informacje



wtorek, 31 stycznia 2023

Wyspy ognia i samotności - Recenzja





Dawno już tu nie wrzucałem recenzji książek popularnonaukowych. 

  Choć może to nie być takie oczywiste, wulkany i ich wybuchy to temat, który interesuje mnie od bardzo dawna. Będąc małym brzdącem wychowywałem się w otoczeniu książek, rodzice zbierali różne i w każdym pokoju była jakaś półka czy stosik na stoliku. Były też czytane przez rodziców, więc szybko załapałem, że branie którejś i otwieranie jest czymś w porządku. Sam tego nie pamiętam, ale według opowieści mamy pytałem czasem co jest napisane tu, bądź gdzie indziej, w książeczce dla dzieci, lub w podpisie zdjęcia w gazecie, lub na karcie tytułowej książki, a oni mi mówili i czytali mi to słowo, które mnie zainteresowało. Nie mieli za bardzo czasu na jakieś domowe lekcje i zakładali, że nauczę się czytać w przedszkolu, a tak przynajmniej poznam wcześniej literki. I tak widzieli jak otwieram jakieś książki i się w nie wpatruję, albo rozkładam gazety i specjalnie się nie dopytywali.

To, że ja sobie je płynnie czytam, wyszło na jaw przypadkiem podczas Wigilii, gdy miałem 4 lata i krewny usłyszał, jak próbuję odczytać łaciński zwrot na opłatku. Wcześniej nikt na moje zachowanie nie zwrócił uwagi, bo znane słowa czytałem w myślach bez sylabizowania na głos, więc sądzili, że tylko oglądam obrazki. Pociągnęło to za sobą przestawienie niektórych zbyt dorosłych książek poza zasięg małych rączek.

Wśród pierwszych przeczytanych książek jakie pamiętam z tego okresu, poza encyklopedią, słownikiem, "Pchłą szachrajką" i tomikami poezji różnej, była książeczka z popularnej serii w czarnej okładce "Wulkany i trzęsienia ziemi". Tak w sam raz dla początkującego, z wyjaśnieniem jak zbudowana jest ziemia, jak wygląda wulkan, jak gorąca jest lawa, co robi z budynkami trzęsienie ziemi, a do tego masa technicznych szczegółów składu mineralnego, gazów wylotowych, klasyfikacji rodzajów lawy i tak dalej, których wtedy nie rozumiałem ale jakoś utkwiły mi w chłonnej pamięci. A ponieważ większość innych książek w domu niezbyt mnie interesowała, to zczytałem tę książkę wiele razy aż zaczęła się rozpadać i trzeba było ją sklejać taśmą. 

Toteż gdy dorośli wtedy pytali mnie, kim chcę zostać w przyszłości, to odpowiadałem, że wulkanologiem. Później pojawiły się inne książeczki z innych dziedzin a poglądy na bycie kimś w przyszłości ewoluowały, a wulkanologia mieszała się z botaniką, archeologią i technologią i nie mogłem zdecydować co by mnie pociągało bardziej, więc czytałem to o tym, to o owym bez ładu i celu.

A potem poszedłem do szkoły podstawowej, w pierwszej klasie odkryłem w bibliotece półkę z książkami Sękowskiego i zmieniłem plany na bycie chemikiem. Co jakoś udało mi się doprowadzić do praktycznej realizacji. 

Temat wulkanów jakoś jednak nadal zajmuje swój kącik w moim intelektualnym serduszku i dlatego szukałem w kolejnych latach nowych źródeł wiedzy. I tak kilka lat temu natknąłem się na bloga Wulkany Świata z krótkimi notkami na temat znanych wulkanów i doniesieniami o aktualnej aktywności. Teraz autor tego bloga wydał książkę na ten temat, którą chętnie kupiłem.

Książka

"Wulkany. Sekrety wysp wulkanicznych" to trochę leksykonowy przegląd wybranych wysp o pochodzeniu wulkanicznym. Wybór był pewnie trudny, bo wysp z jakimiś wulkanami jest bardzo dużo. W niektórych przypadkach miałem wrażenie, że z grupy wulkanów z danego obszaru wybrano najpierw najbardziej znane, a później te najmniej, nieinteresujące, nie zasługujące zwykle na wzmiankę, o których być może właśnie po raz pierwszy podano w języku polskim jakiś opis.  

Są tutaj zarówno wyspy z wulkanami aktywnymi i stale wypluwającymi iskry, jak choćby Stromboli, jak i wysepki wygasłe, w których magma nie krążyła od tysięcy lat. Zastosowano ogólny podział wulkanów według części oceanu na którym leżą wyspy. W przypadku północnego Atlantyku nie było dużo do opisywania, Islandia, wyspy w jej pobliżu i Jan Mayen.  Sporo rozdziałów poświęcono wulkanom na wyspach Sandwich na półkuli południowej, które są mało znane, często widziane są tylko z daleka i obserwowane satelitarnie, zaś ich szczytów nikt nigdy nie zdobył. 

