Gdy w 1919 roku Rutherford bombardując azot promieniowaniem alfa zamieniając go w tlen, co niektórzy ogłosili, że oto alchemiczne marzenia o udanej transmutacji jednych substancji w drugie, zaczynają się spełniać. Rzeczywiście, zderzając z odpowiednią energią jądra atomowe, będące zlepkami protonów i neutronów, możemy sprawić że powstanie nam zlepek całkiem odmienny, więc jeden pierwiastek przemieni się w inny. W tym przypadku jądro azotu, a więc 7 protonów i 7 neutronów, zderzywszy się z cząstką alfa mającą po dwa protony i neutrony, zamieniło się w jądro tlenu mające 8 protonów i 9 neutronów, zaś jako reszta pozostał jeszcze jeden swobodny proton:
14N + α → 17O + p
W ten sposób wytwarza się też pierwiastki nie występujące w przyrodzie, przykładowo ze zderzenia jądra ołowiu i jądra żelaza, otrzymano pierwiastek 108 - Has:- 208
82Pb + 58
26Fe → 265
108Hs + n
Tak więc nie ma w tym żadnej magii, jedne zlepki nukleonów zderzają się z innymi, i tworzą się stąd zupełnie inne zlepki. Normalna kolej rzeczy. Jeśli na przykład zderzymy jądro rtęci z protonem, zamienimy je w jądro złota, jednak tą drogą produkować się go najzwyczajniej nie opłaca.
Jednak niedawne odkrycie rosyjskiego fizyka Konstantego Piokowa zmienia ten obraz, że zaś jest ciekawe, myślę że warto je tu szerzej opisać. A wszystko ma duży związek z baseballem.
Baseball nie jest w Polsce zbyt popularny, ale z amerykańskich filmów ogólnie wiadomo, że chodzi tu o rzucanie i odbijanie małej piłki, biegane po narożach kwadratu i takie tam idiotyzmy. Jakże często widujemy w takich filmach decydujący moment, gdy jeden gracz rzuca starając się aby pałkarz nie trafił w piłkę, a pałkarz bardzo się stara trafić. I oczywiście po wielu trudach pod koniec filmu mu się to udaje, bo skupiał się na piłce, uwierzył w siebie czy coś w tym stylu. Niestety umiejętni rzucający dysponują nieco większym zasobem sztuczek, niż rzucanie wyżej albo niżej, sygnalizowane "tajnym" gestem. Bardzo umiejętni potrafią na przykład rzucić prosto w pałkarza, prościuteńko pod sam kij, i gdy już pałka pędzi ku nieuniknionemu spotkaniu, piłeczka skręca jak wiedziona niewidzialnym palcem. Ten hakowaty tor jest zresztą dobrze znany miłośnikom piłki nożnej, jako tajemniczy sposób omijania piłką muru przeciwników. Do kogo należy ów niewidzialny paluszek? Czyżby do opatrzności? Nie, to tylko Fizyka.
Gdy piłka leci w powietrzu to w zasadzie opływa ją z każdej strony i jedynym wpływem jaki na nie wywiera, jest tarcie. Inaczej rzecz się ma z piłką podkręconą. Obracająca się piłka, nie będąca zresztą ciałem idealnie gładkim, porywa ze sobą pewną warstewkę powietrza. Ta graniczna warstewka obraca się w tym samym kierunku. W związku z tym, gdy zderza się z powietrzem które omija piłkę, czyni to na dwa sposoby. Od jednej strony powietrze porwane przez piłkę porusza się naprzeciw opływającego. Obie masy powietrza zderzają się więc ze sobą i nieco sprężają. Od drugiej zaś strony pędzone powietrze opływa piłkę nieco szybciej. Zgodnie z prawem Bernouliego, w strumieniu cieczy poruszającej się szybciej niż ta otaczająca, spada ciśnienie. A zatem od jednej strony piłki ciśnienie powietrza się zwiększa a od drugiej maleje. Bardzo nie wiele, ale wystarczająco aby pojawiła się słaba siła spychająca piłkę w bok i zakrzywiająca jej tor. Sztuczkę tą znają dobrze gracze w tenisa, zarówno stołowego jak i pełno formatowego, a w pewnym stopniu też i inni gracze. Ta zaś drobna acz znacząca siła, nazywa się siłą Magnusa.
