informacje



Pokazywanie postów oznaczonych etykietą leki. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą leki. Pokaż wszystkie posty

czwartek, 21 grudnia 2017

Poison Story (10.) - Chińskie ziółka

Zioła były stosowane w dawnej medycynie od tysiącleci. W czasach gdy nie znane były jeszcze leki syntetyczne, substancje roślinne i mineralne pozostawały jedyną możliwością leczenia wielu chorób. Także i dziś zioła mogą nadal być przydatne przy wspieraniu terapii. Jednak z ich użyciem wiąże się pewna charakterystyczna sprawa - otóż częste jest przekonanie o ich zupełnej nieszkodliwości, w związku z czym można je spożywać bez obaw o skutki uboczne. O nieprawdziwości tego poglądu przekonały się na własnym ciele pacjentki pewnej kliniki odchudzającej.

W 1992 roku pewna belgijska klinika na obrzeżach Brukseli, specjalizująca się w leczeniu otyłości, postanowiła poszerzyć swoją ofertę o środki bardziej egzotyczne i w oferowanej kuracji zaczęła stosować mieszankę chińskich ziół, którym tradycja przypisywała wspomaganie odchudzania. Po kilku miesiącach u pacjentek zaczęły się jednak pojawiać niepokojące objawy niewydolności nerek. U części doszło do niebezpiecznych dla życia martwic i zwłóknienia, potrzebne były przeszczepy. Szybko powiązano choroby nerek ze stosowaniem ziół, co jednak sprawiało ten problem, że składniki sprowadzanej mieszanki, a więc liść magnolii i ziele stefanii (Stephania tetrandra) nie były toksyczne dla nerek. Zatem powodem musiał być jakiś dodatkowy czynnik chorobotwórczy.
Tymczasem liczba chorych wzrastała i były to też osoby spoza pacjentów kliniki, które używały tej samej mieszanki. Na podstawie powtarzalności objawów uknuto termin medyczny "nefropatia chińskich ziół". Dopiero wraz z rozwojem technik analitycznych udało się w 1994 roku zidentyfikować w stosowanym preparacie prawdopodobną substancję toksyczną - był to kwas arystolochowy, występujący obficie w roślinach z rodzaju Kokornak. Spośród których kilka gatunków jest używanych w tradycyjnej medycynie chińskiej...
Kwas arystolochowy to pochodna fenantrenu. Już w latach 80. gdy badano jego właściwości, stwierdzono w doświadczeniach na szczurach, że powoduje uszkodzenia nerek i ma działanie rakotwórcze.[1]
W późniejszym śledztwie wyszło na jaw, że pojawienie się go w mieszance było prawdopodobnie wynikiem pomyłki. Chińska nazwa suszu stefanii to Han Fang Ji, gatunek kokornaka Aristolochia fangchii używany w innych schorzeniach to Guang Fang Ji. Zamówienie z Belgii podawało nazwę mało precyzyjnie jako Fang Ji. W tej sytuacji nie trudno o pomyłkę.

Kokornaki to rośliny zielne, lub drewniejące, zazwyczaj pnącza lub krzewinki o sercowatych liściach i rurkowatych kwiatach, niekiedy pułapkowych. Wiele gatunków jest uprawianych jako rośliny ozdobne i okrywowe. W Europie naturalnie rośnie kilka gatunków, spośród których najpospolitszy jest rosnący też w Polsce kokornak powojnikowy (Aristolocha clematitis).
W dawnej medycynie europejskiej kokornak był stosowany jako lek na schorzenia wątroby, przy żółtaczce, jako środek poronny lub przyspieszający poród, czy wewnętrznie na rany.[2] W tradycyjnej medycynie chińskiej wykorzystywanych jest kilkadziesiąt gatunków, zwykle były używane przy zapaleniu stawów i obrzękach, niektóre gatunki jako środki przeciwpasożytnicze. Pewien gatunek jest uważany za środek do odstraszania węży, w związku ze specyficznym, nieprzyjemnym zapachem wielu kokornaków.

W związku z tym odnotowane zatrucia w Belgii, których do 1994 roku doliczono się 105, wydają się być zaskakujące - jeśli od starożytności ziół tych używano w Chinach i Europie, to czemu wcześniej nie spostrzeżono ich toksycznego działania? Przyczyną jest zapewne czas stosowania - w dawnych zastosowaniach kokornaki były używane doraźnie, przez krótki czas. W tym przypadku ziołowy suplement na odchudzanie był zażywany regularnie przez kilka miesięcy, przez co objawy pojawiły się na tyle szybko, że można było je powiązać z użyciem suplementu.
Wyglądałoby zatem na to, że spożycie sporadyczne nie powinno być niebezpieczne.

 Wiele badań wskazuje też na bardzo silne działanie rakotwórcze kokornaków. W jednej z prac [3] opisano wyniki badań nerek i moczowodów usuniętych w związku z martwicą wywołaną kwasem aristolocholowym. Na 39 pacjentów u połowy w usuniętych nerkach stwierdzono ogniska nowotworów, u pozostałych pojawiały się dysplazje nabłonka będące stanem przedrakowym; żadnych zmian nie miały tylko dwie osoby.
Kwas arystolochowy ze względu na budowę, a jest płaską cząsteczką aromatyczną, ma skłonność do tworzenia interkalacji z DNA. Wpasowuje się pomiędzy płaskie cząsteczki zasad purynowych w nici kwasów nukleinowych i zaburza ekspresję genów. Podczas podziałów komórkowych generuje też punktowe mutacje związane z nieprawidłowym odczytem kodu. Wśród z genów które ze względu na położenie w chromosomach są przezeń blokowane częściej, jest też TP53, odpowiedzialny za wytwarzanie białka hamującego nowotworzenie. Mutacje w tym genie zostały uznane za najbardziej charakterystyczny skutek działania kwasu aristolocholowego. Ponieważ toksyna jest szybko wydalana przez nerki i zagęszcza się w moczu, zmiany mutagenne dotyczą najczęściej komórek nerek i nabłonka przewodów moczowych.
Połączenia DNA-AA (aristocholic acid) są bardzo trwałe, udawało się je znaleźć w komórkach nerek pacjentów z nowotworami, którzy zażywali kokornak kilkanaście lat wcześniej.

Gdy pojawiły się publikacje łączące charakterystyczne uszkodzenia nerek z narażeniem na kwas arystolochowy, zauważono podobieństwo objawów do znanej już od dawna Endemicznej nefropatii bałkańskiej. Chorobę opisano po raz pierwszy w latach 20. jako specyficzną dla pewnych społeczności w dolinie Dunaju i dopływów, na terenach obecnej Chorwacji, Bośni, Serbii, Rumunii i Bułgarii. Szczególnie dużo przypadków występowało w okolicach miasta Wraca.
Choroba rozwijała się wolno, występowała tylko u dorosłych w wielu 30-60 lat. Późniejsze badania u emigrantów którzy wyjechali z regionu endemicznego pokazały, że warunkiem zachorowania jest przybywanie w tamtej okolicy przez minimum 20 lat. Choroba przybierała postać przewlekłego, śródmiąższowego zapalenia nerek i stopniowo doprowadzała do zwłóknienia i martwicy, wymagających usunięcia narządu i dializowania lub przeszczepów. W sytuacji raczej kiepskiej opieki medycznej na tamtych terenach często nefropatia doprowadzała do przedwczesnych zgonów.
W średnio 50% przypadków nefropatii towarzyszyły nowotwory, głównie rak nabłonkowy nerek i przewodu moczowego. Szacuje się, że nawet w naszych latach symptomy o różnym nasileniu posiada co najmniej 25 tysięcy osób.

Przez długi czas podawano różne możliwe przyczyny endemicznego występowania tej choroby. Występowała wyraźnie rodzinnie ale nie była wprost dziedziczna. Pojawiała się u osób z innych rejonów, które mieszkały w regionie endemicznym dostatecznie długo; pojawiała się u mieszkańców rejonu endemicznego którzy przeprowadzili się w inne miejsce. Obszar występowania bałkańskiej nefropatii od kilku dekad pozostaje taki sam - nie pojawiły się nowe ogniska, ani nie zaniknęły stare. Próbowano więc powiązać ją z czynnikami lokalnymi.
 Zauważano na przykład, że podstawowym pożywieniem w tej okolicy są zboża, zaś większość chorych było rolnikami, przy czym ze względu na klimat i zwyczaje ziarno często zanieczyszczone było pleśnią, stąd też prawdopodobne wydawało się iż znaczenie ma tu jakaś toksyna. Najbardziej prawdopodobna wydawała się Ochratoksyna A, wytwarzana przez pleśnie, której obecność w paszy wywołuje w krajach północnej europy nefropatię u świń. Inna hipoteza skupiała się raczej na zbieżności obszaru zachorowań z obszarami wydobycia węgla, sugerując jakiś wpływ metali ciężkich z wód pokopalnianych czy niedoboru selenu w glebach nad złożami.
Jednak w latach 90. zauważono, że objawy nefropatii bałkańskiej i nefropatii ziół chińskich są do siebie zaskakująco podobne. Kokornak jest na tamtym obszarze bardzo pospolity, stanowi częsty chwast polny i części rośliny lub nasiona mogą zanieczyszczać zboża.

Hipoteza ta nie do końca tłumaczy wszystkie własności choroby, zwłaszcza silny endemizm nieraz ograniczający się do pojedynczych gospodarstw we wioskach, wydaje się więc, że nakłada się tutaj wiele przyczyn - sporadyczna ekspozycja na kokornak, niedobory w diecie, tryb życia i czynniki genetyczne. Ostatnio opublikowana praca na ten temat wskazuje na ten ostatni czynnik - alterację genów na chromosomie 3 w miejscu 3q25-26. Posiadacze tej mutacji są wyjątkowo wrażliwi na działanie toksyny kokornaku i to u nich rozwija się choroba. Tłumaczy to dlaczego spośród osób z rejonu endemicznego choruje tylko około 8% mieszkańców. Widocznie wrażliwość ta ma też różne natężenie, u nieszczęsnych mieszkańców południowej Europy rzadka ale powtarzalna ekspozycja na kokornak wywoływała objawy u kilku procent; wśród pacjentek belgijskiej kliniki, które regularnie łykały zioło przez kilka miesięcy, objawy rozwijały się u nawet 20%.[4]
Addukty DNA-AA zostały też wykryte w usuniętych organach, potwierdzając, że chorzy musieli być narażeni na ten związek.

