informacje



sobota, 5 maja 2012

Poison Story (3.) - Bawełniana wdowa


- Powinieneś się ubezpieczyć. Tak na wszelki wypadek.
- O co ci chodzi, dlaczego ciągle trujesz mi tym głowę? - mógłby gniewnie odpowiedzieć żonie James Robinson.
- Nigdy nic nie wiadomo...
Małżeństwo Robinsonów nie należało do specjalnie udanych. Pierwotnie James zatrudnił jako gosposię-opiekunkę, niejaką Marry Ann Ward, niedawną wdowę, która oprócz rozmaitych spraw miała jedynie opiekować się dziećmi i choć jako doświadczona pielęgniarka wywiązywała się z tego zadania znakomicie, chłopiec zachorował i zmarł na gorączkę żołądkową. Po tej tragedii zbliżyli się do siebie. Zbliżyli się tak dobrze że zaszła w ciążę i na stałe zamieszkała z panem Robinsonem. Nawet na krótko przeprowadziła się do nich matka gosposi, niestety zmarła po kilku dniach na dolegliwości żołądkowe. Nie skończyło to łańcucha tragedii - w ciągu trzech tygodni kwietnia odeszła dwójka dzieci Robinsona i córka Marry Ann z poprzedniego małżeństwa. Być może te wszystkie nieszczęścia zbliżyły ich na tyle, że po ledwie pół roku 11 sierpnia 1867 roku, Marry Ann z domu Robson, poślubiła Jamesa w kościele św. Michała w Sutherland, w północnej Szkocji.
Kilka miesięcy później urodziła się im córka, Maria Izabela, ale niestety, jak wszyscy z jej rodziny, jako bardzo chorowite dziecko zmarła mając ledwie pięć miesięcy. Wtedy też Ann zaczęła nalegać na męża, aby ubezpieczył się na życie. Bo przecież nigdy nic nie wiadomo. A cóż pocznie bez niego, sama, biedna.
Najwyraźniej jednak pani Robinson nie była wzorową żoną, często przepadała na długo w mieście wracając o dziwnych porach, często prosiła o małe sumy na różne sprawunki. Wreszcie dowiedział się, że ma długi na sześćdziesiąt funtów i że zabrała mu pięćdziesiąt umieszczając w banku, a na koniec, że posyła dzieci do lombardu, zastawiając biżuterię. O nie, tego już znieść nie mógł. Nie zważając na względy towarzyskie porzucił ją pod koniec roku.
Biedna Marry została na bruku. Jej znajoma, Margaret, sprowadza ją do domu brata Fryderyka Cottona, który niedawno został wdowcem. Niestety już wkrótce dwójka jego dzieci umiera na dolegliwości żołądkowe. Niedługo potem gorączka jelitowa wykańcza uczynną Margareth, zaś Marry tak skutecznie pociesza jej brata, że zachodzi z nim w ciążę. Wkrótce ożenili się w połowie września 1870 roku, i przeprowadzili do niego w Walbottle; Marry nie powiedziała mu że jeszcze nie rozwiodła się z poprzednim mężem. Wkrótce poznaje byłego kochanka Józefa Nattrassa i odnawia związek na tyle, że ten się do niej sprowadza. Pan Cotton nie robi obiekcji, jako że niedługo przedtem umiera na wrzody, zostawiwszy spadek żonie i dzieciom. Dzieci długo się nim nie cieszyły, gdyż zarówno sierota po ojcu jak i świeżo narodzony Fryderyk Junior, umierają wskutek kolki. Sam Nattrass umiera po kilku miesiącach wskutek nagłych boleści żołądkowych, pozostawiwszy spadek kochance.
Mając wikt i dom zatrudnia się jako pielęgniarka u Thomasa Rileya, funkcjonariusza parafii. Wówczas dołącza do niej ostatni żyjący syn Karol. Matka chce umieścić go w przytułku ale musiałaby wówczas mu towarzyszyć. Nie zrażona mówi, że chłopiec jest chorowity i szybko umrze, jak wszyscy Cottonowie, gdy zaś przepowiednia spełnia się po zaledwie pięciu dniach, Riley nabiera podejrzeń. Zwłaszcza, że zaraz po jego śmierci, Marry udała się do ubezpieczyciela po wypłatę ubezpieczenia które wzięła na życie syna. Tak na wszelki wypadek.
Jednak czy stateczna wdowa mogłaby zamordować syna aby jej nie przeszkadzał? Koroner nie daje wiary podejrzeniom Ridleya, zwłaszcza gdy Marry stwierdza że niedawno odrzuciła jego zaloty. Śmierć chłopca zostaje uznana za naturalną i zapewne na tym by się skończyło, gdyby nie dziennikarze, którzy popytali o nią w różnych miastach i ujawnili jej niezwykłą historię.

Marry Ann nie miała szczęśliwego życia. Urodzona w 1832 roku w Moorsley, wioseczce wchłoniętej potem przez Sutherland, wychowywała się w Durham, gdzie jej ojciec górnik przeniósł się za pracą. Gdy miała 14 lat ojciec ginie w kopalni, zaś matka znajduje sobie nowego męża. Marry nie lubi ojczyma, który osładza jej żale pieniędzmi i prezentami. Aby uniezależnić się, Ann szkoli się na pielęgniarkę i odchodzi z domu. Mając dwadzieścia lat żeni się z górnikiem Williamem Mowbray'em, przenosząc się do Plymouth . Ma z nim pięcioro dzieci, lecz czwórka umiera na dolegliwości żołądkowe. Przenoszą się do wschodniej Anglii gdzie mają jeszcze trójkę dzieci, te umierają jedno po drugim. Mąż umiera na gorączkę żołądkową w styczniu 1865 roku, zostawiając jej w spadku 35 funtów - odpowiednik sześciu miesięcznych pensji robotnika. Wkrótce umiera jej kolejna córka. Marry przenosi się do Seaham, gdzie jako pielęgniarka poznaje George'a Warda, z którym żeni się w sierpniu 1865 roku. Po niecałym roku, po długiej chorobie związanej z problemami gastrycznymi, Ward umiera, zostawiając żonie spadek. Teraz tylko dodać matkę, piątkę dzieci trzeciego męża, uczynną przyjaciółkę, czwartego nielegalnego męża i jego dzieci i wychodzi nam aż zastanawiający łańcuch ciągłych śmierci.[1]
Czy stateczna wdowa, troskliwa pielęgniarka, mogła być wyrafinowaną morderczynią? Wszystko na to wskazywało, gdy zaś policja zbadała próbki ciała Karola i wykryła w nich duże dawki arsenu, Marry Ann Cotton została w roku 1873 aresztowana pod zarzutem otrucia 21 osób.

Arsen to pierwiastek chemiczny na 33 miejscu w układzie okresowym, należący do grupy półmetali - choć bowiem ma wyraźny metaliczny połysk, daleko mu do takich substancji jak miedź czy żelazo. Słabo przewodzi prąd, ma liczne odmiany alotropowe w niektórych formach zbliżając się do leżącego nad nim fosforu. Pewne związki były już znane w starożytności grecki lekarz Dioskurides, żyjący w I w. n.e. wymienia aurypigment jako jeden z leków mineralnych, zauważając że jest silnie trujący. Prawdopodobnie jednak dopiero Albertus Magnus w jednym z dzieł alchemicznych stwierdził, że wytapiany z nich metal choć jest podobny do znanego już bizmutu, nie jest nim. Już w VIII wieku arabski alchemik Jabir ibn Hayyān zwany Geberem, opisał biały proszek otrzymany przy ogrzewaniu pewnego minerału. Był to słynny arszenik.
 
Tlenek arsenu III

Arszenik to nic innego jak tlenek arsenu III As2O3,  mający postać białego, amfoterycznego proszku, lotnego w podwyższonej temperaturze z wydzieleniem oparów o czosnkowym zapachu. Proszek ten rozpuszcza się w wodzie, dając lekko kwaśny roztwór pozbawiony wyraźnego smaku, z którego po pewnym czasie może się wytrącać kwas arsenowy będący produktem hydrolizy. Dla potencjalnych trucicieli były to cenne właściwości, gdyż w zatrutym winie lub jedzeniu nie dawało się wyczuć jakiegoś charakterystycznego posmaku, w odróżnieniu od organicznych alkaloidów, zwykle gorzkich lub cierpkich. Słynna strychnina ma smak tak wybitnie gorzki, że przez pewien czas używano go jako odnośnika w skali goryczy. Nic więc dziwnego, że szybko przystosowano go do tego celu.

