informacje



sobota, 9 lipca 2011

Otrzymywanie kwasu acetylosalicylowego (aspiryny)

To, że robiłem na zajęciach aspirynę, było wynikiem braku czasu. Do końca roku zostały tylko jedne zajęcia, a na nie mi robienie salicylanu etylu. Co prawda estryfikacja nie jest procesem skomplikowanym, ale przepis wymagał czterogodzinnego ogrzewania, destylacji, suszenia, ekstrakcji i znów destylacji, a tego w ciągu sześciu godzin mógłbym nie zdążyć zrobić. Szkoda. Salicylan etylu bardzo ładnie pachnie.
Ale najpierw opowiem o aspirynie:

Historia aspiryny jest przykładem przejścia od tradycyjnej medycyny ludowej do nowoczesnej farmacji, która niejako zawłaszcza sobie te elementy które rzeczywiście mają potwierdzone działanie. Już w starożytności zauważono przeciwgorączkowe i przeciwbólowe działanie gorzkiego naparu otrzymanego z kory wierzby. Składnikiem aktywnym kory wierzbowej jest Salicyna - β-glukozyd składający się z kwasu salicylowego i cząsteczki glukozy. W organizmie następuje rozkład tego związku z wydzieleniem właściwego kwasu salicylowego, i to on decyduje o działaniu naparu.

Kwas salicylowy jest pochodną fenolu, z grupą karboksylową w pozycji orto względem grupy hydroksylowej. Ma postać krystalicznego, białego proszku, słabo rozpuszczalnego w wodzie, ale dosyć dobrze w alkoholu etylowym.
Ma właściwości przeciwbólowe i przeciwgorączkowe, a liczne jego związki, głównie sole i estry, stosowane są w preparatach przeciwbólowych.

Historia tego kwasu i jego pochodnych jest zresztą dość ciekawa W 1763 roku angielski lekarz Edward Stone zaczął szukać dobrego leku na zimnicę, grypę, przeziębienia inne choroby podobne do malarii. Zainteresował się wówczas poglądem, że "podobne leczy podobne", mianowicie iż naturalnymi lekami na choroby miały być rośliny lub minerały przypominające chory organ lub charakterystyczny objaw chorobowy. Niektórzy twierdzili, że to Bóg daje wskazówki co czym leczyć. Wedle tego poglądu afrodyzjakami zapewniającymi dobrą erekcję miały być twarde korzenie, starte rogi zwierząt, a nawet grzyby podłużnego kształtu (Freudyści mają tu używanie). Wedle tej samej zasady dawne zielniki polecały na żółtaczkę zjeść żółty porost lub żółty kwiat.

  Tak więc Stone zaczął szukać leku w pobliżu błot i terenów podmokłych, mających sprzyjać takim chorobom. Gdy spróbował kory wierzby, porastającej bagna, stwierdził że ma gorzki smak, podobny do smaku sprowadzanej z Peru kory chininowej, będącej znanym lekiem na malarię. Zaczął zatem stosować napary i wyciągi z kory i liści, i osiągał u chorych wielkie sukcesy. W liście do Royal Society opisywał, że osiągnął takie same rezultaty co zamorski specyfik, choć nieco słabsze. Wkrótce zaczęto używać kory wierzbowej w charakterze tańszego zamiennika kory peruwiańskiej.
  Gdy w 1820 roku wyizolowano z "kory jezuickiej" - jak też nazywano chininowiec - substancję czynną Chininę, zainteresowano się i jej europejskim odpowiednikiem. W 1826 roku, chemik Anderas Buchner wydzielił z kory wierzby aktywną substancję, którą od łacińskiej nazwy rodzajowej wierzb Salix nazwał Salicyną. W dwa lata później przez hydrolizę tego związku otrzymano kwas, nazwany salicylowym, który zaczęto stosować jako lek o silniejszym działaniu.
Niedługo potem pewien szwajcar odkrył lecznicze właściwości preparatu z wiązówki błotnej, drobnej rośliny zielnej porastającej również tereny podmokłe, zakwitającej latem wiechciem drobnych, białych kwiatków, o silnym, odurzającym aż nieprzyjemnym zapachu - widuję ją na łąkach w pobliżu domu, stąd wiem. Od jej ówczesnej nazwy łacińskiej preparat został przezeń nazwany Siprei.     Dopiero po paru latach zorientowano się, że Spirei i kwas salicylowy to ta sama substancja.
Użyteczność tego związku ograniczały jednak skutki uboczne, przejawiające się głównie w dolegliwościach żołądkowych, wewnętrznych krwawieniach, owrzodzeniach i wymiotach - problemem była też niska wydajność naturalnych źródeł.
  W 1860 roku chemik Hermann Kolbe zajmował się produkcją Indygo - cennego barwnika roślinnego. Zmieszał ze sobą fenol z kawałkiem sodu i po stopieniu potraktował mieszaninę dwutlenkiem węgla. Barwnika oczywiście nie otrzymał, ale badając pozostałości po reakcji stwierdził, że powstała duża ilość kwasu salicylowego.
Reakcja przebiega następująco: sód odszczepia od fenolu wodór tworząc fenolan sodu, w jonie fenolanowym tworzą się dobrze już nam znane struktury mezomeryczne z ładunkami ujemnymi w trzech miejscach; gdy cząsteczka dwutlenku węgla zbliży się do cząsteczki fenolanu sodu, jeden z atomów tlenu jest przyciągany przez kation sodowy; przesunięcie części ładunku na tlen zwiększa cząstkowy ładunek dodatni na węglu, który znajduje się akurat tuż obok fragmentu pierścienia z cząstkowym ładunkiem ujemnym; następuje substytucja elektrofilowa i wytworzenie grupy karboksylowej; po zakwaszeniu otrzymujemy kwas salicylowy