Tymczasem pojawiają się kolejne doniesienia. Artykuł z Tajwanu przekazuje wyniki badań populacyjnych w których badano jaka jest częstość narażenia chorych na nowotwory na różne czynniki toksyczne, w porównaniu z resztą populacji. Okazało się, że narażenie na medykamenty zawierające azjatyckie gatunki kokornaków zdarzało się takim pacjentom wyraźnie częściej. Związek statystyczny okazał się silniejszy niż nawet narażenie na dym papierosowy. [5]

Znalazłem także opis polskiego przypadku nefropatii powiązanego z użyciem takiego preparatu. 17-letni pacjent z wyraźną nadwagą zgłosił się w związku z bólami i zawrotami głowy, których doznał w trakcie kuracji odchudzającej, stwierdzono u niego nadciśnienie. Po upływie kilku miesięcy nadciśnienie utrzymywało się, a do objawów doszedł świąd, nudności i osłabienie. Tym razem stwierdzono u niego białkomocz. Rozpoznano u niego przewlekłą nefropatię cewkowo-śródmiąszową i wtórną kwasicę. W ciągu następnych miesięcy choroba rozwinęła się tak bardzo, że konieczny był przeszczep nerki. W międzyczasie okazało się, że chory zażywał ziołowy preparat mający zawierać w składzie tylko niegroźne rośliny, jak rozmaryn, jeżogłowkę, tymianek i żeńszeń, który jednak podczas badań laboratoryjnych okazał się zawierać też kwas arystolochowy.[6]

W 2010 roku w Wielkiej Brytanii skazano właścicielkę chińskiej zielarni, która sprzedawała preparat Xie Gan Wan zawierający kokornak. Zażywająca pigułki 58-letnia kobieta, której miały pomóc na problemy dermatologiczne, doznała uszkodzenia nerek i raka dróg moczowych.[7]

Z tych powodów zaleca się obecnie, aby preparatów ziołowych zawierających kokornaki nie stosować nawet incydentalnie, a także unikać mieszanek zawierających ziele Stefanii, ze względu na możliwą pomyłkę nazwy rośliny u chińskiego producenta. Chińskie nazwy[8] gatunków kokornaka używanych w niektórych mieszankach to:
- Guang Fang Ji (Fangchi)  -  Aristolochia fangchi
- Xixin  -  Radix et Rhizoma Asari
- Guan Mu Tong -   Aristolochia manshuriensis
-  Qing Mu Xiang  -  Aristolochia cucurbitifolia
- Ma Dou Ling  -  Aristolochia debilis
- Tian Xian Teng -   Aristolochia contorta

--------
 Źródła:
[1] https://link.springer.com/article/10.1007/BF00302751
[2] http://rozanski.li/?p=824
[3] L. Nortier et al.; Urothelial Carcinoma Associated with the Use of a Chinese Herb (Aristolochia fangchi),  N Engl J Med 2000; 342:1686-1692June 8, 2000 DOI: 10.1056/NEJM200006083422301
[4] Marie Stiborová, Volker M. Arlt, and Heinz H. Schmeiser Balkan endemic nephropathy: an update on its aetiology,  Arch Toxicol. 2016; 90(11): 2595–2615.
Published online 2016 Aug 19. doi:  10.1007/s00204-016-1819-3
[5]  Hsiao-Yu Yang, Pau-Chung Chen, and Jung-Der Wang, Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference, BioMed Research InternationalVolume 2014 (2014), Article ID 569325, 9 pages http://dx.doi.org/10.1155/2014/569325
[6]  Konrad Walczak, Anna Krysicka, Dariusz Moczulski, Nefropatia ziół chińskich — opis przypadku, Forum Nefrologiczne 2010, tom 3, nr 4, 272–276 (PDF)
[7] http://wiadomosci.onet.pl/kiosk/leczenie-wysokiego-ryzyka/6tbhb
[7] https://www.hindawi.com/journals/bmri/2014/569325/tab1/

poniedziałek, 23 października 2017

Alkohol w proszku, bezwonna przyprawa i molekularne kubki

Plotki o alkoholu w proszku krążyły już od dawna, ale dopiero w ostatnich latach produkt tego typu pojawił się na międzynarodowym rynku. Czytający te doniesienia z pewnością zastanawiali się jakiej to nietypowej chemii musiano użyć, aby zatrzymać w sypkiej postaci tak lotny związek jak alkohol etylowy.
Związek jaki został tu użyty rzeczywiście jest ciekawy, ale równocześnie bardzo prosty - w zasadzie zwykła skrobia, tylko zawinięta w małe kółko...

Omawiałem już tu kiedyś nietypowe połączenia cząsteczek "połączonych acz nie powiązanych" gdzie geometria powodowała, że dwie osobne cząsteczki tworzyły nierozerwalny układ. Teraz zajmę się przypadkiem słabszego powiązania - związku inkluzyjnego, będącego formą kompleksów typu gość-gospodarz.
W połączeniu tego rodzaju cząsteczka większa, nazywana gospodarzem, tworzy "wnękę" której kształt i rozmiar pasują do mniejszej cząsteczki "gościa". Mniejsza cząsteczka wsuwa się w większą, zagłębia we wnękę a gdy już się tam dobrze umości oddziaływania między nią a cząsteczką gospodarza tworzą kompleks, w wielu przypadkach zaskakująco trwały. Wnęka gospodarza może też nie istnieć w związku samotnym, lecz powstaje wskutek przyjmowania odpowiedniej konformacji owijającej go wokół gościa. Brzmi to bardzo intymnie.
W przypadku inkluzji, cząsteczka gospodarza tworzy wnękę na tyle dużą, że goszcząca w niej molekuła jest niemal całkiem odizolowana od środowiska zewnętrznego. Powstałe połączenie często ma inne właściwości niż związki osobne - jeśli w normalnej sytuacji "gość" jest nierozpuszczalny w danym rozpuszczalniku, a "gospodarz" jest, to stworzony kompleks prawdopodobnie będzie się rozpuszczał.

Spośród różnych znanych układów, najbardziej popularnymi i najdłużej badanymi są cyklodekstryny. Są to fragmenty łańcucha skrobi, zamknięte w formę małych pierścieni, zawierających od 6 do ponad 30 członów glukozy połączonych wiązaniami glikozydowymi poprzez tlen.
Po raz pierwszy cyklodeksytryny opisano w 1891 roku jako substancję wytwarzaną przez bakterie z rodzaju Bacillus, gdy w latach 30. zorientowano się w ich pierścieniowej budowie, szybko zaczęto badać kompleksy tworzone z małymi cząsteczkami organicznymi. Po odkryciu, że bakterie Bacillus wytwarzają cyklodekstryny ze skrobi przy pomocy specjalnego enzymu cykloglukotransferazy, zaczęto produkować je na większą skalę, traktując skrobię lub dekstrynę tymże enzymem wyizolowanym z bakterii. Długie na kilkaset lub kilkadziesiąt członów - cząstek glukozy - łańcuchy skrobi są rozcinane na krótsze fragmenty i łączone w pierścienie. Zwykle izoluje się trzy najważniejsze frakcję - alfa składającą się z 6 glukoz, beta złożoną z 7 glukoz i gamma złożoną z ośmiu glukoz. Użycie enzymów z różnych gatunków bakterii pozwala na otrzymanie także większych pierścieni, do ok. 36 glukoz.

Cyklodekstryny przyjmują szczególną, nie płaską geometrię - płaszczyzny pierścieni glukozy budujących okrąg nachylają się ku sobie, przez co związek przyjmuje formę zbliżoną do ściętego stożka, lub też, jak to się często określa, do kubka z obciętym dnem.  W takim układzie po stronie szerszego otworu zagęszczają się grupy hydroksylowe, przez co od tej strony cząsteczka jest hydrofilowa, natomiast po stronie otworu węższego, grupy hydroksylowe odginają się na zewnątrz, zaś okolice tego otworu i wnętrze nabierają charakteru hydrofobowego:
Dla zdolności kompleksowania ma to dość istotne znaczenie - cząsteczki organiczne na tyle małe aby zmieścić się we wnęce cyklodekstryny i mające właściwości hydrofobowe będą chętnie wnikać do środka. Duże cząsteczki hydrofilowe nie będą wnikały, ale mogą oddziaływać z zagęszczonymi grupami hydroksylowymi na obrzeżu. Cząsteczki mające fragmenty hydrofobowe i hydrofilowe będą częściowo wsuwać się a częściowo wystawać.
Alfa cyklodekstryna tworzy "kubek" o wysokości 0,78 nanometrów i średnicy wewnętrznej 0,57 nm; beta cyklodekstryna przy tej samej wysokości ma wnękę o średnicy 0,78 nm a gamma 0,95. Wielkości tych wnęk determinują rodzaj cząsteczek które mogą do nich wniknąć - zbyt duże się nie zmieszczą, zaś bardzo małe będą słabiej oddziaływały.

Jeśli chodzi o rodzaj sił wciągających cząsteczki do wnętrza cyklodekstryny, to oprócz sił van deer Walsa znaczenie ma tu też adsorbcja hydrofobowa. Cząsteczka hydrofobowa słabo oddziałuje z wodą i podobnymi do niej rozpuszczalnikami, efekty oddziaływań między cząsteczkami wody prowadzą do odpychania grupy hydrofobowej. W tej sytuacji cząsteczki hydrofobowe będą dążyły do utworzenia agregatów, zaś w naszym przypadku mała cząsteczka hydrofobowa będzie wpychana do mającego takie właściwości wnętrza cyklodekstryny.
Cząsteczki zawierające fragmenty z elektroujemnymi niemetalami mogą dodatkowo tworzyć wiązania wodorowe z grupami -OH na obrzeżu. Ponadto możliwe jest tworzenie kompleksów koordynacyjnych. Cyklodekstryny to jedne z nielicznych cząsteczek organicznych kompleksujących aniony. Gdy hydrofobowa cząsteczka jest dłuższa niż wynosi głębokość pierścienia, możliwe jest dołączenie drugiego. Tak powstały kompleks o stosunku 1:2 nazywa się molekularną kapsułką lub też niezupełnie poprawnie, mikrokapsułką.


Wykazano powstawanie kompleksów z bardzo dużą ilością cząsteczek organicznych i nieorganicznych, nieraz całkiem sporych, na przykład fullereny, i szybko zaczęto ten fakt wykorzystywać. Zamknięte w molekularnej kapsułce związki przechodzą do roztworu w wodzie oraz są w pewnym stopniu chronione przed zewnętrznymi wpływami, stąd chętne użycie cyklodekstryn jako nośnika substancji zapachowych i smakowych dodawanych do żywności. Sama cyklodekstryna ma na liście dodatków oznaczenie E459. Może być też używana do stabilizacji składników odżywczych i witamin, chroniąc je przed utlenieniem w żywności suchej. Udało się w ten sposób stworzyć rozpuszczalną formę kurkuminy, która w normalnych warunkach jest słabo rozpuszczalna.

Zastosowania medyczne
Jednym z ciekawszych przypadków takiego kompleksowania, który znalazł zastosowanie w medycynie, jest tworzenie połączeń z cholesterolem. Cząsteczka cholesterolu jest generalnie hydrofobowa i słabo rozpuszczalna w wodzie natomiast dobrze w tłuszczach. Jej rozmiar i kształt idealnie pasuje do alfa-cyklodekstryny. Po dodaniu cyklodekstryn do żywności duża część cholesterolu zostaje związana co utrudnia jego wchłanianie. W taki sposób produkuje się jedzenie niskocholesterolowe.
Obecnie testuje się pochodne cyklodekstryn jako lek na chorobę Niemanna-Picka typu C. Choroba ta, wywołana pewnymi mutacjami, powoduje zaburzenia w transporcie substancji do komórek, wywołując gromadzenie się cholesterolu w lizosomach i sfingolipidów w neuronach. Prowadzi to do zaburzeń czynności wątroby i trzustki, oraz objawów neurologicznych, w przypadku dzieci wywołujących niepełnosprawność i opóźnienie umysłowe, a w przypadku osób starszych szybko postępującą demencję, głuchotę, zaburzenia psychiczne, padaczki. Podobieństwo objawów powoduje, że czasem nazywa się ją "dziecięcym Alzheimerem".
W 2009 roku zezwolono na eksperymentalne użycie hydroksypropylowej pochodnej beta-cyklodekstryny do łagodzenia przebiegu choroby u sióstr bliźniaczek[1], gdyż usuwa cholesterol z lizosomów, co powinno ograniczyć postęp choroby. Potem zastosowano ją jeszcze u kilkunastu pacjentów ale nie ma jeszcze ostatecznych wniosków na ile jest to sposób skuteczny. Pewne niedawne badanie na kilku pacjentach sugeruje spowolnienie rozwoju choroby. [2] Substancja jest w takich zastosowaniu podawana w formie roztworu do płynu mózgowo-rdzeniowego.