Pierwsze wzmianki o truciu arszenikiem znajdujemy w średniowieczu, aczkolwiek warto zauważyć że był już od dawna znany w medycynie chińskiej.Do najbardziej znanych trucicieli używających arszeniku, należeli Borgiowie - wpływowy włoski ród. Dwóch z nich zostało niezbyt chlubnymi papieżami. Wprawdzie za życia nie udowodniono im morderstw, a i historycy uważają ich legendę za mocno przesadzoną, jednak wielu ich politycznych przeciwników ginęło w bardzo wygodnym czasie. Arszenik nazywano wówczas żartobliwie "proszkiem sukcesji" lub "przyjacielem spadkobierców".
Inną trucicielką była Giulia Toffana, twórczyni trucizny aqua tofana, będącej mieszanką arszeniku i muchy hiszpańskiej. Giulia założyła dobrze prosperujący interes, w ramach którego sprzedawała truciznę żonom, pragnącym pozbyć się mężów, instruując co do wykorzystania. Aresztowana i stracona w 1659 roku, sama przyznawała że w ciągu blisko 20 lat przy jej pomocy zamordowano 600 osób, jednak trudno zweryfikować wyznania wyciągnięte z niej torturami. W podobnym czasie o otrucie Barbary Radziwiłłówny oskarżano inną Włoszkę, królową Bonę. Oskarżenia były raczej nie popartymi dowodami plotkami. Na ironię losu Bona zginęła otruta gdy powróciła do Włoch.
Istnieją liczne opowieści na temat wymyślnych sposobów trucia. Lotność arszeniku wykorzystywano nasączając nim knoty świec - podczas palenia się, świeca wydzielała trujący opar - w ten sposób zginąć miał Klemens VII. Dodawano go do wina i wody. Posypywano nim potrawy tak, aby porcje na brzegu pozostawały nie zatrute, dzięki czemu degustatorzy mogli nie wykryć trucizny. Wsypywano go do rękawiczek, nasączano koszule i karty książek Ostatecznie jednak zawsze objawy były zbliżone do wywoływanych przez nieświeże jedzenie, bądź cholerę, stąd nawet nagłość zgonu nie była wystarczająca do postawienia diagnozy. Trzeba wiedzieć że jakość jedzenia w tamtych czasach nie była specjalnie wysoka - w erze przedlodówkowej jedzenie należało konserwować, solić, peklować lub suszyć aby się nie psuło a i tak powszechną praktyką było zalecane jeszcze w starych książkach kucharskich wystawienie mięs na dwór "aby skruszało". Obowiązująca teoria miazmatów, to jest oparów chorobotwórczych raczej nie sprzyjała poprawie stanu wód, stąd cholera i czerwonka były w miastach na porządku dziennym. Szczególnie jasno pokazało się to w przypadku masowego zatrucia w Bradford.
Gdy w 1858 roku wiele osób w jednej dzielnicy doznało dolegliwości żołądkowych a niektóre zmarły, sądzono że to kolejna fala zarazy. Dopiero skrupulatne śledztwo doprowadziło władze do pewnego pokątnego fabrykanta cukierków. Niejaki William Hadaker sprzedawał na targu cukierki tzw "Humbugs" własnej produkcji, były to jak można osądzić karmelki z topionego cukru z dodatkiem gumy arabskiej i mięty. Aby oszczędzić na materiale "chrzcił" cukier kredą, gipsem i czym popadnie. Wypełniacze brał od aptekarza, któremu zawsze pozostawało na zbyciu coś z produkcji pigułek. Pewnego razu doszło jednak do pomyłki i aptekarz sprzedał mu beczułkę mającą zawierać magnezję, w rzeczywistości wypełnioną 13 funtami arszeniku. Fabrykant sporządził z tego 40 funtów czyli około 2000 cukierków. Każdy zawierał podwójną dawkę śmiertelną. W efekcie w ciągu kilku dni zachorowało ponad 200 osób, z czego około 20 zmarło. Niemal identyczny przypadek zdarzył się we Francji w 1951 roku - w wyniku pomyłki laboranta którzy wziął nie tą beczułkę, na rynek trafiła partia pudru dziecięcego Baumol, z arszenikiem zamiast tlenku cynku. Zanim zorientowano się w sytuacji zmarło 90 niemowląt.

Jak to się jednak dzieje, że ta substancja ma aż takie silne, szczególne właściwości trujące, sprawiające że wystarczy porcja wielkości ziarenka grochu, aby zabić dorosłego człowieka?

Arsen należy do metali ciężkich, i jako taki chętnie tworzy połączenia z siarką - ta zaś jest ważnym składnikiem białek, enzymów i hormonów. Mostki siarczkowe między sąsiadującymi cząsteczkami stanowią jedną z przyczyn układania się długich łańcuchów polipeptydowych w takiej a nie innej konformacji, co przekłada się na właściwości. Przykład tego podawałem w poprzednim odcinku na temat cyjanków, gdzie mechanizm odtruwający rodanazy wiązał się z obecnością wolnej siarki w cząsteczce. Podłączenie się trójwartościowego arsenu do tych atomów siarki rozrywa mostki siarczkowe i blokuje aktywne grupy, tym samym hamując aktywność enzymu.
Przykładem jest pirofosforan tiaminy (PPT) - jest to kofaktor a więc cząsteczka wspomagająca w wielu enzymach i stanowi biologicznie czynną formę witaminy B1. Takim enzymem w którym pełni ważną rolę jest transacetylaza dihydrolipoilu, stanowiąca część złożonego układu kompleksu dehydrogenazy pirogronianowej. Bierze udział w przekształceniu pirogronianu powstającego z rozszczepienia cząsteczki glukozy w acetylokoenzym A, który następnie wejdzie do cyklu Krebsa. Cykl Krebsa ma za zadanie wytworzyć komórkom całą energię potrzebną do życia, dlatego zablokowanie łańcucha reakcji w tak newralgicznym miejscu skutkuje szybką śmiercią komórki. 
Właściwa zachodząca reakcja polega na przekazaniu grupy acetylowej z PPT na kwas liponowy, zawierający pierścień z wiązaniem dwusiarczkowym, skąd zostaje przekazana koenzymowi A, tworząc acetylokoenzym A. Arszenik tworzy połączenie siarczkowe z dwiema grupami sulfhydrylowymi kofaktora, uniemożliwiając jego działanie:

Oprócz wymienionego blokowanych może być kilkadziesiąt innych enzymów. Arsen V, rzadziej spotykany, jest mniej szkodliwy. Jego działanie opiera się głównie na zastępowaniu fosforu w takich cząsteczkach jak ATP czy DNA, uniemożliwiając przenoszenie energii.

Zanim jednak arsen dostanie się do wnętrza komórki zaczyna łączyć się z innymi zawierającymi siarkę białkami strukturalnymi, głównie z keratyną tworzącą włosy i paznokcie. Dlatego też badanie włosów jest uważane za dobry sposób diagnozowania przewlekłego zatrucia arsenem, również przebytego. W przypadku paznokci odkładające się w nich połączenia arseno-keratynowe powodują miejscową zmianę zabarwienia w postaci białych lub szarych pasów w poprzek paznokcia na całej jego szerokości, które przesuwają się wraz ze wzrostem paznokcia aż po pewnym czasie znajdą się na końcu skąd można je obciąć - są to tak zwane linie Meesa. Często paznokieć jest w tym miejscu kruchy i podatny na pękanie.

Nie należy mylić tych linii z pojawiającymi się niekiedy białymi plamkami lub kreseczkami na paznokciu, mającymi postać punktową i pojawiającymi się nie na wszystkich paznokciach. Jest to tak zwana leukonychia, związana z mechanicznym podrażnieniem macierzy paznokciowej. Czasem wystarczy przyciąć sobie palec, stuknąć się poniżej paznokcia bądź też zaczepić o coś twardego i już po paru dniach pojawia się biała plamka. Wbrew powszechnej opinii nie jest to objaw niedoboru wapnia czy witamin. Istnieje wprawdzie możliwość podobnego objawu przy marskości wątroby czy zatruć chemikaliami, ale wówczas paznokcie po prostu zaczynają całe rosnąć białe. Istnieją jeszcze inne podobne przypadłości z którymi można się pomylić, jak nieruchome pasma pod paznokciem - linie Muehrckego - czy poprzeczne załamania płytki - linie Beau'a - wywołane innymi schorzeniami.

Arsen łatwo wchłania się zarówno wziewnie jak i z przewodu pokarmowego. Spożyty w dawce ostrej wywołuje najpierw objawy żołądkowe - bóle brzucha, wymioty, odwadniające biegunki, zapalenie skóry, podrażnienie płuc. Później, gdy chory jest już osłabiony pojawiają się objawy ze strony układu krążenia - wzmożona przepuszczalność naczyń, uogólniony obrzęk, spadek ciśnienia. Pojawiają się krwawe biegunki, często z oderwaniem nabłonka jelitowego, kłębuszkowe zapalenie nerek,  zmiany skórne, drgawki, encefalopatia, zaburzenia widzenia. Śmierć może nastąpić w wyniku odwodnienia lub zatrzymania pracy serca lub porażenia ośrodka oddechowego. W skrajnych przypadkach duża dawka zabija w ciągu kilku godzin. Dawka śmiertelna to 1-5mg/kg masy ciała a więc dla dorosłego człowieka 60-300 mg. Jest zatem niemal tak samo silnie trujący jak cyjanek, ale zabija wolniej.
Zatrucie przewlekłe z mniejszymi dawkami daje objawy mniej nasilone, rozwija się często stłuszczenie lub marskość wątroby, osłabienie mięśni, bladość skóry z widocznymi rozszerzonymi naczyniami. Co ciekawsze, nieorganiczne związki arsenu III są bardziej trujące niż organiczne - choć jest tu parę wyjątków. Związki arsenoorganiczne wywołują głównie objawy neurologiczne, uszkadzając komórki nerwowe.

