Gdy chemik wychodzi z pracy do domu, dobrze jest zadbać o to, aby przypadkiem nie wynosił na sobie chemikaliów. Zwłaszcza na rękach, którymi będzie potem dotykał wszystkiego, w tym domowników i siebie. Oczywiście przy pracy z odczynnikami powinno się stosować rękawiczki, ale trudno się zupełnie ustrzec przed pobrudzeniem. Często przed wyjściem do domu, po umyciu rąk sprawdzam ich czystość pod lampą ultrafioletową ustawioną na dalszy, "czarny" zakres. Większość substancji z którymi pracuję, w jakimś stopniu świeci w takim zakresie, zwykle na niebiesko lub żółto.
Dlatego łatwo będzie zrozumieć moje obawy, gdy podczas takich prób stwierdziłem wyraźną fluorescencję samych paznokci, zupełnie jakby czymś się nasączyły:
Dopiero przegląd literatury nieco mnie uspokoił. Otóż wygląda na to, że paznokcie fluoryzują same z siebie. W przeglądzie dermatologicznych badań nad skórą opisano naturalne świecenie naświetlanych ultrafioletem paznokci.[1] Nie dowiedziałem się natomiast co konkretnie w nich świeci, może bilirubina która dość często w stanach chorobowych odkłada się w płytce paznokcia aż do wyraźnego zabarwienia.
Do paznokci mogą też przenikać fluoryzujące leki - po zażyciu tetracykliny obserwuje się żółte świecenie, a po zażyciu atabryny żółto-zielone.[2] Próbuje się wykorzystać to zjawisko w bezinwazyjnej diagnostyce.
---------
[1] Pierre Agache, Philippe Humbert, Measuring the Skin, Google Books s. 296
[2] https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-4362.1999.00794.x
informacje
wtorek, 16 października 2018
poniedziałek, 24 września 2018
Chemiczne wieści (19.)
Papierowa bateria którą zasila bakteria
Wykorzystanie żywych organizmów do wytwarzania energii jest jak na razie raczkującym działem technologii. Pewnym krokiem na przód jest doniesienie badaczy z Birmingham University o stworzeniu lekkiej minibaterii, której podstawowym materiałem jest zadrukowany papier. Na papierowe podłoże naniesiono warstwę przewodzącego polimeru z akceptorem elektronów, a na drugą stronę tusz zawierający cząstki metalu. Sam papier został ponadto pokryty przetrwalnikami wysuszonych bakterii elektrogennych.
Są to bakterie które potrafią tworzyć ładunki elektryczne generując niewielkie prądy. Nie tak dawno odkryto, że w kolonii tworzą między sobą połączenia przekazując sobie wzajemnie energię, oraz że mogą być pobudzane do wzrostu przez zewnętrzne napięcie.
W tym przypadku bakterie zostały użyte jako źródło prądu. Po nasyceniu papieru elektrolitem, którym może być na przykład ślina, woda pitna czy sok roślinny, bakterie zaczynają metabolizować i generować prąd. Drobne ładunki zebrane z zestawu wielu połączonych ogniw, na arkuszu złożonym w harmonijkę, wystarczyły aby po kilkunastu minutach od nawilżenia dało się tym prądem zapalić diodę czy zasilić kalkulator elektroniczny.
Badacze celują tym urządzeniem w przenośne urządzenia analityczne, na przykład do wykrywania substancji we krwi czy moczu, albo zanieczyszczeń w wodzie pitnej. Urządzenie nie potrzebowałoby zasilania, byłoby lekkie, a badany płyn byłby równocześnie elektrolitem.[1]
Nadmierne wzburzenie chmielonego piwa wyjaśnione
W najczęściej używanej technice warzenia piwa, głównym surowcem jest słód, otrzymywany z ziaren zbóż poddanych przeprocesowaniu, w którym namoczone ziarna rozciera się uwalniając enzymy rozkładające skrobię do prostych cukrów. Następnie mieszanina ta jest gotowana z chmielem, co zabija przeszkadzające bakterie i dzikie drożdżaki, oraz uwalnia z chmielu aromaty i goryczki. Następnie mieszanina jest poddawana fermentacji przy pomocy odpowiednio dobranych gatunków drożdży, a po zakończeniu fermentacji, gdy proste cukry zostaną rozłożone, piwo może zostać zabutelkowane.