Inny przykład to Sugammadeks, lek odwracający blokadę mięśniowo-nerwową u osób którym podano leki zwiotczające  na przykład przy znieczuleniu ogólnym. Jest to cząsteczka gamma-cyklodekstryny zmodyfikowana przez dodanie grup sulfanylopropionowych. Rodzaj grup i ich długość dobrano tak, aby cząsteczka idealnie pasowała do środka zwiotczającego rokuronium. Początkowo miał to być nośnik leku ułatwiający rozpuszczanie w wodzie, ale po stwierdzeniu wyjątkowo dużej siły kompleksowania, zaczęto stosować zmodyfikowaną cyklodekstrynę do usuwania środka z ustroju. Po wstrzyknięciu do krwioobiegu, sugammadeks kompleksuje rokuronium, w związku z tym związek ten zaczyna być oddawany przez tkanki co znosi działanie zwiotczające.

A co z alkoholem?
Etanol jest małą cząsteczką organiczną z jednym końcem o pewnych właściwościach lipofilowych, i już dawno stwierdzono, że w odpowiednich warunkach możliwe jest stworzenie połączenia inkluzyjnego z cyklodeksytryną, które jednak rozpadało się pod wpływem wody. Pierwsze próby zastosowań spożywczych miały miejsce w latach 70. ale najwyraźniej nie były zbyt udane, dlatego dla przeciętnego konsumenta wynalazek zaistniał dopiero w ostatnich latach. Najczęściej spotykane użycie, to napoje typu "grzaniec" - te dostępne na polskim rynku zawierają enkapsulowany alkohol w ilości odpowiadającej stężeniu 0,5% w gotowym napoju (w zasadzie więc są to ilości dla aromatu).
W Europie dostępne są napoje w proszku o smaku szampana czy wina z dodatkiem alkoholu w ilości wystarczającej, aby się upić.

Proszek taki składa się z drobnych cząstek zawierających wewnątrz masę kompleksu cyklodekstryna-alkohol, otoczoną warstewką ochronną liniowych dekstryn, chroniących wnętrze przed parowaniem. Pył może zawierać do 30% alkoholu.

Cyklodekstryny spożyte doustnie nie wywołują szkodliwych skutków, są częściowo trawione tak samo jak zwykła skrobia. Ze względu na rozmiar cząsteczek nie są wchłaniane do organizmu. Testuje się je jako środek obniżający poziom cholesterolu, zażywany w dawkach kilkugramowych.[3]

---------
* https://en.wikipedia.org/wiki/Alcohol_powder
* https://en.wikipedia.org/wiki/Cyclodextrin

[1] http://addiandcassi.com/walgreens-support-twins-niemann-pick-type-receive-cyclodextrin-treatments-home/
[2] https://www.sciencedaily.com/releases/2017/08/170810192740.htm
[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941029/

wtorek, 20 grudnia 2016

Inteligentne tabletki?




Reklamy środków przeciwbólowych są do siebie bardzo podobne i chętnie stosują ten sam schemat. Zwykle pojawia się tam bądź młoda kobieta oblegana przez wrzeszczące dzieci, starszy pan schylający się po upuszczony przedmiot, ewentualnie mechanik w warsztacie podnoszący coś ciężkiego. Wtem pojawia się ostrzegawczy sygnał - sielankowa muzyka zamienia się w dźwięk syreny, nasi bohaterowie krzywią się jak tylko mogą, a na skroni, dłoni lub plecach wykwita czerwone jądro bólu. Ale to nic, zaraz sięgają po tabletkę X, która na wizualizacjach od razu po wsunięciu w usta przeciska się przez organizm jak karabinowa kula i "dociera do źródła bólu" likwidując go natychmiastowo. Pod tym względem tabletki na ból głowy przebijają chyba tylko reklamy prozdrowotnych jogurtów, z biegającymi po wnętrznościach rycerzami z ochronną tarczą.

Tak przedstawione działanie leku jest jednak zbytnim uproszczeniem.

Gdy połkniemy tabletkę, rozpuści się ona w żołądku i wchłonie, dalsza droga substancji czynnej nie ma jednak zbyt wiele wspólnego z inteligentnym docieraniem do miejsca gdzie boli. Substancja nie wybiera sobie którą tętniczką chce popłynąć i wiedziona intuicją omija wiele innych odnóg by dotrzeć tam gdzie jest potrzebna. Zamiast tego zostaje przypadkowo rozprowadzona po całym organizmie, docierając do bolesnego miejsca w zasadzie przy okazji. Jest natomiast coś z prawdy w sloganie, że substancja z preparatu "działa w miejscu bólu".

Odczuwanie bólu, oprócz tylko podrażniania zakończeń nerwowych, jest powiązane z wydzielaniem czynników prozapalnych w miejscach zmienionych chorobowo lub w miejscu urazu, takich jak cytokiny i prostaglandyny. Środki z grupy niesteroidowych leków przeciwzapalnych, do których należy Aspiryna i Paracetamol, działają głównie przez hamowanie wydzielania tych substancji, odpowiedzialnych za lokalne dolegliwości, ale też na przykład za objawy infekcji. Dlatego też wiele środków przeciwbólowych znosi także objawy grypy i przeziębień. W przypadku lokalnej dolegliwości objawiającej się bólem, cytokiny wytwarzane są tylko tam, dlatego składnik leku hamujący ich wydzielanie faktycznie działa konkretnie w miejscu bólu.

Jednak reklamy mówiące o działaniu substancji czynnej w miejscu bólu poza tym, że upraszczają sprawę, niosą także pewne niebezpieczeństwo. Mianowicie sugerują, że ma ona działanie tylko tam i nigdzie indziej. Ponieważ jednak lek przeciwbólowy rozprowadza się po całym organizmie, może zacząć działać nie tylko w jednym miejscu i czasem może też nam poważnie zaszkodzić.

Leki dostępne bez recepty są generalnie traktowane jako bezpieczne, toteż po zakupie nie wczytujemy się specjalnie w ulotkę, najwyżej szukamy na opakowaniu informacji ile można brać w ciągu dnia. W rzeczywistości jednak nawet spożycie w zalecanej ilości może nieść pewne skutki uboczne. Znane są powszechnie problemy żołądkowe podczas długotrwałego użycia aspiryny. Oprócz hamowania stanów zapalnych powoduje ona także rozrzedzenie krwi i zmniejszenie krzepliwości a także zmniejszenie wydzielania śluzu przez ścianki żołądka. Kombinacja tych czynników może skutkować krwawieniami i owrzodzeniami. Podobne objawy, choć mniej nasilone, wywołuje ibuprofen. Długotrwałe użycie Pyralginy może spowodować spadek poziomu komórek układu odpornościowego, prowadząc do częstych i groźnych infekcji.

Spośród łatwo dostępnych środków najwięcej interwencji medycznych wywołuje jednak paracetamol. Powyżej dziennej dawki 4 g powoduje nieodwracalne uszkodzenie wątroby. A o przedawkowanie wbrew pozorom nie tak trudno, jest bowiem częstym składnikiem preparatów złożonych o różnych nazwach i z zalecanym innym wskazaniem. Jedne tabletki na noc, inne na dzień, jedne bardziej na bóle mięśniowe inne na menstruacyjne. Przy kombinacji różnych dolegliwości konsument może więc nieświadomie zażyć szkodliwą ilość substancji czynnej, sądząc że użył jedynie bezpieczne dawki kilku różnych leków.*

Aż do lat 90. najpopularniejszą u nas była "tabletka z krzyżykiem" zawierająca fenacetynę. Wycofano ją jednak bo przy dłuższym użyciu powodowała uszkodzenia wątroby i nerek. Jednym z jej częstych i paradoksalnym skutków ubocznych, były zmiany krwi powodujące niedotlenienie. Paradoks tkwił w tym, że jednym z pierwszych objawów niedotlenienia był... ból głowy.

Naprawdę inteligentna tabletka

Postęp biomedycyny sprawił, że już wkrótce na rynku pojawić się może tabletka, która rzeczywiście może być nazwana inteligentną. W zeszłym roku firma Philips zaprezentowała prototyp kapsułki zawierającej microchip, czujniki i zbiorniczek z lekiem[1]. Po połknięciu kapsułka wydziela ściśle określone dawki leku w zaordynowanym przez lekarza czasie, a ponadto mierzy temperaturę, kwasowość i wiele innych parametrów w ciele pacjenta, przesyłając je do odbiorników na zewnątrz. Dzięki temu możliwa jest kontrola stanu organizmu i odpowiednia zmiana dawkowania. Pozwala to ominąć częsty problem nieregularnego zażywania leków, zwłaszcza u osób mających problemy z pamięcią. Pytanie tylko czy ktoś odważy się połknąć tabletkę, która mogłaby się okazać mądrzejsza od niego?

[Tekst w nieco przeredagowaniej formie ukazał się w pierwszym numerze kwartalnika Przekrój]
---------------------
* Jednym z najgorszym powikłań nadużywania paracetamolu i innych niesteroidowych leków przeciwzapalnych, jest toksyczna nekroliza naskórka. Nieprawidłowa reakcja organizmu na lek powoduje martwicę, powstawanie pęcherzy i złuszczanie się naskórka dużymi płatami. Wizualnie przypomina to poparzenie drugiego stopnia. Zespół pojawia się nagle po okresie dłuższego, codziennego używania leku, zwykle od tygodnia do sześciu od rozpoczęcia przyjmowania. Cechuje się wysoką śmiertelnością ale na szczęście jest bardzo rzadki.

[1]  http://gadzetomania.pl/45814,ipill-tabletka-z-mikroprocesorem

sobota, 10 grudnia 2016

Jak otrzymać Daraprim?

Jak głosi uniwersalna zasada, akcja wywołuje przeciwnie skierowaną reakcję. Monopolista drastycznie zwiększa cenę ważnego leku? Uczniowie australijskiej szkoły średniej opracowują zatem na zajęciach tanią metodę otrzymywania, po to tylko aby utrzeć mu nosa.

Toksoplazmoza to dość częsta choroba pasożytnicza wynikła z zarażenia pewnym pierwotniakiem. Pierwotniak może zarażać różne organizmy, ale żywicielem ostatecznym jest zwykle kot domowy. Kontakt z nim może więc skutkować zarażeniem. Na szczęście u większości ludzi choroba zostaje przebyta bezobjawowo lub z objawami grypopodobnymi, u części przechodzi jednak w formę utajoną, mogąc przyjąć postać bezobjawowego nosicielstwa. Są jednak sytuacje gdy choroba przybiera groźną postać.
Jeśli toksoplazmozą zostanie zarażona kobieta w ciąży, może to skutkować urodzinami dziecka obarczonego wadami rozwojowymi, zarówno fizycznymi jak i intelektualnymi, w dużym nasileniu podobnymi do różyczki wrodzonej. Innym problemem są osoby o osłabionej odporności, a więc na przykład osoby po przeszczepach, chorzy na raka a przede wszystkim chorzy na AIDS. W takim przypadku choroba zajmuje węzły chłonne i może przerodzić się w zapalenie mózgu, siatkówki oka, śledziony, serca lub wątroby.

Standardowo w leczeniu toksoplazmozy używane są preparaty zawierające pirymetaminę, czasem skojarzone z sulfonamidami, a najczęściej stosowanym jest preparat Daraprim. Ostatnio jednak pojawiły się istotne problemy z jego dostępnością. W 2015 roku biznesmen Martin Shkreli wykupił prawa do produkcji i obrotu Daraprimem w USA, po czym zwiększył jego cenę o 5000% [1] Tłumaczył przy tym, że chce tylko zwiększyć zyski firmy, na co prawo mu w pełni zezwala, dotychczas bowiem lek był sprzedawany niemal po kosztach produkcji. Dla chorych z USA znaczenie miało też to, że w kraju tym nie są dostępne preparaty generyczne, czyli "tańsze zamienniki" zawierające tą samą substancję czynną. Dopiero w tym roku Shkreli zgodził się łaskawie zmniejszyć cenę o połowę.
Jego decyzja wywołała na świecie wielkie oburzenie, ale zgodnie z prawem nie można było mu nic zrobić. Jedną z reakcji było zwiększenie produkcji generyków w małych fabryczkach w Indiach i Chinach. Inną, mniej znaną, było podjęcie ciekawego projektu badawczego przez uczniów pewnej australijskiej szkoły średniej.

