informacje



czwartek, 11 lipca 2019

Ostatnio w laboratorium (69.)

Nigdzie się tak bardzo nie pobrudzisz, jak w dobrze wyposażonym laboratorium chemicznym. Zwłaszcza wtedy, gdy przydarzy ci się pracować z nieszczelną rękawiczką, jak to zdarzyło mi się ostatnio podczas pracy ze stężonym kwasem azotowym. Oczywiście szybko umyłem palec, na którym poczułem w pewnej chwili podejrzaną śliskość. Efekt: żółta plama na skórze, której już się nie dało zmyć.
W sumie nie pierwszyzna, ale jeszcze o tym na blogu nie pisałem.

Plama to wynik znanej z podręczników szkolnych reakcji ksantoproteinowej, często przedstawianej jako reakcja charakterystyczna dla białek, co nie jest zupełnie słuszne. Polega ona w zasadzie na nitrowaniu grup aromatycznych w niektórych aminokwasach poprzez podgrzewanie ze stężonym kwasem azotowym. Po zalkalizowaniu środowiska żółta plama staje się ciemnopomarańczowa.
.
Kilka spośród aminokwasów budujących białka, w tym te w naszym organizmie, zawiera aromatyczne grupy, to jest węglowodorowe pierścienie o odpowiednim układzie wiązań podwójnych. Ze względu na bliskość atomu azotu, a także często inne dodatkowe grupy, pierścień aromatyczny jest dość aktywny i stosunkowo łatwo ulega nitrowaniu. Dotyczy to w zasadzie tyrozyny i tryptofanu, o tym aby w takich warunkach reaktywna była Prolina nie znalazłem informacji. Pierścień fenylowy w Tyrozynie nitruje się głównie w pozycji meta:

Aminokwas fenyloalanina nie daje w tej reakcji zabarwienia, ze względu na to, że grupa fenylowa jest w nim nieaktywna. Od azotu dzieli ją dłuższy odcinek.
W przypadku białek obfitujących w aromatyczne aminokwasy, nitrowanie można doprowadzić do dość wysokiego poziomu. Jednym z niekiedy używanych typów amatorskich materiałów wybuchowych jest znitrowane mleko w proszku, zawierające głównie nitrokazeinę. [1]

Nitroaminokwasy mogą też powstawać w organizmie w wyniku metabolizmu. Jedną z odmian wolnych rodników, jakim bacznie przygląda się medycyna, są reaktywne formy azotu (RFA), wywodzące się zwykle od tlenku azotu II (NO) będącego wolnym rodnikiem. Jest on ważnym sygnalizatorem chemicznym, regulującym procesy zapalne i napięcie mięśni, i wytwarzanym przez specjalny enzym. Z drugiej jednak strony może on reagować z białkami i DNA, zaburzając ich funkcję. W organizmie szybko ulega przemianie do innych reaktywnych cząsteczek, jak dwutlenek azotu czy nadtlenoazotyn. W pewnych procesach chorobowych RFA są wytwarzane w nadmiernych ilościach, prowadząc do stanu stresu nitrozacyjnego.
Znitrowana tyrozyna, powstająca w takich reakcjach, mogłaby być wskaźnikiem natężenia tego procesu.[2]
Canary Girls

Reakcja podobna do ksantoproteinowej może też zachodzić w wyniku kontaktu z innymi reaktywnymi nitrozwiązkami. W okresie I wojny światowej w USA zwrócono uwagę na skutki przewlekłego narażenia na trotyl. U pracujących nad przerobem tego wybuchowego materiału robotnic rozwijało się przewlekłe, żółte zabarwienie skóry całego ciała. Zaczęto je przez to nazywać Kanarkowymi Dziewczynami. Bardziej groźny okazał się jednak wpływ trotylu na inne organy, często wywoływał uszkodzenie wątroby, niedokrwistość i powiększenie śledziony. U 400 pracownic pojawiła się żółtaczka związana z niewydolnością wątroby, która zabijała co czwartą. Niektóre z nich rodziły żółte dzieci.
Na szczęście po pewnym czasie od zaprzestaniu kontaktu z chemikaliami, kolor skóry zanikał.[3]

Ot takie dodatkowe ciekawostki na temat znanej i "nieciekawej" reakcji.
----------
[1]  https://www.aristatek.com/newsletter/0512December/TechSpeak.aspx
[2] https://www.pnas.org/content/101/12/4003
[3] https://en.m.wikipedia.org/wiki/Canary_Girls

poniedziałek, 17 czerwca 2019

Ostatnio w laboratorium (68.)