Jednak oprócz stosowania jako trucizny, dosyć wcześnie, bo już w XV wieku, próbowano używać arsenu jako leku. Znanym takim preparatem był płyn Fowlera, nazywany też rozczynem arsenowym, będący 1% roztworem arsenianu potasu, używanym dla uśmierzenia gorączki, zimnicy, grypy, bólów głowy, niedokrwistości i właściwie wszystkiego co przyszło lekarzom do głowy. Popijano go jak tonik, wstrzykiwano do krwi i podskórnie przez cały XIX wiek aż do lat 60. minionego stulecia. Zażywany w większych dawkach wywoływał przewlekłe zatrucie. Powiązano też jego spożywanie ze zwiększoną zapadalnością na raka, zwłaszcza pęcherze i skóry
Paradoksalnie jednak jak się okazuje, może być skutecznym chemioterapeutykiem w niektórych odmianach raka, zwłaszcza z białaczce, osiągając na tyle dobre rezultaty, że ostał oficjalnie zatwierdzony jako lek. Najwidoczniej jest po prostu bardziej toksyczny dla komórek nowotworowych niż zwykłych. Ze względu na szybki metabolizm, komórki guza są niemal ciągle w stanie stresowym, jednak nie podlegają apoptozie, to jest naturalnemu obumarciu. Najprawdopodobniej arszenik, blokując część enzymów, uruchamia ten mechanizm, i rak zaczyna obumierać.
Płyn Fowlera wycofano, jednak w międzyczasie odkryto inny preparat który okazał się znacznie bardziej bezpieczny. Od kiedy pod koniec XV wieku w Europie pojawił się syfilis, choroba zasadniczo uważana była za Dopust Boży i karę na cudzołożników. Przez kilka następnych wieków kiła szerzyła się w całym świecie, skazując na kalectwo, bezpłodność lub śmierć wielu mężczyzn i wiele kobiet. Już Paracelsus proponował, aby leczyć kiłę solami rtęci, zarówno zewnętrznie jak i wewnętrznie, co wprawdzie wiązało się z ryzykiem zatrucia i pomagało raczej słabo, ale i tak było lepsze niż popularne "metody" jak seks z nieletnią dziewicą, czy celibat i msze gregoriańskie.
Na początku XX wielu sprawą zajął się Paul Ehrlich, niemiecki lekarz i farmokolog, twórca chemioterapii. Wychodząc z teorii "magicznej kuli" uważał że na każdą chorobę wywoływaną przez jakiś drobnoustrój, można znaleźć lek będący substancją, chemicznie zatrzymującą jakąś ważną przemianę biochemiczną w owym mikrobie. Wiedziano że kwas arsanilowy, nazywany Atoxylem, używany dotychczas jako lek na choroby skórne, wykazuje działanie na pierwotniaki gorączki afrykańskiej. Wprawdzie działanie było słabe i dopiero duże dawki były skuteczne, wywołując jednak w takiej ilości liczne powikłania jak choćby ślepotę. Ehlich uznał jednak, że lek ten wyznacza już jakiś kierunek, być może zatem udałoby się znaleźć taką pochodną organiczną arsenu, która byłaby słabo trująca dla człowieka, zaś silnie dla pierwotniaków i bakterii chorobotwórczych. Zaczął więc syntezować kolejne związki sprawdzając ich skuteczność. Był w tym bardzo skrupulatny, lecz po sprawdzeniu 600 związków nadal nie mógł znaleźć odpowiedniej substancji. Sukcesem okazała się dopiero substancja numer 606, nazwana Salwarsanem. Był to pierwszy skuteczny i bezpieczny lek na kiłę, stosowany aż do odkrycia penicyliny.
Krętek kiły, slawarsan w formie trimeru i dawna rycina przedstawiająca chorego pokrytego wrzodami

Oprócz zastosowań medycznych, arszenik był kiedyś używany w kosmetykach jako składnik "tynktury białej" a więc pudru zapewniającego modną bladość skóry. Mógł się tą drogą wchłaniać, więc wraz ze szminką na bazie rtęci czy cieniem do powiek z antymonem, należał do najbardziej szkodliwych dawnych upiększaczy. Dodawany do masy szklanej dawał jasnozielone zabarwienie (współcześnie zielone szkło "butelkowe" to wynik dodatku żelaza II), zaprawiano nim skóry zwierzęce, jego solami nasycano drewno aby zabezpieczyć przed szkodnikami, przede wszystkim był jednak trutką na szczury i owady.
Szczególnie popularną pochodną była Zieleń Paryska - octan arsenian miedzi. Był to jasnozielony proszek o intensywnej barwie, w odróżnieniu od innych pigmentów nie czerniejący i nie blaknący. Używano go pospolicie do malowania ścian i farbowania tapet ściennych, niestety częste były zatrucia tą waśnie drogą, gdy kawałki skruszonej farby dostały się do jedzenia, lub przypadkiem zjadło je dziecko. Właściwości te były na tyle silne, że używano go do oprysków przeciwko stonce. Nazwa podobno ma wywodzić się od wielkiej akcji wytrucia paryskich szczurów, kiedy to oblano jego zawiesiną wszystkie kanały, a Sekwana stała się zielona, ale nie znalazłem tu potwierdzenia.

Gdy Marry Ann Cotton stanęła przed sądem w marcu 1873 roku, obrońca powoływał się na ten fakt, twierdząc że Karol mógł zatruć się wdychanymi cząsteczkami farby. Lekarze uznali to jednak za niemożliwe, aby wchłonąć przez płuca tak dużą ilość arsenu i nie doznać w pierwszej kolejności objawów płucnych, ponadto bardzo trudno było aby chłopiec zainhalował wykrytą w jego ciele ilość w ciągu zaledwie pięciu dni. Być może obrona przebiegałaby łatwiej, gdyby wiedziano, że pod wpływem wilgoci i pleśni, tworzy się Arsyna - arsenowodór, trujący gaz o zapachu czosnku, który odegrał dużą rolę w historii badań kryminalistycznych.

Jak jednak poznać że w danym przypadku mamy do czynienia z zatruciem tym właśnie pierwiastkiem? To samo pytanie zadawano sobie już przed wiekami i na dobrą sprawę jeśli nie udało się skłonić podejrzanego do przyznania nie w sposób było cokolwiek mu udowodnić. Pierwszym znanym przypadkiem gdy udało się zidentyfikować truciznę, była sprawa Mary Blendy.
Była to córka dobrze zarabiającego angielskiego prawnika, od dziecka żyjąca w dobrych warunkach i rozpieszczana przez krewnych. Ojciec trochę za bardzo afiszował się ze swym majątkiem, rozpowiadając że przeznaczył córce na posag 10 tysięcy funtów. Nic więc dziwnego że jak muchy do miodu zewsząd zlatują się bardzo kochający zalotnicy. Z nich wszystkich przypadł jej do gustu tylko jeden, William Henry Cranstoun, syn szkockiego szlachcica. Wszystko z początku przebiega pomyślnie aż nie zostaje ujawnione, że Henry już jest żonaty i bynajmniej nie rozwiódł się do tej pory. Ponadto na jaw wychodzą jego długi, dlatego pan Blendy zaczyna przebąkiwać, że do małżeństwa raczej nie dojdzie. Jednak Marry do tego czasu zakochała się w narzeczonym, dlatego decyduje się nawet na niedorzeczną próbę ułagodzenia ojca przy pomocy otrzymanego od Cranstouna "starożytnego eliksiru miłosnego", mającego postać białego proszku, jaki należy dosypać ojcu do jedzenia i napojów. Od tego czasu pan Blendy choruje i słabnie z każdym dniem, aby wreszcie umrzeć 14 sierpnia 1751 roku.
Marry najwyraźniej zorientowała się, że "starożytny eliksir" może być przyczyną choroby ojca, dlatego za radą znajomego lekarza pozbywa się dowodów na potajemny romans, wyrzuca resztki zatrutego jedzenia i proszku. Zapobiegliwa pokojówka, która zauważyła, że służąca zachorowała po spróbowaniu jedzenia swego pana, zachowała część proszku i miskę kaszy. Po śmierci ojca, Marry zostaje aresztowana, zaś zadaniem sądu staje się udowodnienie, że biały proszek jest trucizną.

Na dobrą sprawę prócz prób dawania zatrutego jedzenia zwierzętom i obserwowania reakcji, nie znano wówczas metod rozpoznawania trucizn, nawet jeśli posiadano ich pokaźną próbkę a i tak można było obalić taką obserwację dowodząc, że zwierzęta akurat zachorowały na cholerę. Doktor Anthony Addington postanowił zatem wykonać wszelkie próby porównawcze, jakie tylko przyszły mu do głowy. Wziął osad z dna miski i część proszku, i porównał z próbką arszeniku, stwierdzając podobny wygląd. Próbki rzucone na zimną wodę tonęły, część unosiła się po wierzchu a tylko niewielka część rozpuściła się. W ciepłej wodzie proszek rozpuszczał się a po zakwaszeniu wydzielał się biały osad. Proszek rzucony na rozżarzone żelazo nie topił się, lecz sublimował, wydzielając białe opary o czosnkowym zapachu. Inne proste próby chemiczne wskazywały na podobieństwo próbki do związku.
We swym wystąpieniu przed sądem oparł się Addington na zdroworozsądkowym stwierdzeniu, że jeśli próbka wygląda jak arszenik, zachowuje się jak arszenik, pachnie jak arszenik i wreszcie truje jak arszenik, to musi to być arszenik. Cały wywód zrobił duże wrażenie na sądzie i publiczności, będąc właściwie pierwszą próbą dowodzenia poprzez próby fizykochemiczne o winie oskarżonego. Toteż 6 kwietnia 1752 roku, Marry Blendy zostaje publicznie powieszona. Kochanek ucieka za granicę jeszcze przed początkiem procesu.[2]