W ostatnich latach coraz większą popularność zdobywa sobie technika chmielenia na zimno, polegająca na macerowaniu piwa z chmielem już po ustaniu fermentacji burzliwej. Dzięki temu piwo zyskuje wyraźniejszy i mocniejszy aromat chmielu, bez przesadnej ilości goryczki. Część bowiem substancji aromatycznych zwyczajnie odparowuje podczas warzenia, lub jest usuwana z bąbelkami.
Technika ta bywa jednak nieco kłopotliwa - piwowarzy częściej niż zwykle obserwowali w tak zrobionym piwie pojawienie się dodatkowej, nie kończącej się szybko fermentacji. Jeśli po pozornym spadku ilości cukrów i zaprzestaniu fermentacji piwo nachmielono i za szybko zabutelkowano, następująca w butelce dalsza fermentacja powodowała przy otwarciu gushing (fontanna piany pod ciśnieniem) a nawet pękanie butelek w trakcie leżakowania. Dodatkowym problemem mogła być za wysoka zawartość alkoholu.
Zwykle za przyczynę tego zjawiska uznawano natlenienie piwa powietrzem zawartym w chmielu, zanieczyszczenie dzikimi drożdżami czy obecność cukrów prostych w samym chmielu, co dostarczyło drożdżom dodatkowego pokarmu. Ostatnie badanie zespołu z Oregon State University dorzuca jeszcze jedną możliwość.
Naukowcy poddali powtórnemu chmieleniu komercyjne piwa, a więc takie, w których co się miało przefermentować, to już przereagowało. Okazało się, że zawartość alkoholu i dwutlenku węgla ponownie się zwiększyła, zupełnie jakby w piwie pojawiły się dodatkowe cukry proste. Dokładne przeanalizowanie składu pozwoliło odnaleźć źródło.
Podczas produkcji słodu oraz dalszego warzenia, nie cała skrobia ulega rozkładowi do fermentowalnych cukrów prostych. Część łańcuchów skrobi ulega tylko podziałowi na dekstryny - fragmenty zawierające kilka - kilkanaście reszt glukozowych, które są rozpuszczalne w wodzie i nie da się ich oddzielić filtrowaniem. Drożdże nie za bardzo mogą się nimi pożywić, pozostają więc w piwie jako niefermentowalne węglowodany. Jak się jednak okazuje, sam chmiel zawiera enzymy mogące rozkładać dekstryny. W wyciągu z suszu oznaczono aktywność amyloglukozydazy, alfa i beta amylaz i dekstrynazy. Ich zawartość wystarcza aby rozłożyć dekstryny i dostarczyć dodatkowych porcji fermentowalnych cukrów prostych.
Podczas dalszych eksperymentów badacze sprawdzili, że stopień przereagowania można kontrolować temperaturą, czasem i ilością macerowanego chmielu, potencjalnie więc możliwe by było takie dobranie warunków procesu, aby przykre efekty uboczne pojawiały się rzadziej. [2]
Pasek do sprawdzania antybiotyków
Antybiotyki należą do najczęściej fałszowanych leków. Podróbki nie zawierające właściwego leku, lub z substancją właściwą rozmieszaną z czymś nieaktywnym, krążą po sklepach, pojawiają się na aukcjach internetowych oraz bywają sprzedawane do krajów trzeciego świata. Zespół badaczy z Carolina State University opracował prosty test kolorymetryczny, który może wykazać czy tabletka zawiera antybiotyk, oparty zasadą działania o testy ciążowe.
Fragment badanej tabletki rozpuszcza się w wodzie a roztwór nakłada na koniec papierowego paska. Gdy pasek nasiąknie, zawarty w nim związek, nitrocefina, może reagować z drugim składnikiem, enzymem betalaktamazą. Przy nieobecności antybiotyku, reakcja spowoduje powstanie produktu o czerwonym kolorze. Antybiotyk z grupy beta-laktamów (głównie penicyliny) będzie natomiast sam reagował z laktamazą, zmniejszając szybkość reakcji ze wskaźnikiem i powodując, że pasek pozostanie żółty.