Gdy sprawa podwyżek cen rozpalała emocje, dr Alice Williamson, chemiczka nauczająca w Sidney Grammar School, wpadła na pomysł aby uczniowie otrzymali substancję czynną preparatu w ramach zajęć koła naukowego, aby pokazać jak absurdalna jest to sytuacja. Z przeglądu literatury wynikało, że synteza związku jest względnie prosta. Co więcej, ponieważ związek po raz pierwszy otrzymano w 1958 roku substancja czynna nie było objęta patentem.
Struktura pirymetaminy nie jest specjalnie skomplikowana:


Za punkt wyjścia uczniowie obrali metodę z już nieaktualnego patentu, która była łatwa do odnalezienia, jest bowiem opisana na Wikipedii:

Substratem od którego startuje droga syntezy, jest para-chlorofenyloacetonitryl "1" poddawany reakcji z propionianem etylu "2", estrem o zapachu ananasa używanym do aromatyzowania żywności. Mechanizm reakcji jest dość prosty - w substracie pomiędzy grupą nitrylową -CN a chlorofenylową znajduje się mostek -CH2-. Ze względu na takie właśnie sąsiedztwo, jest kwaśna, czyli łatwiej niż zwykle jest oderwać od niej protony. Podczas reakcji z etanolanem sodu NaOEt zamienia się w karboanion, a więc związek z ładunkiem ujemnym na węglu. Ten chętnie atakuje węgiel grupy karbonylowej estru, który ze względu na polaryzację wiązań ma lekko dodatni charakter. Po przegrupowaniu powstaje 1-(4-chlorofenylo)-1-nitrylo-1-buten-2-ol "3".
Związek ma strukturę enolu to jest posiada grupę OH przy wiązaniu podwójnym, co jest strukturą nietrwałą. Ten reaguje z diazometanem CH2N2, zamieniając się w metyloeter "4". Ostatni etap to kondensacja z guanidyną w warunkach zasadowych, powodująca zamknięcie pierścienia diazynowego.

O ile etap pierwszy i ostatni mogły być przeprowadzone dość łatwo, to problemem stał się ten środkowy. Diazometan to związek bardzo nietrwały, mogący rozkładać się wybuchowo w kontakcie z metalami, pewnymi solami, szkłem o ostrych krawędziach lub zbyt intensywnym światłem. Dodatkowo jest związkiem silnie trującym, wdychanie niewielkich ilości może wywołać zgon w wyniku uszkodzenia płuc. Mimo szczerych chęci uczniowie nie mogli go używać. Postanowili więc obejść tą trudność i znaleźć metodę alternatywną. Musiał być to proces który zmetyluje grupę -OH a nie przereaguje z łatwo ulegającą hydrolizie grupą nitrylową -CN. Dobieranie warunków i odczynników zajęło im kilka miesięcy, aż wreszcie okazało się, że etap jest możliwy do przeprowadzenia przy pomocy odczynników dostępnych na pracowni. Zastosowali starą metodę eteryfikacji kwasowej. Półprodukt "3" poddali reakcji z alkoholem izopropylowym i stężonym kwasem siarkowym, otrzymując eter, który nadawał się do dalszej reakcji.

Po opracowaniu tego etapu cała synteza okazała się dużo prostsza. Z 17 gramów substratu wyjściowego kupionego w firmie chemicznej (cena 36 $/100 g) otrzymali 3,7 grama pirymetaminy. Gdyby zamienić ją na tabletki Daraprimu ta ilość kosztowałaby w USA ponad 100 tysięcy dolarów licząc po nowych, zawyżonych cenach. Sami uczniowie uwzględniając koszty odczynników i wydajność wskazują, że tą metodą można by produkować preparat w cenie 1-2 dolary za dawkę
Ich praca spotkała się z dużym uznaniem na świecie, ale niestety mimo wszystko nie będzie miała zbyt dużego wpływu na sytuację USA, ze względu na dziwaczne przepisy farmaceutyczne.

Producent tańszego zamiennika leku, zawierającego tą samą substancję czynną, musi dla wprowadzenia na rynek wykonać test potwierdzający, że preparat ma porównywalną farmakokinetykę (wchłanianie, czas osiągnięcia maksymalnego stężenia, okres wydalania itp.) do oryginału. Przypisy obowiązujące w USA mówią, że do testu dla porównania musi być użyty oryginalny preparat specjalnie przekazany przez producenta, stanowiący wzorzec. Z drugiej strony producent oryginału nie jest zobowiązany do dostarczenia próbek porównawczych na potrzeby testu. Jeśli firma będąca monopolistą nie chce wprowadzenia na rynek tańszego zamiennika, to po prostu nie dostarcza swoich wzorców porównawczych, co blokuje całą procedurę.[2]

Nowa metoda może się jednak przydać firmom produkującym lek w innych krajach, bowiem ominięcie bardzo toksycznego reagenta zmniejsza związane z produkcją ryzyko i jest bardziej ekologiczne.
 ------------------------
*  https://en.wikipedia.org/wiki/Pyrimethamine
*  http://www.smh.com.au/technology/sci-tech/sydney-schoolboys-take-down-martin-shkreli-the-most-hated-man-in-the-world-20161125-gsxcu5

[1]  http://www.biztok.pl/biznes/lek-na-aids-podrozal-jednej-nocy-o-5-tysiecy-procent_a22320
[2] https://www.theguardian.com/science/2016/dec/01/australian-students-recreate-martin-shkreli-price-hike-drug-in-school-lab

poniedziałek, 23 listopada 2015

Dziwne i zabawne nazwy związków chemicznych

Nazwy zwyczajowe związków chemicznych mają tą przewagę nad systematycznymi, pełnymi nazwami, że są dużo krótsze a niekiedy mówią nam coś na temat tego związku. Nazwa kwas hydroksybutanodiowy może nam wskazać na pewną strukturę, ale dopiero nazwanie tego związku kwasem jabłkowym nakierowuje nas na związki naturalne.
Wiele związków naturalnych ma nazwy zwyczajowe pochodzące od organizmów w których po raz pierwszy je odkryto, zwykle łacińskich lub angielskich. Te starsze, często spotykane związki, mają też polskie nazwy odnoszące się do polskich nazw tychże organizmów, w przypadku nowszych zwykle spolszcza się nazwę angielską, dlatego znany od dawna succinic acid to kwas bursztynowy a opisany później mało znany pinoleinic acid to kwas pinoleinowy a nie kwas sosnowy.
Nieco inaczej jest z kwasem melisowym, będącym bardzo długim kwasem tłuszczowym (30 węgli) i nazwanym od greckiego "melissa" czyli pszczoła, jest bowiem składnikiem wosku. Od tego samego greckiego słowa wywodzi się jednak też nazwa rośliny melisy lekarskiej, znanej z przywabiania pszczół.

Niektóre jednak nazwy, wskutek zbiegu okoliczności, brzmią dziwnie lub wręcz śmiesznie, zależnie od języka. Dla Polaka butanal nie brzmi tak zabawnie jak dla Anglika czytającego nazwę "but anal".

Minerały
Dość duże zainteresowanie w anglojęzycznym świecie wzbudza minerał Cummingtonit, którego nazwa czyta się podobnie do "coming to night" czyli "dojść nocą". W rzeczywistości nazwa pochodzi od miasta Cummington w USA.
Nieco bardziej interesująca jest historia nazwy Carlsbergitu - ten rzadki minerał będący azotkiem chromu nazwano od Carlsberg Foundation, fundacji wspierającej badania naukowe i fundującej wiele laboratoriów. To dzięki niej sprowadzono i zbadano meteoryt Apailik, będący fragmentem spadku w Cape Town, z którego pochodzi największy na świecie meteoryt żelazny Ahnighito (30 ton). W sprowadzonym do Kopenhagi fragmencie odkryto tenże minerał.
Natomiast sama fundacja została założona przez filantropa i browarnika Jakuba Christiana Jakobsena, tego samego który założył znany wszystkim browar i markę piwa Carlsberg.

Dziwne białka
Niektórzy badacze celowo nadają związkom oryginalne nazwy. Mocno namieszali twórcy nazwy pewnego białka, biorącego udział w organogenezie zarodka, którzy nazwali je Sonic Hedgehog, od bohatera gry komputerowej firmy Sega przypominającego nieco niebieskiego jeża. Badacze twierdzą, że pomysł wziął się stąd, że zarodki muszek owocowych z uszkodzonym genem kodującym to białko przybierały postać kulki z licznymi wypustkami, podobnymi do kolców. Nazwa przyjęła się, nawet na jej bazie utworzono nazwy dwóch innych białek biorących udział w tym procesie (desert hedgehog czyli "jeż pustynny" i indian hedgehog czyli "jeż indyjski"), mimo że niektóry uznają ją za niestosowną, jako że mutacje w genie kodującym białko wywołują choroby u ludzi.[1] Problematyczne jest też przetłumaczenie nazwy związku lub szlaku metabolicznego w którym bierze udział. Z tego co widziałem zwykle nie tłumaczy się nazwy najwyżej ją skracając, stąd w pracach medycznych określenia typu "mutacja białka Sonic Hedgehog" czy "szlak sygnałowy Shh.", inni uogólniają pisząc o "szlaku sygnałowym jeża".
Inspiracje popkulturowe mieli też Japończycy, którzy pewne białko występujące w synapsach fotoreceptorów nazwali Pikachurin.[2] Dalej poszli badacze w Bristol Laboratories którzy kilka odkrytych przez siebie antybiotyków o właściwościach przeciwnowotworowych nazwali od postaci z opery Pucciniego "Cyganeria" stąd związki: alcindoromycin, bohemamine, collinemycin, marcellomycin, mimimycin, musettamycin, rudolphomycin and schaunardimycin. [3]

Nazwa kolejnego specyficznego białka była koniecznością, bo pomimo dziwności dokładnie opisuje jego właściwość. Bierze ono bowiem udział w prawidłowym rozwoju sromu pewnego małego robaka, zarazem ma dość nietypową strukturę. Toteż nazwano je Sex Muscle Abnormal Protein 5. [4]

Kwas kwadratowy
Prosty cykliczny kwas organiczny nie zawierający jednak grup karboksylowych. Nazwa odnosi się do kształtu cząsteczki - są to w zasadzie cztery grupy karbonylowe połączone w kwadrat:
Kwasowość związku wynika z równowagi keto-enolowej - struktura w której grupa hydroksylowa jest połączona z węglem przy wiązaniu podwójnym jest nietrwała. Następuje więc odszczepienie protonu i utworzenie struktury jonowej z ujemnym ładunkiem na tlenie. Podobnie rzecz się ma zresztą z kwasem askorbinowym, czyli witaminą C, który jest kwaśny na tej zasadzie. W tym przypadku odszczepienie dwóch protonów daje kilka możliwych struktur rezonansowych a podwójne wiązanie rozmywa się na cały kwadrat, przez co cząsteczka nabiera właściwości aromatycznych, nadających jej dużą trwałość. Dlatego też odszczepianie protonów następuje dość łatwo, a kwas jest mocny, dysocjuje łatwiej od kwasu fosforowego.[5]
Anion kwasu kwadratowego może być uważany za specyficzną formę tlenku węgla o wzorze C4O42−.

