informacje



niedziela, 3 listopada 2013

Nietypowe organiczne

Znamy już kilka milionów związków organicznych a wciąż syntezowane są nowe (na pracowni otrzymałem jeden), toteż przebierając w tym ogromie, można wybrać sobie kilka strukturalnych osobliwości.

Domek
Związek jak z dziecięcego obrazka - housan o kształcie domku:
 Cząsteczka ze względu na naprężenia występuje w konformacji koperty - z trójkątnym daszkiem odchylonym od płaszczyzny kwadratowej podstawy, ze względu na reaktywność atomów wodoru na zgięciu i skłonność do zamiany w penten, ma ciekawe zastosowania w syntezie organicznej. Spotykam się jednak z innym związkiem, też nazywanym housanem (zresztą nazwy zwyczajowe często są nieoficjalne) wyglądający jak dwa pięciokąty połączone palikami:
Nazwa jednak chyba się szerzej nie przyjęła, więc oficjalnie jest to [5]-pryzman. Jego modyfikacja z dodatkowym węglem, tworzącym "iglicę" nazywana bywa churchanem przez skojarzenie z kościołem:


Szczególnym przypadkiem domkowatego związku jest Pagodan, który skojarzył się twórcom z kształtem chińskiej pagody (albo dwóch jedna na drugiej)


Kuban i inne figury geometryczne
Wśród węglowodorów o ciekawym kształcie, szczególną grupę stanowią te których szkielet stanowi krawędzie wielościanów foremnych, nazywane alkanami platońskimi. Najmniejszą taką molekułą jest Tetraedran, mający kształt czworościanu foremnego


W normalnym przypadku wiązania między atomami węgla tworzą szerszy kąt, bo 109 stopni, tutaj są z powodu geometrii bardzo ściśnięte, przez co naprężona cząsteczka w normalnych warunkach nie powstaje. Jak dotychczas otrzymano tylko pochodne z podstawnikami tert-butylowymi na każdym węglu. Takie pochodne są przestrzennie bardzo zatłoczone i stabilizowane przyciąganiem między grupami. Inne pochodne zawierają podstawniki silanowe, ale wersji niezatłoczonej, czyli czystego wielościanu jeszcze nie otrzymano. Teoretycznie powinien był związkiem stosunkowo trwałym przy nieobecności utleniaczy.
Znany jest też krzemowy analog. Podobną strukturę ma biały fosfor i żółty arsen.

Większą bryłą foremną jest sześcian, a jej węglowodorowy odpowiednik to Kuban - węglowodór o kształcie kostki do gry, z kątami prostymi między wiązaniami.:
Ta bryła też ma bardzo napięte wiązania, stąd przez długi czas sądzono, że jego synteza będzie niemożliwa. Dokonał tego w 1964 roku Philip Eaton w bardzo sprytny sposób, szyjąc kostkowaty szkielet niczym dziewiarka wymyślną rękawiczkę. A dokonał tego w 11 krokach, które warto chyba pokrótce opisać:

W pierwszym etapie otrzymał bromopochodną cyklopentadienonu. Jest to związek ulegający spontanicznie i dosyć łatwo reakcji addycji Dielsa-Adlera w której cząsteczka posiadająca dwa wiązania podwójne, tworzy sześciokątny pierścień z cząsteczką z jednym takim wiązaniem; jest to addycja typu 4+2 bo wiązania są tworzone przez przesunięcie czterech elektronów jednej i dwóch drugiej czasteczki.
 Utworzona w ten sposób cząsteczka zawiera dwa wiązania podwójne. Po naświetleniu światłem odpowiedniej długości następuje kolejna addycja, tym razem 2+2 gdy wiązania podwójne łączą się w czworokącik a cała cząsteczka zagina się w związek nr. 4. Ten etap jest przestrzennie trudniejszy do wyobrażenia, ale to dzięki niemu powstaje kilka pierwszych kątów prostych.  Jedna grupa ketonowa zostaje zabezpieczona przez zamienienie w acetal.
Pozostały nam już tylko dwa wiązania do zamknięcia klatki, każde trzeba zawiązać osobno i jeszcze odszczepić niepotrzebne podstawniki. Jedno zostaje otrzymane za pomocą przegrupowania Faworskiego, gdzie w roztworze wodorotlenku atom bromu zostaje usunięty z pobliża grupy ketonowej, a ta zamieniona w karboksylową, otrzymując związek nr. 5. Ponieważ grupa karboksylowa, właściwa kwasom organicznym, sterczy teraz niepotrzebnie z jednego z naroży, należy ją usunąć - najpierw tworzymy ester tertbutylowy, potem utleniamy do nadestru z grupą nadtlenkową, a na koniec usuwamy całe ugrupowanie przez ogrzanie, w wyniku którego dekarboksyluje do dwutlenku węgla.
Zostaje jeszcze jedno wiązanie do utworzenia, tam gdzie znajduje się druga grupa ketonowa, przez dotychczasowe etapy zabezpieczona przez zamianę w acetal. Usuwamy go przez hydrolizę i powtarzamy poprzednie etapy - przegrupowanie Faworskiego, zamiana w ester, utlenienie do nadestru i dekarboksylacja.
Na koniec zostaje nam czysty, nie podstawiony kuban.
Jest to związek stosunkowo trwały z powodu braku łatwych sposobów rozkładu, dlatego otrzymano liczne pochodne. Interesującą jest ośmionitrokuban, stanowiący materiał wybuchowy o największej znanej prędkości detonacji. Ponieważ jednak otrzymuje się go trudno i jest wagowo cenniejszy od złota, na razie nie znalazł zastosowania. Inną ciekawą pochodną jest Basketan - kuban z dodatkową poprzeczką, dającą kształt koszyka:
Ponieważ węgiel nie tworzy pięciu wiązań, następnym węglowodorem o kształcie wielościanu foremnego jest dopiero dodekaedran, a więc cząsteczka będąca szkieletem dwunastościanu z każdą ścianą pięciokątną:
Po raz pierwszy został zsyntezowany w 1982 roku w skomplikowanej syntezie obejmującej 29 kroków, których jednak nie będę tu opisywał, żeby nie zanudzać. Potem odkryto łatwiejszą drogę poprzez izomeryzację pagodanu, który już opisywałem. Jest to związek dosyć trwały, mało napięty, zbliżona do kulistej budowa powoduje, że niekiedy klasyfikuje się go do grupy fulleranów, czyli uwodornionych fullerenów.
Istnieją też liczne węglowodory tworzące inne bryły, na przykład pryzman, o kształcie trójkątnego pryzmatu:
Stanowi strukturalny izomer benzenu, mając wzór C6H6, cząsteczka jest tak silnie naprężona, że rozkłada się wybuchowo z wydzieleniem wodoru. Możliwe są dalsze pryzmany o innych wielokątnych podstawach - [4] pryzman to kuban, zdaje się że istnieje [8]-pryzman ale obliczenia wskazują na szansę istnienia większych, przypominających kształtem odcinki rurki.
Inne podobne do brył związki to oktaedran C12H12 będący szkieletem ośmiościanu z bokami cztero i pięciokątnymi, nonaedran C14H14, dekaedran C16H16 i większe[1]