Nie wiadomo mi czy w późniejszych latach podobne próby przydały się jeszcze w jakiejś sprawie, jednak dopiero na początku XIX wieku odkryto pierwsze próby charakterystyczne na arsen. W 1787 roku, Johann Metzger stwierdził, że gdy ogrzewa się arszenik z węglem drzewnym, na górnej części próbówki gromadzi się czarny osad metalicznego lustra. Węgiel redukował tlenek, zaś powstający metal miał postać par, osiadających na chłodniejszej powierzchni. Był to już krok naprzód, choć podobny wynik zawał antymon. Jednak dopiero w 1806 roku, niemiecki farmakolog Valentin Rose wykorzystał ten test w pośmiertnym badaniu ofiary zatrucia. Wziął żołądek ofiary, i spopielił w obecności węglanu potasu, wapna palonego i kwasu azotowego, otrzymaną pozostałość poddał próbie Metzgera, potwierdzając obecność arsenu - jednak i tą reakcję wywoływał antymon, a także cyna.
Dopiero potem Samuel Hanneman, znany jako twórca Homeopatii stwierdził, że przepuszczając siarkowodór przez zakwaszony roztwór arsenu, otrzymujemy żółty osad siarczku, rozpuszczalny w roztworze amoniaku. Niestety nie wszyscy byli przekonani o tym, czy metoda była słuszna. Przekonał się o tym dobitnie James Marsh, brytyjski chemik, który w 1832 roku podjął się pomocą przy śledztwie w sprawie śmierci George'a Bodle, zamożnego rolnika z Plumstead, który zmarł po wypiciu kawy. Zachorowało wówczas jeszcze kilka innych osób, ale lubiący kawę ojciec umarł tego samego dnia. Sędzia pokoju zabezpieczył dzbanek kawy, podejrzewając o zabójstwo syna Johna, który zdradził się wcześniej że tylko czeka aż ojciec, rodzinny tyran trzymający wszystkich na krótkiej smyczy, umrze. Marsh wziął kawę oraz płyn otrzymany z rozpuszczenia części żołądka zmarłego w kwasie, przepuścił przezeń siarkowodór i uzyskał żółty osad, który rozpuścił się w amoniaku. Pewny siebie opowiedział o tym w sądzie, jednak ława przysięgłych niewiele zrozumiała z jego wywodu, powstrzymana chemicznymi nazwami. Natychmiast wyzyskał to obrońca, który tłumaczył że to jakaś niesprawdzona metoda, o której nawet nie wiadomo jak działa. John Bodle zostaje wypuszczony, co Marsh uznaje za osobistą porażkę. Notabene dziesięć lat później Bodle ponownie zostaje aresztowany tym razem za oszustwa i skazany na siedem lat kolonii karnej. Tam przy okazji przyznaje że rzeczywiście otruł ojca.[3]
Marsh przegrzebał solidnie wszystkie prace na temat arsenu i natknął się na klasyczny artykuł Sheleego, który już w 1775 roku stwierdził, że z roztworu arsenu pod wpływem wodoru można wydzielić pachnący czosnkowo gaz - Arsynę 
 As + 3 H+ →  AsH3
 który łatwo rozkłada się z wydzieleniem wolnego metalu:
2 AsH3 3 H2 + 2 As
tworzącego lustro metaliczne na chłodnych powierzchniach.
Marsch zbudował więc aparat, składający się z butli zawierającej cynk, do której wlewano mieszaninę kwasu z badanym roztworem. Kwas reagował z cynkiem wydzielając wodór, który jednak w stanie in statu nascendi, a więc przed połączeniem w dwuatomowe cząsteczki, wykazywał dużą reaktywność, wystarczającą do zredukowana arsenu. Powstający arsenowodór zmieszany z wodorem wypływał z butli przez U-rurkę z osuszaczem zakończoną kapilarą. Tam wodór był zapalany, zaś w płomień wprowadzano chłodną płytkę porcelany. Chodziło o to, aby schłodzić płomień i aby po rozkładzie arsenowodoru w płomieniu wodoru, uzyskać lustro metaliczne. Gdyby płomień nie był tak przyduszony, arsyna utleniałaby się, dając opary tlenku arsenu, te zaś trudno by było złapać.
Podobne lustro metaliczne dawał antymon i bizmut, lecz lustro arsenowe rozpuszczało się w roztworze chloranu sodu. Próba była na tyle czuła, że dawała pozytywny wynik nawet dla 0,02 miligrama arsenu. Zawartość oceniano porównując stopień zaciemnienia z płytkami wykonanymi przy znanych ilości arsenu, choć próbowano też metod wagowych, ważąc płytkę przed i po opaleniu. Test, opublikowany po raz pierwszy w 1836 roku odegrał dużą rolę w najsłynniejszym procesie kryminalnym w XIX wiecznej Francji - w sprawie Marii Lafarge, oskarżonej o otrucie męża, której proces stał się widowiskiem i grą emocji równie emocjonującą, jak dziś sprawa śmierci Madzi. Ostatecznie Maria Lafarge została skazana w 1840 roku na więzienie. Siedząc wydawała bestsellerowe pamiętniki w których dowodziła swej niewinności.
Od tego czasu arszenik przestał być niewykrywalną, idealną trucizną i jedynie błędy śledczych oraz patologów, mogących uznać że nie mają do czynienia z tą trucizną, mogły ocalić trucicieli przed stryczkiem. Jak napisał Arthur Conan Doylle, twórca postaci Sherlocka Holmesa "Nie ma zbrodni doskonałej, są tylko głupkowaci inspektorzy policji".


A co z Marry Ann?
 Pani Cotton od początku zapewniała o swej niewinności, jednak szybko odnaleziono świadków, głównie aptekarzy, którzy poświadczyli że kupowała u nich arszenik. W dodatku okazało się że na cztery dni przed śmiercią chłopiec został przez nią dotkliwie pobity w wybuchu gniewu. Ponadto wykazano, że jako pielęgniarka miała łatwy dostęp do trucizny, zaś lekarze chcący ją obronić, wykazali się niepewnością co do tego gdzie właściwie stała u nich butelka tlenku arsenu - skoro nie byli nawet tego pewni, zdając się na pielęgniarki, to mogli też nie zauważyć, że trochę ubyło.
Ostatecznie sąd uznaje jej winę, i 24 marca 1873 roku zostaje powieszona.

Dlaczego zabijała? Trzeba zauważyć że jej pierwsze małżeństwo trwało prawie dziesięć lat, przez te wszystkie lata nie odważyła się otruć męża, gdy zaś wreszcie to zrobiła, otrzymała znaczny spadek. Jak sądzę zadziałał tu prosty mechanizm, sprawiający że ludzie seryjnie popełniają kolejne przestępstwa w ten sam sposób - mianowicie uznała że skoro za pierwszym razem się udało i nikt niczego nie podejrzewał, to może udać się i drugi raz. Znam przypadek złodzieja, który okradał lekarzy - raz zdarzyło mu się ukraść sprzęt z pustego, otwartego gabinetu w przychodni, więc po pewnym czasie zaczął specjalnie przychodzić czekając aż lekarz wyjdzie. Przyłapano go za czwartym razem. W ten właśnie sposób jak sądzę, tworzy się charakterystyczny modus operandi - oczywiście znaczenie mają tu też uwarunkowania psychologiczne.
A dlaczego zabijała dzieci? Myślę że zadziałało tu kilka mechanizmów - mogła nie radzić sobie z macierzyństwem, więc truła dzieci aby nie sprawiały jej problemów. W przeciwnym razie aż do czwartego "męża" dorobiłaby się dwunastki własnych dzieci. Jednak warto zauważyć, że rodzenie dzieci było też sposobem na przywiązanie do siebie kolejnych partnerów - zawsze starała się zbliżyć do nich na tyle, aby zajść w ciążę i tym skłonić do ślubu. W potem rodziła kolejne aby dać więcej powodów do pozostania w związku. Gdy truła dzieci, zarówno własne jak i cudze, pokazywała jaką jest czułą opiekunką, sprawną pielęgniarką, matką. Musiało to w niej powoli dojrzewać, zaś motywem najwyraźniej były pieniądze.
Traktowała ludzi instrumentalnie - byli dla niej sposobem zdobycia pieniędzy i prowadzenia życia jakiego chciała. Gdy zaczynali jej przeszkadzać, ginęli. Marry Ann Cotton była jedną z pierwszych angielskich seryjnych morderczyń.