Kwas tyglowy
Prosty nienasycony kwas karboksylowy, będący izomerem kwasu angelikowego. Ma słodko-ostry zapach i wraz z estrami jest składnikiem aromatu rumowego. Polska nazwa nie ma związku z żadnym tygielkiem, to spolszczenie angielskiej Tiglic acid, którą nadano mu od krotonu przeczyszczającego (Croton tiglium) w którego oleju po raz pierwszy go znaleziono.[6]

Scylla i Charybda
Jednym ze związków frazeologicznych pochodzących z mitologii greckiej jest "znaleźć się między Scyllą i Charybdą" co stanowi bardziej intelektualną wersję powiedzenia "być między młotem a kowadłem". Charybda była córką Neptuna, która za chciwość skazano na bycie morskim potworem, który wsysał w głębinę statki i wypluwał z prądem wodnym szczątki. Scylla była nimfą którą za odrzucenie zalotów boga zamieniono w potwora - gdy weszła do zatrutego źródła z jej ciała wyrosły łby sześciu psów z łapami, które zjadały ludzi w pobliżu; gdy zrozpaczona rzuciła się do morza zamieniła się w morskiego potwora, czyhającego na statki. Scylla i Charybda zamieszkały po dwóch stronach cieśniny i jeśli ktoś chciał nią przepłynąć, musiał się liczyć z tym, że albo jeden stwór rozbije mu statek albo drugi zje sześciu członków załogi. W takiej sytuacji znalazł się Odyseusz, który wolał stracić sześciu ludzi niż cały statek.

Mitologiczna historia swoje odbicie w chemii - dwie substancje znalezione w jadzie izraelskiego skopiona Leiurus quinquestriatus hebraeus (Deathsalker) zostały nazwane od potworów. Jedna to scyllatoksyna a druga to charybdotoksyna, obie są krótkimi peptydami blokującymi kanał wapniowy.[7],[8]

Imperatoryna
Furanokumaryna zawarta w olejku eterycznym z arcydzięgla, aczkolwiek po raz pierwszy wyizolowana z ureny łatkowatej (Urena lobata), plennej byliny używanej jako roślina włóknista. Trudno powiedzieć skąd wzięła się taka nazwa - urena jest też nazywana caesarweed czyli "cezar chwastów" i być może stąd inspiracja.[9]

Waginol
Kolejna kumaryna występująca w arcydzięglu, w większości jako składnik glikozydu apteryny (apterin). Nazwa zapewne pochodzi od łacińskiego słowa vagina, które to słowo oprócz części ciała dotyczy też pochewki liściowej. Grube, rozszerzone ogonki listków stanowią charakterystyczną cechę arcydzięgla. Kandyzowane w cukrze są używane jako zielona ozdoba cukiernicza o anyżkowym zapachu, lub do wyrobu konfitury.[10]

P**** ligand
Ten ostatni przypadek jest szczególnie zabawny.

Opisany po raz pierwszy w 2006 roku ligand wielokleszczowy 1-(2″-hydroksylo cykloheksylo)-3′-[aminopropylo]-4-[3′-aminopropylo]piperazina, będący w sumie dość prostym aminoalkoholem, nie zwróciłby niczyjej uwagi gdyby nie to że w pracy z 2008 roku zespół irańskich naukowców użył skrótu, będącego znacznie prostszą nazwą niż pełna nazwa chemiczna. I najwyraźniej nie widząc w tym niczego niestosownego tą aminową pochodną piperyzyny nazwali Pizda.[11]
Budząc tym samym dość oczywistą wesołość u badaczy z krajów słowiańskich.

Polecam jeszcze na koniec artykuł o dziwnych nazwach genów:
http://naukowy.blog.polityka.pl/2007/09/24/gen-pavarottiego/
------------------
Źródła
* Molecules With Silly or Unsual Names
* https://en.wikipedia.org/wiki/List_of_chemical_compounds_with_unusual_names

[1] https://pl.wikipedia.org/wiki/Sonic_hedgehog
[2] https://en.wikipedia.org/wiki/Pikachurin
[3] https://en.wikipedia.org/wiki/Bohemic_acid
[4] http://www.ncbi.nlm.nih.gov/gene/181055
[5] https://en.wikipedia.org/wiki/Squaric_acid
[6]  https://pl.wikipedia.org/wiki/Kwas_tyglowy
[7] https://en.wikipedia.org/wiki/Charybdotoxin
[8] https://en.wikipedia.org/wiki/Scyllatoxin
[9] https://en.wikipedia.org/wiki/Imperatorin
[10] https://en.wikipedia.org/wiki/Apterin
[11] http://www.sciencedirect.com/science/article/pii/S1386142507004908

niedziela, 28 września 2014

Inne ciekawe związki w grzybach

Szukając materiałów do poprzedniego wpisu natykałem się także na inne informacje o chemii grzybów, które były dla mnie ciekawe, ale nie miały związku ze zmianą zabarwienia. Aby więc nie rozwlekać wtrąceniami, postanowiłem napisać osobno o tych kilku ciekawych przypadkach.

Będzie więc grzyb o zapachu curry, grzyb który leczy, porost do farbowania wełny i grzyb który za bardzo lubi pewien pierwiastek.

Lakmus
Znany początkującym chemikom papierek lakmusowy, nasączany jest jak łatwo zgadnąć lakmusem. Mało kto wie jednak, że jest to substancja naturalna, w dodatku otrzymywana z porostów. Porost Roccella tinctoria, porasta skały na wybrzeżu Atlantyku mając formę zwisającego krzaczka, trochę podobnego do chrobotka, ale o spłaszczonych gałązkach przypominając też kępkę wyschniętej trawy morskiej. Już w starożytności używany był do farbowania wełny na piękny, czerwonofioletowy kolor, stanowiąc zastępstwo dla drogiej purpury tyryjskiej. Przez pewien czas porost stanowił główne źródło utrzymania kolonii na Azorach, a dzięki uprawom zaczął występować  wielu nowych krajach.

Chemicy oczywiście zainteresowali się jego własnościami, zwłaszcza iż dobrze znany był fakt, że w alkalicznych roztworach farbierskich przybierał kolor zielononiebieski, a wełna zabarwiała się zwykle na czerwono lub fioletowo. Szybko wykazano, że jest barwnikiem zmieniającym kolor od czerwonego w roztworach kwaśnych do niebieskiego w zasadowych. Mimo raczej nie zbyt szerokiego zakresu zmienności, od 4,5 do 8,2 pH, zaczął być używany jako wskaźnik. Zwykle nasącza się nim papier w dwóch odmianach: w alkalicznej, niebieskiej, służącej do wykrycia odczynu kwaśnego, i w sprotonowanej czerwonej, służącej do wykrycia zasad. Był w tym celu używany już tak dawno, że przeszedł do języka potocznego, jako określenie "oznaki własności" w odniesieniu do osób i zjawisk (rumieniec speszonej panny jest lakmusowym papierkiem niewinności).

Wyciąg z lakmusa jest pod względem chemicznym dość skomplikowaną mieszanką ponad dwudziestu związków, głównie pochodnych związków fenolowych z silnym chromoforem orseliną (7-hydroksyfenoksazon) decydującym o intensywności koloru. Kilka z tych związków wyodrębniono i nazwano, jak choćby beta hydroksyorselina:

Lakmus bywa używany jako barwnik spożywczy E 121. Podobne barwniki zawierają rosnące w Polsce porosty z rodzaju Tarczownic. [1], [2]

Wanadowy muchomor
Muchomor czerwony i kilka innych gatunków zwracają uwagę intensywnie czerwonym kolorem kapelusza. Odpowiada za to kilka barwników, głównie betaksantyny znane też jako barwniki buraka i aramantusa, a także muskaflawina (muscaflavin) będąca związkiem z siedmiokątnym pierścieniem
Bardziej interesujący jest jednak związek wykryty i w kapeluszu i w miąższu, nietypowe połączenie metaloorganiczna amawadyna (amavadin) , w której jeden jon wanadu jest połączony przez osiem koordynacji z dwiema cząsteczkami liganda hydroksyloiminodwupropionowego:
Za sprawą takiego połączenia muchomory akumulują wanad w ilościach nawet 400 razy większych niż gleba w której rosną. Zagadką pozostaje natomiast po co jest to grzybowi potrzebne. Możliwe że kompleks pełni rolę jaką w roślinach i u zwierząt pełnią peroksydazy, to jest chroni przed uszkodzeniem od wolnych rodników. Związek może być też wykorzystany w syntezie jako katalizator selektywnego utleniania nadtlenkami. [3],[4]

Uszak bzowy - grzyb leczniczy
Uszak bzowy to nie zbyt smaczny grzyb, zbudowany z galaretowatej substancji podobnej do chrząstki . Występuje cały rok, wyrastając na martwych gałązkach drzew i krzewów, chętnie zwłaszcza na bzie czarnym, sprzyjają mu chłodne warunki dlatego zbiera się go późną jesienią a nawet zimą, bo wystarczy mu kilka dni roztopów.
Jego bliskim krewniakiem jest spożywany w Azji uszak gęstowłosy, znany jako grzyb Mun.
W kulturze Europy przyjęło się nazywać uszaka "judaszowym uchem" lub "uchem żyda", takie jest zresztą dosłowne tłumaczenie nazwy łacińskiej.
Jako grzyb bez smaku był raczej dodatkiem do sosów, a ususzony i roztarty jako zagęstnik chłonący wodę dodawany był do zup. W średniowieczu był też polecany na ból gardła, przeziębienia i zapalenia. Dopiero w nowszych nam czasach pod wpływem wieści o Japończykach, uważających azjatycki gatunek za grzyba leczniczego, postanowiono przyjrzeć się właściwościom europejskiego krewniaka.

Głównym składnikiem owocnika są polisacharydy o właściwościach żelujących, ale niektóre z nich mają dodatkowe działanie biologiczne - mogą obniżać poziom cukru we krwi, poziom cholesterolu, działać przeciwzakrzepowo a niektóre badania sugerują działanie przeciwnowotworowe.[5] Więc kto wie - może niedługo będziemy się leczyć grzybami?

Mleczaj kamforowy - grzyb curry
Mleczaj kamforowy to średnio smaczny grzyb jadalny, wyróżniający się zapachem, niektórym przypominającym kamforę, innym curry, zaś źródła anglojęzyczne kojarzą go z syropem klonowym. Zapach po wysuszeniu staje się bardziej ziołowy i podobny do lubczyku, dlatego grzyb często jest po ususzeniu używany jako przyprawa.

Skąd jednak ten zapach? Na początku lat 80. student De Shazer zadał to pytanie mykologowi Williamowi Woodowi. Ten nie znając odpowiedzi, zaproponował mu to jako temat badań. Student wydzielał substancje zapachowe z grzyba, ale nie mógł znaleźć związku, z którego powstawał właściwy aromat. Gdy ukończył studia, zaintrygowany sprawą Wood zaproponował temat kolejnemu studentowi. Potem następnemu i jeszcze jednemu. Po upływie 27 lat i wymianie pięciu studentów chemia grzyba była już dobrze poznana, ale nadal nie udawało się wykryć jaki związek w grzybie zamienia się w składniki aromatu, ani jak to następuje.
Próbowano kolejno zwykłej ekstrakcji, chromatografii cieczowej i gazowej, lecz utrudnieniem był skomplikowany skład wyciągów i brak możliwości zbadania struktury podejrzanych pików. W dodatku poszukiwany związek najwyraźniej szybko ulegał przemianie i występował w preparatach w małej ilości.
Wreszcie Wood zastosował technikę mikroekstrakcji do fazy stałej.
Jest to ciekawa technika wstępnego wyodrębniania z próbek frakcji o niskim stężeniu. Do próbówki z badaną mieszaniną wpuszcza się szklaną igłę z której wysnuwa się absorbujące włókno. Pochłania ono substancje o określonych właściwościach, a więc polarne lub niepolarne, znajdujące się bądź w roztworze bądź w powietrzu nad lekko ogrzaną próbką. Pochłaniane substancje są zagęszczane we włóknie i oddzielane od reszty, dzięki czemu mieszanka w próbce wprowadzanej do chromatografu ma zdecydowanie mniej skomplikowany skład, ponadto z uwagi na małe rozmiary włókna, badane mogą być mikroskopijne ilości substancji.

