informacje



wtorek, 4 września 2012

Poison story (4.) - Biały lucyfer

    Siostry Ansell od zawsze były trochę dziwne. Jak się wydaje problemy psychiczne były w ich rodzinie stosunkowo częste. Stosunek do zaburzeń psychicznych był w XIX wiecznej Anglii nieco inny niż współczesny. Nie znano dobrych sposobów leczenia, toteż starano się odizolować od społeczeństwa takie osoby. Do sieci Azylów zbudowanych dla takich nieszkodliwych idiotów trafiali zatem ludzie z depresją, opóźnieni w rozwoju, z różnymi maniami czy nawet z nieakceptowanymi poglądami na życie. Nie bardzo wiadomo na czym polegała przypadłość 15-letniej Caroline Ansell, która trafiła do Leavesden Mental Asylum w Buckinghamshire w roku 1895.
  Druga spośród sióstr, Marry Ann, była pokojówką. Niestety praca ta była kiepsko opłacalna i gdy zaręczyła się, zabrakło jej nawet na urzędowy ślub, kosztujący półtora szylinga - swoją drogą dobrze o nierównościach społecznych tamtych czasów świadczy, że taniej było sprawić sobie nowego służącego niż nową marynarkę. Siostry utrzymywały dobry kontakt, mimo niezbyt sprzyjającej sytuacji - jedna praktycznie uwięziona, druga na dorobku - dlatego gdy na początku marca 1899 roku 19-letnia Caroline otrzymała domowe ciasto, bardzo się ucieszyła. Był to właściwie nierówno wypieczony placek z dżemem i białym kremem. Ponieważ ciasto było dosyć duże, zjadła tylko połowę a resztą podzieliła się z pacjentami z sali. Niestety niedługo potem wszyscy poczuli pieczenie w ustach i żołądku, pojawiły się wymioty i biegunka, z czasem krwawa, o wyraźnym zapachu czosnku. Białka ich oczu przebarwiły się na żółto, i pojawiła się gorączka. U tych, którzy zjedli tylko po kęsie, objawy cofnęły się po kilku dniach, zaś najmłodsza z sióstr Ansell zapadła w śpiączkę po czym zmarła nie odzyskawszy przytomności.
   W zakładzie pojawiał się w tym czasie tyfus, można by więc zrzucić winę na tą chorobę, lecz właśnie z powodu epidemii Caroline zbadano kilka dni przedtem, stwierdziwszy iż jest najzupełniej zdrowa. To wraz z podobnymi objawami u wszystkich, którzy zjedli ciasto obudziło podejrzenia. Sekcja zwłok wykazała, że ofiara zmarła wskutek podania dużej ilości białego fosforu, będącego też składnikiem trutek na szczury...


    Historia odkrycia fosforu jest często podawana jako przykład wkładu alchemii w naukę średniowiecznej Europy. Jest to wkład dosyć paradoksalny, bo w dużej mierze niezamierzony. Alchemicy podążając za złudną ideą kamienia filozoficznego, panaceum czy uniwersalnego rozpuszczalnika, upatrywali celu w sprawdzaniu różnych kombinacji naturalnych surowców o pożądanych cechach i prostych działań, często zmieszanych z mistyką i magią. Brali na przykład ołów, którego pożądaną cechą był ciężar, mieszali go z siarką o kolorze żółtym, słonecznym, i srebrem mającym być nośnikiem metalicznego połysku. Wyżarzali tą mieszaninę powoli, przez czterdzieści dni, począwszy od pełni księżyca, umieszczali w "jajku filozoficznym" wygrzewali sto dni w gnoju, wystawiali na światło słońca i planet w odpowiednich kontynuacjach, mając na dzieję że po ostatecznym wyżarzeniu znajdą na dnie tygielka metaliczne, ciężkie, i słonecznie żółte złoto.
Tak się jednak nie działo, więc pomagali sobie dorzucając nieco z mieszka i prezentując potem swym sponsorom jako dowód skuteczności metody.
   Często brali na warsztat ciekawie wyglądające minerały, rośliny, zwierzęta, poddawali modyfikacjom, sprawdzali właściwości i oddziaływanie. Przy tylu próbach musiały pojawiać się szczęśliwe trafy, nowe odkrycia dokonane podczas poszukiwania czegoś całkiem innego Nasz Sędziwój ogrzewając saletrę obserwował powstawanie "ducha saletrzanego" nie wiedząc że właśnie wydzielił tlen. Włoch Cascariolo wyżarzając ciężki kamień z węglem i siarką odkrył pierwszy luminofor - "kamień boloński" który wystawiony na słońce świecił w ciemnościach. W podobny sposób odkryto bizmut, uważany pierwotnie za odmianę ołowiu, i Arsen, składnik arszeniku.

   Jednym z takich ciekawskich alchemików był Henning Brand z Hamburga. Jego pasją było wykorzystywanie w przemianach wody i rozpuszczalnych substancji, zapewne więc to, wraz z koncepcjami siły życiowej oraz być może teorią humorów sprawiło, że postanowił zająć się wyodrębnieniem właściwej kwintesencji z wody wydalanej przez żywy organizm - z moczu. Brand wziął mocz cielęcy, w bardzo dużej ilości, i gotował go na małym ogniu tak długo, aż pozostał mu na dnie syropowaty, pomarańczowy płyn. Ten przeniósł do retorty i ogrzewał aż do wydzielenia tłustego dymu. Zawartość retorty składała się teraz z szarej, gąbczastej masy i zebranej na dnie soli, tą ostatnią wyrzucał, zaś ciemną pozostałość wyżarzał przez kilka godzin. Trudno powiedzieć, czy oczekiwał że na dnie znajdzie błyszczące złoto, czy też że wyodrębni vis vitalis, w każdym razie w tej ostatniej fazie zauważył, że opary wydzielające się z retorty, świecą w ciemnościach. Gdy zaciekawiony otworzył pokrywkę, całe naczynie rozbłysło wewnętrznym światłem po czym pękło od wysokiej temperatury. Brand złapał jednak nieco jaśniejącego zielonkawo płynu, zestalającego się w woskowatą masę, świecącą w ciemnościach i nagle zapalającą się podczas rozdrabniania. Moment odkrycia, na obrazie Josepha Wrighta "Alchemik w poszukiwaniu kamienia filozoficznego" ozdabia nagłówek bloga.

   Było to już coś wielkiego. Substancja wyszła z człowieka i samorzutnie świeciła nie wymagając naświetlania, zatem musiała posiadać jakąś wewnętrzną siłę podobną do materii płomienistej słońca, była łatwo palna, bardziej niż uważana za nośnik żywiołu ognia siarka, można by wręcz sądzić że oto właśnie siła życiowa zmaterializowana i utrwalona. Brand nazwał ją phosphoros co z grecka znaczy tyle co "nośnik światła", po czym zaczął produkować ją w większej ilości, skrzętnie utrzymując w tajemnicy recepturę. Warto zauważyć że łacińską wersją tej pierwotnej nazwy byłoby lucifer zupełnie jak imię pewnego upadłego anioła - stąd być może, wraz z trującymi właściwościami, brały się ówczesne skojarzenia z demonicznym charakterem nowej materii.
   Niezwykłe właściwości substancji wzbudzały wówczas, w 1669 roku, żywe zainteresowanie; sądzono że oto alchemicy są już na dobrej drodze do ukończenia "wielkiego dzieła", toteż wielu było chętnych aby zobaczyć ów phosphoros, i kupić go, zaś Brand sprzedawał kawałki po cenach wyższych niż złoto.
   Metoda której używał była jednak mało wydajna - z około 5500 litrów moczu uzyskiwał 120 gramów fosforu, nie trudno się zatem domyślić jak potwornie musiała śmierdzieć jego pracownia. Tak długo, jak tylko się dało strzegł tajemnicy, aż wreszcie sprzedał ją innemu alchemikowi za 200 talarów, ten sprzedał ją innemu i powoli zaczęły krążyć pogłoski, że substancję to można wydzielić z "czegoś co należało do ciała człowieka" Tą drogą poszedł sceptyczny alchemik Robert Boyle, który po odkryciu metody i udoskonaleniu jej przez dodatek piasku do tygla w ostatniej fazie, dokonał czegoś co dużo mówi o jego poglądach - opublikował przepis wytwarzania fosforu, tak aby mógł go przeprowadzić każdy chętny.
   Boyle był krytykiem mętnych i do niczego nie prowadzących alchemicznych dociekań, atmosfery tajemnicy, widm i cieni. Opierając się na poglądach Paracelsusa na temat alchemii naturalnej, uważał że powinnością badaczy jest nie wymyślać przez nikogo nie widziane cudowne substancje, lecz badać właściwości i przemiany substancji naturalnych, aby znaleźć ich pożyteczne zastosowanie. Jego książkę "Sceptical Chymist" uważa się za początek rozwoju prawdziwej chemii.