Cząsteczka Iron maiden
Nazwa cząsteczki nie pochodzi od znanego zespołu muzycznego, aczkolwiek inspiracji nie sposób wykluczyć. Jest to pewien typ cyklofanów, a więc związków zawierających płaski pierścień aromatyczny i poprzeczkę łączącą jego atomy na ukos. W tym konkretnym przypadku trzy poprzeczki tworzą nad pierścieniem "klosz" zakończony zwornikowym węglem, z którego zwisa atom wodoru wycelowany w pierścień niczym kolec:
Stąd też zapewne skojarzenie ze średniowiecznym narzędziem tortur - skrzynią z kolcami na zamykanym wieku, raniącymi zamkniętego w jej osobnika (ale nie zabijającymi, bo wtedy nie było by tortury). Związek tego typu charakteryzuje się ciekawym sygnałem podczas badania przesunięć sygnału protonów za pomocą H-NMR - w technice tej bada się reakcję spinów jąder atomów wodoru umieszczonych w silnym polu magnetycznym, na fale radiowe. Czysty wodór dawałby sygnał przy stałej częstotliwości, wodór w cząsteczkach organicznych reaguje na różne częstotliwości zależnie od tego do czego jest doczepiony. Sygnały reakcji przedstawia się zwykle w skali przesunięć względem jakiegoś wzorca, dla którego przyjmuje się wartość 0, zwykle jest to tetrametylosilan, który daje sygnał poniżej sygnałów większości grup związków organicznych, sygnały pozostałych sięgają więc od 0 do 12 ppm.Wyjątkiem jest wodór tworzący "kolec" Żelaznej Dziewicy - jego przesunięcie sięga daleko za skalę do -4 ppm.


Bullwalen czyli chaos w stanie czystym
Bardzo prosta cząsteczka o wzorze C10H10, z trzema wiązaniami podwójnymi.

Elektrony w związkach organicznych chętnie wędrują, zmieniając kształt czasteczki i liczbę wiązań. W tej cząsteczce mają one wyjątkową swobodę - oprócz możliwości przeskakiwania na miejsce obok, mogą tworzyć nowe wiązania za sprawą przegrupowanie Cope'a. A w każdej z nowych struktur, elektrony mogą przeskakiwać w miejsce obok. Przez to liczba wszystkich możliwych struktur mezomerycznych wynosi dla tej małej cząsteczki aż 1,2 mln! W temperaturze pokojowej i wyższych wszystkie przeskoki następują nieustannie, zatem roztwór bullwalenu stanowi swoisty molekularny chaos - każda cząsteczka w innym stanie.

Nazwa pochodzi od pseudonimu chemika który przewidywał istnienie takiego związku Williama Doeringa, nazywanego Bykiem (Bull)

W zasadzie omówiłem tu praktycznie same węglowodory, związki z dodatkowymi innymi atomami omówię kiedy indziej.
-----
[1] Syntezy poliedrów
Strona miłośnika budowania struktur fullerenów z koralików i słomek: http://thebeadedmolecules.blogspot.com/

czwartek, 31 października 2013

Ciekawe zjawisko w laboratorium

Raz już tu opisywałem "wulkany pyłowe" jakie zauważyłem nasączając wypełnienie chromatograficzne, nie jest to jednak jedyne ciekawe acz drobne zjawisko jakie zauważyłem podczas pracy laboratoryjnej.

 Po wlaniu na kolumnę 'błotka" żelu wypełnienia, odstawiłem opróżnioną zlewkę na bok. Nie była oczywiście opróżniona do końca, bo jej nie przemywałem, toteż na ściankach i krawędzi pozostała warstewka szybko wysychającego żelu. Gdy przyjrzałem się jej po kilku minutach ze zdumieniem zauważyłem wyrosły na krawędzi krzaczkowaty porost:

Wyglądał jak szron i w pierwszej chwili nawet tak myślałem, zwłaszcza że po strąceniu części, kawałki stopniały na palcu, a płyn po roztopieniu nie pachniał wcale rozpuszczalnikiem (chlorek metylenu+heksan). Z drugiej strony nie był aż tak zimny, a nie sądziłem aby parujący bez dmuchania chlorek mógł się tak bardzo ochłodzić. Gdy niedawno ponownie zauważyłem to zjawisko, zebrałem część porostu szklaną płytką - po stopnieniu otrzymałem kroplę wody z niewielką ilością krzemionkowego wypełnienia. Najwyraźniej całość formuje się z wypełnienia zwilżonego wodą kondensującą na chłodnej powierzchni, które wyrasta od dołu w miarę wysychania rozpuszczalnika, co uwalnia większe porcje wypełnienia.
Niemniej zaskakująca jest forma, wręcz krystaliczna. Będę musiał na przyszłość sfilmować formowanie się krzaczków.

