton zostaje oddany pozostaje nam reszta kwasowa, ta jednak może równie dobrze przyjąć proton i stać się znów wyjściową cząsteczką. Skoro może przyjąć proton to jest zasadą. To nawet całkiem logiczne - gdy zobojętnimy wodorotlenek sodu kwasem solnym, powstanie nam sól kuchenna czyli chlorek sodu, gdy do jej roztworu dodamy mocnego kwasu, na przykład siarkowego, równowaga reakcji zobojętnienia - dotychczas całkowicie przesunięta w prawo - ulegnie częściowemu odwróceniu i zacznie się nam wydzielać gazowy chlorowodór. Dawniej właśnie tak produkowano kwas solny, skąd też oczywiście bierze się nazwa.
Zatem kwas solny jest kwasem, a powstający zeń anion chlorkowy zasadą. Jednak roztwór kwasu solnego i chlorku sodu nie stanowi buforu - dodanie do tej mieszanki zasady zobojętni część kwasu, sól pozostanie natomiast niezmieniona. Dodawanie kwasu też nie wywoła reakcji, przynajmniej do momentu gdy silnie kwaśne warunki nie zaczną wypierać chlorowodoru. Inaczej jest w sytuacji gdy mamy do czynienia z kwasem słabo dysocjującym.

W roztworze kwasu octowego część cząsteczek przybiera formę obojętną, CH3COOH . Cząsteczka taka może oddać proton, jest więc kwasem. Część kwasu octowego w roztworze uległa dysocjacji, a więc uwolnieniu protonu. Powstająca reszta kwasowa, anion CH3COO− może przyjąć proton, zatem jest zasadą. Oczywiście w tych warunkach zachodzi między nimi równowaga, a proton co raz jest oddawany i przyjmowany. Co jednak zwraca uwagę - przyjęcie protonu przez jon octanowy usuwa go z roztworu. W przypadku kwasu solnego jony wodorowe pochodzące od kwasu były obecne w roztworze cały czas ze względu na jego dobrą dysocjację, tutaj łączą się w obojętną cząsteczkę kwasu i nie mają wpływu na pH roztworu
Dodatek niewielkiej ilości kwasu przesuwa równowagę - część anionów octanowych przyjmie nadmiarową ilość protonów. Znikną one więc z roztworu a odczyn obniży się mniej niżby to wynikało z dodanej ilości. Dodatek niewielkiej ilości zasady zobojętni małą ilość jonów hydroniowych, mniej ich zatem będzie się łączyło z jonami octanowymi i w wyniku niezrównoważenia nieco większa ilość kwasu zdysocjuje zakwaszając roztwór, przez co podwyższenie pH będzie mniejsze niżby to wynikała z dodanej ilości zasady.
To jak duże ilości kwasów lub zasad można dodać zależy od ilości obu form w roztworze. Dla samego kwasu octowego, anionów octanowych jest mało, łatwo więc przełamać taką przekorę. Aby mechanizm mógł więc pokazać się w pełnym świetle i przeciwstawiać się większym ilościom odczynników, tworzy się mieszaniny słabych elektrolitów i ich rozpuszczalnych soli, najlepiej w jednakowej ilości.
Kwas octowy zmieszany z odpowiednią ilością octanu sodu da zatem bufor octanowy, utrzymujący odczyn w zakresie pH 3-6 zależnie od stosunku kwasu do soli. Roztwór amoniaku z dodatkiem chlorku amonu to bufor amonowy z pH 8-11. Kwas borny rozpuszczony wraz z boranem sodu to bufor boranowy, o pH 7-9.

Każdy taki roztwór zawiera stosunkowo dużo form zdysocjowanych i niezdysocjowanych, dzięki czemu może buforować odczyn zaburzany dodatkami elektrolitów w ilościach podobnego rzędu. Bufory są używane tam, gdzie potrzebny jest stały, dobrze określony odczyn, nie zaburzany zanieczyszczeniami. Wiele pomiarów właściwości substancji wykonuje się w roztworach buforujących, które utrzymują znaną wartość pH w czasie całego pomiaru. Bufory po otrzymaniu mogą być też dłuższy czas przechowywane.

 Działanie buforu można wyjaśnić w jeszcze jeden obrazowy sposób - jako naczynia połączone. Jeśli wlejemy roztwór do jednego ramiona częściowo napełnionej U-rurki, to zaburzymy równowagę. Układ zachowa się jednak przekornie - część roztworu przepłynie do drugiego ramienia do momentu odzyskania równowagi. Poziom w ramieniu do którego wlewaliśmy ciecz wzrośnie zatem o połowę mniej, niż by wynikało z dodanej ilości, bo część odpłynęła. Nie można jednak czynić tego w nieskończoność, bo w końcu w rurce miejsca zabraknie, a drugie ramię nie będzie mogło tego zrekompensować bo i jemu zabraknie wolnej objętości.