   Współcześnie możemy odtworzyć zachodzące procesy. Mocz zawiera zawsze pewną ilość fosforanów, zwykle w formie rozpuszczalnego fosforanu amonowo-sodowego. Po odparowaniu, rozłożeniu kwasu moczowego i lotnych składników, na dnie pozostawały fosforany i węgiel ze zwęglonych związków organicznych. Węgiel w wysokiej temperaturze redukował fosforan do wolnego fosforu.:

4 Na3PO4 + 4C + 6SiO2 →  6 Na2SiO4 + 4CO + P4

Ten skraplał się na ściankach naczynia. Niedługo później odkryto, że znaczne ilości fosforanu wapnia znajdują się w kościach, zaczęto więc otrzymywać fosfor z białego popiołu kostnego z całkiem niezłą wydajnością. Obecnie używa się w tym celu apatytów.

  Fosfor jest to pierwiastek niemetaliczny położony w grupie V pod azotem. W temperaturze pokojowej ma postać stałą, przy czym przejawia ciekawą i stosunkowo częstą w układzie okresowym skłonność do występowania w różnych odmianach, różniących się wewnętrzną strukturą. Może tworzyć kilka odmian alotropowych, różniących się trwałością, reaktywnością i wyglądem.
Fosfor biały ma wygląd woskowatej masy, zwykle lekko żółtawej wskutek samorzutnej polimeryzacji. Jest najbardziej reaktywną formą pierwiastka, topi się w temperaturze 44 stopni, łatwo sublimuje, samorzutnie zapala się, dla większych grudek powyżej 60 stopni, dla drobnych cząstek w temperaturze pokojowej, a wreszcie świeci w ciemnościach. Aby objaśnić skąd bierze się ta reaktywność, muszę powiedzieć coś na temat geometrii wiązań w atomie.

   Każdy atom może tworzyć wiązania z innymi dzięki elektronom, liczba elektronów o najniższej energii, znajdujących się na najbardziej zewnętrznych powłokach, warunkuje maksymalną możliwą ilość wiązań, jakie atom może utworzyć z innymi. Fosfor ma pięć takich elektronów, przy czym trzy są stosunkowo słabiej związane zaś dwa tworzące parę nieco mocniej. Dlatego w związkach najchętniej przyjmuje wartościowość 3+ tworząc trzy wiązania.
   Każde wiązanie chemiczne jest utworzone przez elektron lub parę elektronów, związaną między atomami, przyciąganą równocześnie przez oba jądra, spajając je tym samym ze sobą. Poszczególne wiązania wokół atomu starają się przy tym być odsunięte najdalej od innych, na skutek odpychania jednakowych ładunków ujemnych, tak jak to zachodzi dla pasków papieru przyczepionych do kulistego zakończenia maszyny elektrostatycznej. Symetria rozkładu wiązań zależy więc od ich liczby. Dwa wiązania, nie ograniczone innymi czynnikami w otoczeniu, najchętniej będą tworzyły symetrię liniową, będąc ustawione po przeciwnych stronach atomu, trzy wiązania będą kierowały połączone atomy w naroża płaskiego trójkąta - tego więc można się spodziewać dla związków fosforu III. Pozostaje jednak jeszcze ta para elektronów która zaburza ten układ, dlatego w otoczeniu atomu pojawiają się cztery grupy odpychających się ładunków - trzy wiązania i jedna niewiążąca para powiązanych elektronów. Układ powinien zatem przyjąć formę tetraedryczną - to jest końce osi czterech grup stanowią naroża czworościanu foremnego, rozdzielone o kąt ok. 109,5 stopnia. W rzeczywistości czwarta grupa, czyli para dwóch elektronów, odpycha od siebie wiązania mocniej a nasz czworościan wykreślony końcami grup, przybiera postać wydłużonej piramidy o trójkątnej podstawie. Szerzej omawia to teoria VSEPR.


   I co z tego? W fosforze białym atomy grupują się w cząsteczki czeroatomowe, gdzie każdy atom łączy się z trzema innymi, mające postać bryły i tą bryłą powinien być czworościan bo w tym kształcie wszystkie oddziaływania się równoważą. Gdyby trzy wiązania miały układ tetraedryczny, nie mogłyby utworzyć tej bryły, bo kąt między wiązaniami jest zbyt szeroki, powinien wynosić ok 70 stopni kątowych. Ponieważ jednak są odpychane, to przybliżają się do siebie, tworząc mniejszy kąt i struktura tetraedru staje się dla nich bardziej prawdopodobna. Kąt między wiązaniami jest bliższy potrzebnemu, ale wciąż nieco szerszy, mimo to tworzy się bryła, zaś wiązania zostają z konieczności "przygięte" . To tak jakbyśmy tworzyli modele z kulek z bolcami i słomek i dla uzyskania właściwego kształtu musielibyśmy stworzyć szkielet z wygiętymi słomkami. Taka struktura nie może być trwała, ma bowiem większą energię ( w modelu jest to siła jaką nagięliśmy słomki) a atomy będą dążyć do struktury bardziej korzystnej.


   Właśnie dlatego fosfor biały jest reaktywny dążąc do rozpadu piramidalnej cząsteczki i utworzenia związku, łatwo się zapala, reaguje z metalami itd. Dlaczego jednak fosfor świeci w ciemnościach?  Fosfor w dążeniu do utworzenia innych związków, utlenia się pod wpływem powietrza, zachodzi to jednak w stosunkowo niskich temperaturach. Podczas utleniania wysoka energia związana w cząsteczce wprowadza jeden z atomów reagującej cząsteczki tlenu w stan wzbudzony, z którego powraca do stanu podstawowego wypromieniowując energię w formie światła.

   Po zapaleniu tworzy jasny płomień o wysokiej temperaturze, rzędu 1000-1200 stopni, spalając się z wydzieleniem białego pięciotlenku, mającego formę gęstego dymu - z tego powodu świece z fosforem bywają używane do wytworzenia sztucznej mgły. Tlenek fosforu V rozpuszcza się w wodzie dając kwas ortofosforowy, będący mocnym kwasem, dlatego też dym tlenku fosforu ma działanie drażniące na oczy i błony śluzowe. Płonącego fosforu nie powinno się gasić wodą - większe grudki będą ją rozkładały, natomiast po zalaniu większą ilością gorące bryłki fosforu rozpadną się na drobne cząstki, które po wyparowaniu wody zapłoną ponownie.
   Wysoka temperatura płomienia i łatwość zapalenia powodowała, że dosyć wcześnie został wykorzystany w bombach zapalających - bomba wybuchająca nad ziemią zasypuje wówczas znaczny obszar płonącymi kroplami, wywołującymi pożary i bardzo ciężkie oparzenia, często z wżerami w głąb ciała. Część fosforu wnika wówczas w ranę wywołując rozległe martwice i śmierć w wyniku zakażeń, dlatego już dawno międzynarodowe konwencje zakazały używania tego typu broni wobec cywilów. Ostatnim głośnym przypadkiem ich złamania było użycie bomb zapalających przez wojska Izraelskie, podczas krótkotrwałej wojny z strefie Gazy w 2009 roku.
   Jedną z pomysłowych konstrukcji użytych podczas II wojny światowej, były celuloidowe pakiety nasączone roztworem fosforu w dwusiarczku węgla, rozrzucane z samolotów nad miastami. Pakiet taki spadłszy na drewniany budynek, zapalał się po kilku godzinach, gdy rozpuszczalnik odparował, prowokując pożary. Pozostałości powojennych instalacji wciąż jeszcze dają o sobie znać - niedawny przypadek zanieczyszczenia plaży substancją, zapalającą się po trąceniu patykiem, okazał się skażeniem białym fosforem, być może uwolnionym z jakiejś miny która właśnie do cna przerdzewiała. W 2007 roku na Ukrainie po wypadku pociągu przewożącego wojskowe chemikalia, znaczny teren został skazony białym dymem fosforu, który zapłonął w uszkodzonych beczkach; 150 osób trafiło wtedy do szpitali.