 

Wyspa Bouvet, omawiana w książce

Styl jest prosty i rzeczowy. Nie ma tutaj lania wody, nie zobaczymy tu okrągłych zdań, natomiast dowiemy się ile kilometrów średnicy i metrów wysokości mają omawiane wysepki, oraz na ile tysięcy metrów sięgnęły kolumny popiołów po erupcji. Z drugiej strony widać, że autor nie ma jeszcze wyrobionego story tellingu i o ile jakaś ciekawa historia miejsca nie wpadła mu w ręce, to nie stara się specjalnie układać opowieści o kolejnym wulkanie, tylko spokojnie wymienia po  kolei fakty: położenie, kiedy pierwszy raz odkryto, ostatnia erupcja miała miejsce w... Dla jednych będzie to duża zaleta, bo książek popularnonaukowych, których autorzy próbują najwyraźniej pod pretekstem napisać powieść jest sporo, i z czasem ta maniera staje się irytująca; a inni mogą powiedzieć, że książka ich nie porwała bo jest sucha. 

Najkrótsze rozdziały zajmują pół strony, a właściwie to nawet mniej, biorąc pod uwagę wielkość zdjęć, jednak nawet w takich przypadkach nie zastosowano podziału jednej strony na dwa opisy wysp. Każda ma więc na siebie przynajmniej jedną stronę, co jest bardzo czytelne. Często dodatkowe informacje i wtrącenia na pośredni temat są umieszczane drobniejszym drukiem na marginesie. Z tego co zauważyłem, w krótszych rozdziałach tekst główny zawiera informacje geograficzne i geologiczne, a dopiski z marginesów fakty historyczne. W sytuacji gdy akurat z daną wyspą wiąże się jakaś historia, może być odwrotnie - w tekście głównym mamy opis tego ciekawego zdarzenia z historii, a na marginesie rozmiary wyspy i wysokość chmury popiołu podczas ostatniego wybuchu. Nie ma stałej zasady, polecam więc przyglądać się uważnie wszystkim napisom aby niczego nie przeoczyć. 

W innych przypadkach opisy wulkanów są jednak dłuższe, bo jest to miejsce dobrze znane, dla którego dało się znaleźć więcej informacji, a zwłaszcza wtedy, gdy jest to wulkan, który niedawno przeszedł spektakularną erupcję. Najobszerniejszy jest chyba opis wulkanu Krakatau, więcej jest też opisu na temat Hunga Tonga, Santorynu czy Martyniki. Nic dziwnego. Z ich aktywnością wiążą się ciekawe zdarzenia, są to niejednokrotnie "klasyki" wulkanologii, możliwe są do znalezienia relacje świadków, które są wówczas zacytowane w tekście. Szersze są też generalnie opisy wulkanów, które wybuchły w ostatnich latach. 

Ostatnie aktualizacje tekstu musiały pochodzić z połowy roku 2022 dlatego niektóre informacje są całkiem świeże i mamy tu obszerniejszy opis słynnej erupcji  na wyspach Tonga z początku roku.  

Wyspy historii

Autor szukając informacji o tych wszystkich wyspach, wynajdywał niejednokrotnie ciekawostki, które podczas czytania sprawdzałem sobie w innych źródłach. Jak historia marynarza pozostawionego celowo na Wyspie Wniebowstąpienia, w ramach kary za "sodomię" - czyli jak to dziś byśmy powiedzieli, za homoseksualizm - który musiał przetrwać na suchej wysepce kilka miesięcy, zanim miejsce odwiedzi kolejny statek. W zachowanym dzienniku opisywał jak w zasadzie przymierał z pragnienia, żywiąc się fokami i ptakami i z desperacji pijąc ich krew. Dziennik znaleziono w obozowisku; jego zapiski urywają się po sześciu miesiącach od wyrzucenia na wyspę. Ciała nigdy nie znaleziono.  