Dzięki nowej technice, i zestawowi GC-MS z detektorem określającym strukturę, udało się znaleźć brakujący element - pierwszy związek, którego przemiana prowadza do powstania aromatu. Był to kwabalakton III (quabalactone III), pochodna furanu znaleziona wcześniej w kwiatach meksykańskiego drzewa Qararibea, używanego do aromatyzowania tradycyjnej wersji czekolady i ozdoby domów.
Związek jest pochodną aminofuranonu i powstaje w wyniku laktamizacji wolnych aminokwasów, zwłaszcza podczas suszenia. W kontakcie z wilgocią ulega przemianie do silnie aromatycznego sotolonu:

Sotolon jest składnikiem zapachu kozieradki, i wraz z nią przyczynia się do zapachu curry.  Występuje też w lubczyku (przyprawa maggi). Zapach ziołowy w większej ilości, w małej staje się słodkawy i podobny do syropu klonowego lub palonego cukru - występuje zresztą w tych produktach  na skutek przemian fruktozy. Związek jest też składnikiem zapachu Sherry oraz francuskiego żółtego wina jako skutek metabolizowania przez drożdże kwasu alfa-ketomasłowego, stąd używana czasem nazwa "lakton vin-jaune".
Powolne powstawanie sotolonu w mleczaju kamforowym sprawia, że suszony grzyb długo zachowuje aromat - Wood znajdował go nawet w 25-letnich próbkach. Za współautorów pracy o odkryciu uznał wszystkich pięciu studentów, którzy pracowali nad tym grzybem.[6][7][8]

Podgrzybek cezowy
W czasie badań napromieniowania żywności po katastrofie w Czarnobylu, polscy badacze zwrócili uwagę na pospolitego pogrzybka brunatnego, który wykazywał zaskakująco wysokie stężenia radioaktywnego cezu. W próbkach grzyba mogło być tego pierwiastka nawet piętnaście razy więcej niż w glebie na której rósł.
Dokładniejsze badania wskazały, że ta kumulacja jest wynikiem obecności w grzybie polifenolu norbadionu A, będącego brązowym pigmentem mającym wyjątkową skłonność do tworzenia kompleksów z cezem.

 Połączenia te są bardzo trwałe a selektywność wiązania porównywalna jest z eterami koronowymi.[9] Związek ten ma zresztą przy okazji własności przeciwutleniacza a także w pewnym stopniu chroni komórki przed uszkodzeniem od promieniowania, ponieważ zaś mimo wszystko stwierdzone w Europie stężenia cezu nie były groźne, grzyba można spokojnie spożywać.[10]

-------
 Źródła:
[1]  http://de.wikipedia.org/wiki/Lackmus
[2]  http://taxusbaccata.hubpages.com/hub/Dye-Plants-II-The-Atlantic-Purple-Wonder-Archil-lichen-Roccella-tinctoria
[3] Florian Stintzinga, and Willibald Schliemann, Pigments of Fly Agaric (Amanita muscaria), Z Naturforsch C. 2007 Nov-Dec;62(11-12):779-85.
[4]  José A.L. da Silva , João J.R. Fraústo da Silva, Armando J.L. Pombeiro, Amavadin, a vanadium natural complex: Its role and applications, Coordination Chemistry Reviews Volume 257, Issues 15–16, August 2013, Pages 2388–2400
[5]  http://en.wikipedia.org/wiki/Auricularia_auricula-judae
[6]  http://now.humboldt.edu/news/student-question-about-mushrooms-maple-syrup-odor-takes-27-years-to-answer/
[7] http://openagricola.nal.usda.gov/Record/IND44732722
[8] http://media.bostonmycologicalclub.org/pdf/Bulletin/Final612Bulletinsequence.pdf
[9] Kuad P, Schurhammer R, Maechling C, Antheaume C, Mioskowski C, Wipff G, Spiess B. (2009). "Complexation of Cs+, K+ and Na+ by norbadione A triggered by the release of a strong hydrogen bond: nature and stability of the complexes". Physical Chemistry Chemical Physics 11 (44): 10299–310.
[10] http://en.wikipedia.org/wiki/Norbadione_A

niedziela, 5 maja 2013

Jeszcze garść anegdot

A oto kilka kolejnych anegdot o chemikach, których nie umieściłem w poprzednich wpisach, bo na przykład wówczas o nich nie wiedziałem albo mi nie pasowały. Tym razem bez jednolitego tematu.

Chaos twórczy
Wynalazków dokonuje się w głowach. Nawet gdy dopomaga nam szczęśliwy zbieg okoliczności, trzeba uwagi aby w przypadku dostrzec nowe zjawisko. Często jednak wynalazek jest jedynie końcowym produktem dłuższego procesu, zaczynającego się w umyśle od myśli "a może by tak spróbować inaczej". Istnieją rozbudowane teorie innowacyjności, mające dopomóc w pomyśleniu o problemie na tyle niestandardowo, aby znaleźć dlań nowe rozwiązanie. Systematyczne i logiczne rozpatrywanie wszystkich możliwości, nawet tych najbardziej banalnych i z pozoru nieużytecznych, powinno doprowadzić wynalazcę do celu.
A gdy logika zawodzi, trzeba pomóc szczęściu. Mieszając, bałaganiąc, bawiąc się...

Robert H. Wentorf Jr. był amerykańskim chemikiem, zajmujący się głównie tworzeniem nowych materiałów. Już w latach pięćdziesiątych zwrócił na siebie uwagę pracami na temat przemian fazowych grafit/diament, w których stwierdził, że dla odpowiednio dużych ciśnień grafit stanie się diamentem dzięki katalizatorom w postaci stopionych metalów przejściowych. W kolejnych latach opracował technologię otrzymywania dużych kryształów, nadających się do użytku technicznego, jednak jego największe odkrycie dotyczyło czegoś innego.
Grafit jest polimorficzną odmianą węgla, będącą sześciokątną siatką tworzącą cienkie płaszczyzny, trzymające się siebie dosyć luźno za sprawą oddziaływań międzycząsteczkowych. Strukturę taką można porównać do stosu kartek papieru, w którym kartka składa się ze ściśle powiązanych włókienek, tworzących mocną strukturę, zaś poszczególne arkusze nie rozsypują się tylko za sprawą tarcia. Wentorf udowodnił, że stosując duże ciśnienie można sprawić, że te płaszczyzny zbliżą się do siebie na odległość podobną do tej, w jakiej znajdują się dobrze powiązane atomy w płaszczyźnie, i dzięki odpowiednim warunkom płaszczyzny scalą się, przechodząc w ścisłą i litą strukturę diamentu.

Gdy później szukał informacji na temat podobnych struktur, zwrócił uwagę na azotek boru. Jest to ciekawa substancja, o właściwościach zaskakująco podobnych do węgla. Bor i azot leża po dwóch stronach węgla w układzie okresowym - ten pierwszy ma o jeden elektron walencyjny mniej niż węgiel, a ten drugi jeden więcej. Jeśli połączyć je ze sobą w strukturę naprzemienną, to cała cząsteczka będzie miała tyle samo elektronów, co jej węglowy analog. Borazyna, będąca sześciokątnym pierścieniem z trzema azotami i trzema borami jest na tyle podobna do węglowego analogu, że bywa nazywana nieorganicznym benzenem.

Borazowym analogiem grafitu jest azotek boru - materiał składający się z warstw sześciokątnych siatek, powiązanych tylko oddziaływaniami międzycząsteczkowymi, mający postać miękkiej masy podobnej do wosku.

 Przeprowadził więc w umyśle analogię - jeśli azotek boru jest tak strasznie podobny do grafitu, z którego można zrobić diament, to czemu nie dałoby się zamienić go w borazowy analog diamentu? Idąc tym tropem szedł dalej "logiczną" ścieżką. Eksperymentował z wysokimi ciśnieniami, i stosował katalizatory z metali przejściowych, odpowiednie strukturą do struktur zamierzonych. Próbował zmieniać rozpuszczalniki, szybko zmieniać temperaturę, słowem - robił wszystko to co sprawdzało się w przypadku diamentów. I nic.
Postanowił zatem użyć innej metody, którą określał zasadą "Zrób jak najszybciej dużo błędów, a potem nie popełnij ani jednego". Chodziło zatem o wprowadzenie w proces twórczy chaosu i przypadkowych czynów,  których jednak potem należy wyłuskać rysującą się zasadę prowadzącą do celu. Zaczął więc wrzucać do reaktorów różne przypadkowe rzeczy - śrubkę, monetę, jakiś drucik leżący na stole...
Gdy przeprowadził kolejną syntezę zauważył że na powierzchni drucika pojawiło się kilka ciemnych ziaren, które mogły zarysować szkło. Dalsze badanie wykazało, że jest to poszukiwany materiał o twardości zbliżonej do diamentu. Sukces!
Ale jaką drogą? Drucik wrzucony do reaktora był wykonany ze stopu magnezu. Podczas rozpuszczania drucika w kwasie, aby oddzielić go od ziaren produktu, dawał się wyczuwać zapach amoniaku. Dla chemika stało się jasne, że magnez zareagował z obecnym w mieszaninie amoniakiem, tworząc azotek magnezu, ten zaś okazał się katalizatorem przemian strukturalnych. Dzięki takiemu katalizatorowi udało się produkować materiał, nazywany Borazonem, o twardości podobnej do diamentu, ale znacznie większej odporności chemicznej i termicznej.[1]

Pomysł tak głupi, że aż dobry
Z powyższą historią wiąże się jeszcze inna.
Jak to już napisałem, grafit składa się z warstw węgla ułożonego w sześciokątne pierścienie. Za sprawą idealnie aromatycznej struktury takich warstw, w jej obrębie materiał wykazuje wysokie przewodnictwo cieplne i elektryczne. Wiązania w takiej warstwie są ponadto bardzo trwałe, a ona sama bardzo mocna, stąd też po sukcesie z produkcją fullerenów i nanorurek, próbowano uzyskać takie monowarstwy. Niestety przez wiele lat bez rezultatu.
Aż do roku 2004 gdy dwóch  naukowców zaczęło bawić się w pracy. Jak tłumaczyli potem, między poważnymi pracami, od czasu do czasu zajmują się sprawdzaniem luźnych, głupich pomysłów. Jednym z nich było pytanie, czy warstwy grafitu można rozdzielić mechanicznie? I to tak, aby otrzymać jak najcieńszy kawałek?
Wzięli więc kawałek czystego grafitu i przylepili do niego taśmę klejącą, którą potem zerwali. Wraz z taśmą odkleił się kawałek grafitu. Przykleili więc drugi kawałek taśmy do otrzymanego kawałka, i rozdzielili ponownie. Po kilku takich rozrywaniach otrzymali małe kawałki grafitu, które prześwitywały. Badanie wykazały, że składają się z od jednej do kilku warstw. Nowo otrzymany materiał, nazwany grafenem, okazał się mieć na tyle niezwykłe właściwości, że zespoły badawcze zaczęły prześcigać się w metodach tworzenia go w większych ilościach. Naukowcy - Andre Geim i Konstantin Nowoselow otrzymali w 2010 roku Nagrodę nobla, a rolka taśmy klejącej i kawałek grafitu trafiły do muzeum.
Bo źle napisali
W 1886 roku dwaj lekarze Kahn i Hepp zajmowali się badaniem, czy naftalen, znany jako składnik naftaliny odstraszającej mole, będzie dobrym środkiem odrobaczającym przewód pokarmowy. Kupili naftalen w aptece i niespecjalnie przejmując się ostrożnością, podawali różnym pacjentom. Akurat na pasożyty związek pomagał bardzo słabo, ale pacjenci stwierdzili, że po zażyciu proszku ich dolegliwości bólowe się zmniejszyły, a jeśli mieli gorączkę to obniżała się. Zachęceni tym sukcesem doktorzy zaczęli czynić starania nad stworzeniem z tej substancji leku, jednak gdy dokładniej sprawdzili swój surowiec coś ich tknęło. Naftalen ma charakterystyczny zapach, natomiast to co oni posiadali, było bezwonne.
Apteczna etykieta na słoiku okazała się być zapisana tak niewyraźnym, "lekarskim" pismem, że trudno było ją odczytać. Oczywiste stało się więc, że testowali na pacjentach jakąś inną, nieznaną im substancję, przyniesioną im przez pomyłkę. Po analizie chemicznej okazało się, że był to acetanilid - acetylowa pochodna aniliny. [2]
Po dalszych testach substancję wprowadzono na rynek w tym samym roku, pod nazwą Antifevrin. Był to pierwszy lek przecowbólowy nie oparty na salicylanach. Niestety okazało się że wywołuje niedotlenienie i zatrucie, dlatego zastąpiono go mniej szkodliwa fenacetyną. Ta, znana jako składnik popularnej "tabletki z krzyżykiem" też okazała się szkodliwa, dlatego dziś stosuje się już tylko kolejną pochodną aniliny - paracetamol.
Ale o historii odkrycia paracetamolu napiszę za kilka dni....