Do laboratorium analitycznego mogą czasem przychodzić dziwne próbki. Jak choćby ostatnio - przyniesiono nam próbkę osadu z bojlera, o uderzającym zielonym kolorze, z zapytaniem czy możemy zbadać jakie pierwiastki w tym są, bo coś takiego się wytrąca. Już pierwszy rzut oka sugerował miedź:

Ale oko nie spektroskop, należało to jakoś potwierdzić. Pierwsze badanie - reakcja z kwasem solnym. Osad powoli rozpuszczał się, wydzielając bąbelki gazu. Czyli w skład osadu raczej wchodził zwykły węglanowy kamień. Roztwór po rozpuszczeniu miał słaby, zielonkawo-niebieski kolor. Co jeszcze mogło tam siedzieć? Wprawdzie mamy na wyposażeniu ICP-OES, ale włączanie aparatu na jedną próbkę było bezsensowne, najwyżej dołożymy próbkę roztworzonego osadu do innych, gdy będzie więcej zamówień. Na szybko to ja mogłem zrobić tylko klasyczne analizy próbówkowe.

Przegrzebałem odczynniki, szukając czegoś specyficznego. Dimetyloglioksymu nie było, podobnie jak benzoinooksymu, rodanek amonu jeszcze nie doszedł, wreszcie zdecydowałem się na dwie reakcje. Do części roztworu dodałem wodorotlenku sodu - powstał jasnoniebieski osad, jaki raczej daje miedź. Do drugiej dodałem roztwór żelazocyjanku potasu (ściślej: odczynnik Carreza I), powstał brunatno-czerwony osad, charakterystyczny dla miedzi. Aha, czyli w sumie potwierdzone.

Zastanawiałem się jednak czy da się w tym jeszcze wykryć żelazo, które zdecydowanie częściej występuje w wodzie, podbarwiając kamień kotłowy na brązowo. Nie było widać aby osad wodorotlenku podbarwiał rdzawy wodorotlenek żelaza III. Obstawiałem, że żelazo może być ewentualnie związane w formie związków żelaza II o słabym, zielonkawym zabarwieniu, maskowanym przez miedź. Postanowiłem dodać do zlewki kilka kropel wody utlenionej. Żelazo się dzięki temu utleni, osad pociemnieje. Myślałem przy tym, że wodorotlenek miedzi nie zareaguje, bo aby utlenić miedź do jeszcze wyższych stopni utlenienia, to trzeba bardziej agresywnych warunków. A jednak zostałem zaskoczony - zawartość zlewki stała się intensywnie zielona:

No dobra, może to żelazo daje taki efekt. Żółty i niebieski dają zielony, widocznie żelaza jest w tym osadzie dużo. Zrobiłem ślepą próbę z siarczanem miedzi, ale wynik był podobny - wodorotlenek miedzi w reakcji z wodą utlenioną robił się zielony.
Wyjaśnienie wiąże się z powstawaniem związku, o jakim wcześniej nie czytałem - powstaje nadtlenek miedzi - CuO2. Jest to związek nietrwały, szybko zresztą zaobserwowałem stopniowe ciemnienie i brunatnienie osadu, zachodzące z wydzielaniem bąbelków tlenu; po upływie 30 minut w zlewce był już tylko drobny, czarny osad tlenku miedzi II CuO.
Charakter i struktura tego tlenku są dyskutowane - w pewnym warunkach daje się uzyskać związek o podobnej stechiometrii, mający charakter dwutlenku, z czterowartościową miedzią.[1] W tym przypadku przypuszczalnie jest to cykliczny nadtlenek jonowy, zawierający dwuanion O2−
2
  .
W strukturze wewnętrznej wysokotemperaturowych nadprzewodników z grupy miedzianów, daje się wyróżnić płaszczyzny tlenku o stosunku 1:2, w których następuje nadprzewodnictwo elektronowe.