A takich przypadków jest więcej. Wiele wysp wulkanicznych ma bardzo odizolowany charakter. Wizyta na którejś z nich, samemu, ze sprzętem i zapasami, na kilka dni, byłaby ciekawym doświadczeniem. Ale natura potrafi być nieprzewidywalna i zaskakuje wszystkich, nieraz za bardzo przedłużając lub zbyt nagle skracając pobyt. Więcej miejsca poświęcono erupcji na White Island, u wybrzeży Nowej Zelandii, gdzie zginęli turyści, ale moja ulubiona historia tego typu to opowieść o strażniku z wyspy Raoul. Był jedną z zaledwie kilku osób pilnujących bazy i miał stałą trasę obchodu wyspy. Pewnego dnia, właśnie w chwili gdy zszedł nad jezioro wulkaniczne, aby wykonać pomiar, miała miejsce pierwsza obserwowana erupcja. Trwała 15 minut i wyrzuciła tony gorącego błota i ogromnych kamieni. Gdyby przyszedł tam 10 minut wcześniej, lub tyleż samo się spóźnił, opowiadałby teraz znajomym, że uch, niesamowita sprawa, o tyle tyci mu brakowało. Ale on trafił akurat na ten moment i zginął, a ciała nie odzyskano z krateru. 

Nie zdziwiłbym się gdyby takie przypadki kolekcjonowali ufolodzy, szukający tajemniczych historii aby móc wskazać "o tutaj zdarzyło się niezwykle zjawisko i zaginęło ciało - to musiało być porwanie!".

Na plus

Wydanie jest estetyczne. Już okładka przyciąga wzrok interesującym rysunkiem. Wewnątrz dość dużo ilustracji, choć niektóre wysepki nie dostały swojego zdjęcia. Niektóre wykonał sam autor podczas wycieczek na wulkany, inne przysłali mu inni podróżnicy lub czytelnicy, resztę wydawnictwo wzięło z dostępnych im źródeł i często są to ładne widoki. Papier nie jest zbyt cienki i szorstki, nie miałem problemów z rozdzieleniem stron. Font czytelny, łagodny.  Literówek wyłapałem niewiele.

Rozdziałów o wulkanicznych wyspach jest prawie sto ale wspomina się przy okazji o innych wysepkach w pobliżu, czasem też o tych efemerycznych, widocznych nad poziomem morza krótki czas zanim nie rozmyją je fale, więc jakąś wzmiankę posiada jeszcze do tego jakieś 20-30 wysp. 

Jeśli jest to szerzej wiadome, opisywana jest też przyroda danej wyspy, jej ptaki i rośliny, często endemity charakterystyczne tylko dla niej. 

Jak wspominałem, w niektórych przypadkach podawane są bardzo interesujące przypadki historyczne, o których chce się poszukać czegoś więcej, bo to coś o czym się nigdy wcześniej nie słyszało. Na końcu polecane są dodatkowe źródła, którymi można poszerzyć wiedzę, jak na przykład strona internetowa wyspy Tristan da Cunha czy praca naukowa o gatunkach zasiedlających Surtsey.  Nie ma natomiast w rozdziałach przypisów identyfikujących dokładne źródło informacji, bo książka jest luźniejsza w formie.

Na minus

Mimo wszystko czytając trochę kręciłem nosem, nie będąc całkowicie ukontentowanym. Autor swobodnie posługuje się tu słownictwem, pisze co chwila o "kalderach zagnieżdżonych", "kopułach lawowych", "piroklastach", gdzieś wspomni o tefrze, ówdzie o ryolicie. Niektóre z tych pojęć są objaśnione w słowniczku na końcu, ale hasła w nim są, cóż, dość skrótowe, jak to w słowniczku. Więc nie wiem czy czytelnik wcześniej nie zapoznany z tematem będzie w stanie sobie wyobrazić dlaczego właściwie kopuła lawowa jest tak niebezpieczna oraz co właściwie odróżnia bardzo szeroki krater od kaldery. W niektórych opisach konkretnych wulkanów zostaje to trochę wyjaśnione, ale inne słowa objaśnia tylko ten słowniczek, lub przewijają się przez tekst tak po prostu. 

Może przydałby się jednak trochę obszerniejszy początkowy opis co takiego jest wulkanem i jak nazywamy jego elementy, albo jednak takie bardziej elementarne objaśnienia w opisach jakiegoś wulkanu, typu "Lepka lawa w tym typie erupcji jest mozolnie wyciskana na powierzchnię, jak bardzo gęsta pasta, formując wypukłość nazywaną kopułą lawową, wyglądającą jak dymiąca kupa gruzu..." itd. Zgaduję, że maksymalna objętość tekstu była ograniczona, stąd konieczność trudnego wyboru o których wulkanach rozpisać się bardziej a które ostatecznie pominąć, a później kwestia co objaśnić dokładniej a co bardziej skrótowo i ostatecznie chyba zostało to nie do końca dobrze wyważone.

Ale może jednak czytelnicy nie zwrócą na to aż takiej uwagi, przyjmą że w erupcji pojawia się takie coś o takiej to nazwie a co to jest, to mniej ważne? Nie każdy będzie dociekliwy. 