Podczas ślepej próby z przemieszanymi próbkami z i bez antybiotyków test prawidłowo oznaczył zawartość penicylin w 29 z 32 próbek.[3]
---------
[1] Yang Gao Seokheun Choi, Merging Electric Bacteria with Paper, Adw. Mat. Tech. vol 3 issue 8
[2] Kaylyn R. Kirkpatrick and Thomas H. Shellhammer, Evidence of Dextrin Hydrolyzing Enzymes in Cascade Hops (Humulus lupulus), J. Agric. Food Chem., 2018, 66 (34), pp 9121–9126
[3] Katherine E. Boehle et al, Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics, ACS Sens., 2018, 3 (7), pp 1299–1307
Wykorzystanie żywych organizmów do wytwarzania energii jest jak na razie raczkującym działem technologii. Pewnym krokiem na przód jest doniesienie badaczy z Birmingham University o stworzeniu lekkiej minibaterii, której podstawowym materiałem jest zadrukowany papier. Na papierowe podłoże naniesiono warstwę przewodzącego polimeru z akceptorem elektronów, a na drugą stronę tusz zawierający cząstki metalu. Sam papier został ponadto pokryty przetrwalnikami wysuszonych bakterii elektrogennych.
Są to bakterie które potrafią tworzyć ładunki elektryczne generując niewielkie prądy. Nie tak dawno odkryto, że w kolonii tworzą między sobą połączenia przekazując sobie wzajemnie energię, oraz że mogą być pobudzane do wzrostu przez zewnętrzne napięcie.
W tym przypadku bakterie zostały użyte jako źródło prądu. Po nasyceniu papieru elektrolitem, którym może być na przykład ślina, woda pitna czy sok roślinny, bakterie zaczynają metabolizować i generować prąd. Drobne ładunki zebrane z zestawu wielu połączonych ogniw, na arkuszu złożonym w harmonijkę, wystarczyły aby po kilkunastu minutach od nawilżenia dało się tym prądem zapalić diodę czy zasilić kalkulator elektroniczny.
Credit: Seokheun Choi |
Badacze celują tym urządzeniem w przenośne urządzenia analityczne, na przykład do wykrywania substancji we krwi czy moczu, albo zanieczyszczeń w wodzie pitnej. Urządzenie nie potrzebowałoby zasilania, byłoby lekkie, a badany płyn byłby równocześnie elektrolitem.[1]
Nadmierne wzburzenie chmielonego piwa wyjaśnione
W najczęściej używanej technice warzenia piwa, głównym surowcem jest słód, otrzymywany z ziaren zbóż poddanych przeprocesowaniu, w którym namoczone ziarna rozciera się uwalniając enzymy rozkładające skrobię do prostych cukrów. Następnie mieszanina ta jest gotowana z chmielem, co zabija przeszkadzające bakterie i dzikie drożdżaki, oraz uwalnia z chmielu aromaty i goryczki. Następnie mieszanina jest poddawana fermentacji przy pomocy odpowiednio dobranych gatunków drożdży, a po zakończeniu fermentacji, gdy proste cukry zostaną rozłożone, piwo może zostać zabutelkowane.
W ostatnich latach coraz większą popularność zdobywa sobie technika chmielenia na zimno, polegająca na macerowaniu piwa z chmielem już po ustaniu fermentacji burzliwej. Dzięki temu piwo zyskuje wyraźniejszy i mocniejszy aromat chmielu, bez przesadnej ilości goryczki. Część bowiem substancji aromatycznych zwyczajnie odparowuje podczas warzenia, lub jest usuwana z bąbelkami.
Technika ta bywa jednak nieco kłopotliwa - piwowarzy częściej niż zwykle obserwowali w tak zrobionym piwie pojawienie się dodatkowej, nie kończącej się szybko fermentacji. Jeśli po pozornym spadku ilości cukrów i zaprzestaniu fermentacji piwo nachmielono i za szybko zabutelkowano, następująca w butelce dalsza fermentacja powodowała przy otwarciu gushing (fontanna piany pod ciśnieniem) a nawet pękanie butelek w trakcie leżakowania. Dodatkowym problemem mogła być za wysoka zawartość alkoholu.
Zwykle za przyczynę tego zjawiska uznawano natlenienie piwa powietrzem zawartym w chmielu, zanieczyszczenie dzikimi drożdżami czy obecność cukrów prostych w samym chmielu, co dostarczyło drożdżom dodatkowego pokarmu. Ostatnie badanie zespołu z Oregon State University dorzuca jeszcze jedną możliwość.