------
[1] http://www.winstonbrill.com/bril001/html/article_index/articles/51-100/article61_body.html
[2] http://portails.inspq.qc.ca/toxicologieclinique/historique-de-lacetaminophene.aspx

niedziela, 10 marca 2013

Anegdoty o chemikach i ich odkryciach

Sukces wpisu o wypadkach dawnych chemików sprawił, że postanowiłem zebrać jeszcze trochę podobnych przypadków. Tym razem jednak nie o wybuchach lecz o odkryciach, i sposobach w jakie do nich dochodzono. A te bywały osobliwe.

Sprzątając
Odkryć można też dokonywać po doświadczeniach, w trakcie mycia sprzętu i zlewania pozostałości. Przydarzyło się to w roku 1933 Ralphowi Willeyowi, który będąc studentem pracował na pół etatu w Dow Chemical Laboratory, na podrzędnym stanowisku chłopca do mycia próbówek. Za którymś razem przytrafiła mu się kolba której za nic nie mógł domyć, gdyż była od wewnątrz pokryta cienką warstwą półprzezroczystej, twardej substancji. Przekonawszy się wreszcie, że jest to materiał bardzo wytrzymały, zgłosił innemu pracownikowi, że ktoś przypadkiem uzyskał substancję o obiecujących właściwościach. Imię tego pracownika nie jest chyba znane, zaś uważny Willey stał się znany jako odkrywa polichlorku winylidenu (PVDC).

Niemniej spektakularne było odkrycie Williama Perkina.
Już jako mały chłopiec po tym jak starszy kolega pokazał mu jakąś sztuczkę z kryształkami, zainteresował się chemią. Ucząc się w dobrej szkole i wykazując nadzwyczajny talent już jako piętnastolatek rozpoczął studia pod przewodnictwem Wilhelma Hoffmana, zostając wreszcie jego asystentem. W roku 1856 zajmował się on próbami syntezy chininy. Wiedziano z grubsza z badań stosunków pierwiastków że zawiera ona części aromatyczne i azot, toteż sprawdzano różne kombinacje, mając nadzieję że za którymś razem wyjdzie. Osiemnastoletni wówczas Perkin zajmował się utlenianiem aniliny przy pomocy chromianu potasu, niestety otrzymywana ze smoły węglowej anilina była mocno zanieczyszczona i po przeprowadzeniu reakcji otrzymał w naczyniu ciemnobrązową smołę, którą nie w sposób było usunąć.
W zasadzie produkt był do wyrzucenia, jednak gdy płukał naczynie alkoholem zauważył, że zabarwił się on na intensywnie fioletowo-różowy kolor, a zanurzona w nim szmatka zafarbowała się bardzo mocno. W tym momencie domyślił się zastosowań praktycznych i gdy tylko opanował metodę produkcji, ustaliwszy że substratem jest zanieczyszczająca anilinę toluidyna, nie czekając na opinię profesora opatentował drugi znany syntetyczny barwnik, nazwany przezeń moweiną - dowodząc przy tym, że oprócz zapału posiadał też żyłkę do interesów. Przekonał krewnych do założenia pierwszej fabryki i farbiarni i już wkrótce zarobił na niej tyle że w wieku 36 lat mógł odejść od pracy zarobkowej i zajmować się chemią wyłącznie dla własnej satysfakcji - czego mu bardzo zazdroszczę.
W późniejszych latach odkrył kilkanaście innych barwników anilinowych.
Wiktoriańska suknia barwiona moweiną

Pierwszym sztucznym barwnikiem była purpurowa fuksyna odkryta przypadkiem przez jego mentora, Wilhelma Hoffmana rok wcześniej. Nie miał on jednak takich zdolności jak jego student, i zanim opatentował ten związek, ubiegł go pewien francuz.

Bawiąc się
Zawsze po skończeniu ćwiczeń z analityki, gdy pozostawało już tylko wylać poreakcyjne mieszanki i umyć próbówki, zwykłem byłem mieszać ze sobą różne wylewane ciecze, aby zobaczyć co się stanie. Zwykle otrzymywałem różnobarwne warstwy, czasem doprowadzałem do jakiejś barwnej reakcji, ale często też nie działo się nic szczególnego. Bawić się w laboratorium, zasadniczo, nie powinno, ale czasem zabawa może być twórcza.
Gdy w 1930 roku Carrots odkrył nowy polimer, będący produktem kondensacji kwasu dikarboksylowego i diaminy, początkowo wydawało się, że nie znajdzie zastosowania, miał bowiem dosyć niską temperaturę topnienia. Jeden z asystentów, Julian Hill, mieszając w kolbie ze świeżym, jeszcze nie skrzepłym materiałem zauważył, że gdy wyciągnął mieszadełko, na jego końcu powstało równe włókienko. Wydawało się jednak że tym sposobem nie da się otrzymać dłuższych włókiem, jednak gdy szef laboratorium był nieobecny, Hill postanowił się pobawić - na jednym końcu korytarza postawił zlewkę ze stopioną masą, zanurzył w niej bagietkę i odbiegł wyciągając kilkunastometrowe włókno cienkie jak włos. W dodatku gdy już ostygło, można było rozciągnąć je jeszcze bardziej zwiększając jego twardość i wytrzymałość.
Później okazało się, że podczas wyciągania długie cząsteczki polimeru porządkują się wzdłuż, a po rozciągnięciu powstałej nici dodatkowo splatają, dając materiał o bardzo pożądanych właściwościach. Pierwsze tego typu włókna roztapiały się w gorącej wodzie, więc trzeba było poczekać kilka lat, aż znaleziono trudnotopliwy polimer kwasu adypinowego i heksanodiaminy, nazwany Nylonem.[1]

Niechcący i błędnie
Odkryć można dokonać wykonując błędnie znany proces i niechcący prowadząc do niebezpiecznych skutków. Przykładem Karl Neumann, który pracując w laboratoriach BASF zajmował się pewnego razu sulfonowaniem naftalenu. W kolbie reakcyjnej znalazł się więc naftalen i dymiący kwas siarkowy. Zawartość kolby należało co pewien czas mieszać, a że akurat na podorędziu nie było bagietki szklanej, wbrew przepisom zaczął mieszać termometrem. Robił to na tyle intensywnie, że stłukł go a metaliczna rtęć wlała się do środka. Powstający siarczan rtęci stał się katalizatorem wywołującym przemianę części naftalenu do bezwodnika ftalowego, co wykazały analizy "zepsutej" zawartości kolby. Poprzednio stosowany proces polegał na utlenieniu naftalenu tlenem i miał niską wydajność. Teraz można było produkować bezwodnik ftalowy na tyle tanio, że można go było wykorzystać jako substrat w produkcji Indygo. Synteza Neumanna została wprowadzona przez BASF w 1897 roku.

Przez nieumyte ręce
Jedną z podstawowych zasad wpajanych początkującym adeptom pracy laboratoryjnej jest to, aby nie próbować żadnej substancji, nawet wody destylowanej, nie wdychać oparów i i niczego nie jeść, oraz dokładnie myć ręce po pracy. Ma to dość oczywiste uzasadnienie, jako że wiele substancji z którymi można się zetknąć na pracowni jest trujących lub szkodliwych, a i trudno wykluczyć zanieczyszczenie nimi miejsc i naczyń wydawałoby się bezpiecznych. Przekonałem się o tym gdy pewnego razu polizałem lejek z sączkiem szklanym, aby przekonać się o fakturze. Niestety wcześniej lejek był czyszczony stężonym kwasem a poprzedni uczeń go nie przemył, dlatego szybko poczułem pieczenie a przez kilka następnych dni nie czułem smaku na koniuszku języka.. Tak czy siak zdarzało się że chemicy o tych regułach bezpieczeństwa zapominali, a zdarzało się że przy okazji odkrywali ciekawe właściwości badanych substancji.

W roku 1878 dwaj chemicy Ira Remsen i Constantin Fahlberg pracowali nad wyodrębnianiem substancji ze smoły węglowej. Po skończonej pracy zaczęli jeść bułki przyniesione z domu jako drugie śniadanie,  zauważyli wtedy, że bułki smakowały bardzo słodko, ale z gorzkawym posmakiem. Remsen myślał nawet, że żona przez pomyłkę posypała masło cukrem, ale potem zauważył ten sam posmak na palcach. Poprzedniego dnia pracowali nad toluenosulfonamidem i nie umyli rąk. Wspólnie opisali syntezę i właściwości związku, nazywając go Sacharyną. Był to pierwszy sztuczny słodzik używany przez cukrzyków, a w czasie wojny również jako zamiennik cukru przy braku dostaw.
Po kilku latach od odkrycia obaj panowie się pokłócili, bo Fahlberg po cichu opatentował metodę syntezy w kilku krajach, nie dając nic wspólnikowi.
Bardzo podobna historia zdarzyła się w 1937 roku, gdy amerykański student chemii  Michael Sveda pracował przy produkcji leków przeciwgorączkowych opartych na sulfonamidach. Paląc papierosa przy laboratoryjnym stole na chwilkę odłożył go w miejsce, gdzie wcześniej kapnął mu jeden z roztworów. Gdy znów wziął go o ust zauważył, że ustnik stał się bardzo słodki. Wkrótce odkryty przezeń słodzik, nazwany cyklaminianem, wprowadzono jako dodatek do gorzkich leków, a potem dosładzano nim napoje.
Kolejnym słodzikiem odkrytym w ten sposób był aspartam. Jego odkrywca Schlatter, szukając leku na wrzody w roku 1965 pobrudził nim dłoń, a potem poślinił palec aby rozdzielić sklejone strony książki. Dwa lata później w identyczny sposób Karl Klaus odkrył acesulfam K.
Poczet oblizujących się chemików zamyka szwajcarski chemik Albert Hofmann, który zajmował się poszukiwaniem silnie działających leków w trujących grzybach. Pochodna kwasu lizergowego, którą stworzył w 1938 roku miała być lekiem na astmę, ale nie została wówczas zbadana. Dopiero w 1943 roku postanowił ponownie przyjrzeć się temu związkowi. Niewielka ilość zanieczyściła mu palce i podczas jedzenia dostała się na usta. Po powrocie do domu doznał uczucia niepokoju, więc położył się do łóżka i przeżył dwugodzinną wizję podobną do fantastycznego snu. Trzy dni potem świadomie zażył większą dawkę, i wracając do domu na rowerze doznał tak silnych halucynacji, że ledwie trafił. Na pamiątkę tego zdarzenia miłośnicy LSD obchodzą 19 kwietnia Dzień Roweru. Ale to już inna historia.
Karteczki nasączone LSD

Te przypadki dotyczyły dobrych stron odkrywanych związków. Jak łatwo się domyśleć o chemikach odkrywających silne trucizny nie mogliśmy usłyszeć, bo nie było by komu ogłosić tego odkrycia.