Ogółem

Dobra książka dla miłośników tematyki, ale też osób lubiących czytać o katastrofach, niezwykłych zdarzeniach lub dalekich egzotycznych zakątkach z całego świata. Popularnonaukowych książek na temat tylko wulkanów jest u nas mało, raczej są to tłumaczenia, opisy jakiegoś szczególnego przypadku oraz opowieści mówiące o wulkanach przy okazji czegoś innego. Więc dobrze, że pojawiło się coś polskiego, skoncentrowanego na temacie bez zbędnych dygresji.

5/6


poniedziałek, 19 grudnia 2022

Chemiczne wieści (27.) - Kosmiczna chemia, amoniak w roztworze

 Dwutlenek siarki w atmosferze egzoplanety 

Pojawia się coraz więcej danych na temat składu atmosfery egzoplanet i tutaj jedna taka ciekawostka. Astronomowie korzystający z obserwacji nowego Teleskopu Webba zauważyli w atmosferze planety WASP-39b o typie Gorącego Jowisza ślady wskazujące na obecność dwutlenku siarki. Zarazem jednak atmosfera tej planety ma charakter redukujący, więc tlenek wyrzucany przez wulkany powinien zostać zredukowany i nie być wykryty. Przedstawiają więc teorię, że tlenek powstaje w atmosferze w wyniku procesów fotochemicznych. W wysokich partiach atmosfery występujący tam też siarkowodór ulega rozbiciu z wytworzeniem rodników siarki. Te reagują z innymi cząsteczkami zabierając z nich tlen i tworząc tlenek siarki.

Byłby to zatem pierwszy przypadek wykrycia dowodów na fotochemiczną modyfikację składu atmosfery planety pozasłonecznej. Dotychczas obserwowano składniki trwałe, które mogły się tam znaleźć z przyczyn geologicznych lub spaść z materią kosmiczną. Czasem takie fotochemiczne modyfikacje są bardzo ważne i dużo mówią o warunkach na planecie - takim składnikiem pojawiającym się w wyniku działania światła jest w przypadku Ziemi ozon, którego warstwa tworzy warunki bardziej sprzyjające życiu.

Ponieważ linie spektralne tlenku siarki są charakterystyczne, może to być niezła wskazówka tego na ile "metaliczna" jest atmosfera takiej planety, czyli ile zawiera cięższych pierwiastków a to już stanowi podpowiedź co do procesów formowania planet.

* https://arxiv.org/abs/2211.10490

Meteoryty żelazne katalizują niebiologiczny cykl Krebsa 

Zagadka powstania życia na ziemi jest wciąż ciekawym tematem dla biochemików. W jakiś sposób w pierwotnej atmosferze Ziemi powstały związki chemiczne, z nich struktury micelarne, a wewnątrz nich układy reakcji chemicznych produkujących substraty do powstawania kolejnych miceli i tak w pewnym momencie cząsteczka polimeryczna zyskała zdolność zapisywania w swojej strukturze informacji wpływającej na rozwój takich struktur. A potem zaczęła działać ewolucja i tak powstało to co dziś znamy jako życie.

Ale jakie to były reakcje? Dlaczego podstawowy cykl oddychania, jaki pomaga dziś organizmom wytwarzać energię, ma takie a nie inne substraty? Proponowanym wyjaśnieniem jest zachodzenie tego cyklu przemian lub jego części w sposób czysto chemiczny. Potem reakcje były przyspieszane przez pomoc białek działających enzymatycznie, aż nieorganiczne reagenty zostały całkiem zastąpione białkami

Tutaj badacze opisują możliwość niebiologicznego przeprowadzenia fragmentu cyklu Krebsa o odwróconym kierunku, w łagodnych warunkach, możliwych do uzyskania w pierwotnych organizmach. Jest o w sumie dość prosta reakcja redukcji kwasu szczawiooctowego w bursztynowy. Czynnikiem redukującym jest wodór, który musiał być obecny w pierwotnej atmosferze Ziemi. Katalizatorem są śladowe ilości platynowców lub nikiel. Oba te pierwiastki zawierają meteoryty żelazowo-niklowe, toteż wykonano test ze sproszkowanym meteorytem - i rzeczywiście, meteoryt był w stanie katalizować tę reakcję. Skoro tak, to możliwe było niebiologiczne powstawanie szeregu substratów do przebiegu cyklu. Jeśli istniały układy katalityczne działające w jedną stronę, to mogły też powstać odwrotne. Wystarczała zaś choćby częściowa reakcja utleniania aby zachodziło uwalnianie energii chemicznej, podtrzymującej procesy.