*Żart
I oto pewnego razu ktoś zastanowił się, co by było, gdyby bardzo zbliżyć do siebie dwie takie wirujące piłki. Okazało się, że gdy sprawić aby poruszające się w przeciwne strony będą się mijały w bardzo niewielkiej odległości, to zależnie o tego czy będą się obracały w tę samą czy w przeciwne strony, będą różnie reagowały. Nie trudno się domyśleć, że gdy wirują w tą samą stronę, ich otoczki powietrzne zderzają się ze sobą, odrobinkę odsuwając je od siebie. Efekt jest bardzo słaby, ale został zmierzony[1]
Niestety nie znamy gry w której zaobserwowany efekt mógłby się przydać, i pewnie wszyscy by o nim zapomnieli, gdyby nie przypomniał sobie o nim pewien fizyk, który lubi zderzać ze sobą pewne kulki. Atomy.
*Koniec żartu
Czy lecący atom może zachowywać się jak piłka? W pewnym uproszczeniu tak, ale nie wprost. Jako że mówimy o skali subatomowej, zauważmy że lecąca cząstka nie jest otoczona po prostu powietrzem, a tylko setkami atomów azotu, tlenu i całej reszty, zmierzających do nieuniknionego zderzenia. Jeśli jednak je usuniemy, cząstka nasza lecieć będzie w próżni. Jądra atomów, z różnych przyczyn, mogą posiadać pewien spin, wirując bądź w lewą bądź prawą stronę, jeśli tylko posiadają nieparzystą liczbę nukleonów. Bardzo ładnie, ale w próżni nic im tej spin nie da. Bo niby w jakim gazie miałaby powstawać opisywana siła? Na przykład w gazie prawdopodobieństwa.
Fizyka kwantowa uczy nas rozumieć że fizyki kwantowej nigdy nie zrozumiemy. Ale możemy ją sobie jakoś objaśniać na prostych przykładach. Na przykład jeżeli mówi się nam, że bardzo małe cząsteczki nie mają określonej wielkości, a im bardziej chcemy się o tym upewnić, tym bardziej nie mają, to znajduje to odpowiednik w próbie dokładnego zmierzenia chmury - z dokładnością do metrów się to udaje, ale przy dokładniejszych miarkach trudno jest nam określić, czy ta mgiełka na brzegach to już bardzo rzadka chmura, czy tylko taka otoczka. W efekcie tej nieokreśloności, opisywanej przez wzór Heisenberga, cząstki o rozmiarach zbliżonych do atomów, można traktować jako trochę rozmyte w przestrzeni. Można nawet powiedzieć, że są takimi zagęszczającymi się w środku chmurkami gazu umieszczonymi w próżni, i choć w pewnych doświadczeniach wykazują wyraźne właściwości sztywnych cząstek, w innych zachowują się jak pęk fal jakiegoś promieniowania.
*Żart
Dlatego też ktoś się kiedyś zastanowił, co się dzieje, gdy dwie takie chmurki się do siebie przybliżają? Niektóre teorie przewidują, że w związku z coraz ściślejszym nakładaniem się na siebie skrajnych obrzeży chmur prawdopodobieństwa, pomiędzy przybliżającymi się do zderzenia jądrami atomowymi powinny zachodzić pewne oddziaływania zanim jeszcze faktycznie się zetkną. A co gdy te jądra będą wirowały?