   I tak też, okrężną jak to zwykle u mnie drogą, doszedłem do kwestii szkodliwego wpływu białego fosforu na człowieka. Należy do najsilniejszych trucizn nieorganicznych, za dawkę śmiertelną uważa się 50-60 mg choć zdarzało się że już jedna trzecia tej ilości powodowała zgon. Śmierć następuje po kilku dniach. Za przyczynę toksyczności uważa się reaktywność i silną zdolność do redukcji, w efekcie fosfor po dostaniu się do komórki zaburza enzymatyczne reakcje utleniania i wytwarzania energii; zakwaszenie ma tu mniejszy wpływ. Ponieważ po wchłonięciu z jelita fosfor biały trafia żyłą wrotną do wątroby, tam głównie następują uszkodzenia, objawiające się marskością i martwicą. Zatrucie może zatem przypominać szybki atak żółtaczki wskutek mechanicznego uszkodzenia wątroby. Podobnym uszkodzeniom ulega też mięsień sercowy i ściany żył, co wraz ze spadkiem krzepliwości prowadzi do wylewów. Wytwarzający się w żołądku fosforowodór uszkadza układ nerwowy. Śmierć następuje wskutek wielonarządowej niewydolności organizmu.[1]
Narażenie na małe dawki rozwija martwicę kości, zwłaszcza szczęki, prowadząc do deformacji, rozpadu kości, tworzenia się dziur i zapalenia okostnej.
   Oprócz nagłości objawów, diagnozę zatrucia można postawić też na podstawie fosforyzowania wymiocin. W pierwszych oprócz węgla aktywowanego, odtrutką może być płukanie żołądka wodą utlenioną, gdy jednak trucizna się wchłonie, leczenie może być wyłącznie objawowe. [2]
Dosyć szybko zaczęto używać fosforu, w formie nasączonych nim materiałów, do trucia szczurów i szkodników ogrodowych, powodowało to niestety wiele przypadkowych zatruć a czasem też pożary, niestety także szybko pojęto że wobec tego, fosfor jest stosunkowo łatwo dostępną trucizną na ludzi. Gazety z XIX wieku często notują samobójstwa lub morderstwa przy pomocy "roztworu z zapałek" czy "trucizny na szkodniki". Tak też było w przypadku Caroline Ansell.

   Po nagłej śmierci Caroline, matka wraz ze starszą córką zjawiły się w zakładzie, chcąc przygotować się do pogrzebu, wówczas też Marry zapytała portiera kiedy będzie mogła odebrać akt zgonu siostry, ten poinstruował ją gdzie i jakie podanie musi złożyć. Gdy udała się do odpowiedniego urzędu dowiedziała się, że jeszcze nie potwierdzono przyczyny zgonu i musi poczekać. Tymczasem nadinspektor Wood, poinformowany o wyniku sekcji, zainteresował się opakowaniem ciasta. Nadawca podpisał się bardzo niewyraźnie, ale zmarła najwyraźniej uważała, że to prezent od kogoś z domu. Nie była to pierwsza taka dziwna przesyłka. Kilka tygodni wcześniej otrzymała z domu paczkę z herbatą i cukrem, jednak cukier był zawilgotniały a herbata gorzka, dlatego musiała je wyrzucić. Potem dostała list od dawnej przyjaciółki, która zawiadamiała że oboje rodzice Caroline zginęli. Ta głęboko przeżyła tą wiadomość, po czym napisała do domu list prosząc o jakąś rzecz, aby móc opłakiwać rodziców - okazało się jednak że ci żyją, a przyjaciółka nie wysyłała żadnego listu.  
Inspektor zwrócił więc uwagę na Marry Ann, która zamiast smutku wyrażała raczej zniecierpliwienie. Rozpytując dowiedział się, że zaraz po przybyciu chciała otrzymać akt zgonu, zapytał więc w bankach i trafił od razu - kilka miesięcy wcześniej Marry Ann wzięła ubezpieczenie na życie siostry, twierdząc że to zabezpieczenie godnego pogrzebu. Wartość ubezpieczenia wynosiła 22,5 funta. Niedługo potem wyszło na jaw, że Marry kupiła w sklepie znaczne ilości trutki na szczury, które podobno stały się plagą w domu w którym służyła. Jej pracodawczyni zaprzeczyła. Ostatecznym dowodem było porównanie pisma na kartkach z życzeniami od siostry, paczce z ciastem i w liście od rzekomej przyjaciółki. Wszystkie napisano tą samą ręką. Niedługo sąd pierwszej instancji skazał ją na śmierć, co wywołało wielkie poruszenie w prasie.

   Wracając jednak do tematu typowo chemicznego - fosfor biały jest nietrwały, pod wpływem ciepła i światła żółknie. Światło dostarcza jego cząsteczkom energii potrzebnej do rozerwania jednego z wiązań i polimeryzacji w spiralnie skręcone łańcuchy lub taśmy. Materiał składający się wyłącznie z różnej długości takich łańcuchów, to fosfor czerwony
Fosfor biały dla bezpieczeństwa trzymany w wodzie i fosfor czerwony

   Ta odmiana jest znacznie mniej reaktywna. Topi się dopiero w temperaturze 260 °C , nie jest toksyczna i nie wywołuje oparzeń, zapala się gwałtownie powyżej temperatury topnienia lub w mieszaninach z silnymi utleniaczami, jest nierozpuszczalna w dwusiarczu węgla. Przemiana odmiany białej w czerwoną dokonuje się w wyniku silnego naświetlania lub ogrzewania w temperaturze 200 stopni przez kilka godzin. Z kolei ogrzewanie czerwonego fosforu do temperatury parowania lub sublimacji i szybkie ochłodzenia par, pozwala zamienić go w odmianę białą. Z powodu większego bezpieczeństwa ta właśnie odmiana jest najczęściej wykorzystywana, na przykład w draskach zapałek.
Jeśli jednak ogrzewanie białej formy przeciągnąć na okres dwóch tygodni w temperaturze 500 stopni, zamiast krótkich fragmentów łańcucha otrzymamy formę włóknistą, składającą się z klatkowych taśm, nazywaną fosforem fioletowym. Inną opcją jest krystalizacja roztworu fosforu w ołowiu rozgrzanym do 500 stopni. Odmiana ta jest mało reaktywna, wolno reaguje z fluorowcami, nie reaguje z silnymi zasadami.
Obliczenia teoretyczne wskazywały na możliwość stworzenia jeszcze jednej odmiany, toteż fosfor potraktowano ciśnieniem 12 tysięcy atmosfer i ogrzewano, otrzymując fosfor czarny. W tej odmianie atomy fosforu łączą się w pofałdowane arkusze, przypominające płaty blachy trapezowej, składające się z sieci o sześciokątnych oczkach. Poszczególne arkusze przyciągają się dzięki siłom Van deer Walsa, całość przypomina zatem grafit. Podobieństwo jest tym większe, że odmiana ta wykazuje cechy metaliczne, a więc dobre przewodnictwo elektryczne i cieplne. Jest to też najtrwalsza z wszystkich odmian, sublimująca dopiero powyżej 550 stopni.