Z innych sławnych spraw dobrze jest wspomnieć o przypadku Napoleona, w którego włosach znaleziono dużo arsenu, choć teorie jakoby miano go otruć gdy siedział uwięziony wydają mi się słabo umotywowane. U nas podejrzewa się, że arszenik dodany do farby był sposobem otrucia Wojciecha Korfantego, gdy po powrocie do kraju w 1939 roku został zaaresztowany, choć właściwie nie ma na to wielu dowodów.. Identyczne podejrzenia są co do sprawy generała Rozwadowskiego. Sam szukając czegoś w bibliotekach cyfrowych natknąłem się na tajemniczy przypadek Pomadzinej, oskarżonej 1873 roku o otrucie czterech krewnych - syna wuja, dziadka i dwóch ciotek, przy pomocy placuszków zaprawionych arszenikiem. Wuj oskarżonej wydziedziczył ją na korzyść syna, zaś dziadek zapisał jej w spadku znaczną posiadłość. Oskarżona twierdziła że ciasto znalazła na oknie, że próbowała go i nic się nie działo, dlatego zaniosła je do wuja i dziadka. W dodatku gdy dziadek poczęstował ciastem jej córkę, matka wytrąciła jej ciastko z ręki. Mimo to obrońca w gorącej przemowie objaśnił się był to tylko nieszczęśliwy wypadek związany z lokalnymi zabobonami. Mieszkańcy tamtych okolic mieli mieć zwyczaj wystawiania w oknie lub na progu "cichej jałmużny" dla duchów zmarłych, będących też sposobem na zapewnienie sobie szczęścia, że zaś mieszkańcy wsi zajmowali się przemytnictwem i przemycali mąkę i arszenik, mogło się zdarzyć, że ktoś upiekł dla duchów placuszek z obu tych produktów, aby zapewnić sobie szczęście w przemycie.
To dziwaczne rozumowanie zostało przez sąd uznane za prawdopodobne i  28 marca, cztery dni po egzekucji Marry Cotton, nasza Pomadzina została uniewinniona. Sprawa nie zdobyła rozgłosu i o ile mi wiadomo nie miała dalszego kryminalnego ciągu, jednak sami chyba przyznacie, że szczęśliwy zbieg okoliczności był dla tej kobiety trochę za szczęśliwy.[4]

Na koniec jeszcze jedna sprawa - tłumacze z angielskiego notorycznie mylą Arsen  z arszenikiem, co prowadzi do takich kwiatków, jak "związki arszeniku" z czym się spotkałem w paru artykułach.
-------
Źródła:
Strona poświęcona przypadkowi Cotton http://www.maryanncotton.co.uk/

[1]  http://en.wikipedia.org/wiki/Mary_Ann_Cotton
[2] http://www.capitalpunishmentuk.org/blandy.html
[3]  http://www.laborundmore.de/archive/575588/Giftmord-und-Arsen-Der-Nachweis-eines-Volksgiftes.html 
[4] Gazeta Warszawska Sądowa,  1 kwietnia 1873, EBUW



*http://members.tripod.com/~Prof_Anil_Aggrawal/poiso002.html
*http://en.wikipedia.org/wiki/Giulia_Tofana
*http://it.wikipedia.org/wiki/Giulia_Tofana
*http://en.wikipedia.org/wiki/1858_Bradford_sweets_poisoning
*http://en.wikipedia.org/wiki/Leukonychia
*http://en.wikipedia.org/wiki/Mary_Blandy
*http://www.phmd.pl/fulltxthtml.php?ICID=868643
*http://pl.wikipedia.org/wiki/Medyczne_zastosowanie_tr%C3%B3jtlenku_arsenu
*http://www.drugstoremuseum.com/sections/level_info2.php?level_id=145&level=2


czwartek, 3 maja 2012

Ostatnio w domu - kryształki


Pozostawszy w domu na dłużej, postanowiłem zająć się czymś niewymagającym. Na przykład wyhodować jakieś ładne kryształki. Pewnie wiele osób próbowało tego z solą kuchenną ale mało komu się to udało. Sól wprawdzie jest dobrze rozpuszczalna w wodzie, ale dla krystalizacji najistotniejszym parametrem jest różnica rozpuszczalności w różnych temperaturach. Jeśli nasz związek dobrze rozpuszcza się w wodzie gorącej a słabiej w zimnej, to po ochłodzeniu nasyconego gorącego roztworu powstający nadmiar musi się jakoś wydzielić. Im większa jest ta różnica tym lepiej.
W przypadku chlorku sodu rozpuszczalność w 100 st. C to 39 gramów w 100 gramach wody a w temperaturze pokojowej ok.36 g. Różnica 3 gramów to niespecjalnie dużo. Dla siarczanu miedzi różnica to 100 gramów[1], dlatego też z tego powodu (ale nie wyłącznie) błękitne kryształy siarczanu miedzi uzyskuje się znacznie łatwiej. Sól niestety łatwo tworzy skupienia drobnokrystaliczne, skorupiaste, a większe kryształy tworzą się podczas bardzo powolnego zatężania roztworów. Dlatego też soli nie brałem.
Jest wiele łatwo dostępnych substancji tworzących ładne kryształy. Jak choćby cukier biały, tworzący przezroczyste kryształy podobne do kawałków szkła - czasem można dostać w sklepach takie kryształy stanowiące oryginalną formę osłody (choć nadają się też do picia herbaty na sposób rosyjski - przez cukier trzymany w ustach). Ja jednak obawiałem się, że podczas robienia stężonego roztworu zrobi mi się syrop, więc zdecydowałem się na kwasek cytrynowy.

Kwas cytrynowy tworzy przezroczyste, bezbarwne kryształy, w temperaturze pokojowej krystalizując jako monohydrat. Jest bardzo dobrze rozpuszczalny i dobrze dostępny. Nalałem więc gorącej wody do słoiczka, tyci tyci na dno, i wsypałem niemal całe opakowanie kwasku, który rozpuścił się bez śladu, co świadczyło o tym, że roztwór nie był jeszcze całkiem nasycony. Trzeba było zatem poczekać aż trochę odparuje, zatem odstawiłem słoiczek na parapet i na kilka dni o nim zapomniałem.

Po kilku dniach ścianki były zarośnięte skorupą kwasu, a dno zasłane grubą warstwą krystalicznej masy, z której wystawało kilka większych okazów. Bardzo stężony, syropowaty roztwór przelałem więc do innego słoika, a z wydobytej masy wyłupałem największe i najbardziej kształtne okazy.

Następnie wybrałem kilka najładniejszych i włożyłem do słoiczka z roztworem, tak aby rosnąc nie stykały się ze sobą. Rosły jednak bardzo powoli:

Na ściankach znów zaczęła osadzać się krystaliczna masa, toteż co pewien czas odbijałem od niej moje zarodki żeby nie przyrosły. Wreszcie gdy powierzchnia wody niemal dotykała kryształków, uznałem że można je wyjąć. Nie prezentują się jakoś specjalnie urodziwie - są raczej zbliźniaczone, zaś to, że od strony dna miały gorszy dostęp porcji związku, sprawiło że niektóre ścianki nie wykształciły się regularnie. Mimo to daje się w nich dostrzec regularne kształty.








Takie bardzo kwaśne cukierki.
-----
[1] http://www.chemorganiczna.com/tablice/48-rozpuszczalnosc.html

wtorek, 24 kwietnia 2012

Chemik na miejscu zbrodni - próby analityczne na krew

Pomysł na ten wpis przyszedł mi do głowy nieoczekiwanie. Zaglądam czasem (jako Zaciekawiony) na forum kryminalityka.fr.pl, gdzie niekiedy wpadnie mi w oko jakaś ciekawostka. Tam też pojawił się temat, w którym zapytywano o proste metody chemicznej analizy różnych substancji, tak aby poznać skład. Tłumacząc tam jak bardzo obszerny jest to temat i jakie są ograniczenia "domowych laboratoriów", wspomniałem o pewnej próbie wykrywającej obecność krwi, że zaś dopytano się mnie jeszcze o nie, grzebnąłem po różnych stronach, aż uznałem że temat jest na tyle ciekawy i chemiczny, że nadaje się aby o nim coś tutaj napisać. Często obserwujemy jak w serialach kryminalnych pojawiają się specjaliści orzekający - tu prysnęła krew, tu był strzał, stamtąd strzelano - i niejednokrotnie zastanawialiśmy się, jak oni to robią. Jak? a no tak:

Krew, formalnie rzecz biorąc, jest tkanką łączną, składającą się z komórek różnego rodzaju zawieszonych w osoczu. Są to zarówno czerwone krwinki, pełniące funkcję transportową jak i krwinki białe i limfocyty pełniące funkcję obronną. Stanowi ważny element ludzkiego organizmu, zaś jej utrata, może doprowadzić do śmierci, co może następować w wyniku wypadku, samobójstwa lub morderstwa. W tym ostatnim przypadku krew wydostająca się na zewnątrz staje się ważnym dowodem dla śledztwa, znacząc miejsce, narzędzie i sprawcę zgonu. Wydaje się dość oczywiste, że jeśli mamy człowieka z raną piersi, zakrwawiony nóż i osobnika o zakrwawionej koszuli, to te trzy rzeczy musiały mieć ze sobą bliską styczność w momencie zdarzenia, toteż taki ważny dowód już u początków kryminalistyki był bardzo chętnie poszukiwany.
Niestety w tych dawnych czasach rozpoznanie krwi było dużym problemem. Rdza może dawać plamy bardzo podobne do starej, zaschniętej krwi, podobnie jak pewne soki roślinne, farby czy pewne odmiany gliniastej ziemi. Znalezienie czerwonej plamy na czyimś ubraniu czy podłodze nie było zatem aż tak oczywistym dowodem. W dodatku stare plamy krwi zmieniają swe właściwości, robią się brunatne, pomarańczowe, żółtawe a nawet zielone, i przypominają brud. Początkowo jedynym sposobem odróżnienia było doświadczenie śledczego. Tworzono też katalogi opisujące wygląd plam po różnym czasie na różnych materiałach., co pozwalało lepiej się zorientować, ale nadal w razie procesu sądowego, dowód taki można było zakwestionować.
W przypadku względnie świeżej plamy można było rozpuścić ją w wodzie i oglądając pod mikroskopem rozpoznać krwinki, co pozwalało na odróżnienie jej od innych substancji, jednak dla starych śladów, podległych częściowej degradacji, było to niemożliwe.