 


Rodniki borowe produkują amoniak z azotu w roztworze

Produkcja amoniaku to jeden z najważniejszych procesów w technologii chemicznej. Pospolicie występujący w atmosferze Azot jest zamieniany w amoniak, który daje się wykorzystać w takiej formie, lub może został utleniony do azotanów. Sole amonowe oraz azotany to podstawa nawozów sztucznych, materiałów wybuchowych i leków.

Opracowana sto lat temu metoda Habera-Bosha była ogromnym krokiem do przodu, który umożliwił rozwój wydajnego rolnictwa, i wciąż jest to najlepsza metoda do produkcji na bardzo duża skalę. Z drugiej jednak strony zwraca się uwagę na to, że jest metodą ogromnie energożerną i bardzo emisyjną. Znaczący procent ludzkich emisji CO2 pochodzi ze spalania węgla aby zapoczątkować reakcje syntezy. Dlatego szukane są usprawnienia tego procesu, lub procesy zupełnie nowe, pozwalające wytworzyć amoniak w sposób mniej obciążający środowisko. 

Jeden z takich procesów opisuje w najnowszej publikacji zespół chemików z Francji.  

W tej reakcji stosuje się prekursor, chlorek boru podstawionego dwiema stabilizującymi grupami. Reakcja zaczyna się od dodania odpowiednio silnego reduktora jednoelektronowego. Reakcja jest prowadzona w rozpuszczalnikach aprotycznych, może to być eter lub dioksan. Badacze wypróbowali z powodzeniem różne odczynniki redukujące, na przykład metaliczny sód i grafitek potasu. Związek boru traci w tym procesie chlor i tworzy rodnik, z niesparowanym elektronem na borze. Ten związek łączy się z cząsteczką azotu początkowo niezbyt mocnym, wiązaniem pojedynczym. Ładunek niesparowanego elektronu przesuwa się na koniec z azotem. Ten ciekawy rodnik rekombinuje z drugim rodnikiem borowym, który przyłącza się do drugiego końca cząsteczki. Ostatecznie jedna z par elektronowych tworzących między azotami wiązanie potrójne, rozpada się, bo elektrony są przyciągane przez mający deficyt bor. Powstaje interesujące połączenie podobne do skumulowanego allenu B=N=N=B

W tak powstałym połączeniu wiązanie między azotami jest dużo słabsze oraz bardziej podatne na rozerwanie. Zarazem jest to niezbyt stabilna struktura. Reaguje z kolejnymi rodnikami borowymi tworząc strukturę podobną do etenu, z dwiema grupami borkowymi dołączonymi do azotów połączonych wiązaniem pojedynczym, bo na utworzenie dodatkowych dwóch wiązań z rodnikami zużyta została kolejna para elektronowa. W tym momencie wiązanie między azotami jest już bardzo słabe i łatwo dysocjuje, tworząc borki azotu. Po przereagowaniu mieszanina jest zakwaszana jakimś kwasem, na przykład solnym i w tym momencie następuje zwykła protonoliza. Dopiero ten kwas jest dawcą protonów, w całym procesie nie jest potrzebny gazowy wodór jak to było w innych syntezach.

© Wiley-VCH

 

Na koniec w mieszaninie poreakcyjnej zostają sole amonowe, te można oczyścić i użyć do wytworzenia potrzebnych innych soli, lub też zalkalizować do amoniaku gazowego. 

Jak łatwo zauważyć podstawowy problem z wydajnością energetyczną i emisjami wiąże się tutaj z wytworzeniem reduktora, który jest zużywany w nadmiarze, jednak dla sodu i potasu znamy procesy elektrolityczne, które mogą być niskoemisyjne przy niskoemisyjnym źródle. Jednym z testowanych reduktorów był jodek samaru który można regenerować.

* Dr. Nicolas Mézailles et al. Ammonia Synthesis at Room Temperature and Atmospheric Pressure from N2: A Boron-Radical Approach, Angewandte Chemie International Edition, 26, 2022

https://onlinelibrary.wiley.com/doi/10.1002/anie.202209102



piątek, 18 listopada 2022

Chemiczne wieści (26.)

 Sharpless dostał Nobla drugi raz!

Tegoroczny laureat nagrody Nobla z chemii jest bez wątpienia godny ale jednak był trochę zaskakującym wyborem. Dostał nagrodę już drugi raz, poprzednio też za osiągnięcia chemiczne.  



Wcześniej nagrodzono jego prace nad  reakcjami utleniania związków organicznych. Asymetryczna epoksydacja Sharplessa to już klasyka reakcji prowadzących do produktów o kontrolowanej stereochemii. Z pewnością kiedyś ją szerzej opiszę. Nowsze dokonania są trochę mniej znaną dziedziną nazywaną "click chemistry" co jest ciężko sensownie przełożyć. Chodzi o podejście do syntezy oparte o łączenie cząsteczek, zawierających charakterystyczne grupy, które łatwo i wydajnie łączą się ze sobą z duża selektywnością. Po opracowaniu pewnej ilości par "selektywny zatrzask - selektywne wpięcie" stwierdzono, że można w ten sposób łączyć ze sobą niemal dowolne cząsteczki; jedynym warunkiem jest dodanie do nich grup łączących. 