Tak też jest i z buforami - mogą powstrzymywać zmiany odczynu dla ilości kwasów lub zasad mniejszych lub porównywalnych ze stężeniem własnym. Jednak z dużymi ilościami sobie nie poradzą - po całkowitym zdysocjowaniu i zobojętnieniu słabego kwasu, bufor przestaje się opierać zasadom, po całkowitym sprotonowaniu anionu reszty kwasowej, roztwór przestaje się opierać dodatkom kwasu.
Ilość odczynnika potrzebna do przełamania buforu, określamy pojemnością buforu. Zależy ona od stopnia rozcieńczenia oraz stosunku ilości formy zdysocjowanej do niezdysocjowanej.

Ot i tyle.

środa, 11 września 2013

Kiedyś w laboratorium (32.)

Na zajęciach z chemii fizycznej jednym z ćwiczeń było badanie stałej kwasowej wskaźnika pH czerwieni fenolowej. Do roztworu bufora z dodatkiem wskaźnika, dodawaliśmy po 0,2 ml wodorotlenku sodu. Po każdym dodatku i rozmieszaniu mieszadełkiem sprawdzaliśmy absorbancję roztworu w spektrofotometrze. Oczywiście nie mogłem się powstrzymać przed zrobieniem zdjęć ukazujących powolną zmianę barw - ostatni odcień podobał mi się najbardziej.

Czerwień fenolowa to wskaźnik zmieniający barwę od żółtej w roztworach obojętnych, do różowo-purpurowej w zasadowych. Jej cząsteczka jest bardzo podobna do zasadowej formy fenoloftaleiny - ten sam układ trifenylowy z dwoma pierścieniami z grupą hydroksylową i jednym z sulfonową.
W warunkach zasadowych następuje odszczepienie obu protonów z grup hydroksylowych i zmiana struktury elektronowej, co skutkuje zmianą barwy. Barwnik dawniej był używany w testach medycznych (tzw. PSP test) do sprawdzania czynności nerek. Po wstrzyknięciu do krwi lub bezpośrednio do tętnicy nerkowej, czerwień fenolowa była wydalana z moczem, co w normalnej sytuacji następowało szybko i w całości. Kolorymetryczne oznaczenie stężenia pozwalało stwierdzić, czy nerki wydalają we właściwy sposób. Obecnie test wyszedł już chyba z użytku.
Odczyn przy którym następuje zmiana barwy, jest zbliżony do normalnego odczynu płynów komórkowych i krwi, stąd dodatek czerwieni fenolowej do hodowli tkankowych pozwala szybko ocenić czy nie dochodzi do zakwaszenia, zwykle z powodu zakażenia bakteryjnego.
Przy okazji zrobiłem też krótki film:

czwartek, 31 maja 2012

Kiedyś w laboratorium... (11.)

Podczas praktyk zawodowych miałem parę chwil wolnego czasu aby móc się pobawić. Wycisnąłem torebkę czarnej herbaty do zagłębień porcelanowej płytki i dodałem do jednego zasady sodowej a do drugiego kwasu siarkowego:
Niestety wyciśnięty napar był dosyć mocny i dlatego różnica odcieni nie jest tak dobrze widoczna jak przy słabszym, co każdy ma możliwość obserwować zakwaszając herbatę cytryną.