Synteza Kolbego sprawiła, że kwas salicylowy stał się pierwszym lekiem syntetycznym wprowadzonym na rynek. Pod koniec XIX wieku zaczęto jednak zastanawiać się nad stworzeniem leku o bardzo podobnych właściwościach, który nie będzie wywoływał tak przykrych skutków ubocznych, zwrócono wówczas uwagę na kwas acetylosalicylowy.
Już w 1853 roku otrzymano ten związek w reakcji chlorku etylu z salicylanem sodu, a w następnych latach stosowano metodę zadawania salicylanu chlorkiem acetylu. Nowy lek nazwano ASA od skrótu nazwy Acetylated-Salicilic-Acid i sprzedawano jako bezpieczny zamiennik salicylanów. Jednak stosowna metoda miała tą wadę, że przy takiej sobie wydajności dawała produkt zanieczyszczony, dlatego usilnie szukano lepszych sposobów otrzymania tego związku.
Udało się to w 1897 roku chemikom w firmie Bayer (istniejącej do dziś). Ich synteza dawała produkt wysokiej czystości i to przy dużej wydajności - i ten właśnie proces przeprowadzałem na zajęciach.
Nazwę produktu stworzono przez kontaminację "acetylowanego Spirsäure" (jak w języku niemieckim nazywano jeszcze kwas salicylowy) i końcówki "in" częstej w ówczesnych lekach; i tak od Acetyli-Spirei-In - powstała Aspirin (aspiryna).
Buteleczka aspiryny z roku 1899


 Prawa do metody opatentowano w Wielkiej Brytanii i w USA, lecz w tym pierwszym kraju wkrótce patent został zniesiony, więc następne lata Bayer poświęcił na wyrobienie marki, zanim nie wygasną prawa w USA. Ilość produkowanej aspiryny wzrastała stopniowo tak bardzo, że gdy po wybuchu I wojny światowej brytyjskie fabryki prawie cały produkowany fenol zużywały do produkcji materiałów wybuchowych, zaś amerykańskie na produkcję długogrających płyt fonograficznych wynalazku Edisona, Bayer wdał się w niezbyt legalne machinacje mające na celu zabezpieczenie dostaw głównego surowca. Niejacy Henrich Albert - niemiecki ambasador w USA - i Heinrich von Bernstroff, były ambasador, zajęli się więc wykupywaniem nadmiaru fenolu z fabryk Edisona i przesyłaniem do Niemiec. Gdy jednak Albert, śledzony przez agentów Secret Service w związku z działaniami propagandowymi i innymi machinacjami zostawił w pociągu teczkę z dokumentami opisującymi całą akcję, wybuchła afera.
Trzeba pamiętać, że było to zaledwie kilka miesięcy po zatopieniu przez niemiecki okręt podwodny, amerykańskiego statku pasażerskiego Lusitania. Wprawdzie neutralne Stany nie wytoczyły Niemcom wojny, ale stosunki między państwami pozostawały nieprzyjazne, zaś na same Niemcy nałożono blokadę, mającą zatrzymywać wszelkie materiały mogące posłużyć do celów militarnych - a z fenolu można zrobić materiały wybuchowe.
Gdy Wielki Spisek Fenolowy z 1915 roku został ujawniony, ambasador próbował tłumaczyć, że sprzedawał fenol wyłącznie dla celów medycznych. W każdym razie gdy dostawy fenolu zostały wstrzymane, firma musiała zmniejszyć wielkość produkcji. Na dobrą sprawę wizerunek dobrego leku Aspiryna odzyskała dopiero po epidemii Hiszpanki w 1918 roku, gdy była sprzedawana jako skuteczny lek. Od tego czasu aż do dziś jest najpopularniejszym lekiem przeciwgorączkowym i przeciwbólowym.