Credit: American Chemical Society |
Naukowcy poddali powtórnemu chmieleniu komercyjne piwa, a więc takie, w których co się miało przefermentować, to już przereagowało. Okazało się, że zawartość alkoholu i dwutlenku węgla ponownie się zwiększyła, zupełnie jakby w piwie pojawiły się dodatkowe cukry proste. Dokładne przeanalizowanie składu pozwoliło odnaleźć źródło.
Podczas produkcji słodu oraz dalszego warzenia, nie cała skrobia ulega rozkładowi do fermentowalnych cukrów prostych. Część łańcuchów skrobi ulega tylko podziałowi na dekstryny - fragmenty zawierające kilka - kilkanaście reszt glukozowych, które są rozpuszczalne w wodzie i nie da się ich oddzielić filtrowaniem. Drożdże nie za bardzo mogą się nimi pożywić, pozostają więc w piwie jako niefermentowalne węglowodany. Jak się jednak okazuje, sam chmiel zawiera enzymy mogące rozkładać dekstryny. W wyciągu z suszu oznaczono aktywność amyloglukozydazy, alfa i beta amylaz i dekstrynazy. Ich zawartość wystarcza aby rozłożyć dekstryny i dostarczyć dodatkowych porcji fermentowalnych cukrów prostych.
Podczas dalszych eksperymentów badacze sprawdzili, że stopień przereagowania można kontrolować temperaturą, czasem i ilością macerowanego chmielu, potencjalnie więc możliwe by było takie dobranie warunków procesu, aby przykre efekty uboczne pojawiały się rzadziej. [2]
Pasek do sprawdzania antybiotyków
Antybiotyki należą do najczęściej fałszowanych leków. Podróbki nie zawierające właściwego leku, lub z substancją właściwą rozmieszaną z czymś nieaktywnym, krążą po sklepach, pojawiają się na aukcjach internetowych oraz bywają sprzedawane do krajów trzeciego świata. Zespół badaczy z Carolina State University opracował prosty test kolorymetryczny, który może wykazać czy tabletka zawiera antybiotyk, oparty zasadą działania o testy ciążowe.
Fragment badanej tabletki rozpuszcza się w wodzie a roztwór nakłada na koniec papierowego paska. Gdy pasek nasiąknie, zawarty w nim związek, nitrocefina, może reagować z drugim składnikiem, enzymem betalaktamazą. Przy nieobecności antybiotyku, reakcja spowoduje powstanie produktu o czerwonym kolorze. Antybiotyk z grupy beta-laktamów (głównie penicyliny) będzie natomiast sam reagował z laktamazą, zmniejszając szybkość reakcji ze wskaźnikiem i powodując, że pasek pozostanie żółty.
Podczas ślepej próby z przemieszanymi próbkami z i bez antybiotyków test prawidłowo oznaczył zawartość penicylin w 29 z 32 próbek.[3]
Copyright © 2018 American Chemical Society |
---------
[1] Yang Gao Seokheun Choi, Merging Electric Bacteria with Paper, Adw. Mat. Tech. vol 3 issue 8
[2] Kaylyn R. Kirkpatrick and Thomas H. Shellhammer, Evidence of Dextrin Hydrolyzing Enzymes in Cascade Hops (Humulus lupulus), J. Agric. Food Chem., 2018, 66 (34), pp 9121–9126
[3] Katherine E. Boehle et al, Paper-Based Enzyme Competition Assay for Detecting Falsified β-Lactam Antibiotics, ACS Sens., 2018, 3 (7), pp 1299–1307
piątek, 21 września 2018
Ostatnio w laboratorium (61.)
Bardzo ładna rekrystalizacja:
W tym przypadku była to pewna pochodna chinoliny. Kilkakrotna krystalizacja, rozpuszczenie i ponowna krystalizacja pozwoliły na oddzielenie brązowego zanieczyszczenia od jasnokremowego związku bez konieczności użycia chromatografii.
W tym przypadku była to pewna pochodna chinoliny. Kilkakrotna krystalizacja, rozpuszczenie i ponowna krystalizacja pozwoliły na oddzielenie brązowego zanieczyszczenia od jasnokremowego związku bez konieczności użycia chromatografii.
środa, 18 lipca 2018
Chemiczne wieści (18.)