Pierwszą próbą chemiczną, jaką stosowano do wykrywania krwi, była reakcja z wodą utlenioną. Już Thenard zaważył w 1818 roku, że nadtlenek wodoru rozkłada się wskutek zetknięcia z krwią. Nadtlenek reagował bądź z hemoglobiną bądź z enzymami,  z wydzieleniem bardzo reaktywnego tlenu:
H2O2 → H2O + O
Wydawało się to całkiem proste - zwilżamy badaną plamę lub tkaninę wodą utlenioną, i gdy się pieni, to jest krew. Niestety okazało się, że podobne reakcje dawać może rdza, tlenki manganu i soki roślinne zawierające peroksydazy, toteż choć próba była już jakąś wskazówką, okazała się niedostateczna. Mimo to stała się podstawą dla innych reakcji, o czym później.

Pierwszą próbą pozwalającą wykryć istotny składnik krwi, jakim jest hemoglobina, była próba Teichmanna. Ludwik Teichmann , urodzony w Lublinie lekarz i anatom, ogłosił w 1853 roku, że udało mu się uzyskać próbę analityczną jednoznacznie identyfikującą krew. W jego metodzie badana próbka była ogrzewana z lodowatym kwasem octowym i roztworem soli. W kropli roztworu w miarę stygnięcia, powstawały charakterystyczne, tabliczkowate kryształki pochodnej hemoglobiny:


Tą pochodną była hemina, będąca właściwie chlorkiem ferriporfiryny, to jest z żelazem na stopniu utlenienia III połączonym z chlorem normalnym wiązaniem jonowym. Jako że hemoglobina występuje wyłącznie we krwi, test potwierdzał jej obecność (teoretycznie podobnie mogłyby zadziałać cytochromy, ale nie występują w płynach fizjologicznych, nie wiem natomiast czy tak też reaguje mioglobina z przetworów mięsnych)). Próba dawała pozytywny wynik nawet w przypadku kilkunastoletnich plam.

Modyfikacją tej próby był wprowadzony w 1912 roku test Takayamy, gdzie próbkę ogrzewano w obecności kwasu octowego i pirydyny. Powstający kompleks hemo-pirydyniowy nazywany hemochromogenem wytrącał się w formie tabliczek bądź pryzmatów, wystarczająco charakterystycznych aby przeprowadzać identyfikację. Istnieje jeszcze wiele modyfikacji, zastępujących pirydynę glicyną, aminami czy nawet acetonem.

Tak więc próbę potwierdzającą obecność krwi mieliśmy, jednakowoż aby poddać próbkę badaniom, trzeba ją najpierw znaleźć, a to w sytuacji gdy sprawca mógł próbować usunąć ślady nie było wcale takie proste.
Próbę z wodą utlenioną już omawiałem. Raczej nie da się jej użyć w przypadku dużych powierzchni, a i tak przy bardzo powolnym postępie reakcji bezbarwna piana może być niezauważalna. Ale od czego są chemicy?

Aby rozkład nadtlenku wywoływany przez hemoglobinę jakoś uwidocznić, postanowiono wykorzystać barwne reakcje utlenienia. Najprościej było wykorzystać tu barwniki o bardzo intensywnym kolorze, w formie chromogenów - a więc w formie bezbarwnej, którą można "ubarwić" przez proste przekształcenie, na przykład utlenienie. Takie probarwniki są używane przy farbowaniu tkanin, często bowiem forma barwna jest trudno rozpuszczalna i słabo wchłania się w strukturę nici materiału. Tak jest na przykład z indygo przy farbowaniu dżinsów. W tym przypadku opracowano kilka zbliżonych metod, różniących się zastosowanym barwnikiem:

Próba Kastle'a-Meyera z fenoloftaleiną
Fenoloftaleina to popularny wskaźnik kwasowo-zasadowy, przyjmujący w warunkach zasadowych różowe zabarwienie, dlaczego i jak to się dzieje, już niedawno pisałem.  Pod wpływem łagodnych reduktorów przechodzi w fenoloftalinę (nie znalazłem co prawda polskiego odpowiednika angielskiej "phenolphthalin" ale przez analogię powinien brzmieć tak), nie mającą form barwnych, łatwo ulegająca utlenieniu. W 1901 roku Kastle i Shedd zauważyli, że katalizatorem utlenienia może być materiał biologiczny, i gdy działo się to w warunkach zasadowych, pojawiało się wyraźne zabarwienie. W 1903 roku w Niemczech Meyer zauważył, że w podobny sposób działają czerwone krwinki. Gdy zaś w 1906 roku Kastle udowodnił, że przemianę katalizuje hemoglobina uwolniona z krwinek, uznano że może być to dobra metoda ujawniania zatartych śladów krwi.[1] Reakcja zachodzi w przypadku rozcieńczeń sięgających nawet 1:10 000[2]
Spotkałem się z niepoprawnym tłumaczeniem, że skoro krew jest lekko zasadowa, to reakcja polega na wykrywaniu odczynu, podczas gdy chodzi jedynie o zamianę formy bezbarwnej w barwną.
Metoda polega na rozpuszczeniu próbki w silnie zasadowym roztworze i dodaniu do roztworu zredukowanej cynkiem fenoloftaleiny, potem do roztworu dodaje się wody utlenionej. Inna wersja to papierek bądź wacik nasączony świeżym odczynnikiem, przykładany do podejrzanej powierzchni. Dla zwiększenia dokładności jako rozpuszczalnika używa się etanolu. Na serialach kryminalnych widać czasem jak kryminalistycy pocierają powierzchnie wacikiem, który zabarwia się na różowo - to właśnie ten test. Jest to jednak test zawodny. Rozkład nadtlenku może wywołać wiele różnych substancji, w tym peroksydazy z soków roślinnych, dlatego też jest to test raczej wykluczający niż potwierdzający - jeśli zabarwienie nie nastąpi, możemy uznać że na badanej powierzchni nie ma śladów krwi; natomiast jeśli barwa się pojawi, to możemy uznać, że krew może tu być, ale należy to potwierdzić bardziej dokładnymi badaniami. Niestety właściwie wszystkie testy oparte na utlenieniu mają ten ogranicznik.

Próba z Zielenią malachitową
Zieleń malachitowa to sztuczny barwnik wykazujący duże podobieństwo strukturalne do fenoloftaleiny, oparty zasadniczo na tym samym szkielecie trifenylometanowym, z dodatkowymi grupami aminowymi.Również wykazuje zmienność zabarwienia zależną od pH, jednak z uwagi na to, iż następuje to przy wartościach ekstremalnie niskich, w praktyce nie jest używany. Zasada jest ta sama - po potraktowaniu reduktorami przyjmuje formę bezbarwną. Utlenienie atomowym tlenem z rozkładu nadtlenków powoduje powrót intensywnej zielonej barwy.   

Próba benzydynowa
Benzydyna to aromatyczna diamina, która mogła by być traktowana jak dimer aniliny w położeniu para. Pod wpływem nadtlenków i wolnego tlenu ulega stopniowemu utlenieniu do formy diiminowej tworzącej z wyjściowym substratem kompleks z przeniesieniem ładunki o kolorze intensywnie niebieskim. Zbliżona reakcja jest wykorzystywana przy wybarwianiu preparatów mikroskopowych. Dalsze utlenienie do całkowitej przemiany zmienia kolor na intensywnie żółty. Niegdyś, od wynalezienia w 1904 roku, bardzo popularna przy ujawnianiu krwi na dużych powierzchniach, dziś wycofana z racji dobrze potwierdzonej rakotwórczości związku, bywa zastępowana mniej szkodliwą pochodną 3,3-5,5-tetrametylową.
  
Próba gwajakolowa
Gwajakol, to związek należący do polifenoli (formalnie można go uznać za monoeter metylowy katecholu), znany jako lek wykrztuśny stosowany w syropach na kaszel. Pod wpływem reaktywnego tlenu powstającego z nadtlenków zamienia się w pomarańczowy tetramer z mostkami nadtlenkowymi łączącymi pierścienie. Próba została opisana już w 1862 roku ale należy do rzadziej używanych. Zastanawia mnie czy obecność jodków może fałszować wynik - powodują rozkład wody utlenionej a powstający jod ma pomarańczowy kolor.
Próba w nieco zmodyfikowanej postaci była i czasem wciąż jest używana do wykrywania krwi utajonej w kale.

Na koniec zbiorczo duża infografika, mam nadzieję, że czytelna:


Próba z Luminolem
Jest to próba oparta na nieco innym mechanizmie. Wprawdzie też chodzi o utlenienie, ale utleniany związek nie jest barwnikiem. Luminol to pochodna kwasu ftalowego, która w obecności utleniaczy i różnych aktywatorów ulega utlenieniu - ale nie od razu. Początkowo utlenienie powoduje odszczepienie azotu i powstanie nadtlenku, bardzo jednak nietrwałego w powodu bliskości dwóch grup karbonylowych. Pęknięcie wiązania przerzuca elektrony na atomach tlenu w stan wzbudzony. Powrót do stanu podstawowego przebiega z wydzieleniem energii w postaci intensywnego, niebieskiego
 lub zielonego światła. Czułość sięga ilości krwi z rozcieńczeniu 1:300 000.
W kryminalistyce po spryskaniu w ciemności badanych powierzchni mieszaniną luminolu i wody utlenionej, w miejscach gdzie obecne są ślady krwi, pojawia się trwające do 30 sekund świecenie, które należy utrwalić na fotografii. Niestety podobny efekt mogą dać ślady kału, sole miedzi, cząstki stopów miedzi i preparaty czyszczące z wybielaczami. Dokładne wymycie zabrudzonej powierzchni wybielaczem może tak zafałszować wynik, że badanie nie wykryje śladów które faktycznie tam są. Podobnie jak w przypadku innych metod katalitycznych badanie należy traktować jako wstępne, służące umiejscowieniu śladów, co do których dopiero dalsze badania potwierdzą, że jest to krew.