Aspiryna należy do grupy niesteroidowych leków przeciwzapalnych, stanowiących dość szczególna grupę, gdyż mając właściwości przeciwbólowe nie wykazują własności narkotycznych (dr. House by się od nich nie uzależnił). Do tej grupy należy również Ibuprofen i Naproksen.
Działanie tych leków polega między innymi na hamowaniu (inhibicji) działania enzymów potrzebnych do wytworzenia prostaglandyn i tromboksanu. Działanie to następuje zresztą na skutek ciekawego mechanizmu, gdyż kwas acetylosalicylowy ulegając rozpadowi acetyluje resztę aminokwasu Seryny obecnej w centrach aktywnych wspomnianych enzymów, trwale zmieniając ich strukturę. Inne leki z tej grupy inhibitują enzymy tylko przejściowo.
Prostaglandyny są hormonami wywołującymi między innymi objawy stanu zapalnego, tak więc hamowanie ich wytwarzania zatrzymuje rozwijający się stan zapalny. Jedna z nich, prostaglandyna E2, odpowiada za termoregulacje, stąd zmiana jej wydzielania obniża gorączkę. Tromboksany natomiast odpowiadają za zlepianie się płytek krwi, a efekcie małe dawki leku mogą mieć działanie przeciwzakrzepowe, zmniejszając ryzyko zawałów serca i udarów niedokrwiennych. Farmakolog John Vane, który odkrył ten mechanizm, dostał w 1982 roku Nagrodę Nobla z medycyny.
Głównym metabolitem aspiryny jest kwas salicylowy, który również ma właściwości przeciwzapalne i przeciwbólowe.
Zbyt duża ilość aspiryny jest jednak niebezpieczna, prowadzi do takich objawów jak wymioty, biegunki, szumy uszne, a przy dużych dawkach rzędu 6-10 gramów również zagrażająca życiu kwasica metaboliczna. Znacznie częstszym objawem niepożądanym jest jednak nadwrażliwość na salicylany. Jest to rodzaj nietolerancji polegającej jednak na reakcji farmakologicznej, nie zaś na uczuleniu. Spektrum objawów jest tu dosyć szerokie, od pokrzywek i wysypek, rozstrój żołądkowy, objawy astmy, bóle głowy, obrzęki, zapalenie zatok, aż po depresje, apatie i nadpobudliwość. Objawy wywołują salicylany w każdej postaci, a więc zarówno syntetyczne leki jak i naturalne zioła proponowane niekiedy jako nieszkodliwa alternatywa, a nawet żywność je zawierająca, głównie owoce leśne i niektóre warzywa.

A teraz, po przydługim wstępie, przystąpię do właściwej części niniejszej notki.

Acetylowanie kwasu salicylowego polega na reakcji z bezwodnikiem octowym. Bezwodnik stanowi właściwie dwie grupy acetylowe, połączone atomem tlenu. Z wodą tworzy kwas octowy. Ma postać bezbarwnej cieczy o słabym zapachu octu. Mechanizm reakcji jest dosyć specyficzny: dodany kwas siarkowy protonuje tlen grupy karbonylowej w bezwodniku, tworząc grupę -OH, zaś na połączonym z nią, teraz trójwiązalnym węglu pojawia się ładunek dodatni, nadający mu właściwości elektrofilowe. Następuje zatem atak na tlen grupy hydroksylowej kwasu salicylowego, połączony z odszczepieniem protonu i grupy octanowej. Kwas octowy jest w tej reakcji jedynym produktem ubocznym, mającym zresztą zastosowanie w innych procesach. Powstający związek jest właściwie fenoestrem. Jak się okazuje może też występować w formie cyklicznej [1]




A zatem:
Do kolbki stożkowej wsypałem odmierzoną wedle przepisu[2] ilość kwasu salicylowego, mającego postać lekkiego, proszku składającego się z krystalicznych igiełek i przypominającego trochę sztuczny śnieg:


Kwas salicylowy
Do kolbki wlałem bezwodnik octowy i kilka kropli stężonego kwasu siarkowego. Całość zanurzyłem w łaźni wodnej i mieszając termometrem podgrzewałem, starając się utrzymać temperaturę około 60 stopni:



Podgrzewanie
Po tym czasie całość ochłodziłem i zadałem dużą ilością zimnej wody dla rozłożenia resztek bezwodnika. Wytrącił się grubokrystaliczny osad pachnący octem. Po przesączeniu na lejku Buchnera, osad rozpuściłem w gorącym rektyfikacie, po czym roztwór wylałem na dużą ilość gorącej wody. Kolbkę ostawiłem na parapet aby się ochłodziła. Po pewnym czasie wytrącił się biały osad drobnych, połyskliwych igiełek. Po odsączeniu i wysuszeniu otrzymałem czysty, bezwonny kwas acetylosalicylowy:

Gotowy kwas
Wydajność była całkiem przyzwoita, w moim przypadku wyniosła 67%

Ps.
Co do aspiryny mogę dodać jeszcze jedną rzecz - co się dzieje w przeterminowanym leku? Natykam się czasem na głosy ludzi którzy zażyli aspirynę i zorientowali się, że jest już po terminie a teraz boją się że to im zaszkodzi. Kwas acetylosalicylowy jest jak się rzekło estrem, związki takie dosyć łatwo ulegają hydrolizie, zwłaszcza w kwaśnym środowisku i w obecności wilgoci. Jest to jednak związek na tyle nie skomplikowany, że gdy już się rozłoży, to na niewielką liczbę nie szkodliwych związków. Ściślej zaś powstanie kwas salicylowy i octowy.
Parę miesięcy temu jednym z ćwiczeń na chromatografii była analiza przeterminowanej aspiryny, i występowały tam tylko te dwa związki. Że zaś nie są one trujące, to i zażycie takiej tabletki nam nie zaszkodzi, a co najwyżej może nie zadziałać. Ponieważ jednak jak to opisałem, kwas salicylowy mocniej podrażnia żołądek, osoby które już źle reagują na salicylany mogą się spodziewać, że stara tabletka da mocniejsze objawy podrażnienia. I to właściwie chyba jedyne niebezpieczeństwo w tym przypadku, choć oczywiście na przeterminowane i źle przechowywane leki trzeba zawsze uważać. Ziół to się też tyczy.
----
Źródła:
[1]  http://fpjoc.blogspot.com/2014/03/15-kwas-acetosalicylowy-niespodzianka.html
[2] - W. Mąkosza, "Preparatyka organiczna",
* http://en.wikipedia.org/wiki/Aspirin
* http://en.wikipedia.org/wiki/Salicylic_acid
* http://en.wikipedia.org/wiki/History_of_aspirin
* http://en.wikipedia.org/wiki/Doctrine_of_signatures
* http://en.wikipedia.org/wiki/Great_Phenol_Plot
* http://en.wikipedia.org/wiki/Mechanism_of_action_of_aspirin
* http://en.wikipedia.org/wiki/Aspirin_poisoning
* http://en.wikipedia.org/wiki/Salicylate_sensitivity
zdjęcia moje

piątek, 1 lipca 2011

Ach te praktyki!

W ramach obrazków z życia studenta:

Znalezienie dobrego miejsca na praktyki studenckie, nie jest taką prostą sprawą. Pierwsze koncepcje chodziły mi po głowie już w lutym, gdy zobaczyłem w telewizji krótki reportarz, w którym Laboratorium Ochrony Środowiska w Warszawie chwaliło się, jakie to nowoczesne sprzęty mają. Tam to by było fajnie praktykować. No i trochę Warszawy by się zobaczyło, tak sobie myślałem. A może labotatorium kryminalistyczne policji? Albo jakiś wielki zakład przemysłowy? Albo też... I tak sobie myślałem i myślałem, a tu i marzec i kwieceń minął, a nawet maj doszedł do połowy, ja zaś jakoś nie mogłem się zmobilizować do przedsięwzięcia stosownych kroków.
Lenistwo jest niestety moją piętą Achillesową, moim hamulcem i kamulcem zawadzającym drogę do sukcesów. Stąd między innymi nie jestem zbytnio dobrym studentem, raczej trójkowym niż piątkowym, choć wszyscy mi mówią, że jakiś potencjał mam.
Tak więc czas mijał, a ja jakoś nieskoro brałem się za szukanie miejsca na praktyki. Obudziła mnie dopiero wiadomość, że kilka osób z roku dostało się na praktyki w zamarzonym laboratorium, i że już nie ma tam miejsca. Wyszukałem więc listę kilkunastu laboratoriów i albo wysyłałem e-maile z zapytaniem o możliwość odbywania praktyk, albo dzwoniłem, ale owo szukanie jakoś tak przeciągnęło mi się w czasie. W Polfie miejsca były już pozajmowane podobnie jak w laboratoriach PLL Lot, w Chempanie mają przeprowadzkę laboratoriów, w Miejskim Laboratorium Chemicznym studentów z drugiego roku nie przyjmują, podobnie w Centrum Badań i Certyfikacji. Tak więc lista stopniowo mi się skracała.
A może w Białej? W końcu tu mieszkam. Wybór może niewielki, ale zawsze to blisko. Przeznaczyłem więc najbliższy wolny dzień na obejście odpowiednich placówek. W Sanepidzie przyjęto mnie miło, i powiedziano, że niestety studentów na drugim roku nie przyjmują, bo "więcej z takimi kłopotu niż pożytku". W Szpitalu Wojewódzkim najbliższy wolny termin wypadał na październik. Laboratoria medyczne, apteczne i wodociągowe w ten dzień nie pracowały. Tak zastał mnie koniec czerwca.
"Gotow jestem pójść gdziekolwiek" - powiedziałem sobie, i obdzwaniałem kogo się dało, z takim samym mizernym rezultatem. Gdyby dalej tak poszło, a ja nie znalazł bym miejsca przed sezonem urlopowym na uczelni, mógłbym ich nie zaliczyć, a w efekcie nie zaliczył bym semestru. przypomniałem sobie jednak jeszcze coś. Gdy obdzwaniałem wszelkie możliwe instytucje, w pewnym laboratorium w Siedlcach usłyszałem, że mają wolne terminy we wrześniu. Niezbyt mi taki termin pasował, bo we wrześniu będę miał jeszcze poprawkowe zaliczenia, ale lepszy rydz niż nic. Tu, ku mojemu dziwieniu, okazało się, że mogą mnie przyjąć i to na sierpień. Szybciutko pośpieszyłem do zakładu (ale nie od razu, bo ulica Starzyńskiego pomyliła mi się z Sierżyńskiego, i niepotrzebnie przewędrowałem pół miasta), uzgodniłem termin, i dałem do podpisu zezwolenie na praktyki.
W tym momencie uruchomiła się papierologia. Zezwolenie należało zanieść do profesora zajmującego się praktykami. Ten w zamian dał mi dwa inne papiery do wypełnienia i zaniesienia do dziekanatu. Niestety o tej godzinie dziekanat był zamknięty, dlatego dziś przyjechałem do Siedlec aby je złożyć. Najpierw poczekałem do otwarcia dziekanatu gdzie okazało się, że papiery są źle wypełnione (pomylone ulice!), trzeba było więc zaczekać na profesora od spraw praktyk i poprosić o następne, potem należało poczekać aż podpis złoży pani dziekan i pójść do zakładu aby przyjmujący mnie podpisał papiery. I niestety na miejscu okazało się, że tego pana dzisiaj nie ma. Będzie w poniedziałek.
Tak więc będzie jeszcze trochę latania. W każdym razie sądzę że Laboratorium Ochrony Środowiska Pracy w Siedlcach, to całkiem przyzwoite miejsce na praktyki. Jeśli jakaś analiza będzie ciekawa, a kierownik laboratorium się zgodzi, sfotografuję jej przebieg i umieszczę odpowiednią notkę na blogu.

-------
Ps. Ponieważ tematyka bloga jest określona dość wąsko, a moje zainteresowania są znacznie szersze, założyłem drugiego, służącego wpisywaniu rozmaitych luźnych ciekawostek. Mam nadzieję, że będzie równie ciekawy. Jego nazwa to Biblia curiosa

środa, 8 czerwca 2011

Co to jest Anion?

...bo mam wrażenie, że niektórzy nie wiedzą:

Anion to ujemna cząsteczka atomowa budująca atom powietrza, która może być znaleziona wszędzie w naturze, w mniejszych lub większych ilościach.