Podejście to miało naśladować procesy zachodzące podczas syntezy związków w organizmach, oraz być przydatne do badania organizmów. Odpowiednio dobierając substraty można tym sposobem wprowadzić do żyjącego organizmu sondę molekularną z odpowiednio dobranym "zastrzaskiem" który będzie się łączył z konkretnym ugrupowaniem występującym w jednym rodzaju tkanek.

Ftalany jednak wywołują mięśniaki
Badacze z amerykańskiego Northwestern Univerity znaleźli bezpośredni związek przyczynowy między obecnością flatanów w otoczeniu a ryzykiem mięśniaków macicy. Dotychczas znane były jedynie statystyczne korelacje zmian narażenia na plastyfikatory takie jak ftalany i zmiany częstości mięśniaków, ale korelacja to jeszcze nie przyczynowość i brakło dowodów, że nie jest to przypadkowe nałożenie się dwóch trendów o tym samym kierunku czasowym. Ftalany, a zwłaszcza badany w tym eksperymencie DEHP, okazują się aktywować  receptor ARH, który reaguje na cząsteczki będące pochodnymi węglowodorów aromatycznych. Służy do szybkiego reagowania  na wzrost stężenia ksenobiotyków. Reguluje on aktywnosć enzymów służących do metabolizmu, jak cytochrom P450.
Wpływa też na eksprecję genów jako czynnik transkrypcyjny. Aktywują go wielopierścieniowe węglowodory aromatyczne jak słynny benzo-a-piren. Może być też aktywowany przez metabolity tryptofanu w szlaku metabolicznym kinureninowym.
I tutaj właśnie działa ftalan. Aktywuje on ten szlak, zwiększając produkcję kinureniny, a ta pobudza receptor ARH.  To zaś zwiększa przeżywalność komórek mięśniaka macicy, jeśli już w tkance pojawią się spontanicznie zalążki guza.  A to promuje ostatecznie wyższą częstość pojawiania się wykrywalnych mięśniaków.

* https://www.pnas.org/doi/10.1073/pnas.2208886119

Rozwikłano szczegóły wpływu jodu na chmury i ozon

Jod z jodków wody morskiej w jakiś sposób dociera do wysokiej stratosfery, gdzie reaguje z ozonem warstwy ozonowej, zmniejszając jego ilość. Przez lata był to drobny, pomijalny efekt, część naturalnej samoregulacji układów chemicznych. Jednak w ostatnich dekadach ilość atmosferycznego jodu wzrosła i obecnie jest trzykrotnie wyższa niż 70 lat temu.
 Dodatkowo, co wykazano stosunkowo niedawno, jod w formie kwasu jodowego może utworzyć jądra nukleacji dla kropelek wody, a więc sprzyja powstawaniu chmur. Nie było jednak pewne  jak właściwie w atmosferze powstaje kwas jodowy, który jest związkiem dość nietrwałym. Zatem poznanie szczegółów jego chemii ma znaczenie, bo odgrywa on dwie ważne role w zjawiskach naturalnych. 

Eksperymenty praktyczne i obliczeniowe przeprowadzono w komorze naśladującej warunki w stratosferze, w ramach prowadzonego przy CERN w Genewie projektu badawczego CLOUD testującego różne hipotezy na temat wpływu różnych czynników na powstawanie chmur i tym samym na klimat. Pierwotnie eksperyment miał testować hipotezę Henrika Svensmarka, że zmiany natężenia promieniowania kosmicznego wpływają na ilość chmur powstających dzięki promieniowaniu niczym w komorze Wilsona, co miałoby w wyraźnym stopniu wpływać na zmiany klimatyczne i dokładać się do procesów zaburzonych już przez człowieka lub je hamować.

Cykl odkryty przez badaczy z University of Colorado zaczyna się od aerozolu jodków unoszącego się znad morza. Tutaj jodek zostaje utleniony w reakcji z przyziemnym ozonem. Na ilość tego ozonu wpływa w ostatnich dekadach smog fotochemiczny, powstający w reakcji utleniania składników spalin - i to jest ten ludzki czynnik wpływu. Powstający pierwiastkowy jod łatwo rozdziela się na rodniki i reaguje z tlenem tworząc najpierw gazowy tlenek IO, potem jego dimer IOIO i w takiej postaci
jako gaz rozchodzi się po atmosferze. W dalszej kolejności reaguje znów z ozonem tworząc ozonek IOI(O)4. Ten jest bardzo nietrwały i reaguje z wodą tworząc kwas jodowy HIO3, kwas podjodowy HIO i tlen singletowy. Kwas jodowy generuje aerozol atmosferyczny i spada później jako śladowa domieszka w deszczu.