W liściach herbaty zawarte są garbniki, będące polifenolami - najczęściej są to pochodne katechiny, w zielonych liściach występujące w słabo zabarwionej frakcji niskocząsteczkowej. Podczas fermentacji te drobne cząsteczki ulegają enzymatycznemu utlenieniu pod wpływem oksydazy polifenolowej do bardzo reaktywnych chinonów a następnie polimeryzacji tworząc duże agregaty o kolorze od żółtego do brązowego, odpowiadające za czarny kolor herbaty i odcienie jej naparów[1] Dodatkowo część chinonów, tworzy z pozostałymi fenolami kompleksy z przeniesieniem ładunku, często o żywej barwie o czym każdy mógł się przekonać podczas zbierania podgrzybków - sinoniebieski kolor uszkodzonego miąższu owocnika tego grzyba, z powodu którego czasem mówi się na nie "siniaki" to właśnie wynik powstawania barwnych kompleksów CT głównie dla kwasu kserokomowego (xerocomic acid).[2] Za brązowienie pieczarek odpowiada atromentyna. Spotykam się z błędnym twierdzeniem, że niebieszczenie grzybów jest oznaką ich halucynogenności.
 Podobna reakcja zachodzi po mechanicznym uszkodzeniu (krojenie, rozcieranie) w wielu owocach i warzywach - to właśnie tworzenie wielkocząsteczkowych polifenoli odpowiada za brązowienie jabłek, bananów, ziemniaków, a nawet krewetek i homarów[3] a nie, jak to się już spotkałem, utlenienie żelaza. Po zakwaszeniu lub sparzeniu enzym przestaje być aktywny i owoce nie ciemnieją. Garbniki te nadają herbacie właściwości przeciwbakteryjne, przeciwzapalne i ściągające.
Katechina i jej pochodne zawierają pierścienie aromatyczne z grupami hydroksylowymi - w takim układzie pojawia się równowaga między formą fenolową a chinonową, zależna od pH środowiska. W środowisku zasadowym garbniki oddają proton i przeważać zaczyna forma chinonowa o silniejszym zabarwieniu, w środowisku kwaśnym przeważa forma fenolowa o kolorze mniej intensywnym. W zasadzie można więc taki napar potraktować jako niezbyt precyzyjny wskaźnik kwasowości. Ot i cała tajemnica - niektórzy do dziś sądzą, że zakwaszona herbata robi się słabsza i dlatego jest jasna.
 Gdy do naparu dodałem stężonego kwasu, wytrącił mi się pomarańczowy osad - zapewne były to niezdysocjowane garbniki.

ps. Ponieważ zainteresowanie wpisem planowanym na krótką migawkę jest zaskakująco duże, dopisałem trochę jeszcze
-------
http://en.wikipedia.org/wiki/Polyphenol_oxidase
[1] Przemysław Dmowski, Maria Śmiechowska, Beata Deja Wpływ warunków zaparzania na zawartość garbników oraz wybranych parametrów barwny herbaty, Zeszyty Naukowe AM
[2]  Stephen F. Nelsen, Bluing Components and Other Pigments of Boletes,  fungimag.com
[3]  Brązowienie enzymatyczne, food-info.net

środa, 4 kwietnia 2012

Kiedyś w laboratorium (8.)

Fenoloftaleina jest powszechnie używana jako wskaźnik kwasowo-zasadowy, w warunkach zasadowych przy pH 8,2 z formy bezbarwnej zamieniający się w formę różowo-malinową. Nie każdy jednak wie, że w ekstremalnych warunkach może przejść w jeszcze inne formy. Pod wpływem bardzo silnych zasad odbarwia się, zaś w bardzo silnych kwasach staje się pomarańczowa, co pewnego razu sprawdziłem:

Fenoloftaleina w stężonym kwasie siarkowym


Wszystkie te przemiany wiążą się ze zmianami budowy cząsteczki. Związek formalnie rzecz biorąc jest pochodną bezwodnika ftalowego, który skondensował z dwiema cząsteczkami fenolu, W związku z tym jedna połowa pochodzącej od dwóch grup karboksylowych, grupy karbonylowej, zostaje zajęta, zaś pozostała część formalnie rzecz biorąc może być uznana za cykliczny ester. Decyduje to o właściwościach.
W warunkach silnie zasadowych pierścień estrowy hydrolizuje do reszty karboksylowej. Swoje wodory odszczepiają też dwie cząsteczki fenolu. Powstała struktura mezomeryczna adsorbuje część światła, pozostawiając intensywny kolor pomiędzy fioletem a różem.
Gdy związek znajdzie się w środowisku silnie kwaśnym, pierścień estrowy hydrolizuje do grupy karboksylowej, jednak fenole nie odszczepiają wodoru, przez co na zwornikowym atomie węgla powstaje niedomiar elektronów i cała cząsteczka staje się dosyć trwałym kationem trifenylometylowym, o barwie intensywnie pomarańczowej.

Jako ciekawostkę można dodać, że fenoloftaleina jest środkiem przeczyszczającym, stosowanym w medycynie od stu lat. Nie znalazłem informacji wedle jakiego mechanizmu działa, ale podejrzewam że oddziałuje tu forma anionowa, pojawiająca się przy obecności zasadowej żółci. Obecnie jednak wycofuje się ją, z powodu jak na razie niedostatecznie potwierdzonych, ale jednak istniejących podejrzeń o rakotwórczość.