Słyszał ktoś o czymś takim? Może odkryłem nieznane zjawisko....

wtorek, 29 października 2013

Suszenie THF

Na pracowniach chemicznych używa się rozmaitych rozpuszczalników, zazwyczaj organicznych, nie mieszających się z wodą. Są one używane do rozpuszczania, eluowania oraz jako medium reakcyjne. Wydawałoby się, że gdy operujemy substancjami wrażliwymi na wilgoć, niemieszające się z wodą, oleiste rozpuszczalniki nie powinny sprawiać kłopotów. W rzeczywistości sama niemieszalność nie gwarantuje nam, że taki na przyklad heksan czy eter nie będą zawierały mimo wszystko śladów wilgoci, a te mogą popsuć nam wydajność procesów, a dla rozpuszczalników mieszalnych, jak aceton czy octan etylu, jest bardzo duża szansa że wchłonęły z powietrza trochę wody.
Więc aby być całkiem pewnym, należy rozpuszczalniki wysuszyć.

Można tu użyć klasycznych odwadniaczy, jak chlorek wapnia czy magnezu, odwadniaczy wiążących wodę chemicznie, jak pięciotlenek fosforu, ale w szczególnych przypadkach, gdy mamy do czynienia z eterami, można użyć metod bardziej agresywnych - na przykład dodając wodorku litu, który reaguje z wilgością z wydzieleniem wodoru. Dziś natomiast mogłem zobaczyć (i obfocić) drugi z częstych sposobów - suszenie metalicznym sodem. A suszony był rozpuszczalnik THF.

THF czyli tetrahydrofuran, może być uznany formalnie za uwodorniony furan - pięcioczłonowy heterocykliczny związek aromatyczny z tlenem w pierścieniu. Nazwy związków często są tworzone właśnie w ten sposób, iż uznaje się jakąś cząsteczkę za uwodornioną lub odwodornioną pochodną jakiegoś innego, bardziej znanego związku. Dość znanym przykładem jest THC - uznany za uwodornioną pochodną cannabinolu. Teoretycznie cykloheksan mógłby być uznany za heksahydrobenzen, ale nazwy takiej się nie stosuje.
Gdy zwodorujemy furan, otrzymamy związek będący formalnie rzecz biorąc cyklicznym eterem, mało reaktywny, nie przeszkadzający w innych reakcjach i wobec tego dobry rozpuszczalnik do reakcji. Ze względu na pewną polarność i mieszalność z wodą, chętnie chłonie wilgoć, dlatego przed użyciem powinno się go na sucho przedestylować za pomocą zaargonowanej chłodnicy (atmosfera beztlenowa ma ograniczać powstawanie wybuchowych nadtlenków). A jednym ze sposobów jego dokładnego wysuszenia, jest użycie metalicznego sodu, w postaci plasterków odcinanych stalowym nożem, jest to bowiem metal miękki jak masło wyjęte z lodówki, albo i bardziej. Niemal natychmiast po wrzuceniu do THF metal pokrywa się szarym osadem tlenków i wodorotlenków, przez co właściwa reakcja zostaje spowolniona. Dlatego dodaje się do niego benzofenonu.