Tymczasem następnego dnia zauważyłem, że w próbówce w której badałem reakcję na żelazocyjanki, roztwór nad osadem związków miedzi zabarwił się na niebiesko. Błękit pruski jest lepiej rozpuszczalny w wodzie od żelazocyjanku miedzi, zwłaszcza przy mocno niestechiometrycznym stosunku jonów, co świadczyło o tym, że kamień kotłowy jednak zawierał też trochę żelaza.

ps. Tak się złożyło, że to 300 wpis na tym blogu.
--------
[1]  https://pubs.acs.org/doi/10.1021/j150655a014

sobota, 1 czerwca 2019

Burza w próbówce

Przygotowując się do pokazów chemicznych, jakie mam prowadzić w firmie na imprezie plenerowej, postanowiłem przetestować klasyczne doświadczenie, którego jakoś tak nie miałem okazji jeszcze oglądać gdzieś indziej. Tak zwana "burza w próbówce" to efektowna forma spalania, w której najbardziej interesujący jest właściwy utleniacz.

Wykonanie nie jest skomplikowane, choć nie należy do zupełnie bezpiecznych. Do szklanej próbówki nalewa się niedużo (2-3 ml) stężonego kwasu siarkowego. Na tą ciecz pipetą, aby nie doszło do wymieszania, dodaje się alkohol etylowy; ja użyłem 96%. Powstają dwie przezroczyste warstwy o wyraźnie różnej gęstości. Następnie do próbówki nasypuje się szybko odrobinę (na koniec metalowej łopatki) suchego nadmanganianu potasu. Doświadczenie lepiej wychodzi, jeśli nadmanganian ma formę kryształków a nie drobnego proszku.
Kryształki przechodzą przez alkohol bez zmian, po czym wpadają w warstwę kwasu, która zabarwia się na brunatno. Po pewnym czasie z pogranicza faz zaczynają unosić się bąbelki, oraz pojawiać się rozbłyski światła, którym towarzyszy słyszalny trzask.

Efekt nie pojawił się od razu. Po wsypaniu pierwszej porcji bardzo drobnego pyłku, kwas się zabarwił na zielono, a trzaski pojawiały się bardzo rzadko, może raz na minutę. Byłem rozczarowany, więc sypnąłem więcej. Rozbłyski stały się nieco intensywniejsze. Dopiero użycie porcji kryształków odsianych, aby były nieco większe, dało efekt jak na filmie.

Jaki jest mechanizm? W często podawanych opisach po prostu nadmanganian w kwaśnym środowisku utlenia alkohol, a rozbłyski wywołują grudki na granicy faz, to jednak trochę za duże uproszczenie, nie tłumaczące czemu bardziej intensywne trzaski pojawiają się po pewnym czasie od wyraźnie widocznego przebicia faz i zatonięcia kryształków w samym kwasie.
Nadmanganian potasu to sól - kationem jest potas zaś anionem nadmanganian. Każdemu anionowi w soli powinien odpowiadać jakiś kwas, który po deprotonacji wytworzy ten anion. Czasem wolnych kwasów odpowiadających anionom nie da się wyizolować, bo są nietrwałe. Podobnie jest w tym przypadku.
W stężonym kwasie siarkowym jon nadmanganianowy tworzy kwas manganowy VII (HMnO4), ten jest jednak nietrwały i w stężonym kwasie siarkowym traci cząsteczkę wody. Powstaje więc tlenek manganu VII (Mn2 O7  ), nazywany też siedmiotlenkiem manganu, który formalnie jest bezwodnikiem tego kwasu.

Siedmiotlenek manganu to natomiast substancja bardzo interesująca. Mimo że jest tlenkiem metalu, w temperaturze pokojowej jest cieczą o głębokim, zielonym kolorze. Wypływa na wierzch mieszaniny kwasu siarkowego z nadmanganianem potasu tworząc oleistą, połyskującą warstewkę:

Jest też cząsteczką niezwykle silnie reaktywną. Powoli rozkłada się na tlen i niższe tlenki manganu, wydzielając też przy okazji niewielką ilość ozonu, wyczuwalną jako ostry zapach. W kontakcie z substancjami organicznymi wywołuje ich gwałtowny zapłon. Sam przebieg reakcji jest podkręcany tym, że powyżej temperatury 60 stopni wybucha, rozkładając się na tlen, ozon i tlenki manganu o niższym stopniu utlenienia.
Mechanizm powstawania burzy w próbówce jest więc następujący: kryształki nadmanganianu rozpuszczają się w kwasie,  powstaje siedmiotlenek manganu. Część z niego rozpuszcza się w kwasie tworząc zieloną parę jonową, część natomiast formuje krople, które przedostają się do interfazy, gdzie wchodzą w reakcję z alkoholem. W wyniku wysokiej temperatury utleniania alkoholu wybuchają.
Równie gwałtowny przebieg ma reakcja z dowolną inną materią organiczną. Tutaj przykład reakcji z papierem, w parowniczce, w której udało mi się uzyskać większą ilość tlenku:

Eksperyment w próbówce nie jest do końca bezpieczny. Nieco większa niż zazwyczaj kropla może rozbić próbówkę, a płonąca mieszanina alkoholu, tlenku manganu i stężonego kwasu siarkowego, to nie jest coś co chciałbym zobaczyć na którymkolwiek stole.
Pozostałości po reakcji należy szybko przelać do dużej zlewki z zimną wodą i zobojętnić.

wtorek, 28 maja 2019

Chemiczne wieści (22.)

Reakcja psuta przez teflon z mieszadeł
Mieszadła magnetyczne to obecnie jeden z najpopularniejszych sprzętów laboratoryjnych. W podstawce, często podgrzewanej, znajdują się magnesy, które działają na magnetyczny "drops" wrzucany do naczynia, pozwalając na wygodne i szybkie mieszanie. Magnes wkładany do naczynia zwykle jest chroniony warstwą białego teflonu, materiału na tyle niereaktywnego, że wytrzymuje mieszanie nim kwasów i środków utleniających.
Jak wynika z niedawnej publikacji badaczy z Rice University, teflon w takich mieszadłach czasem jest jednak niedostatecznie niereaktywny.

Prowadzili oni dodawanie grup funkcyjnych na powierzchni nanorurek, stosując jako jeden z etapów redukcję  Billupsa-Bircha. To modyfikacja znanej redukcji metalicznym sodem w ciekłym amoniaku, w której następuje równoczesna alkilacja powierzchni węglowej w miejscach defektów sieci. W tym konkretnym przypadku funkcjonalizowano nanorurki borazynowe, a więc ze związku złożonego z atomów boru i azotu w stosunku 1:1. O dziwo w czasie reakcji zawiesina kremowych rurek stała się szara, natomiast magnetyczne mieszadełko stało się czarne. Standardowo używana do takich cząsteczek analiza termograwitacyjna nie wykazała, aby z rurkami stało się coś złego. Jednak nietypowy kolor był wyraźnie widoczny. Problemem było też uzyskanie spójnych wyników, które raz wskazywały na wysoki stopień podstawienia a kiedy indziej na bardzo niski.

Dokładniejsze badania wykazały, że w warunkach reakcji lit rozpuszczony w amoniaku reaguje z teflonem. Następuje to w szybkiej reakcji rodnikowej, która przeszkadza w alkilowaniu rurek, w dodatku podstawiając je dodatkowymi, nie planowanymi grupami. Dlatego te otrzymywane przy pomocy świeżych mieszadełek były słabo podstawione, a te ze starymi, już poczernionymi, reagowały lepiej. Ponieważ dotychczas używano tej reakcji do modyfikacji rurek węglowych, które są czarne, naukowcy sądzili w takich przypadkach, że zmiana koloru magnesów wynika z osadzania się rurek na teflonie. A w każdym razie, że nawet jeśli teflon się zmieniał to nie musiało to wpływać na wyniki.

Gdy badacze zamienili mieszadełka na takie o szklanej otoczce, wyniki stały się powtarzalne, a nanorurki nie ciemniały. [a]
Sam obserwowałem trwałe ciemnienie mieszadełek po reakcjach ze środkami alkilującymi i chlorującymi, ale nie stwierdziłem aby wpływało to na wydajność czy powstawanie ubocznych produktów.