   To Boyle pierwszy wpadł na pomysł, aby skłonność fosforu do zapalania się pod wpływem tarcia, wykorzystać do rozniecania ognia. Jeden koniec nasmołowanej szczapy drewnianej pokrywał siarką i umieszczał na niej kawałeczek fosforu. Potarcie nim o jakąkolwiek powierzchnię powodowało zapalenie się drewienka. Bywało jednak, że szczapy zapalały się samoistnie, były nieporęcznie a fosfor kruszył się przy zapalaniu prowokując pożar. Ogółem pomysł uważany był za ciekawostkę bez zastosowania i nie przyjął się, zaś ludzie nadal używali krzesiwek.
   Pierwsze zapałki wprowadził w 1805 roku Jean Chancel, asystent sławnego chemika Thenarda. Ich konstrukcja była bardzo niewygodna - drewniane patyczki nasączone woskiem, jeden koniec miały pokryte mieszaniną chloranu potasu i krochmalu. Zapalenie następowało przez zanurzenie końcówki w buteleczce ze stężonym kwasem siarkowym. Nie było to zatem przenośne źródło ognia, w dodatku kwas mógł się wylać po przewróceniu buteleczki lub pryskać podczas zapalania. W późniejszym czasie podobną koncepcję wykorzystano we flarach "Promethean" i "Vesuwius" będących grubymi patykami z impregnowanego drewna, mającymi zapewniać światło podczas robót na zewnątrz, ich główki zawierały saletrę i siarkę oraz szklaną kapsułkę z kwasem; zapalenie następowało po zgnieceniu kapsułki obcęgami.
   Pierwsze zapałki w dzisiejszym rozumieniu, a więc zapalane przez potarcie, wprowadził angielski chemik John Walker, który eksperymentując z mieszaninami wybuchowymi znalazł taką, która zapalała się pod wpływem silnego zgniatania. Pokrył więc drzazgi drewniane mieszaniną chloranu potasu, siarki, trójsiarczku antymonu, gumy arabskiej i cukru, które zapalały się po silnym potarciu o papier pokryty mielonym szkłem.
   Był to już znaczny postęp, lecz niestety bywało że kawałki płonącej masy tworzyły iskry, grożące zapaleniem ubrania. Nie opatentował wynalazku, dlatego już wkrótce inni wynalazcy zaczęli go ulepszać aż wreszcie w 1829 roku Samuel Jones opatentował "Lucifer match" - były to pierwsze zapałki, które zdobyły uznanie, określenie Lucifers przetrwało zresztą do dziś w Holandii i Belgii jako nazwa zapałek. Wadą ich, oprócz dosyć eksplozywnego zapalania, był niemiły zapach (niedawno znalazłem opowiadanie z końca XIX wieku gdzie bohater wspomina dziadka, zapalającego cygara za pomocą "przedpotopowych śmierdzących zapałek").
   Następnym krokiem było wprowadzenie masy białego fosforu, czasem wręcz stanowiącego główny składnik, które zapalały się po potarciu o jakąkolwiek szorstką powierzchnię. Pewien typ, składający się tylko z fosforu, zapalał się nawet w pudełku, przez co przez pewien czas używano zapałek z główką w szklanej ampułce, zapalające się po jej zbiciu. Przez cały XIX wiek zapałki nie podlegały istotnym zmianom, jedynie pod koniec zaczęto nasączać drewienka ałunem, aby powstrzymać żarzenie się po zdmuchnięciu. W międzyczasie węgierski chemik Janos Irinyi wymyślił "bezgłośne zapałki" w których chloran potasu zastąpiono tlenkiem ołowiu, dzięki temu zapaleniu nie towarzyszyło słyszalne "Puf!".

   Niestety trujący fosfor szybko dał o sobie znać. Już w 1845 roku pojawiają się doniesienia o zatruciach, potem stają się stosunkowo częste, wystarczyło czasem użyć zapałki zamiast wykałaczki, aby pojawiła się martwica szczęki. Potem często zdarzały się samobójstwa lub zabójstwa przy ich pomocy - pewna gazeta z 1886 roku donosiła o chłopcu, który naśladując bohaterów powieści Dumasa, otruł siostrę kulkami chleba z zeskrobanym z zapałek fosforem uroiwszy sobie, że pozbywa się w ten sposób potencjalnej współspadkobierczyni[3] Postanowiono zatem zamiast fosforu użyć siarczku fosforu, który zapalał się łatwo ale nie był trujący, lecz zapałki tego typu wprowadzono dopiero w 1895 roku. W 1905 roku, na konferencji w Bernie, wydano międzynarodowy zakaz używania pierwiastkowego fosforu w zapałkach.

   Zapałki typu współczesnego, nazywane bezpiecznymi, są przykładem jednego z tych rewolucyjnych pomysłów, jakie przychodzą do głowy geniuszom. Wiemy że fosfor w zetknięciu z silnymi utleniaczami zapala się, lecz zarazem wiemy że fosfor w główce zapałki jest kłopotliwy i może prowadzić do zapalenia się jej przy byle potarciu. Szwed Erik Pasch pomyślał zatem, że jeśli fosfor jest potrzebny tylko do zainicjowania zapalenia główki zapałki ale nie jest potrzebny w niej samej, to należy go przenieść na zewnątrz. Gdy w podobnym czasie odkryto bardziej bezpieczny fosfor czerwony, wiedział że jest na dobrym tropie. Wraz z Edwardem Lundströmem sporządził masę cierną, zawierającą tłuczone szkło i fosfor. Gdy użytkownik pocierał o nią zapałkę zawierającą siarkę i chloran potasu, część mieszaniny ścierała się i pod wpływem silnego tarcia zapalała, inicjując zapalenie całej główki lecz za razem wypalając niewielką ilość fosforu w drasce. Pierwsze tego typu zapałki wprowadzono w 1847 roku.[4]
Reklama bezpiecznych zapałek z 1911 roku
   Wracając do sióstr Ansell. Gdy Rozeszła się wieść że 22-letnią kobiete skazano na powieszenie, w społeczeństwie powstało oburzenie. Słano listy do wyższych instytucji wskazując, że w rodzinie Ansell kilka osób doznało chorób psychicznych a jedna z ciotek zmarła w zakładzie dla obłąkanych[5] Obrona podsycała wrzawę w prasie. Sprawa trafiła nawet do Parlamentu, gdzie stu członków podpisało petycję w sprawie ułaskawienia. Pewien mężczyzna, który zakochał się w uwięzionej, zebrał 1000 podpisów w tej sprawie. Jednak sąd pozostawał nieugięty, zarazem nie chcąc ujawniać ustaleń z niejawnej rozprawy na której zapadł wyrok. 19 lipca 1899 Marry Ann Ansell została powieszona na dziedzińcu więzienia st. Abans.
Zbiegiem okoliczności ostatnia kobieta skazana na śmierć w Anglii, również została skazana za otrucie białym fosforem - wdowie Mary Wilson udowodniono w 1957 roku dwa morderstwa, męża i kochanka, w obu przypadkach zmarli zostawili jej spadek. Ponieważ kara śmierci niedługo po tym została wycofana, zamieniono ją jej na dożywotnie więzienie[6].
Te przypadki być może zainspirowały Agathę Christie aby wykorzystać fosfor w jednej z powieści; tytułu oczywiście nie podam ale jej to jedna z tych niezbyt uczciwych książek, gdzie do rozwiązania zagadki potrzebna jest wiedza, jakiej przeciętny czytelnik nie posiada.

Po latach wokół sprawy sióstr Ansell narastały wątpliwości, podnoszono, że mogło dojść do pomyłki sądowej zaś rzeczywistym sprawcą był narzeczony Marry, który zresztą ulotnił się zaraz na początku rozprawy. Dopiero w 2000 roku odtajniono dokumenty z tej sprawy. Podczas zamkniętej rozprawy sądowej oskarżona przyznała, że otruła siostrę dla 22 funtów z ubezpieczenia, oraz że sądziła, że śmierć w zakładzie dla umysłowo chorych nie będzie zbadana. To przesądza sprawę.