Wedle publikacji w Dzienniku Fizyki Doświadczalnej i Teoretycznej ze stycznia[2], K. Piokow uznał po prostu, że można tą rozmytą zewnętrzną warstwę traktować podobnie jak porwaną przez piłkę warstewkę powietrza, jeśli więc oba zderzające się jądra będą wirowały, to powinny w związku z tym zachodzić pomiędzy nimi wyraźne oddziaływania, całkiem jednak inne od tych w powietrzu. Takie rozemglone otoczki są bowiem właściwie częściami masy jąder, o której można powiedzieć, że z malejącym z odległością prawdopodobieństwem przebywa w tej przestrzeni. Dla naszych podkręconych jąder ma to akurat takie znaczenie, że gdy wirujące otoczki się zderzają, skutkuje to zmianą rozkładu masy pomiędzy nimi. Jeśli oba jądra wirowały w tą samą stronę, pomiędzy nimi nastąpi zagęszczenie prawdopodobieństwa, co będzie odpowiednikiem makroskopowego powstania "mostu" nukleonów łączącego jądra. W efekcie oba jądra są silnie przyciągane. To przyciąganie powoduje, że przekrój czynny zderzających się jader na tyle się zwiększa, że duże prawdopodobieństwo reakcji jądrowych pomiędzy nimi, umożliwia produkowanie nowych pierwiastków w opłacalnych ilościach.
Oczywiście aby efekt mógł zachodzić, spiny obracających się jąder muszą być odpowiednio ustawione, dlatego reakcję przeprowadza się w warunkach silnego pola magnetycznego. Reaktorem jest rurka ze specjalnego niemagnetycznego stopu glinu z aluminium.
Podawane są tu na przykład takie reakcje:
63Cu + 227Ac → 197Au + 2 13C
Złoto powstaje w wyniku bombardowania płytki Aktynu, jonami miedzi. Jedynym odpadem jest węgiel.35Cl + 50Ti → 97Tc + 7Li
------Technet jako produkt reakcji jąder chloru z tytanem. Odpadem jest lit. Najbardziej obiecująca jest jednak reakcja otrzymywania berkelu z boru i potasu:
10B + 41K→ 245Bk
Otrzymany izotop, nie występujący w przyrodzie, może znaleźć zastosowanie jako materiał rozszczepialny o małej objętości, umożliwiając stworzenie mikroładunków jądrowych. Niektóre rosyjskie instytucje już okazały zainteresowanie tymi wynikami.
[1] The Double Magnus Effect on balls P. Smith, Plasma Phys. 1971 doi: 13.665/0154-3366/71/12/123456
[2] New method of particles synthesis. Quantum Magnus Effect. K.Piokov, JETP vol.144, no.1
Prima Aprilis!
Celem objaśnień:
okazja aby móc sobie zażartować była na tyle kusząca, że nie mogłem się powstrzymać. Byłem szczerze ciekaw, czy któryś z czytelników zorientuje się, że się go wkręca, niestety poza jednym komentatorem, który wyłapał oczywistą bzdurę ze stopem glinu z aluminium (glin i aluminium to ten sam pierwiastek) nikt tu tego nie okazał. W zasadzie pierwsza część wpisu mówiąca o reakcjach jądrowych i o efekcie Magnusa jest najzupełniej prawdziwa. Im bardziej kłamstwo opiera się na prawdzie, tym bardziej jest wiarygodne. Moim wymysłem jest natomiast "podwójny efekt Magnusa" aczkolwiek wymyślony mechanizm jest tak prawdopodobny, że nie będę wcale zaskoczony gdy okaże się, że rzeczywiście następuje (a wtedy zgłoszę się i nazwą efekt moim imieniem). Także przypis został wymyślony, a link do niczego nie prowadzi, choć czasopismo Plasma Physic faktycznie istnieje.
Pan K.Piokow, to Kpiok - czyli 'oszust" w języku rosyjskim, co dla znających ten język mogłoby być wskazówką. Natomiast dla chemików wskazówką fałszywości wpisu powinny być równania reakcji jądrowych, polegające na przestawieniu liter symboli pierwiastków. W efekcie z dwóch bardzo lekkich pierwiastków boru B i potasu K powstawał mi bardzo ciężki berkel Bk, co już dla tych którzy się w równanie wczytają, powinno być dosyć oczywiste. Również tutaj przypis odnosi się do nieistniejącego artykułu, choć link rzeczywiście prowadzi na stronę znanego rosyjskiego czasopisma naukowego.
Teraz zaś oznaczę co jest żartem a co nie, bo nie ma takiej głupoty, w którą ktoś by nie uwierzył.