Ostatecznie wszystkie te testy potwierdzają jedynie istnienie krwi, nie rozróżniają jednak pomiędzy rodzajami krwi a więc pomiędzy krwią ludzką a zwierzęcą. Jeśli u podejrzanego odnaleziono na deskach podłogi w kuchni ślady krwi, zawsze mógł twierdzić że niedawno jadł sztukamięs prosto od rzeźnika i podczas mycia deski do krojenia trochę zakrwawionej wody poleciało mu na podłogę. Jak zatem potwierdzić że nasza wybadana krew, należy do człowieka?
Problem ten rozwiązało odkrycie z 1901 roku. Niemiecki lekarz Paul Uhlenhuth, badając reakcje immunologiczne odkrył, że reakcja pomiędzy antygenami wytwarzanymi wobec obcego czynnika drażniącego, jest wysoce charakterystyczna. Gdy wstrzyknął królikowi białko jaja kurzego, przejściowo powstał odczyn zapalny a jego organizm, broniąc się, wytworzył antygeny przeciwko-jajokurze, zaś surowica krwi takiego królika wytrącała białko jaja kurzego, ale nie inne. Gdy wstrzyknął królikowi białko jaja przepiórczego, surowica wytrącała białko z takiego materiału, natomiast nie reagowała z białkiem jajka kurzego. Podobne reakcje zachodziły z mlekiem różnych gatunków zwierząt oraz z krwią.
Surowica królika zadrażnionego ludzką krwią, strącała białka z ludzkiej krwi, zupełnie nie reagując na krew innych gatunków ssaków i ptaków. Co więcej, reakcja zachodziła również w przypadku starych, zaschniętych śladów, uprzednio rozpuszczonych.
Już wkrótce metoda, dzięki przychylności postępowego sędziego śledczego, posłużyła do rozwiązania morderstwa dwóch dziewczynek na Rugii, jednak zdecydowany rozgłos zdobyła dzięki pomocy w rozwiązaniu morderstwa 8-letniej Lucie Berlin, do jakiego doszło w 1904 roku w Berlinie.

Precyzyjne testy precypitacyjne stały się zatem cenną pomocą w odróżnianiu krwi ludzkiej od zwierzęcej. Kolejnym krokiem było odkrycie grup krwi, pozwalające na rozróżnienie krwi pochodzącej od różnych osób. Choć  Landsteiner odkrył je w 1901 roku, spotkał się z dużym oporem ze strony środowisk medycznych, i choć jego odkrycie pozwalało bezpiecznie przetaczać krew, trzeba było I wojny światowej aby uznano jej przydatność, zaś do badań kryminalistycznych weszło około lat 20. Pierwszy system A B 0, został uzupełniony o czynniki Rh+, Rh-, M,N,S i wiele innych, co nadawało krwi dużą indywidualność.
Potem nauczono się rozróżniać krew różnych płci aż wreszcie do użytku weszły badania DNA, o których już kiedyś pisałem

Współcześnie znamy wiele testów wykrywających krew - wspomniane próby, jak test z luminolem służą jedynie lokalizowaniu podejrzanych śladów na dużych powierzchniach, jak podłoga pomieszczeń, czy ściany. Potwierdzenie że jest to krew i to konkretnie ludzka następuje za pomocą innych specyficznych reakcji, na przykład barwny test immunologiczny, oparty na reakcji specyficznych antygenów. Testy takie, dające wynik tylko z krwią ludzką, używane są czasem do wykrywania krwi utajonej w stolcu i moczu.


Na koniec polecam ciekawym dwie ciekawe książki Jürgena Thorwalda "Stulecie detektywów" i "Godzina detektywów" w fascynujący sposób opisujące historię kryminalistyki.

---------
Źródła:
http://www25.brinkster.com/icequeen11/chemistry/bmk1.html testy na krew - opisy procedur http://www.forensicsciencecentral.co.uk/history.shtml
http://www.wavesignal.com/Forensics/Blood.html
http://de.wikipedia.org/wiki/Kastle-Meyer-Testhttp://en.wikipedia.org/wiki/Luminol
http://de.wikipedia.org/wiki/Paul_Uhlenhuth
http://en.wikipedia.org/wiki/Paul_Uhlenhuth

[1] https://www.ncjrs.gov/pdffiles1/pr/160880_unit_2.pdf   
[2] http://www.wavesignal.com/Forensics/Blood.html 

niedziela, 15 kwietnia 2012

Kiedyś w laboratorium... (9.)

Kiedy jeszcze uczyłem się w technikum, miałem przedmiot Bioanalitykę. Zajęcia prowadziła pani Skrobek, którą miło wspominam między innymi dlatego, że nie widziała przeszkód abym mógł robić na zajęciach zdjęcia. Jedne z zajęć poświęcone były podstawom histologii i wówczas nie omieszkałem sfotografować przez mikroskop pokazywanych preparatów tkankowych. Ten, który podaję poniżej, to preparat komórek rakowych:

Preparat był utrwalany i niestety dosyć stary, dlatego popękał. W każdym razie widać bardzo grubą błonę komórkową, i nieregularne jądro dzielące się równocześnie na kilka części. Taki wygląd mają komórki raka stodium szybkiego wzrostu.

piątek, 13 kwietnia 2012

Kraszanki czyli o wielkanocnej chemii


Szykowałem ten wpis na poniedziałek wielkanocny, ale różne okoliczności natury osobistej sprawiły, że wstawiam go z opóźnieniem. mimo wszystko sądzę, że będzie interesujący.

Pisanki to stara wielkanocna tradycja. Tak stara, że starsza od chrześcijaństwa. Wzmianki o barwieniu jaj znajdujemy jeszcze w starożytnych zapisach, zaś powiązanie między ich tworzeniem a wiosennymi świętami na pewno powszechne było wśród pogańskich europejczyków. Jego twarda, gładka skorupka sprawiała, że przypominało kamień, jednak z tego "kamienia" mógł się wykluć ptak. To życie wychodzące ze zdawałoby się martwego przedmiotu, kojarzono z wiosennym budzeniem się do życia "suchych" drzew, zazielenianiem się "martwej" ziemi i ogółem z witalnością. Nie bez znaczenia było też zapewne, że jajka są dosyć pożywne i mają działanie wzmacniające, dlatego też jajo, jako symbol wiosennego odrodzenia, jak i obiecywanego przez religie pośmiertnego życia, stały się ważnym elementem dawnych kultów.
U Słowian, jak się wydaje, kojarzono jaja z kultami solarnymi, na zasadzie że tak jak powracające po zimowym oddaleniu Słońce, ogrzewając wiosną Ziemię budzi ją i to co na niej istnieje do życia, tak z twardej skorupki wykluwa się małe, ruchliwe pisklę, w przypadku kur w dodatku jasnożółte - a więc w kolorze słońca. Dodatkowo ptaki, które wykluwają się z jaj, często były symbolami bądź posłańcami Bóstw.[1]
Ze względu na nietrwałość materiału, najstarsze zachowane pisanki były wykonane z gliny, bądź też były ozdobionymi kamieniami odpowiedniego kształtu. Za najstarszą polską uważa się gliniane jajko z X wieku znalezione w Opolu. Często jako pisanki opisuje się jajowate grzechotki z okresu neolitycznej kultury Trypolskiej, na terenach Ukrainy, ale jakoś w to powątpiewam.

Techniki zdobienia pisanek są tak różnorodne, że nie w sposób tu wszystkich wymienić. Mogą być gotowane w barwnikach, malowane, rysowane, malowane woskiem i barwione, oklejane obrazkami, sznurkiem czy koralikami, a nawet koronkową koszulką, drapane, wytrawiane, opalane - nie zdziwię się jak ktoś niedługo wymyśli drukarkę do jaj. Ja jednak skupię się na jednej - na robieniu "karaszanek" lub "kroszonek", polegającej na gotowaniu jaj w roztworach barwników, którą najczęściej stosuje się u mnie w domu.

Skorupka jaja zbudowana jest głównie z drobnokrystalicznego węglanu wapnia w postaci igiełkowatych pryzmatów kalcytu (tylko u żółwi pojawia się aragonit), oraz nadającego jej pewną elastyczność białka. Zależnie od rodzaju i grupy zwierząt, proporcje te zmieniają się od niemal zupełnie białkowych, miękkich jaj gadów, do sztywnych jaj ptaków. Tego typu jaja zachowują się w skamielinach[2].
Jest to materiał bardzo porowaty, dzięki czemu rozwijający się kurzy zarodek może być zaopatrywany w tlen. Te same pory ułatwiają też barwnikom wnikanie w głąb materiału i osadzanie się na powierzchni kryształków mineralnych, i dzięki temu skorupka jaja może być trwale zabarwiona. Nawiasem mówiąc za brązowawe zabarwienie jaj kurzych preferowanych w Europie (Anglosasi i amerykanie wolą jajka białe jak piłeczki pingpongowe) jest wynikiem wydzielania przez jajowód kury biliwerdyny i protoporfiryny, i zależy właściwie tylko od rasy nie zaś od sposobu żywienia.