-----
Źrodła:
http://www.stalbansreview.co.uk/nostalgia/crimelibrary/maryansell/deathbypoisoning/
* http://en.wikipedia.org/wiki/Mary_Ansell
* http://en.wikipedia.org/wiki/Phosphorus
* http://en.wikipedia.org/wiki/Allotropes_of_phosphorus
* http://en.wikipedia.org/wiki/Hennig_Brand


[1]  http://de.wikipedia.org/wiki/Phosphor
[2]  http://es.wikipedia.org/wiki/Intoxicaci%C3%B3n_por_f%C3%B3sforo
[3]  Tygodnik Beletrystyczny i naukowy, 19 września 1886. WBC
[4]   http://en.wikipedia.org/wiki/Match
[5]   http://hansard.millbanksystems.com/commons/1899/jul/17/case-of-mary-ansell
[6]   http://www.murderuk.com/poisoners_mary_wilson.html



środa, 22 sierpnia 2012

Ukrzyżowana hemoglobina, czyli układ okresowy w Biblii

Prowadząc na pewnym forum dyskusję na temat kreacjonizmu zastanowiłem się, jak szeroko może sięgać temat. Spotkałem się już z takimi, którzy z Biblii wywodzili prawa matematyki i fizyki, czy jednak ktoś sięgnął do Chemii? Proste przeszukanie dało bardzo wiele wyników - otóż okazało się, że Bóg stworzył układ okresowy i opisał to w Biblii...

W dawnych czasach doktryna chrześcijańska uznawała Biblię za Księgę Ksiąg, zawierającą odpowiedzi na wszystkie pytania i absolutnie prawdziwą. Początkowo na podstawie dziwacznych rozumowań, próbowano wywieść z niej wiedzę o wszystkim co jest na świecie, co prowadziło do dziwacznych wniosków - przykładem teorie kosmologiczne.
Kilkakrotnie na określenie Ziemi użyto w Biblii zwrotu "krąg ziemski" co doprowadziło teologów wczesnego średniowiecza do pojęcia, że ziemia jest płaskim okręgiem otoczonym morzami*. Co prawda obwód ziemi policzył już Erastostenes w starożytności a oddalające się statki zanurzały się pod horyzont, ale teologowie wiedzieli swoje. Liczne wzmianki o krańcach ziemi brali za dowód, że ziemia ma krawędź, stwierdzenie świętego Jana w jego Apokalipsie, iż widzi cztery anioły na rogach ziemi, prowadziło do wniosku że ta krawędź ma narożniki. Dopiero przetłumaczenie z arabskiego dzieł starożytnych sprawiło, że około XI wieku zaczęto te sława interpretować odmiennie.
Wzmiankę w księdze Jozuego o wstrzymaniu Słońca na jeden dzień oraz liczne fragmenty o ruchu Słońca i Księżyca po niebie, interpretowano jako dowód słuszności koncepcji geocentrycznej, a częste wzmianki o nieruchomych fundamentach lub filarach Ziemi, brano za dowód nieruchomości Ziemi.

Co jednak badacze Biblii mają do powiedzenia o Chemii? Na początek układ okresowy:
Grupa I i okres I stanowią pierwszy dzień stworzenia. W pierwszym dniu stworzenia Bóg stworzył światło i oddziela je od ciemności. Sód jest w grupie I i pierwiastek ten silnie reaguje z wodą. Gdy sód łaczy się z wodą, to zapala się dając światło. Oceany są nadal pełne chlorku sodu, który przypomina nam o tym, co Bóg uczynił w pierwszym dniu stworzenia. Okres I zawiera wodór, pierwiastek, który jest w Okresowym Ruchu. Oznacza to, że pojawia się w trzech miejscach na raz (wymiennik, donor, i akceptor elektronów). W Księdze Rodzaju 1:02 mówi: "... Duch Boży unosił się nad powierzchnią wód." Bóg Ojciec, Syn Boży i Ducha Święty to trzy odrębne bóstwa w jednym. Zmiana miejsc w okresach wodoru odzwierciedla to, że może być w trzech miejscach w jednym czasie.
            Grupa IV i okres III odzwierciedlają trzeci dzień stworzenia, w którym Bóg stworzył rośliny. Atom węgla znajduje się w grupie IV. Pierwiastek ten znajduje się we całej materii organicznej. Magnez znajduje się w okresie III. Rośliny, zawierają Magnez..
            Grupa V uosabia czwarty dzień stworzenia. W czwartym dniu stworzenia Bóg stworzył wszystkie ciała niebieskie (słońce, księżyc i gwiazdy). Te obiekty albo odbijają lub emitują światło. Grupa V zawiera fosfor, który wydziela światło.
            Grupa VII i VI okres odpowiadają szóstemu dniu Stworzenia. W tym dniu, Bóg stworzył człowieka na swój obraz. Jako ssaki, jemy żywność, która składa się z atomów, a zatem ma elektrony. Akceptujemy elektrony, podobnie jak to robią pierwiastki w grupie VII. Lantanu jest umieszczony w VI okresie. Ma 14 pierwiastków "na jego obraz", które nazywane są lantanowcami. Lantan i lantanowce reprezentować Boga i człowieka. Jesteśmy stworzeni na obraz Boga, podobnie jak lantanowce są stworzone na obraz lantanu.
            Grupa VIII oznacza siódmy dzień tygodnia stworzenia, w którym Bóg odpoczął. Wszystkie elementy w grupy VIII są nieaktywne chemicznie. Są "w stanie spoczynku", tak jak Bóg w siódmym dniu.
            Układ Okresowy Pierwiastków także dokładnie dowodzi  Biblii. W Księdze Rodzaju 3, Biblia mówi, jak Ewa okazała nieposłuszeństwo Bogu i zjadła owoc z Drzewa Wiadomości Dobrego i Złego. Ugryzła owoc za pomocą jej 32 zębów, które mogą być reprezentowane przez 32 grupy układu okresowego. To wszystko pokazuje, jak ograniczona jest nasza ludzka wiedza. Istnieją cztery rodzaje zębów, i cztery rodzaje orbitali (S, P, D i F). Jezus jest w niebie, będącym "orbitalem" dla nas ("elektronów"). Kiedy idziemy do nieba, zajmiemy te "orbitale" i pozostajemy w spoczynku, podobnie jak gazy szlachetne, które są nieaktywne chemicznie, ponieważ wszystkie ich orbitale zostały obsadzone.
            Mateusz w rzdz. 4 opowiada, jak Jezus wybrał dwunastu uczniów do naśladowania Go aby pomagali Mu szerzyć Ewangelię (życie). Dwutlenek węgla, który znajduje się w grupie IV, jest podstawą całego życia; ma dwanaście protonów i neutronów. Dwunastu uczniów stanowi węgiel i jego rolę w rozprzestrzenianiu się życia. Węgiel-uczniowie pomógł szerzyć Ewangelię, nawet po tym jak Jezus wstąpił do nieba, aby przygotować miejsce (orbitale) dla nas.
            Jest oczywiste, że układ okresowy dowodzi Biblii.[1]
 Jak widać, umiejętnie żonglując liczbami, można dowieść wszystkiego, oczywiście nie wiadomo, dlaczego autor wybrał akurat takie okresy i grupy, może poza tym, że mu akurat do czegoś pasowało. Im dalej w gąszcz domysłów, tym jest zabawniej. Siódmego dnia stworzenia Bóg odpoczął i pobłogosławił ten dzień. Jeśli przedstawić siódemkę w układzie dwójkowym, licząc za 0 czas gdy nie było jeszcze jasności, to siódmy dzień zapiszemy jako 111 - co odzwierciedla trójcę świętą. Siódmym pierwiastkiem jest Azot, który ma trzy elektrony walencyjne i tak jak Bóg odpoczywał, tak azot jest mało reaktywny. Gdy Jezus zmartwychwstał, po szóstym dniu uczniowie widzieli go w jasnych szatach - i rzeczywiście, po szóstej grupie jest siódma, gdzie znajduje się chlor, używany do wybielania tkanin.
A teraz następuje argument, który rozbawił mnie najbardziej. Żelazo jest najcięższym pierwiastkiem który może powstać w gwiazdach podczas syntezy, zatem musi ono być podstawą dla innych pierwiastków. Przynosi ono życie (tlen) do naszych komórek przy pomocy hemoglobiny, a co jej cząsteczki: 

Według podręcznika Chemii Organicznej w strukturze hemu jest jak znak + i żelazo jest ukrzyżowane w centrum do czterech atomów azotu tej struktury + hemu. [2]
 A więc żelazo - podstawa układu - jest ukrzyżowane. Należy do grupy VIII która składa się z trzech pierwiastków, więc możemy je zapisać jako 800 co stanowi w gematrii wartość liczbową Omegi. Jezus mówił że jest alfą i omegą, zatem żelazo jest ukrzyżowanym Chrystusem!