Potencjalnie ten efekt może wpłynąć ochładzająco na klimat z powodu promowania powstawania chmur i może się to okazać dotychczas nie uwzględniany w modelowaniach klimatu czynnik. Reagując z ozonem troposferycznym jod powinien zmniejszać jego stężenie, łagodząc szkodliwy wpływ smogu, ale z drugiej strony część uwolnionego gazowego jodu wędruje do stratosfery i niszczy warstwę ozonową, więc ostateczny efekt jest niejednoznaczny.

* https://www.nature.com/articles/s41557-022-01067-z



niedziela, 25 września 2022

Chemiczne wieści (25.)

Witam po przerwie


Prostsza degradacja trwałych zanieczyszczeń

Zanieczyszczenia chemiczne odporne na degradację zwracają w ostatnich latach coraz większą uwagę. Niektóre substancje krążą w biosferze od dawna i jeszcze będą wypływać przez lata. W osadach rzecznych wielu krajów nadal tkwią chlorowane bifenole, wycofane w większości w latach 80. po wykazaniu ich toksyczności i wracają na powierzchnię podczas większych powodzi. 

Jedną taką grupą trwałych zanieczyszczeń są związki perfluorowane, to jest z wszystkimi atomami wodoru zamienionymi na fluor. Fluorowanie węglowodory są stosowane w powłokach wodoodpornych, farbach, materiałach nieprzemakalnych, opakowaniach żywności i materiałach izolacyjnych. Jeden z nich PFOA jest stosowany przy produkcji teflonu i stanowi pozostałość w produktach z teflonem nie przetwarzanym termicznie (przy produkcji patelni jest zgrzewany i zwykle w powłoce jest tego zanieczyszczenia mało) - ale trend jaki widzę w artykułach, aby wszystkie uwolnienia substancji perfluorowanych utożsamiać z produkcją teflonu przez jedną firmę, to nadmierne uproszczenie. 

Kwas perfluoromasłowy

 

Wpływ takich związków na zdrowie jest słabo poznany ale prawdopodobnie są toksyczne dla tarczycy.

Problem z ich uwalnianiem polega na tym, że są bardzo trwałe. Wiązanie węgiel - fluor ma dużą trwałość i nie jest rozbijane przez mikroorganizmy, trudno też je rozerwać przez czynniki fizyczne. Rozpad długich cząsteczek zwykle zaczyna się od wymiany podstawnika przy węglu na inny, wchodzący w różnorodne reakcje. Jeśli cała duża cząsteczka organiczna jest "pokryta" podstawnikami fluorowymi, czynniki środowiskowe nie mają jak jej naruszyć.  W związku z tym substancje takie trwają w środowisku niezmienione przez lata. Z drugiej strony ich usunięcie ze ścieków i odpadów przemysłowych jest trudne bo wymaga agresywnych warunków, które w dużej skali są drogie i niebezpieczne. Dla odpadów suchych i stałych główną metodą unieszkodliwiania jest spalanie, co ze względu na powstający fluorowodór wymaga specjalnej aparatury. Dla odpadów wodnych zawierających niewielką ilość PFAS jest mniej dostępnych technik. Testowane było w ostatnich latach rozwiązanie wykorzystujące wodę w stanie nadkrytycznym do utleniającej degradacji, przy wysokim ciśnieniu i temperaturze 400 stopni.  Zamiast tego gromadzenie odpadów płynnych i stałych z tymi związkami w beczkach i cysternach to nie jest rozwiązanie. Dlatego najnowsze odkrycie, że można je zdegradować do nietoksycznych produktów w dość łagodnych warunkach daje szansę na zmniejszenie uwalniania do środowiska.

Grupa badaczy z USA i Chin skupiła się na związkach perfluorowanych z grupą karboksylową na jednym z końców. Jest to w zasadzie jedyny punkt, w którym cząsteczka może z czymś reagować. Postanowiono wykorzystać znaną już wcześniej reakcję dekarboksylacji w warunkach zasadowych pod wpływem wodorotlenku sodu. Oczekiwano, że dojdzie do odszczepienia grupy -COOH, pozostanie perfluorowany ogon podstawiony grupą alkoholową, z możliwością utleniania i odczepiania węgla po węglu.