W normalnej sytuacji, molekuły powietrza są neutralne. W pewnych okolicznościach te neutralne cząstki stają się naładowane ujemnie. Staje się to wtedy, gdy neutralne cząstki zetkną się z takimi źródłami jonizacji jak: promienie UV, promieniowanie mikrocząsteczkowe czy uderzenie pioruna. Molekuła powietrza może utracić pewną liczbę elektronów, które wirując otaczają jądro atomowe. Te tzw. wolne elektrony są naładowane ujemnie i mogą łączyć się z innymi molekułami powietrza tworząc z nimi nowe aniony. [1]
Wygląda na to, że ktoś tu nie uważał zarówno na Chemii jak i na Polskim. A skąd biorą się dobroczynne aniony? Ano stąd:

Skąd brać jony?

Życie w mieście zaburza właściwe proporcje jonów ujemnych i dodatnich. Najgorsze, że proces tworzenia i zanikania jonów ujemnych jest ciągły i szybki. Najlepszymi naturalnymi generatorami "pozytywnej energii" są:

* promieniowanie kosmiczne,
* promieniowanie ultrafioletowe,
* promieniowanie radioaktywne pierwiastków i substancji ze skorupy ziemskiej.

Szczególnie intensywnie powietrze jonizuje się podczas deszczu, śniegu, a także podczas procesu oszraniania drzew[2]
No tak, czyli promieniowanie radioaktywne jest bardzo zdrowe, bo wytwarza jony ujemne.
A na wszystko dobry jest turmalin, bo :
Turmalin jest minerałem rzadkim, mającym szczególną sposobność emicji długich fal podczerwonych, jak równierz jonów ujemnych, ponadto potrafi emitować lekkie pole magnetyczne [3]
Nie bardzo rozumiem tej całej historii, ze złymi kationami i cudownymi minerałami.
Turmalin ma właściwości piroelektryczne - ogrzany elektryzuje się, ale w ten sposób, że na jednej połowie kryształu gromadzi się ładunek dodatni a na drugiej ujemny, więc mata turmalinowa, czy lokówka, czy pościel nie będzie się elektryzowała ujemnie, bo przeciwne ładunki małych kawałków minerału będą się nosiły, zwłaszcza przy obecności wilgoci, więc od podpasek z turmalinem się jakoś specjalnie nie odjonizujemy.
Jonów turmalin nie wydziela, bo są dobrze związane w jego sieci krystalicznej. Podczerwień to promieniowanie cieplne, zatem minerał wytwarza tylko taką, jaka odpowiada jego temperaturze. Daleką podczerwień emituje też ludzkie ciało, nagrzany parapet, obudowa dłużej działającego komputera i cokolwiek innego. Co to zaś jest "lekkie pole magnetycznie" nie mam pojęcia.

Jeszcze ciekawiej rzecz wygląda z bursztynem. Każdy wie, że bursztyn, pocierany na przykład o ubranie, elektryzuje się ujemnie, jednak ładunek ten nie powstaje z niczego. Podczas pocierania, gdy kolejne nierówności materiału stykają się i odrywają od powierzchni żywicy, elektrony z materiału przeskakują na bursztyn, a w związku z tym, że nie jest on dobrym przewodnikiem, pozostają tam gdzie się zgromadziły, jako statyczny ładunek. Jednak skoro elektrony przeskoczyły na bursztyn, to pocierany materiał musiał naładować się dodatnio. A zatem korale bursztynowe co prawda same ładują się ujemnie, ale szyja zostaje naelektryzowana dodatnio - a zatem, jak przekonują nas producenci takich rzeczy, szkodliwie. Przypomina to trochę te opaski na rękę, które zawierają w sobie dokładnie 1000 jonów ujemnych, a zatem - drogą indukcji - ręka powinna elektryzować się dodatnio.

Więc co to jest Anion?
Anion to atom lub cząsteczka, obdarzony ładunkiem ujemnym. Zwykły atom jest cząstką elektrycznie obojętną - ujemny ładunek elektronów jest równoważony przez dodatni protonów. Dlatego odjęcie elektronu nada mu ładunek dodatni, a dostarczenie ładunek ujemny. Anionami są jony halogenków, jony reszt kwasowych i niemetali. To jaki dany anion ma wpływ na zdrowie, zależy jednak nie tyle od ładunku, tylko od tego czego jest to jon.
Bo anionem jest też jon cyjankowy, a ten do szczególnie zdrowotwórczych nie należy...

Edit:
Znalazłem jeszcze coś takiego:

Anion – atom cząsteczki powietrza o ładunku ujemnym.

Aniony powstają w przyrodzie z molekuł powietrza oddzielających się od światła słonecznego, dalekich promieni IR oraz ruszającego się powietrza i wody.