Dawne sposoby barwienia jaj były niezwykle różnorodne i to nimi, a konkretnie używanymi barwnikami, chcę się zająć w tym wpisie. A więc:

Żółty:
Aby otrzymać żółty kolor, należy zastosować żółty wywar. Zwykle używano tutaj kwiatów nagietka lub jaskra, uprzednio zasuszonych na tą okazję, ale także młodych listków i pędów brzozy, olchy i jabłoni. Bardziej majętni mogli sobie pozwolić na szafran.
A więc, żółtym barwnikiem nagietków są patuletyna i patulitryna[3], flawonoidy o słabym działaniu przeciwbakteryjnym. Wywar z płatków nagietka był i wciąż może być używany do farbowania wełny. Podobne wykorzystanie ma wywar z liści brzozy zawierający luteolinę, ciekawy flawonoid będący silnym przeciwutleniaczem, o działaniu przeciwbakteryjnym i przeciwzapalnym.[4]
Szafran to końcówki słupków kwiatów Krokusa wiosennego, od dawna używany jako niezwykle cenna przyprawa. Jego smak jest raczej gorzki, natomiast zapach to pomieszanie zapachu siana i słodkiego kwiatowego. Ponieważ jeden kwiat zawiera jedno-dwa znamiona, a materiał jest dosyć lekki, na zebranie jednego kilograma potrzeba zerwać znamiona 100-170 tysięcy kwiatów, co przekłada się na cenę rzędu 30-40 tysięcy złotych. Z tego też powodu dawniej tylko bogacze mogli sobie na niego pozwolić, i już w średniowieczu problemem stało się jego fałszowanie nagietkiem, makiem a nawet tartą cegłą (w XIX wieku cegłą nagminnie fałszowano u nas paprykę). Zawiera wiele cennych substancji, jednak za jego kolor odpowiadają głównie karotenoidy: likopen, zawarty też w pomidorach, i zeaksantyna oraz jej ester krocyna, wszystkie o intensywnych pomarańczowo-czerwonych kolorach. Są to substancje będące silnymi przeciwutleniaczami. Zeaksantyna jest izomerem luteiny i podobnie jak ona ma znaczenie w ochronie przed zwyrodnieniem plamki żółtej i zaćmą.
Krocyna jest słabym przeciwutleniaczem, niektóre źródła spekulują o właściwościach przeciwrakowych, podobnych do kurkuminy, barwnika ostryżu (kurkuma), też zresztą wykorzystywanej do barwienia.[5]

Czerwony

Aby zabarwić jaja na czerwono należało gotować je w soku z buraków. O burakach miałem ochotę napisać na Wigilię, ale nie wyszło. Głównym barwnikiem buraków jest betanina, mająca postać glikozydu betaliny. Barwnik jest trwały w warunkach lekko kwaśnych, zaś w zasadowych degraduje do żółtawych produktów rozpadu. U niektórych ludzi barwnik po wchłonięciu jest wydalany wraz z moczem, bez wcześniejszej degradacji czy detoksykacji, stąd czerwone zabarwienie moczu nazywane betaninurią (w języku angielskim częstsza jest niepoprawna nazwa beeturia utworzona od angielskiej nazwy buraka "beet").
Wprawdzie wydaje się że u części osób jest związana z pewnym recesywnym genem[6], ale zasadniczo może się pojawiać i znikać zależnie od aktywności enzymatycznej, występując u około 10-14 % ludzkości. Pojawia się też przy niedoborach żelaza i witaminy B12, w przebiegu niedokrwistości złośliwej. [7] Podawane niekiedy informacje, że betaninuria jest objawem "nieszczelności jelita" czy perforacji ściany żołądka nie są prawdziwe.

Na czerwono jaja mógł też farbować wywar z płatków maku, intensywny kolor nadają im antocyjaniny, głównie pochodne pelargonidyny i cyjaniny.[p]

Brązowy

Aby zabarwić jaja na różne odcienie brązu tradycyjnie stosowano wywar z łupin cebuli. Odcień zależy od czasu gotowania. Głównym barwnikiem jest w tym przypadku kwercetyna, należąca do najpospolitszych flawonoli, zawarta też w korze dębu i uważana za cenny przeciwutleniacz, wpływający na stan naczyń krwionośnych. Najwięcej zawiera jej herbata chińska, kapary i lubczyk.[8]

Zielony
Barwienia na kolor zielony odbywało się w odwarze z młodego jęczmienia lub jakichkolwiek liści. Barwnikiem był oczywiście chlorofil, który już tu szerzej opisywałem.


Niebieski
Może to brzmieć zaskakująco, ale niebieski kolor uzyskuje się w wywarze z czerwonej kapusty. Wywar ten zawiera bardzo dużo różnorodnych antocyjanów, naturalnych barwników o szerokim zakresie barw. Ich kolor zależy od pH środowiska - w kwaśnym są czerwono-fioletowe, w lekko zasadowym niebieskie a w mocno zasadowym zielone. Powyżej pH 12 degradują do trwałego żółtego zabarwienia:

Sok z czerwonej kapusty w różnym pH

Odczyn skorupek jest właśnie lekko zasadowy, stąd błękit.

Źródłem niebieskiego zabarwienia mógł być też wywar z płatków chabrów polnych. Za ich kolor odpowiadają także antocyjany, ale w formie utrwalonej jako sól glinowa, dopiero mocniejsze zakwaszenie zmienia kolor wyciągu na różowy. Dawniej, gdy niebieskie barwniki były rzadko dostępne, alkalicznej zaprawy z płatków chabra z ałunem używano do farbowania wełny.

Fiolet
Fioletowy kolor uzyskiwano gotując jajka w wywarze z owoców jagód, lub w wywarze z płatków czarnej malwy, można było także użyć płatków ostróżeczki lub róży. Podobnie jak inne kwiaty zawierają mieszaniny różnych antocyjanów, głównie delfinidyny

Ogółem zatem do barwienia jaj przyczynia się wiele różnorodnych związków chemicznych, o ciekawych właściwościach. A przecież to dopiero początek zabawy.
------
Źródła:
* http://pl.wikipedia.org/wiki/Pisanka
* http://en.wikipedia.org/wiki/Pysanka

[1] Panorama kultur: Historia Pisanki
[2] Fossill Eggshell: Introduction to eggshells
[3]
Guinot P, Gargadennec A, Valette G, Fruchier A, & Andary C (2008). Primary flavonoids in marigold dye: extraction, structure and involvement in the dyeing process. Phytochemical analysis : PCA, 19 (1), 46-51 PMID: 17654539
[4] http://en.wikipedia.org/wiki/Luteolin
[5] http://naukadlazdrowia.pl/szafran-na-dobry-nastroj-i-zdrowie
[6]Forrai G, Bánkövi G, & Vágújfalvi D (1982). Betaninuria: a genetic trait? Acta physiologica Academiae Scientiarum Hungaricae, 59 (3), 265-82 PMID: 6891987
[7] http://en.wikipedia.org/wiki/Beeturia
[p]  https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8137.1962.tb06294.x
[8] http://en.wikipedia.org/wiki/Quercetin



Polecam też ciekawy blog poświęcony naturalnym sposobom farbowania wełny:
http://riihivilla.blogspot.com

środa, 4 kwietnia 2012

Kiedyś w laboratorium (8.)

Fenoloftaleina jest powszechnie używana jako wskaźnik kwasowo-zasadowy, w warunkach zasadowych przy pH 8,2 z formy bezbarwnej zamieniający się w formę różowo-malinową. Nie każdy jednak wie, że w ekstremalnych warunkach może przejść w jeszcze inne formy. Pod wpływem bardzo silnych zasad odbarwia się, zaś w bardzo silnych kwasach staje się pomarańczowa, co pewnego razu sprawdziłem:

Fenoloftaleina w stężonym kwasie siarkowym


Wszystkie te przemiany wiążą się ze zmianami budowy cząsteczki. Związek formalnie rzecz biorąc jest pochodną bezwodnika ftalowego, który skondensował z dwiema cząsteczkami fenolu, W związku z tym jedna połowa pochodzącej od dwóch grup karboksylowych, grupy karbonylowej, zostaje zajęta, zaś pozostała część formalnie rzecz biorąc może być uznana za cykliczny ester. Decyduje to o właściwościach.
W warunkach silnie zasadowych pierścień estrowy hydrolizuje do reszty karboksylowej. Swoje wodory odszczepiają też dwie cząsteczki fenolu. Powstała struktura mezomeryczna adsorbuje część światła, pozostawiając intensywny kolor pomiędzy fioletem a różem.
Gdy związek znajdzie się w środowisku silnie kwaśnym, pierścień estrowy hydrolizuje do grupy karboksylowej, jednak fenole nie odszczepiają wodoru, przez co na zwornikowym atomie węgla powstaje niedomiar elektronów i cała cząsteczka staje się dosyć trwałym kationem trifenylometylowym, o barwie intensywnie pomarańczowej.

Jako ciekawostkę można dodać, że fenoloftaleina jest środkiem przeczyszczającym, stosowanym w medycynie od stu lat. Nie znalazłem informacji wedle jakiego mechanizmu działa, ale podejrzewam że oddziałuje tu forma anionowa, pojawiająca się przy obecności zasadowej żółci. Obecnie jednak wycofuje się ją, z powodu jak na razie niedostatecznie potwierdzonych, ale jednak istniejących podejrzeń o rakotwórczość.