Stężenie bzdur jest doprawdy powalające. W zasadzie poza dziwacznymi próbami obrony tezy, że w Biblii wszystko jest zapisane, nie ma tutaj ani krztyny sensu. Przypomina mi to sprawę biblijnej wartości liczby Pi - w pewnym miejscu pisze się, iż dla króla Salomona wykonano kadź mającą dziesięć łokci średnicy i trzydzieści obwodu, co pokazywałoby, że przyjętą wartością Pi było 3. Niektórzy chcą jednak zwiększyć dokładność znikąd biorąc założenie, że grubość ścianki kadzi wynosiła ileśtam centymetrów i wartość przyjętej liczby wynosiła 3,14 i była dokładniejsza od znanej w Egipcie.

Spotkałem się też gdzieś z podobnymi próbami dowodzenia, wywodzącymi się od stwierdzenia "Jesteście solą ziemi" - sól to chlorek sodu, czyli połączenie powietrznego demona (trującego gazu) ze srebrzystym metalem, w wyniku którego oba atomy uzyskują 8 elektronów - tyle ile było błogosławieństw w Kazaniu na Górze. Zatem łączenie się chloru i sodu odzwierciedla łączenie się przeciwnych stron natury ludzkiej w duchową jedność.
Czy jakoś tak.


-------
* Choć trzeba też uczciwie przyznać, że nigdy nie było to elementem nauczania kościoła. Podejrzenia co do płaskości Ziemi zgłaszali niektórzy scholastycy, pozostali powtarzali za starożytnymi że jest kulista a po drugiej stronie nikt nie mieszka. Argumentem za brakiem ludzi na antypodach było twierdzenie dawnych pisarzy, że w miarę zbliżania się do równika upał staje się coraz bardziej nieznośny, więc na równiku jest już tak silny, że nie da się go przekroczyć. Wbrew popularnym dziś opiniom, za czasów Kolumba dyskutowano nie o tym, czy statek spadnie za krawędź Ziemi, tylko czy Ziemia nie jest aby zbyt duża aby dopłynąć do Indii zanim skończą się zapasy. Ameryka nie była w planach.

[1] Luźne tłumaczenie na podstawie  http://periodictable-creation-bible.com/
[2] tamże

sobota, 18 sierpnia 2012

Smocza krew

Nie miałem ostatnio zbyt dużo okazji aby pisać, stąd trochę zaległości na blogu. Aby się rozruszać skrobnę dziś notkę na temat ciekawego związku chemicznego - kompleksu, z powodu intensywnie czerwonej barwy nazywanego smoczą krwią. A przy okazji będzie też coś niecoś o tym dlaczego musztarda jest ostra, z czego robi się sztuczną krew i jaki ma to związek z chorobami płuc.

Chodzi tu po prostu o tiocyjanian żelaza III. Cyjanki i ich związki już omawiałem, żelazocyjanki też, więc będzie to w sumie trzeci wpis krążący wokół prostych nieorganicznych pseudohalogenów.
W anionie cyjankowym, jak wiadomo, mamy do czynienia z  węglem i azotem połączonymi silnym wiązaniem potrójnym. Na węglu pozostaje możliwość wytworzenia jednego wiązania chemicznego, zaś na azocie wolna para elektronowa umożliwia tworzenie związków kompleksowych.
Natomiast w tiocyjanianach do jonu dołączona została siarka, co skutkuje dwiema możliwymi strukturami elektronowymi:
Podobny związek może tworzyć tlen, są to cyjaniany i izocyjaniany.
Najprostszy sposób otrzymania tiocyjanianów to stapianie cyjanków z siarką, lub reakcja ich roztworów z tiosiarczanem sodu. Tak też postąpił Buchholz w 1798 roku. Wkrótce też stwierdzono że ten nowy związek w połączeniu z solami żelaza daje połączenie o intensywnie czerwonym kolorze, toteż przez analogię do cyjanków, nazwanych od koloru błękitu pruskiego, nowy związek nazwano rodankiem (od greckiego rhodon - czyli róża). W warunkach kwaśnych tworzy łatwo lotny tiocyjan, zaliczany do grupy pseudohalogenów - ma bowiem właściwości podobne do fluorowców: tworzy aniony jednoujemne, tworzy dimery jak Cl2 [tiocyjanogen (SCN)2] , jest lotny, po rozpuszczeniu w wodzie daje kwas, z metalami ciężkimi i srebrem daje nierozpuszczalne osady, roztwarzające się w nadmiarze odczynnika, w solach tworzy strukturę krystaliczną regularną. W zasadzie najbardziej jest podobny do jodu.

A jak rzecz się ma z tytułowym związkiem? Oczywiście jony żelaza tworzą z jonami tiocyjanianowymi sole, rzecz jest jednak bardziej skomplikowana jeśli zauważyć, że reakcję przeprowadza się w wodzie. Sposób rozpisywania dysocjacji soli, jakiego uczą w szkołach, jest bowiem dosyć mocno uproszczony - sole w takim zapisie rozpadają się na wolne jony tak, jakby rzecz zachodziła w próżni.
FeCl3 + → Fe3+  + 3 Cl
W rzeczywistości czynnikiem wywołującym dysocjację jest woda, która oddziałując na sieć krystaliczną związku prowokuje jej pękanie. Cząsteczki wody, choć elektrycznie obojętne, mają jednak ładunek rozłożony nierównomiernie stając się dipolem z nieco bardziej ujemnym tlenem i nieco bardziej dodatnimi wodorami. Skoro tak, to mogą być przyciągane jednym lub drugim końcem przez posiadające ładunek kationy lub aniony, w efekcie jon zostaje szczelnie otoczony przez 4-8 cząsteczek wody

Ponieważ ładunek kationu nadal występuje, a tylko rozłożył się na większą powierzchnię, do tej warstewki mogą przyłączać się kolejne, coraz bardziej nietrwałe i ruchliwe, aż do 4-5 warstw nazywanych łącznie otoczką solwatacyjną. W przypadku kationów żelaza połączenie z najbliższymi cząsteczkami wody przybiera formę kompleksu, zaś przenoszenie ładunku między cząsteczkami rozpuszczalnika i kationu skutkuje pomarańczową barwą roztworu *. Co to zaś ma do rodanku żelaza?
Gdy zmieszamy związek żelaza III z solą tiocyjanianową, kolejne aniony zastępują cząsteczki zsolwatowanej wody, tworząc  skomplikowane kompleksy o barwie znacznie bardziej intensywnej, głównie Fe[(SCN)(H2O)5] 2+ i Fe[(SCN)3(H2O)3 ] grupujące się w wielocząsteczkowe agregaty.
Już dla niedużych stężeń roztwór przybiera kolor świeżej krwi:
Stąd zwyczajowa nazwa. Zresztą używa się takich roztworów (po dodaniu zagęstników) do produkcji sztucznej krwi o dużej trwałości. Barwa jest zauważalna jeszcze przy stężeniu 0,00001 % stąd jej wykorzystanie do bardzo czułego oznaczania obecności żelaza