Najcięższy porfirynoid
Porfiryna to naturalny związek pierścieniowy, składający się z czterech mniejszych pierścieni pirolu, połączonych mostkami. Jej motyw jest zawarty w wielu ważnych biologicznie cząsteczkach, w tym w chlorofilu, hemoglobinie czy witaminie B12. Przez lata poznano wiele cząsteczek o analogicznej budowie, czasem też podobnych właściwościach. Teraz poznano najcięższy analog.
Badacze z Uniwersytetu w Marburgu donoszą o odkryciu dokonanym metodą syntezy jonotermalnej. W wyniku rozkładu tellurortęcianu sodu ( Na2[HgTe2] ) powstały kryształy, w których warstwach pojawia się skomplikowany jon nieorganiczny [Hg8Te16]8− o strukturze naśladującej pierścień porfiryny.
Związek nie ma charakteru aromatycznego, jak jego organiczny odpowiednik, jedynie pięciokątne pierścienie składowe wykazują lokalną sigma-aromatyczność. [1]
Nano-Saturn
Japońscy chemicy otrzymali związek o na prawdę nietypowym kształcie - fullerenowa kula wewnątrz płaskiego dysku, przypominająca Saturna z pierścieniami.
Podobne układy już próbowano wytwarzać, ale wówczas pierścień był zwykle dość szeroki. Strukturę starano się stabilizować przez oddziaływania pi-pi. W tym przypadku najzupełniej wystarczające okazały się oddziaływania między elektronami pi fullerenu a wodorami pierścienia (jest to jedna z odmian wiązania wodorowego). Powstały kompleks supramolekularny okazał się dość trwały, udało się go nawet wykrystalizować, dzięki czemu potwierdzono strukturę przy pomocy rentgenografii strukturalnej.[2]
Nanografen z młyna
Jedną z przeszkód w stosowaniu grafenu i podobnych mu cząstek jest trudność w otrzymaniu cząstek o odpowiedniej, pożądanej wielkości. Frakcjonowanie zawiesin otrzymanych z rozwarstwionego grafitu jest nieco kłopotliwe, zwłaszcza przy większej skali, a powstałe fragmenty mogą mimo identycznej masy wyraźnie różnić się kształtami. Dlatego chemicy najchętniej zastosowaliby po prostu syntezę fragmentów grafenu ze związków organicznych.
Ostatnio niemieccy chemicy z politechniki w Dreźnie opisali jeden z takich przypadków. Syntezowali fragment grafenopodobny (w zasadzie była to cząsteczka dużego WWA), poprzez sprzęganie sześciofenylobenzenu, to jest związku w którym sześciokątny pierścień benzenowy jest podstawiony kolejnymi sześcioma takimi pierścieniami. Wystarczy połączyć podstawniki ze sobą aby otrzymać płaską cząsteczkę złożoną z 13 sprzężonych pierścieni. Jeśli z kolei te boczne grupy fenylowe same byłyby podstawione takimi grupami, poprzez sprzężenie można otrzymywać fragmenty grafenowe o większych rozmiarach i ściśle określonych kształtach.
Problemem w tym przypadku było jednak dobranie warunków reakcji. Silnie podstawione pochodne benzenu (heksa-trifenylo-fenylo-fenylo...) miały formę ciała stałego, które nie bardzo chciało się w czymkolwiek rozpuszczać. Ciężko więc było przeprowadzać reakcję sprzęgania w typowych warunkach reakcji w roztworze. Skoro tak, to należało użyć warunków nietypowych.
Sprzężenia dokonano przy pomocy reakcji Scholla, wytwarzającej wiązania między pierścieniami aromatycznymi przy pomocy chlorku żelaza jako katalizatora. Do przeprowadzenia syntezy użyto młyna kulowego, w układzie bez dodawanych żadnych rozpuszczalników. Podczas mieszania i mielenia, kule młyna uderzają w ziarna mieszaniny, zderzając je z siłą tak dużą, że możliwe jest zajście reakcji normalnie wymagających bardzo wysokich temperatur. Równocześnie intensywne mielenie zapewnia dobre wymieszanie składników. Tego typu reakcje mechanochemiczne są w ostatnich latach intensywnie badane.