Benzofenon, inaczej difenyloketon, to aromatyczny keton, znany jako środek chroniący przed promieniowaniem ultrafioletowym, dodawany do farb i materiałów dla powstrzymania starzenia, a niektóre pochodne też do kremów do opalania. W naszym przypadku jego cenną właściwością jest łatwa reakcja z metalicznym sodem, prowadząca w wyniku redukcji do powstania anionorodnika, łatwo rozpuszczającego się w oczyszczanym rozpuszczalniku.
 Na + Ph 2 CO → Na + Ph 2 CO · -
Rodnik ten jest reaktywny, chętnie reaguje z wodą i tlenem obecnymi w cieczy, a po przereagowaniu daje nielotne produkty, a ponadto jest zabarwiony na intensywny, niebieski kolor, co widać niemal natychmiast po dodaniu:

Gdy cała zawartość kolby zniebieszczeje intensywnie, można rozpocząć destylację, dla otrzymania potrzebnej ilości beztlenowego i bezwodnego rozpuszczalnika, pobieranego później suchą szklaną strzykawką.

Taki sposób suszenia nie jest całkiem bezpieczny, ze względu na ten sód, ale często się go stosuje w laboratoriach. Podobno znacznie skuteczniejsze w odciąganiu wody są sita molekularne, ale na razie jeszcze ich nie stosowałem (chyba że w charakterze kamyczków wrzennych zamiast porcelanki).

niedziela, 20 października 2013

Salmiak

Dwa wspomnienia i trochę historii.

Na pierwszym roku studiów jednym z przedmiotów było laboratorium chemii nieorganicznej. Robiliśmy tam różne podstawowe doświadczenia, jak strącanie osadów, spalanie magnezu i sprawdzanie czy na pewno na zimno nie reaguje z wodą (reagował) reakcje redoks itp. Jednym z nich było sprawdzenie reakcji kwasu solnego i amoniaku.
Oba roztwory umieściłem w małych zleweczkach i nakryłem zlewką dużą. Po chwili z jednej z nich zaczął się unosić biały dym:

który z czasem wypełnił całą zlewkę:
Dym wychodził zapewne ze zleweczki z amoniakiem, ale nie jestem pewien. Skąd wziął się ten dym?
Zarówno roztwór amoniaku jak i kwas solny chętnie uwalniają opary lotnych związków w nich rozpuszczonych - a więc gazowy amoniak i gazowy chlorowodór, te reagują ze sobą dając drobne cząstki stałej soli - chlorku amonu nazywanego salmiakiem:
 NH 3 + HClNH 4 Cl

Cząstki są tak drobne że tworzą dym podobny do mgły. Dawniej zresztą mieszanie par tych dwóch związków było sposobem na wytworzenie sztucznego dymu, z czego jednak zrezygnowano z powodu działania drażniącego oczy.

Salmiak jest jedną z najstarszych znanych soli nieorganicznych, pierwszą solą amoniakalną i jednym z pierwszych związków wytwarzanych sztucznie. Występuje naturalnie ale w dość specyficznych warunkach, łatwo bowiem rozkłada się z wydzieleniem lotnego amoniaku i dobrze rozpuszcza w wodzie; zazwyczaj spotyka się go w pobliżu otworów którymi ulatują gorące gazy wulkaniczne, ale też w miejscach wylotu spalin z podziemnych pożarów węgla i torfu czy wewnętrznych pożarów hałd kopalnianych. W mniejszych ilościach powstaje w pobliżu złóż guana powstającego z ptasich odchodów.
Pierwsze informacje na jego temat pochodzą z Egiptu a konkretnie z oazy Siwa, gdzie w starożytności stała znana i często odwiedzana świątynia Ammona. Greccy pisarze opisują iż w pobliżu świątyni, w miejscu gdzie wielbłądy licznych pielgrzymów oddawały mocz w zasoloną ziemię, krystalizowała biała sól o właściwościach ściągających, nazywana Solą Ammona czyli sal ammonicum. Popularna nazwa salmiak jest więc skrótem. Był używany w medycynie jako środek moczopędny, odkażający i przeczyszczający, zewnętrznie jako składnik maści. Alchemicy widzieli w nim pierwiastek lotności, bowiem przy ogrzewaniu sublimował zaś opary po ochłodzeniu ponownie zamieniały się w stałe cząstki w formie już tu pokazanego dymu. W zasadzie nie jest to typowa sublimacja - wprawdzie w parach występuje gazowy związek, ale składają się one głównie ze związków składowych, a więc amoniaku i chlorowodoru, po ochłodzeniu natychmiast reagujących ze sobą.

