W tym roku (już czwartym) jedną z moich pracowni jest Chemia Proekologiczna, prowadzona przez
dr Teodozję Lipińską. Określenie przedmiotu jest może trochę niezgrabne ale określa jego zakres nieco lepiej niż będące kalkami z angielskiego określenia Zielona Chemia czy Chemia Zrównoważona. Najogólniej mówiąc chodzi tu o takie przeprowadzane procesów chemicznych, aby przyniosło to dla środowiska jak najmniejsze skutki negatywne, co obejmuje metody syntezy z małą ilością odpadów, metody z użyciem małej ilości rozpuszczalników organicznych lub bez nich i procesy zużywające mało energii. Wliczają się tu także wynalazki mające zmniejszyć zanieczyszczenia z innych źródeł, jak katalizatory do spalin czy metody odsiarczania gazu i ropy.
Jednym z takich procesów chemicznych, przynoszącym korzyść dla środowiska, jest przerób olejów roślinnych na paliwo właściwościach podobnych do olejów napędowych. Oleje otrzymuje się z roślin, toteż przy ich produkcji nie trzeba wydobywać kopalin, zatem biodiesel można zaliczyć do odnawialnych źródeł energii. Ponieważ ze spalania takiego paliwa nie dorzucamy do atmosfery nowego dwutlenku węgla, a jedynie odpowiednik tego pochłoniętego dawniej przez olejodajne rośliny, stosowanie paliw odnawialnych powinno przyczynić się do ograniczenia emisji tego gazu.
Jednak czy oleje roślinne rzeczywiście nadają się do takich celów?
Olej, chemicznie rzecz biorąc, jest mieszaniną estrów gliceryny z kwasami tłuszczowymi. Gliceryna posiada trzy grupy wodorotlenowe z którymi może związać trzy łańcuchy kwasów. Natomiast same kwasy tłuszczowe najogólniej można nazwać długimi węglowodorami z grupą karboksylową:
Jeśli więc wyższe kwasy tłuszczowe nie wiele różnią się od węglowodorów, z których składa się ropa i olej napędowy, to powinny być palne. I rzeczywiście, oleje i łoje zwierzęce przez wiele wieków używano w celach oświetleniowych, w tanich lampkach i kagankach. Mało kto wie, że pierwszy model silnika spalinowego Diesla działał na olej arachidowy. Niedługo po tym wprowadzono specjalny model silników przeznaczonych do spalania oleju. Oleje mineralne zaczęto stosować dopiero potem. Mieszanka powietrzno-olejowa zapala się w tym silniku w fazie silnego sprężenia.
Problemem dla takiego stosowania jest jednak ich niedostateczna palność, do czego przyczynia się między innymi przyczepiona do kwasów tłuszczowych gliceryna. Z drugiej strony same wolne kwasy tłuszczowe często krzepną już w stosunkowo wysokich temperaturach, czego przykładem kwas stearynowy używany do wyrobu świec. Należałoby zatem z jednej strony oswobodzić kwasy, a z drugiej nadać im formę płynną.
Pierwszym kto wpadł na pomysł co też należy zrobić był G.Chavanne z Belgii, który w 1937 roku otrzymał patent na metodę zamiany oleju w płynne paliwo pędne.
Pomysł był w zasadzie bardzo prosty - gliceryna przeszkadza, więc usuńmy ją. Wolne grupy karboksylowe za sprawą oddziaływań pomiędzy sobą (głównie wiązania wodorowe) podwyższają temperaturę krzepnięcia, zatem przyłączmy do nich coś, co temu zapobiegnie. Na przykład cząsteczkę alkoholu. Cała tajemnica polega zatem na zamianie jednych estrów (glicerynowych) na inne, na przykład metylowe lub etylowe. Proces tego typu, a więc zamiany podstawników w estrze nazywamy transestyfikacją.
Odpadem jest tutaj gliceryna. Wodorotlenek sodu lub potasu katalizuje reakcję.
Tak więc: surowcem naszym był olej rzepakowy:
Olej rzepakowy przed reakcją |
Do kolby na 250 ml wlaliśmy olej, metanol i suchy wodorotlenek potasu. Ponieważ potaż jest bardzo żrący każdy musiał mieć założone okulary ochronne. Zanim zdążyliśmy go wsypać zaczął nadżerać kartkę na której był odważany:
Wodorotlenek potasu |
Następnie zamknęliśmy kolbę korkiem szklanym, nałożyliśmy dodatkowe zabezpieczenie i wytrząsaliśmy na zmianę przez pół godziny:
Wytrząsanie |
Wytrząsanie musiało być intensywne, tak aby kontakt między nierozpuszczalnym wodorotlenkiem a mieszaniną alkoholu z olejem był jak najlepszy. Od tego etapu głównie zależało to jak dobrze będzie zachodziła reakcja, dlatego trzęśliśmy aż do omdlenia rąk. Następnie wlaliśmy mieszaninę do dużego rozdzielacza i odczekaliśmy aż cięższa gliceryna zbierze się przy dnie:
Powolny rozdział. Na granicy faz ciemna warstewka zawieszonych kropel gliceryny |
Ostrożnie oddzieliliśmy glicerynę, zlewając do innego naczynia. Nasz produkt nadal zawierał glicerynę, nie przereagowany metanol, a ponadto zawieszony wodorotlenek a może nawet odrobinę mydła, jakie mogło zacząć powstawać w takich warunkach. Ponieważ biodiesel nie miesza się z wodą, należało dokonać ekstrakcji rozpuszczalnych zanieczyszczeń. W tym celu zanurzyliśmy rozdzielacz w zlewce ciepłej wody i dolaliśmy do mieszaniny wody destylowanej, lekko mieszając. Woda opadła na dno, zabarwiając się na mleczny kolor pochodzący zapewne od drobnych kropelek produktu. Tuż przy granicy faz zbierała się warstewka przypominająca zwarzoną śmietankę, podejrzewam że były to cząstki wolnych, nasyconych kwasów tłuszczowych, w tej temperaturze przyjmujących postać stałą. Kwasy te, częściowo rozpuszczalne w wodzie, mogły działać jak emulgatory, dlatego podczas ekstrakcji nie wytrząsaliśmy biodiesla z dodawaną wodą, aby nie musieć długo czekać na rozdział.