W tym przypadku reakcja zaszła z zadowalającą wydajnością, prowadząc do powstania węglowodorów grafenopodobnych tak dużych, jak trójkątna cząsteczka złożona z 60 węgli w układzie 19 sprzężonych pierścieni.[3]
Niezwykłe klastry borków
Natomiast chińscy badacze donoszą o otrzymaniu ciekawych klastrów boru z lantanowcami. Lantanowce zawierają na powłoce walencyjnej f dość dużo elektronów, mogą więc tworzyć wiązki o wysokich liczbach koordynacyjnych. W tym przypadku otrzymano klastry o wzorze ogólnym Ln2B8, w którym atomy boru tworzą pierścień ośmiokątny i są połączone z dwoma atomami lantanowca po przeciwnych stronach, tworząc bipiramidę ośmiokątną. Jest to rzadka symetria. Ze względu na pewne podobieństwo do kompleksów kanapkowych, nazwano cząsteczkę "odwróconą kanapką".
Tak powstała cząsteczka ma interesujące właściwości magnetyczne i może posłużyć do budowy molekularnych magnesów.[4]
-----------
[1] Carsten Donsbach, Kevin Reiter ,Prof. Dr. Dage Sundholm, Priv.‐Doz. Dr. Florian Weigend, Prof. Dr. Stefanie Dehnen; [Hg4Te8(Te2)4]8−: A Heavy Metal Porphyrinoid Embedded in a Lamellar Structure ;Angew. Chem. Int. Ed Volume57, Issue28 July 9, 2018 Pages 8770-8774
[2] Yuta Yamamoto Dr. Eiji Tsurumaki Prof. Dr. Kan Wakamatsu Prof. Dr. Shinji Toyota; Nano‐Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60, Angew Chem Int Ed. Volume 57, Issue 27 Pages 8199-8202
[3] Sven Grätz, Doreen Beyer, Valeriya Tkachova, Sarah Hellmann, Reinhard Berger, Xinliang Feng, Lars Borchardt. The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool. Chemical Communications, 2018; 54 (42): 5307
[4] Wan-Lu Li, Teng-Teng Chen, Deng-Hui Xing, Xin Chen, Jun Li, Lai-Sheng Wang. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proceedings of the National Academy of Sciences, 2018; 201806476
Porfiryna to naturalny związek pierścieniowy, składający się z czterech mniejszych pierścieni pirolu, połączonych mostkami. Jej motyw jest zawarty w wielu ważnych biologicznie cząsteczkach, w tym w chlorofilu, hemoglobinie czy witaminie B12. Przez lata poznano wiele cząsteczek o analogicznej budowie, czasem też podobnych właściwościach. Teraz poznano najcięższy analog.
Badacze z Uniwersytetu w Marburgu donoszą o odkryciu dokonanym metodą syntezy jonotermalnej. W wyniku rozkładu tellurortęcianu sodu ( Na2[HgTe2] ) powstały kryształy, w których warstwach pojawia się skomplikowany jon nieorganiczny [Hg8Te16]8− o strukturze naśladującej pierścień porfiryny.
Związek nie ma charakteru aromatycznego, jak jego organiczny odpowiednik, jedynie pięciokątne pierścienie składowe wykazują lokalną sigma-aromatyczność. [1]
Nano-Saturn
Japońscy chemicy otrzymali związek o na prawdę nietypowym kształcie - fullerenowa kula wewnątrz płaskiego dysku, przypominająca Saturna z pierścieniami.
© Wiley-VCH |
Podobne układy już próbowano wytwarzać, ale wówczas pierścień był zwykle dość szeroki. Strukturę starano się stabilizować przez oddziaływania pi-pi. W tym przypadku najzupełniej wystarczające okazały się oddziaływania między elektronami pi fullerenu a wodorami pierścienia (jest to jedna z odmian wiązania wodorowego). Powstały kompleks supramolekularny okazał się dość trwały, udało się go nawet wykrystalizować, dzięki czemu potwierdzono strukturę przy pomocy rentgenografii strukturalnej.[2]
Nanografen z młyna
Jedną z przeszkód w stosowaniu grafenu i podobnych mu cząstek jest trudność w otrzymaniu cząstek o odpowiedniej, pożądanej wielkości. Frakcjonowanie zawiesin otrzymanych z rozwarstwionego grafitu jest nieco kłopotliwe, zwłaszcza przy większej skali, a powstałe fragmenty mogą mimo identycznej masy wyraźnie różnić się kształtami. Dlatego chemicy najchętniej zastosowaliby po prostu syntezę fragmentów grafenu ze związków organicznych.