-----
[1] http://www.biointimo.hu/pl/anion/mi-az-anion
[2] http://www.poradynazdrowie.pl/jony-ujemne.html
[3] http://lifecare.pl/pl/turmalin.swf

niedziela, 5 czerwca 2011

Synteza dwuetapowa II : otrzymywanie 1,3,5-tribromobenzenu

Tak więc otrzymałem już 2,4,6-trobromoanilinę, będąca tylko półproduktem, teraz zaś opowiem wam jak otrzymałem produkt finalny.


Tak więc 2,4,6-tribromoanilina ma być zamieniona w 1,3,5-tribromobenzen, który widzicie na obrazku obok. Podstawniki bromkowe ustawione są względem siebie w pozycji meta, niejako na wierzchołkach trójkąta równobocznego.
Tutaj trzeba wyjaśnić rzecz, która mniej obeznanych w Chemii - a zapewne i tacy tu zaglądają - może wprowadzać w błąd, mianowicie numeracja.
Wprowadza się ją dla określenia położenia podstawników względem siebie, tak aby na podstawie samej nazwy można było określić strukturę związku. W tym przypadku atomy bromu, którym wcześniej przypisywaliśmy numerację 2,4,6 w nowym związku są ponumerowane 1,3,5, co jednak nie oznacza że się przesunęły. Ich położenie zarówno względem siebie jak i węgli pierścienia pozostaje takie same, po prostu w pochodnej aniliny grupa aminowa była tą najważniejszą i to od niej zaczynaliśmy numerację; w pochodnej benzenowej numerację zaczynamy od dowolnego atomu bromu - są przecież równocenne - stąd inne cyfry.

No dobrze - zapyta ktoś - ale po co otrzymywać pochodną benzenową przez anilinę, którą trzeba poddawać przynajmniej dwom reakcjom, zamiast przeprowadzić od razu bromowanie benzenu?
No rzeczywiście, moglibyśmy zbromować benzen, i zapewne dałoby się otrzymać tripochodną, problem natomiast tkwi w tym, jaką pochodną byśmy otrzymali. Możliwe są trzy sposoby w jakie trzy bromy mogą się względem siebie rozłożyć na sześcioczłonowym benzenie - 1,3,5; 1,2,4 i 1,2,3. Co więcej, nie jest wcale takie pewne, czy reakcja zatrzyma się nam na pochodnej trzykrotnie podstawionej.
Aby zbromować benzen należy potraktować go Bromem w obecności chlorku żelaza (III) jako katalizatora. Jest to reakcja substytucji elektrofilowej. Gdy bromowałem anilinę nie było potrzeby dodawania jakiś specjalnych katalizatorów, aby z obojętnej cząsteczki Br2 uzyskać elektrofil, wystarczyła bowiem słaba polaryzacja jaką wzbudzał w niej ładunek zaktywowanego pierścienia, aby na jednym z atomów pojawił się ładunek dodatni, przez co chętnie przyłączał się do aktywnych nukleofilowo miejsc w pierścieniu. Benzen natomiast, pozbawiony podstawników, nie jest tak aktywny, dlatego trzeba stosować dodatki, zwiększające ładunek na atomie bromu.
Chlorek żelaza FeCl3 jest słabym kwasem Lewisa, może więc tworzyć kompleks z bromem. W reakcji z cząsteczką bromu, po przyłączeniu jednego z bromów do jonu kompleksowego, drugi tworzy nietrwały addukt: FeCl3Br.....Br+. Ładunek dodatni jest tu silniejszy. Właściwie jest to jakby kation bromowy. Będąc silnym elektrofilem może podłączyć się do pierścienia, tworząc monopochodną.
Dopiero teraz zaczyna się robić ciekawie. Podstawnik Br- ma trzy wolne pary elektronowe, które mogą przechodzić na pierścień wskutek efektu mezomerycznego. Jego działanie na pierścień jest takie samo jak w przypadku choćby fenolu, dlatego jako że już podawałem tu rysunki takich struktur dla aniliny i dla fenolu nie widzę potrzeby tworzenia ich również w tym przypadku. Następne atomy bromu będą się więc podstawiały w pozycjach orto i para względem pierwszego podstawionego, choć z powodu jego dużej elektroujemności przyciągającej bliżej ładunek, najbardziej prawdopodobne będą obie pozycje orto, zatem otrzymamy 1,2,3-tribromobenzen. Dalej prowadzone bromowanie da nam ostatecznie heksapochodną, natomiast produktu o podstawnikach ułożonych tak jak na obrazku, w ten sposób nie otrzymamy.