Efekty podczas pierwszych prób przeszły jednak oczekiwania. Zaszła szybka degradacja do małocząsteczkowych produktów. Z długiego łańcucha zaczęły nagle odpadać kolejne fluoru a pozbawiony ich ochrony związek utleniał się i rozpadał tworząc produkty z jednym, dwoma i trzeba atomami węgla. Bardzo ciekawe. Właściwie sprzeczne z teorią. Potrzeba było wielu analiz związków pośrednich i obliczeń mechanizmów prowadzących do postawienia i defluoryzacji aby zrozumieć co takiego dzieli cząsteczki od razu na kilka kawałków.

Wydedukowano a potem potwierdzono przez wykrycie związków pośrednich mechanizm który za to odpowiada. W pierwszym etapie następuje normalna dekarboksylacja jak to oczekiwano. Tuż po usunięciu grupy karboksylowej w jej miejscu na chwilę pozostaje ładunek ujemny. Powstaje karboanion organiczny. Chętnie łączy się on z dowolnym protonem jaki tylko znajdzie i w szybkiej reakcji tworzy związek z jednym wodorem zamiast fluoru. Jednak w takich warunkach jak prowadzone i takim rozpuszczalniku karboanion ma większą trwałość. Część cząsteczek zostaje w takiej formie a te które złapały jakiś proton zaraz go tracą z powodu jego kwasowości (równowaga reakcji jest silnie przesunięta). Skoro więc dużo związku pozostaje dłużej w takiej formie, jest czas aby zaszedł proces znany z chemii węglowodorów - ładunek ujemny wędruje po cząsteczce tworząc i zrywając wiązania. Następujące przegrupowanie tworzy wiązania podwójne węgiel - węgiel przez co konieczne jest odrzucenie fluoru. Powstający nienasycony związek nie jest już taki odporny na reakcję. Następuje przyłączenie grupy OH do wiązania podwójnego z powstaniem kolejnego karboanionu. A ten jest stabilizowany przez warunki, zachodzi przegrupowanie, odszczepienie fluoru, powstanie wiązania podwójnego, które reaguje z grupą OH... I tak dalej wiele razy aż łańcuch popęka. Ostatecznie głównymi produktami degradacji jest dwutlenek węgla, szczawiany sodu, jony fluorkowe i fluorooctan sodu. A z ich usunięciem już umiemy sobie radzić.   

Proponowany mechanizm degradacji z suplementów do publikacji

Etapem limitującym szybkość reakcji jest początkowa dekarboksylacja, zachodząca w temperaturze 120 stopni. Startując z pierwszego związku pośredniego z jednym atomem azotu, dalszą degradację da się przyprowadzić w temperaturze 40 stopni. 

Wiązania w benzenie poprawione 

Benzen to jedna z najważniejszych cząsteczek w historii chemii organicznej. Na jego przykładzie rozwiązano kilka ważnych problemów związanych z budową cząsteczek, jego pierścień jest też składową wielu cząsteczek naturalnych lub syntetycznych. Dlatego ważne jest aby znać jego właściwości jak najdokładniej. Ostatnie badania naukowców z Korei Południowej dołożyły jeszcze jedną cegiełkę. Normalny benzen zawiera sześć atomów węgla połączonych z sześcioma atomami wodoru. Wodór jednakowoż występuje naturalnie w odmianach izotopowych, jako prot i deuter, chemicznie identycznych ale różniących się masą i odrobinę właściwościami fizycznymi. Dotychczasowe badania sugerowały, że w obu wersjach długości wiązań C-H i C-D są takie same i tak to przedstawiała literatura. Z drugiej jednak strony, spodziewać się można było jakiegoś jednak efektu izotopowego. W końcu różnica masy jądra między deuterem a protem jest aż dwukrotna, więc równowagowe, średnie położenie takiej masy na końcu oscylującego wiązania powinno być nieco inne.

W nowszym badaniu użyto specjalnej, odpowiednio dostrojonej odmiany analizy widm Ramana, pozwalającej badać właściwości wiązań dzięki obserwacji rozpraszania światła na rotujących cząsteczkach. Dokładność określenia długości wiązań została dzięki temu znacznie poprawiona i udało się znaleźć różnicę między wiązaniami - to z deuterem jest o 11,5 mÅ krótsze niż to z wodorem. Efekt jest bardziej zgodny z obliczeniami kwantowymi niż dotychczas. 


 

Potencjalnie bardziej precyzyjne dane o tym ile wynosi długość tego wiązania w cząsteczkach aromatycznych poprawi jakość symulacji dynamiki molekularnej lub jakość udokładnienia struktury krystalograficznej związków deuterowanych. 

* Mass-Correlated High-Resolution Spectra and the Structure of Benzene, I Heo et al, J. Phys. Chem. Lett., 2022, 13, 8278 (DOI: 10.1021/acs.jpclett.2c02035)