Tiocyjaniany występują w naturze stosunkowo pospolicie. Jak to już opisywałem przy cyjankach, powstają w organizmie jako produkt naturalnej detoksykacji cyjanków, będąc od nich blisko 100 razy mniej toksyczne. Już w 1824 roku stwierdzono jego obecność w ślinie, zauważając że zmieszana z solami żelaza daje w kwaśnym środowisku różowe zabarwienie. Dosyć duże ilości tiocyjanianów zawierają rośliny z rodziny kapustowatych (dawniej Krzyżowe), a więc kapusta, gorczyca, rzeżucha, rzodkiewnik, rzodkiew, chrzan, wasabi i wiele innych, stanowiąc składnik olejków nadających im ostry, piekący smak. Produkowane przez nie glikozydy tiocyjanogenne głównie synigryna i sinalbina pod wpływem enzymów rozkładają się z wydzieleniem izotiocyjanianu allilu (CH2CHCH2NCS), nazywanego olejkiem gorczycowym, o bardziej intensywnym smaku. Rozkład zachodzi po uszkodzeniu rośliny co wraz z właściwościami drażniącymi wskazuje, że związki te są obroną przed roślinożercami. Powstają też podczas przetwarzania roślin, podpowiadając za smak musztardy, tartego chrzanu i kaparów. Mają też wyraźne właściwości przeciwbakteryjne i owadobójcze - olejek gorczycowy może być używane jako insektycyd.

Kwestia właściwości bakteriobójczych izotiocyjanianu jest ciekawa, gdyż mechanizm ten jest wykorzystywany przez zwierzęta. Aniony SCN- wydzielane przez błony śluzowe dróg oddechowych, pod wpływem enzymu laktoperoksydazy, łączą się z nadtlenkami powstającymi jako uboczny skutek oddychania, tworząc hypotiocyjanian (OSCN) który atakuje bakterie prowadząc do ich śmierci. Równocześnie nie atakuje własnych komórek organizmu zwierzęcego, w przeciwieństwie do nadtlenków mających podobne właściwości. Hypotiocyjanian, wraz z lizozymem stanowi podstawowy czynnik broniący błony śluzowe przez zakażeniami, toteż występuje także w łzach, ślinie, wydzielinie z nosa i mleku. Największe poziomy tego związku stwierdzono w tzw. "siarze" - pierwszych porcjach mleka matki, pojawiających się niedługo po porodzie, której składniki mają zastępować niedojrzałą obronę układu pokarmowego dziecka. Z tego powodu mleko matki i mleko krowie dosłownie prosto z sutka, jest w zasadzie sterylne.
Jeśli u kogoś system ten szwankuje, staje się podatny na zakażenia płuc - takimi osobami są na przykład chorzy na mukowiscydozę. Genetyczne zmiany powodujące wydzielanie nadmiernej ilości gęstego śluzu, wywołują także zaburzenie mechanizmu izotiocyjanianowego, stąd częste zakażenia gronkowcem złocistym i innymi chorobami. Te zaburzenia może łagodzić suplementacja izotiocyjanianu i laktoperoksydazy. Nie znalazłem natomiast nic o tym, czy podobne złagodzenie braku odporności może dawać dieta bogata w rodanki.

Oprócz tych pozytywnych skutków, powodujących że rośliny zawierające rodanki powinny być spożywane, istnieje też pewien skutek negatywny. Tiocyjanian jest na tyle podobny do jodu, że organizm może pomylić obie te substancje. Gdy w diecie pojawia się zbyt dużo rodanków, są one wychwytywane przez tarczycę. Gdy tarczyca uzna że jest odpowiednio nasycona, przestaje wchłaniać jod. Jednak z rodanków nie da się wytworzyć hormonów tarczycowych więc w organizmie pojawia się niedobór, rekompensowany przez powiększenie organu. Jeśli więc u jakiejś osoby już zachodziła niedoczynność tarczycy, albo też jej dieta była uboga w jod, to zjadanie dużej ilości kapusty, gorczycy czy rzodkiewki może u niej spowodować powstanie wola. O produktach mających takie działanie mówi się, że są wolotwórcze.

Na koniec powrócę jeszcze do głównego tematu posta - do smoczej krwi. Reakcja powstawania kompleksu jest na tyle czuła, że używa się jej w analityce. Jedną z metod analizy strąceniowej jest oznaczanie chlorków metodą Volharda - do roztworu o nieznanym stężeniu chlorków dodaje się nadmiar soli srebra. Pozostała nie strącona ilość srebra jest odmiareczkowana przy pomocy rodanku amonu wobec dodatku soli żelaza. Dopóki w roztworze jest jeszcze srebro, tworzy z rodankiem biały osad. Gdy wytrąci się całe, kolejne porcje odczynnika reagują z żelazem dając nasz kompleks o wyraźnym zabarwieniu. Odejmując odmiareczkowany nadmiar od całkowitej ilości srebra w dodanym na początku roztworze, otrzymujemy ilość chlorków w roztworze badanym.

Podczas pierwszych lekcji analityki, gdzie omawialiśmy między innymi tą reakcję, dokonałem przypadkowego odkrycia - kropla roztworu barwnika, kapnięta na kartkę papieru zeszytowego, odbarwiła się całkowicie w ciągu kilku sekund. Zaciekawiony wydarłem z zeszytu pasek papieru i wrzuciłem do próbówki pełnej roztworu (nie tej ze zdjęcia) stwierdzając że kilka centymetrów kwadratowych kartki wystarczy aby odbarwić ok 10 ml roztworu. Nie bardzo wiedziałem jednak na czym polega reakcja. Albo zachodziła adsorpcja barwnika przez włókna papieru lub drobinki wypełniacza - co mogłem odrzucić, bo papier się nie barwił. Mogło być też, że wspomniane agregaty cząstek kompleksu ulegały rozbiciu po adsorpcji na papierze i na tyle osłabła ich barwa, że przestała być widoczna - co jednak odrzuciłem, bo reakcja zachodziła też w wodzie w której moczył się papier. Musiała być to zatem reakcja z czymś rozpuszczalnym. Początkowo obstawiałem, że może być to klej użyty do wzmocnienia masy papierowej, zważywszy że używa się w tym celu głównie dekstryn podobnych co skrobii, a skrobia może kompleksować jod, do którego rodanki są bardzo podobne. Inną możliwością było natomiast, że żelazo zawarte w kompleksie zostało przez coś zredukowane, dając nietrwały i bezbarwny kompleks rodanku żelaza II. Aby to sprawdzić na kolejnych zajęciach kapnąłem kroplę wody chlorowej na to miejsce zeszytu, gdzie wcześniej robiłem próby z kompleksem, i na powrót pojawiło się słabe, różowe zabarwienie - co mogłoby potwierdzać teorię, choć woda chlorowa jako agresywny odczynnik mogla oddziaływać też na kompleks rodanko-dekstrynowy. Niestety nie miałem jak dotąd okazji aby tę kwestię dokładniej przebadać, choć jak teraz sądzę czynnikiem sprawczym jest tutaj ditionian, dodawany jako reduktor do masy papierowej aby wolniej żółkła.
-------
* żeby nie wdawać się w poboczne wątki - pomarańczowy kolor to wynik kompleksów częściowo zhydrolizowanych, zamiast jednej-trzech cząsteczek wody zawierających aniony OH-, pełny akwajon jest słabo liliowy lub bezbarwny co można zauważyć w roztworach silnie kwaśnych gdzie hydroliza zostaje odwrócona - więcej na tej stronie.
Nieco informacji o związku:
http://www.md-institute.com/cms/ressorts/hygiene-antiseptik/Anorganische-Thiocyanate.pdf

sobota, 4 sierpnia 2012

O oddychaniu jelitami...