Otrzymywano na dużą skalę już na początku średniowiecza z popiołu po spaleniu suszonych odchodów krowy, lub wykrystalizowując z ługu mieszaniny soli i starej uryny. W mieszaninie z ałunem był stosowany w zaprawach farbiarskich. Mniej więcej w XV wieku pokazano, że po zmieszaniu z wapnem wydziela ostre opary, łatwo rozpuszczające się w wodzie. W XVIII wieku nauczono się go otrzymywać z produktów suchej destylacji szczątków zwierzęcych, takich jak rogi, kopyta czy skóry, łapiąc opary w wodzie i zakwaszając ją kwasem solnym.
Sam roztwór przed zakwaszeniem, będący w zasadzie wodą amoniakalną, był używany jako odplamiacz. Z suchych oparów krystalizował w tym procesie węglan amonu, zwany z tego powodu "solą rogu jeleniego" i używany jako pierwszy spulchniacz do pieczywa (dziś jest to "amoniak do ciast") oraz składnik soli trzeźwiących.
Współcześnie chlorek amonu jest używany w metaloplastyce jako składnik pasty oczyszczającej powierzchnię metalu przed lutowaniem, lub metalową formę przed odlewem, zwykle ma postać małych kostek lub stanowi warstewkę pokrywającą laseczkę lutu cynowego. Jego użycie opiera się na fakcie, że podczas rozkładu w wysokiej temperaturze reaguje z tlenkami na powierzchni metalu, przeprowadzając je w stosunkowo dobrze lotne w tych temperaturach chlorki, dzięki temu lutowane powierzchnie są czyste i stop będzie dobrze do nich przylegał.
W mniejszym stopniu używa się go jako dodatku spożywczego (jako E510), głównie do ciast i chleba, ułatwia bowiem wyrośnięcie ciasta drożdżowego. W krajach skandynawskich popularnym smakołykiem są cukierki Salmiakki, będące zagęszczonym wyciągiem z korzenia lukrecji zmieszanym z salmiakiem, który przełamuje intensywnie słodki smak lekko ostrym, słonawym posmakiem, wywołującym przejściowe wrażenie utraty smaku. Nie miałem okazji próbować więc dokładniej nie opiszę. Związek bywa też składnikiem syropów na kaszel, jest bowiem wykrztuśny.

Reakcja pomiędzy oparami prowadząca do powstania salmiaku staje się też przyczyną często spotykanego w laboratoriach zjawiska powstawania białego osadu na szkle. Butelki ze stężonymi kwasami i zasadami często są przechowywane z przeszklonym dygestorium z mechaniczną wentylacją zasysającą opary na zewnątrz pomieszczenia. Nocą jednak wyciąg zazwyczaj jest wyłączany, toteż z butelek wody amoniakalnej i kwasu solnego mogą przez drobne nieszczelności ulatniać się opary. Po pewnym czasie wszystkie szyby dygestorium pokryte są białym, mączystym osadem.
O tym jak dalece zajść może ten proces przekonałem się niedawno, gdy szukając opakowania żelu krzemionkowego otworzyłem jedną z szafek, znajdując tak takie oto cudo:

Naczynie z wodą amoniakalną obrosło porowatą masą białych kryształków, przypominającą szron. Ponieważ w tej samej szafce stała butelka ze stężonym kwasem solnym łatwo się było domyśleć przebiegu procesu - w dawno nieotwieranej szafce na butelce amoniaku powstawał salmiak, przez który jednak nadal przesączały się opary z wnętrza naczynia, dlatego małe kryształki mogły powoli narastać tworząc skupiska podobne do białego mchu.

Odstawiłem ją z powrotem. Niech rośnie.