Bo za długo leżało
Bywa że nowe substancje odkrywane są podczas porządkowania stołu laboratoryjnego, w trakcie sprawdzania starych próbówek i kolb z czymś zapomnianym. Bo przecież niektóre reakcje zachodzą bardzo powoli, i tylko zapominalskość chemika może sprawić, że da on substancjom odpowiednio dużo czasu.

W 1839 roku berliński aptekarz Eduard Simon zajmował się badaniem storaksu - aromatycznej żywicy Ambrowca balsamicznego, o właściwościach odkażających, stanowiącej składnik kadzideł. Próbując uzyskać bardziej aromatyczne składniki przeprowadził destylację z parą wodną i otrzymał oleistą ciecz, którą nazwał styrolem. Zebrał ją do buteleczki, odłożył na półkę i zajął się innymi sprawami. Po kilku dniach okazało się że zawartość butelki zgęstniała do formy twardej galarety, którą nazwał styroloksydem. Kilka lat później podobną substancję uzyskano bez dostępu powietrza. Wreszcie Berthelod stwierdził że w obu przypadkach powstaje ta sama substancja, zaś procesem nie jest utlenianie lecz łączenie cząsteczek w długie łańcuchy. Tak powstające tworzywo sztuczne nazwano polistyrenem. Najpospolitszym jego zastosowaniem jest produkcja styropianu.
Podobna jest historia polichlorku winylu. Chlorek winylu, czyli chlorek etenu, jako pierwszy otrzymał Regnault w 1835 roku. Powstałą lotną ciecz zamknął w buteleczce i położył na parapecie. Gdy po kilku dniach sobie o niej przypomniał znalazł tam brązową, elastyczną masę. Minęło jednak kilka dekad i odkrycia popadło w zapomnienie aż w 1872 roku powtórzyła się w laboratorium Eugena Baumana. Otrzymawszy większą ilość stwierdził, że masa jest podobna do galalitu i gdyby można ją było otrzymywać w dużych ilościach, byłaby dobrą masą plastyczną. Pierwszy zakład produkcji PCW wyglądał osobliwie - na dużym placu ustawiano obszerne butle wypełnione chlorkiem winylu i zostawiano na kilka dni aby świeciło na nie słońce. Potem butle rozbijano a bryły tworzywa przetapiano. Nie był to za bardzo ekonomiczny sposób, więc dopiero wynalezienie katalizatorów polimeryzacji pozwoliło wprowadzić nowy materiał na szeroki rynek.

We śnie
Och, jakże bym tak chciał. Zdrzemnąć się gdzieś a pomysły same przychodzą do głowy. Próbuję zatem drzemek w różnych porach, ale jak na razie bez skutku.
Najbardziej znanym chemikiem, którego sny do czegoś się przydały, był August Kekule - ale nie zrodziły się one z próżni.

W XIX wieku chemia organiczna dopiero raczkowała. Pierwsze syntezy związków organicznych z tych nieorganicznych to lata 20. Pierwsze reakcje na takich związkach zaczęto stosować niedługo później. Jedną z rzeczy jakie nurtowały chemików, była budowa materii - coś co odróżniało jedną substancję od drugiej. W zasadzie jedynym po czym, oprócz ich właściwości fizycznych, rozróżniano między substancjami, był stosunek wagowy składowych pierwiastków. Metan składał się z węgla i wodoru w stosunku 1:4, etan z tego samego, ale w stosunku 1:3 a butan w stosunku 2:5.
Teoria atomowa Daltona pchnęła sprawę do przodu - jeśli pierwiastki składają się z jednakowych cząstek, to związki są różnego rodzaju mieszaninami, w których atomy pierwiastków łączą się ze sobą w różnych kombinacjach. Odkrycie, że różne substancje mogą posiadać ten sam stosunek ilościowy pierwiastków zaciemniło obraz. Wyglądało na to, że różnicą jest nie ilość a sposób łączenia atomów, co siłą rzeczy nasuwało myśl o jakiejś strukturze - tylko jakiej? W powyższych przykładach ze stosunków ilościowych wynikałoby, ze w jednym związku atom węgla łączy się z wodorem przez cztery wiązania, w drugim przez trzy a w kolejnym w bardziej skomplikowany sposób.
Kekule 1857 roku ogłosił, że jego zdaniem liczba możliwych wiązań dla danego pierwiastka jest stała i dla węgla wynosi 4. Rodziło to oczywiste problemy z przypisaniem wszystkim połączeniom odpowiednich atomów i sprawiło że miał się nad czym zastanawiać. Zastanawiał się aż do znużenia. I tak oto, znużony, wracał do domu omnibusem i zdrzemnął się na jednym z siedzeń, gdy przyśniły mu się atomy:
Zatonąłem w marzeniach i przed moimi oczami zaczęły krążyć atomy. Zawsze widziałem te małe twory w ruchu. Teraz widziałem, jak dwa mniejsze łączą się ze sobą w pary, jak większe otaczają dwa mniejsze, a jeszcze większe utrzymywały to wszystko w zawrotnym tańcu. Widziałem, jak większe atomy tworzyły łańcuch, wciągając mniejsze, ale tylko na końcach łańcucha[2]
Obudzony przez konduktora miał gotowe rozwiązanie - ilości wiązań i stosunki będą zachowane, jeśli uznamy, że węgle łączą się same ze sobą tworząc łańcuchy. Tłumaczyło to też stosunki ilościowe w kolejnych, coraz cięższych alkanach, mogąc wywieść je z reguły 2N+2 wskazującej że atomów wodoru jest o dwa więcej niż dwukrotność liczby atomów węgla. Teoria była rozwijana i stosowana do coraz większej ilości związków. Uzupełniono ją, uznając możliwość tworzenia podwójnych wiązań. Aż nasz chemik zajął się próbą ustalenia, wedle tych zasad, struktury benzenu. I poległ.
W przypadku benzenu stosunek ilościowy wynosił 1:1, czyli tyle samo węgla co wodoru. Z badań reakcji podstawienia było wiadomo że zawiera sześć węgli i nijak nie dało się ich połączyć zgodnie z zasadami. Cztery wiązania podwójne się nie mieściły a próby izomerów z bocznymi łańcuchami też nie dawały efektów. I byłby się być może Kekule załamał, gdyby nie drugi sen, jaki naszedł go przed płonącym kominkiem:

Znowu atomy harcowały przed moimi oczami. Tym razem mniejsze grupy trzymały się skromnie z tyłu. Moje duchowe oko, wyostrzone przez powtarzające się podobne wizje, rozróżniło teraz większe twory o różnorodnym kształcie. Długie szeregi, kilkakrotnie ściśle ze sobą złączone, wszystko w ruchu, wijące się wężowato i skręcające się. Patrzę, co się stało? Jeden z węży chwycił swój własny ogon i szyderczo kręcił się przed moimi oczami. Obudziłem się jak rażony piorunem i resztę nocy spędziłem na rozpracowywaniu wniosków z tej hipotezy.[b]
No tak. Jeśli założyć trzy wiązania podwójne i pierścieniową budowę, to wszystko się zgadza.

Czy zatem Kekule miał proroczy sen? Cóż, co do samej opowieści wysnuwane są wątpliwości - chemik opisał je w luźnym przemówieniu z okazji 25 rocznicy swych odkryć, przed tą datą brak poświadczeń. Niewykluczone, że przypisanie snom rozwiązania mogło zasłaniać fakt, że założenia obu teorii zostały dobrane arbitralnie, na zasadzie "tak musi być bo pasuje" i dopiero do nich dołączono poświadczenia doświadczalne. Inni wskazują, że sugestie pierścieniowej budowy tego związku wysnuwano już wcześniej, nie ogłaszając ich jednak jako oficjalnej teorii.
Sen Kekulego bywał zresztą w rozmaity sposób interpretowany - w okresie popularności analizy sennej psycholog Mitserlich uznał że nagłe przebudzenie było wywołane zaniepokojeniem, to z kolei poczuciem utraty władzy; że zaś wedle klasycznej psychoanalizy marzenia senne mają związek ze strefą seksualną, długi wąż gryzący swój ogon został więc przezeń uznany za penisa, nie mogącego podążać, a sen za wyraz frustracji i pożądania, niezaspokojonego po śmierci żony.[3] W taki sposób każdą rzecz można sprowadzić do seksu.
Alternatywne struktury C6H6

Mozołem i pracą
Ale nie zawsze proces odkrywczy wygląda tak ładnie jak to przedstawiałem. Niestety z reguły odkrycie jest końcem długiego procesu, i nawet olśnienie stanowi jedynie początek pracy. Dobitnie przekonał się o tym Paul Ehrlich, twórca chemioterapii. Zgodnie z opracowaną przez siebie teorią "magicznej kuli" wedle której lekiem na określoną chorobę bakteryjną ma być substancja, zatrzymująca ważne procesy w organizmach bakterii i tylko ich, zaczął poszukiwać leku na syfilis.
Wiedział że Atoksyl, lek na śpiączkowe zapalenie mózgu, może też poprawiać stan chorych na syfilis, jednak dopiero w niebezpiecznych dawkach. Uznał zatem że należy znaleźć taką organiczną pochodną arsenu, jaka będzie silnie toksyczna dla prątków kiły, a słabo dla człowieka. Zaczął więc po kolei syntezować - pochodne aminokwasów, kwasów karboksylowych, fenoli, aldehydów itd. Trudno sobie wyobrazić nakład pracy, podczas której tworzył po kilka nowych związków na miesiąc i sprawdzał właściwości. I po kolei stwierdzał, że związki te się nie nadają. Pewną nadzieję dawała arsenofenyloglicyna, zsyntetyzowana jako substancja nr. 418, nawet była testowana w Afryce, ale nie dawała pełnego wyleczenia. Aż wreszcie po czterech latach pracy, w roku 1909 stwierdził, że tym idealnym związkiem jest substancja nr. 606, znana później jako Salwarsan. Paradoksalnie rok wcześniej Erhlich dostał nagrodę Nobla za całkiem inne odkrycia dotyczące surowic odpornościowych.

Serendipity
Skąd biorą się takie szczęśliwe przypadki, nazywane przez anglików "serendipity"? A no stąd, że wszędzie dzieje się wszytko. Jeśli jakieś zdarzenie, proces chemiczny, jest możliwe, to kiedyś musi zaistnieć. Rzecz jednak nie w tym, że pewne zdarzenia mają miejsce, lecz w tym, aby zauważyć je i zrozumieć znaczenie.
W końcu niezamierzona synteza ciekawego związku nie mogła przydarzyć się każdej osobie, a tylko tej, które zajmuje się określonymi procesami - a ta ma większe szanse dostrzec coś ciekawego w tym, co ktoś inny uznałby za nieudany wynik. Jak zauważył trafnie Pauster, któremu podobne przypadki się przydarzały: "Szczęście sprzyja przygotowanym umysłom". Jules H. Comroe opisał przypadkowe odkrycia znacznie dosadniej: "To szukanie igły w stogu siana i odnalezienie córki rolnika". Czego też życzę czytelnikom...
-------
[1]  http://articles.chicagotribune.com/1996-02-04/news/9602040105_1_nylon-du-pont-mr-hill
[2]  http://pl.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz
[3]  http://www.sgipt.org/th_schul/pa/kek/pak_kek0.htm