Na rynku suplementów pojawiają się coraz częściej produkty oparte o schemat myślowy - tlen jest dobry więc wszystko co go zawiera jest zdrowe, słuszne i zbawienne. Stąd wysyp rozmaitych natleniaczy, tlenozatorów, magnesów na tlen czy tym podobnych. A ostatnio pojawiła się woda gazowana tlenem.
Po co? Producenci zawsze znajdą uzasadnienia:

Picie natlenionej wody powoduje wyraźny wzrost tlenu w krwi żylnej. Tlen uwolniony bezpośrednio z wody przenika z żołądka do naczyń krwionośnych brzucha. Oznacza to, że organy w jamie brzusznej, w szczególności żołądek, są świetnie zaopatrzone w dodatkowy tlen. Natleniona krew w żołądku, który odgrywa główną rolę w procesach metabolicznych, powoduje pełniejsze i szybsze wchłanianie się pożywienia do organizmu. Tlen wspomaga również zachodzące w żołądku procesy redukcji tłuszczów i odtruwania organizmu (usuwanie szkodliwych substancji takich jak alkohol, leki). To wszystko osiągniemy pijąc wodę z tlenem, zapewnia producent Active O2.[1]

 Spożycie podczas treningu wody Oximix, pomaga szybko usunąć niedostatek tlenu, powstały podczas intensywnego wysiłku fizycznego oraz zmniejszyć powstawanie kwasu mlekowego, który odpowiedzialny jest za uczucie zmęczenia.
Ponadto woda Oximix powoduje, podczas maksymalnego obciążenia w czasie intensywnego treningu (wysiłku fizycznego) obniżenie pulsu i zwiększenie wydolności organizmu. Po wysiłku fizycznym woda Oximix polecana jest do uzupełnienia utraconej energii, by zmniejszyć poziom kwasu mlekowego, przyśpieszyć regenerację organizmu oraz usunąć zmęczenie fizyczne.[2]

 Wszystko ładnie i pięknie, tylko ile tego tlenu może być w wodzie?

Wbrew temu co można by sądzić, rozpuszczalność tlenu w wodzie jest niewielka - podaje się dane rzędu 7,6 mg/l w temperaturze pokojowej i 14 mg/l w temperaturze zamarzania. Ilość rozpuszczonego gazu drastycznie maleje wraz ze wzrostem temperatury, stąd przy upałach w płytkich jeziorach możliwa jest przyducha. Ilość tą można zwiększyć, natleniając wodę pod zwiększonym ciśnieniem - choć oczywiście po ustąpieniu ciśnienia szybko wydziela się z powrotem.
Producenci natlenowanych wód podają iż ich wody w specjalny sposób potraktowane, zawierają 70-150 mg tlenu w litrze. Podejrzewam ze po prostu użyli większego ciśnienia, jednak taki na przykład Oximix zapewnia, że ich woda rozpuściła więcej tlenu bo ją magnetyzowano.

Jak zatem widać, nie są to zbyt wielkie ilości. Czy jednak przez żołądek i jelita można wchłonąć tlen?
Jak to zapewne każdy miał już tołkowane na lekcjach biologii, narządem wyspecjalizowanym do wymiany gazowej są płuca. Każdy organ działa w jakimś określonym celu i nie wchodzi w zakres kompetencji pozostałych, nawet jeśli leżą zaraz obok. Śledziona nie przejmie czasem funkcji wątroby, a jelita żołądka. Akurat tak się składa, że przewód pokarmowy jest wyspecjalizowany w trawieniu i wchłanianiu pokarmu a nie gazów, a wygląda na to że gdy połkniemy natlenowaną wodę to nadmiar tlenu się wybąbelkuje i sprawa skończy się na bardzo drogim beknięciu. Podobnie wygląda sprawa z "cocktailem tlenowym" będącym w istocie pianką małych bąbelków, które różne firmy zalecają właściwie na wszystko. Gdyby tlen miałby tak łatwo wchłaniać się z jelit, wystarczyłoby połknąć trochę powietrza i efekt byłby taki sam. Przyjmijmy jednak, że zapewnienia producentów są prawdą, że cały tlen w ich napojach się wchłonie, i zastanówmy się czy starczy go na którąkolwiek z proponowanych czynności.

Wysiłek fizyczny zużywa dużo energii - aby ją wyprodukować organizm musi biochemicznie utlenić pewne składniki żywieniowe - głównie glukozę. Glukoza najpierw jest przetwarzana i rozszczepiana w serii przemian beztlenowych (fermentacyjnych) zachodzących w każdej komórce, potem pierwsze utlenienie przekształca ją w kwas mlekowy który następnie utlenia się dalej podczas cyklu Krebsa. Jeśli jednak praca mięśni a więc i przetwarzanie glukozy, są większe niż ilość tlenu którą musiałaby dostarczyć krew, przemiany zatrzymują się na drugim etapie i w mięśniach gromadzi się kwas mlekowy wywołując stan zapalny - stąd niemiłe objawy znane jako zakwasy.
Załóżmy że mamy rowerzystę lubiącego dłuższe jazdy po okolicy. Jedzie z umiarkowaną szybkością przez kilka godzin po lekko pagórkowatym terenie, zużywając na pracę mięśni 1000 kcal - to nie tak znów dużo. Załóżmy znów że podczas tej jazdy zaistniał w jego mięśniach niewielki niedobór tlenu, rzędu 10%. Ponieważ wartość energetyczna glukozy to ok. 4 kcal/g , toteż na 1000 kcal zużył 250g glukozy. Aby spalić jeden mol glukozy trzeba mieć sześć moli cząsteczek tlenu. Znając masy molowe obu cząsteczek można wyliczyć, że na spalenie 250 g glukozy trzeba 300 g tlenu. Deficyt tlenu jaki założyliśmy wyniósł 10%, więc zabrakło 30g tlenu. W litrze natlenowanej wody jest go 70-150mg. Jak zatem łatwo policzyć aby uzupełnić ten niedobór na bieżąco i zapobiec, jak twierdzi producent, powstawaniu zakwasów, nasz rowerzysta musiałby podczas jazdy wypić 428-200 litrów ich wody. Ilość tlenu zawarta w litrze takiej wody nie wystarczy do wytworzenia w organizmie 1kcal energii, więc co to mają być za korzyści?

Ale może jednak - powie ktoś - jakiś niewielki pozytywny związek zachodzi? Nic na to nie wskazuje. w 2003 roku poddano badaniu 11 ochotników, którzy ćwiczyli na rowerze stacjonarnym po kilka razy przez trzy dni. Równocześnie sprawdzano ich wydajność. Przed każdym ćwiczeniem wypijali wodę - czasem tlenowaną czasem zwykłą, przy czym nie wiedzieli kiedy jaką otrzymywali (ślepa próba). Po wielu próbach i podsumowaniu różnic stwierdzono, że nie ma żadnej różnicy. Równocześnie badanie samych wód pięciu marek nie stwierdziło w żadnej aż tak wysokich poziomów zawartości tlenu jakie opisywali producenci.[3]

Na koniec można dodać jeszcze argument fizjologiczny - gdyby tlen z jelit lub żołądka został wchłonięty, dostałby się do żyły wrotnej a z nią do wątroby, która zużyłaby go prędzej niż reszta organów. Nawet jeśli wątroba nie potrzebowała by tlenu to i tak po przepłynięciu przez nią znajdowałby się w żyłach a więc naczyniach toczących krew odtlenowaną, a z tą organizm robi jedno - przetłacza do płuc aby się natlenowała. Więc po co to wszystko?

A chcącym się dotlenić polecam ćwiczenia oddechowe - zadziałają szybciej i nie trzeba na nie wydawać pieniędzy.

--------
[1]  http://www.zdrowie.kobiety.net.pl/54,0,Woda-z-tlenem,1174.html
[2]  http://www.oximix.pl/
[3]  Hampson, NB, Pollock, NW, & Piantadosi, CA (2003), Oxygenated water and athletic performance. Journal of the American Medical Association , 290 , 2408-2409.
http://www.thefactsaboutfitness.com/news/bottled-water.htm