Wodorek helu wreszcie wykryty
Gdy po Wielkim Wybuchu wszechświat się rozrzedzał i chłodził, początkowa plazma różnych nietrwałych, naładowanych cząsteczek zaczęła się stopniowo łączyć w obojętne cząstki. To wtedy przestrzeń nabrała dostatecznej przezroczystości dla światła, aby dało się coś zobaczyć. Najwięcej powstawało atomów wodoru, cząsteczek wodoru i atomów helu, może z domieszką litu. Wśród powstających molekuł powinien się pojawić też kation wodorku helu HeH+. Jest to nietrwałe połączenie, proton łatwo dysocjuje (pKa=63), dlatego cząsteczka istnieje bądź jako element równowagi między helem i wodorem w zagęszczonych, zjonizowanych gazach, lub jako składnik gazów tak bardzo schłodzonych i rozrzedzonych, że w trakcie swego trwania nie ma z czym zareagować.
Obserwowano ją w eksperymentach na ziemi, ale w kosmosie o dziwo nie udawało się jej wykryć. Aż do teraz. W niedawnej publikacji badaczy z Instytutu Radioastronomii Maxa Plancka potwierdzono istnienie charakterystycznej linii emisyjnej 149.1 µm, której wykrycie dotychczas uniemożliwiała słaba rozdzielność spektralna i przeszkadzające zanieczyszczenia w atmosferze. Bardzo blisko tej linii znajduje się jeden z sygnałów wiązania C-H (149.09 µm) w związku z czym proste węglowodory obecne w przestrzeni mogą maskować szukaną linię, w dodatku w zakres ten częściowo wchodzi pochłanianie przez wodę w atmosferze, co dodatkowo osłabia sygnały. Badacze skorzystali więc z udostępnionego przez NASA teleskopu na pokładzie dużego samolotu, który z wysokości 12 kilometrów przeprowadził pomiar widma w mgławicy NGC 7027. Sygnały były już dostatecznie mocne, aby możliwe było odfiltrowanie dwóch bliskich linii widmowych i potwierdzenie istnienia szukanej molekuły.[b]

Rekordowy poziom dwutlenku węgla
Średnia globalna zawartość dwutlenku węgla  atmosferze przekroczyła w kwietniu 410 ppm, z kolei w obserwatorium na Mauna Loa przekroczyła 415 ppm. Teraz zapewne średnie miesięczne zaczną spadać zgodnie z rocznym cyklem:

Kształt krzywej dla danych globalnych wynika głownie ze zmian sezonowych na półkulach. Na półkuli północnej jest więcej lądów, które silniej reagują na zmiany pór roku. Rośliny na lądach zmniejszają aktywność zimą i stopniowo zwiększają z początkiem wiosny, w czerwcu ich aktywność fotosyntetyczna jest już na tyle wysoka, że obniżają stężenie CO2 w powietrzu na stacjach pomiarowych na półkuli północnej, minimum przypada na jesień, kiedy to mniejsza aktywność roślin oraz rozpoczynające się procesy butwienia ponownie zwiększają poziom CO2.  W ciągu roku wahania dochodzą więc do 5 ppm, natomiast z roku na rok następuje stały wzrost stężenia tego gazu o około jedną-trzecią wahań rocznych.

Selektywny odzysk uranu z morskiej wody
Uran jest pierwiastkiem dosyć rzadkim w skorupie ziemskiej, poza rudami tlenkowymi występuje w dużym rozproszeniu. Badacze z Oak Ridge University pokazali, że mimo wszystko da się go odzyskiwać nawet z takich materiałów, jak morska woda, w której występuje w średnim stężeniu około 3 miligramów na tonę.
Inspiracją były bakterie i grzyby gromadzące w sobie żelazo. Posiadały białka połączone ze specjalnymi cząsteczkami, nazwanymi syderoforami, które bardzo selektywnie wyłapywały krążące w otoczeniu żelazo. Postanowiono sprawdzić, czy poprzez modyfikacje tych cząsteczek da się wytworzyć takie, które będą skutecznie wyłapywać inne pierwiastki. Metodą symulacji komputerowych i testów eksperymentalnych stworzono optymalną cząsteczkę - 2,6-bis[hydroksy(metylo)amino-4-morfolino-1,3,5-triazynę, która bardzo selektywnie pochłania jony uranowe i uranylowe. Potencjalnie więc możliwe byłoby użycie jej do odzysku tego pierwiastka. Musiałaby być osadzona na polimerowym nośniku w formie proszku, przez który można przepuścić wiele wody, aż do wysycenia cennym pierwiastkiem. [c]




--------
[a]  Angel A. Martí et al. Adverse Effect of PTFE Stir Bars on the Covalent Functionalization of Carbon and Boron Nitride Nanotubes Using Billups–Birch Reduction Conditions. ACS Omega, 2019; 4 (3): 5098
[b] Rolf Güsten, Helmut Wiesemeyer, David Neufeld, Karl M. Menten, Urs U. Graf, Karl Jacobs, Bernd Klein, Oliver Ricken, Christophe Risacher & Jürgen Stutzki, Astrophysical detection of the helium hydride ion HeH+ , Nature volume 568pages357359 (2019)
[c]  Ilja Popovs et al. Siderophore-inspired chelator hijacks uranium from aqueous medium. Nature Communications, 2019; 10 (1)