Ostatnio niemieccy chemicy z politechniki w Dreźnie opisali jeden z takich przypadków. Syntezowali fragment grafenopodobny (w zasadzie była to cząsteczka dużego WWA), poprzez sprzęganie sześciofenylobenzenu, to jest związku w którym sześciokątny pierścień benzenowy jest podstawiony kolejnymi sześcioma takimi pierścieniami. Wystarczy połączyć podstawniki ze sobą aby otrzymać płaską cząsteczkę złożoną z 13 sprzężonych pierścieni. Jeśli z kolei te boczne grupy fenylowe same byłyby podstawione takimi grupami, poprzez sprzężenie można otrzymywać fragmenty grafenowe o większych rozmiarach i ściśle określonych kształtach.
© Sven Grätz |
Problemem w tym przypadku było jednak dobranie warunków reakcji. Silnie podstawione pochodne benzenu (heksa-trifenylo-fenylo-fenylo...) miały formę ciała stałego, które nie bardzo chciało się w czymkolwiek rozpuszczać. Ciężko więc było przeprowadzać reakcję sprzęgania w typowych warunkach reakcji w roztworze. Skoro tak, to należało użyć warunków nietypowych.
Sprzężenia dokonano przy pomocy reakcji Scholla, wytwarzającej wiązania między pierścieniami aromatycznymi przy pomocy chlorku żelaza jako katalizatora. Do przeprowadzenia syntezy użyto młyna kulowego, w układzie bez dodawanych żadnych rozpuszczalników. Podczas mieszania i mielenia, kule młyna uderzają w ziarna mieszaniny, zderzając je z siłą tak dużą, że możliwe jest zajście reakcji normalnie wymagających bardzo wysokich temperatur. Równocześnie intensywne mielenie zapewnia dobre wymieszanie składników. Tego typu reakcje mechanochemiczne są w ostatnich latach intensywnie badane.
W tym przypadku reakcja zaszła z zadowalającą wydajnością, prowadząc do powstania węglowodorów grafenopodobnych tak dużych, jak trójkątna cząsteczka złożona z 60 węgli w układzie 19 sprzężonych pierścieni.[3]
Niezwykłe klastry borków
Natomiast chińscy badacze donoszą o otrzymaniu ciekawych klastrów boru z lantanowcami. Lantanowce zawierają na powłoce walencyjnej f dość dużo elektronów, mogą więc tworzyć wiązki o wysokich liczbach koordynacyjnych. W tym przypadku otrzymano klastry o wzorze ogólnym Ln2B8, w którym atomy boru tworzą pierścień ośmiokątny i są połączone z dwoma atomami lantanowca po przeciwnych stronach, tworząc bipiramidę ośmiokątną. Jest to rzadka symetria. Ze względu na pewne podobieństwo do kompleksów kanapkowych, nazwano cząsteczkę "odwróconą kanapką".
Tak powstała cząsteczka ma interesujące właściwości magnetyczne i może posłużyć do budowy molekularnych magnesów.[4]
© Wang Lab/Brown University |
-----------
[1] Carsten Donsbach, Kevin Reiter ,Prof. Dr. Dage Sundholm, Priv.‐Doz. Dr. Florian Weigend, Prof. Dr. Stefanie Dehnen; [Hg4Te8(Te2)4]8−: A Heavy Metal Porphyrinoid Embedded in a Lamellar Structure ;Angew. Chem. Int. Ed Volume57, Issue28 July 9, 2018 Pages 8770-8774
[2] Yuta Yamamoto Dr. Eiji Tsurumaki Prof. Dr. Kan Wakamatsu Prof. Dr. Shinji Toyota; Nano‐Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60, Angew Chem Int Ed. Volume 57, Issue 27 Pages 8199-8202
[3] Sven Grätz, Doreen Beyer, Valeriya Tkachova, Sarah Hellmann, Reinhard Berger, Xinliang Feng, Lars Borchardt. The mechanochemical Scholl reaction – a solvent-free and versatile graphitization tool. Chemical Communications, 2018; 54 (42): 5307
[4] Wan-Lu Li, Teng-Teng Chen, Deng-Hui Xing, Xin Chen, Jun Li, Lai-Sheng Wang. Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proceedings of the National Academy of Sciences, 2018; 201806476
Subskrybuj:
Posty (Atom)