Chemik czasem musi iść w swych syntezach drogami, które zdają się bardzo okrężne, a jednak często są to jedyne możliwe sposoby otrzymania dokładnie tego co sobie zamierzył.

Tak więc otrzymałem taką pochodną aniliny, w jakiej podstawniki ułożone są we właściwym porządku - teraz należałoby zrobić coś z grupą aminową. W jaki sposób?
Najlepszy sposób na pozbycie się tej grupy, to jej przekształcenie w sól diazoniową a następnie jej rozkład.

Sole diazoniowe to związki, w których cząstka organiczna połączona jest z grupą składającą się z dwóch atomów azotu, połączonych wiązaniem potrójnym. Ponieważ jeden z tych atomów jest jeszcze połączony z cząsteczką organiczną, a ma trzeci stopień utlenienia, to na grupie pojawia się ładunek dodatni, zwykle równoważony jakimś anionem - dlatego są to faktycznie sole jonowe
Są to związki dość nietrwałe - o ile sole arenodiazoniowe można jeszcze wydzielić w stanie czystym i przechowywać w niskich temperaturach, o tyle alkilowe bardzo szybko się rozkładają, wręcz wybuchowo. Szukając informacji do tej notki natknąłem się na opis wypadku w fabryce, gdzie robotnika zabił wybuch kubła farby, wywołany gwałtownym rozkładem bromku 2,4,6-tribromofenylodiazoniowego, jaki zgromadził się w pozostawionym na dłuższy czas naczyniu[2]. Informacja ta bardzo mnie zaciekawiła, bo taki właśnie związek otrzymałem pośrednio w trakcie syntezy. Są to związki bardzo ważne w syntezie organicznej, bo grupa diazoniowa łatwo ulega wymienieniu na wiele innych podstawników, i to w warunkach znacznie mniej agresywnych niż normalnie, z dużą selektywnością.

Samo otrzymywanie soli diazoniowych jest względnie proste - wystarczy dodać do aminy kwas azotowy (III). Jako że sam kwas azotawy (wg. starej nomenklatury) jest bardzo nietrwały, otrzymuje się go in situ poprzez zakwaszenie mocnym kwasem azotanu III sodu. Reakcję powinno się przeprowadzać w niskich temperaturach, aby zapobiec rozkładowi soli, jednak w tym przypadku rozkład był tym, na czym mi zależało. Bo gdy rozkłada się grupa diazoniowa, powstała w miejscu aminowej, powstaje wolny azot i pozbawiona podstawnika cząsteczka organiczna - na przykład nasz produkt, wedle wzoru:

Usuwanie grupy aminowej
I tak powstaje tribromobenzen. A jak się mi to robiło?

Do kolbki dwuszyjnej wlałem produkt z poprzedniego etapu rozpuszczony w rektyfikacie, dolałem odpowiednią ilość kwasu siarkowego i ustawiłem na łaźni wodnej. Do górnego wylotu kolby podłączyłem chłodnicę zwrotną, boczny wylot tymczasowo zatkałem szklanym korkiem. Moja aparatura wyglądała tak (na zdjęciu kolba jest w koszyczku grzejnym, ale potem zamieniłem go na łaźnię, bo się za bardzo grzał)


Aparatura
Podgrzałem zawartość do wrzenia i ostrożnie, małymi porcjami, dodawałem odmierzoną ilość azotynu sodu. Mieszanina burzyła się intensywnie a nawet pryskała, pod wpływem wydzielającego się azotu (nauczyciel opowiadał nem, że mieszanina parokrotnie już wytrysnęła przez wylot chłodnicy, skazując studenta na mycie całego wyciągu)

Burzy się
Po pewnym czasie, gdy zawartość przestała się burzyć, a cały azotan został już dodany, ochłodziłem kolbę i wylałem mieszaninę na dużą ilość wody. Następnie przesączyłem przez lejek Buchnera, otrzymując intensywnie pomarańczowy, igiełkowaty proszek, o miłym zapachu:


1,3,5-Tribromobenzen
Ostateczna wydajność okazała się bardzo dobra. Miałem otrzymać 1 gram, a po dodatkowym oczyszczeniu przez krystalizację z rektyfikatu, uzyskałem dokładnie tyle czystego związku.

Ponieważ zaliczyłem pewne zaległe kolokwia, w najbliższym czasie zrobię zaległe preparaty, ale opisy tych syntez pojawią się już w wakacje, po sesji.

-----
Źródła:
[1]
Vogel Arthur Israel, Preparatyka organiczna, WNT 1984,
[2] http://www.crhf.org.uk/incident12.html