Ekstrakcja z wodą. Resztki gliceryny zebrały się w rurce rozdzielacza |
Po trzech ekstrakcjach uznaliśmy że już wystarczy, choć produkt wciąż był jeszcze dosyć alkaliczny (pH 8) co świadczyło o nie w pełni usuniętym wodorotlenku. Zawiesina wolnych kwasów i być może drobnych kropelek wody sprawiły, że otrzymany produkt był dosyć mętny:
Za tydzień postaram się zrobić zdjęcie produktu po odstaniu się, powinien być bardziej klarowny.
Czy tak otrzymany ester jest lepszym paliwem? W porównaniu z olejem rzepakowym na pewno. Olej ten jest wprawdzie najlepiej dostępnym z uwagi na ogromny areał upraw i najbardziej korzystny stosunek wydajności oleistej do powierzchni uprawy, ale wadą jest dosyć duża lepkość, kilkukrotnie większa niż równie wydajnych olejów mineralnych. W instalacjach wykorzystujących go jako materiał pędny, stosuje się wstępne ogrzewanie, mające go rozrzedzić i ułatwić rozpylenie przy wtrysku. Czasem rozrzedza się go dodając lekkie oleje mineralne lub tworząc mikroemulsję z metanolem. Inną wadą rzepaku jest skłonność do utleniania się i tworzenia nierozpuszczalnych wytrąceń, mogących osadzać się w zakamarkach silnika. Próby wlania oleju do nieprzystosowanego samochodu mogą skończyć się uszkodzeniem instalacji.
Rzepakowy biodiesel jest mniej lepki, przez co zmniejsza się ryzyko zatkania filtrów bądź osadzania częściowo spalonych resztek w silniku. Ponieważ ma właściwości smarne, silnik nie zaciera się i ma dłuższą żywotność. Z drugiej strony w porównaniu z olejami mineralnymi o tej samej liczbie cetanowej, biodiesel ma wyższą temperaturę zapłonu i nieco niższą wartość opałową. W efekcie mogą pojawiać się problemy z rozruchem, gdy silnik nie jest nagrzany, a zużycie paliwa może być nieco większe. Estry metylowe mogą ponadto rozpuszczać lub zmiękczać niektóre tworzywa sztuczne, toteż w przystosowanych samochodach stosuje się inne materiały uszczelek i złączy.
Wydawałoby się, że produkcja takiego paliwa, stosunkowo prosta i tania, powinna być dobrym sposobem odciążenia budżetu. Olej spożywczy jest znacznie tańszy od mineralnego, i mimo nieco droższej metody produkcji różnica w akcyzie powoduje, że produkt wychodzi nieco tańszy od zwykłego paliwa. Z tego co się orientuję prawo zezwala rolnikom produkcję takiego paliwa na własny użytek, po zarejestrowaniu i dla stosunkowo niedużych ilości. Problemem domowych instalacji jest jednak przede wszystkim właściwe oczyszczenie produktu. Resztki gliceryny, metanolu a zwłaszcza stałego wodorotlenku, zwiększają korozyjność i zmniejszają stabilność paliwa. Gliceryna dodatkowo wywołuje niemiły zapach spalin, przypominający palony olej.
Warto zwrócić uwagę na skład spalin z silnika napędzanego takim paliwem. Badania stwierdziły, że są one zdecydowanie mniej toksyczne, zawierając do 30% mniej cząstek stałych, znacznie mniej wielopierścieniowych węglowodorów aromatycznych (WWA) o dobrze potwierdzonej rakotwórczości, oraz prawie w ogóle nie zawierają dwutlenku siarki z uwagi na praktycznie śladowe zasiarczenie - co ma spory wpływ na powstawanie i szkodliwość smogu miejskiego. Z drugiej strony podczas spalania powstaje więcej tlenków azotu. Ponadto odmiany słabo oczyszczone, zawierające domieszki gliceryny i etanolu, dają spaliny z rakotwórczą akroleiną i drażniącym aldehydem octowym. Ostatecznie jednak uznano, że ogólna zawartość szkodliwych związków jest znacząco mniejsza, niż w przypadku olejów napędowych. Efekty cytotoksyczne są w tym przypadku aż cztery razy mniejsze[1]
Teoretycznie takie odnawialne paliwo, powinno przynosić ogólnoświatowe zyski dla środowiska - do atmosfery nie jest uwalniany nowy dwutlenek węgla, nie są uwalniane tlenki siarki i wreszcie jest co zrobić z zanieczyszczonymi, zużytymi tłuszczami. Teoretycznie, bo jak wiadomo, ze wszystkim można przesadzić. Najlepiej widać to w Malezji i Indonezji, gdzie głównym surowcem do biodiesla jest palma olejowa.
Paliwo jest szybko zużywane na krajowym rynku a przede wszystkim eksportowane do Europy, będąc stosunkowo tanie. Ponieważ popyt szybko rośnie, wzrasta też powierzchnia upraw, zaś zarządzający niespecjalnie przejmują się rozwojem zrównoważonym. W efekcie bywa że dziewicze puszcze wycina się po to, aby posadzić w tym miejscu monokulturę palmy olejowej, przez co cały proceder zaczyna przynosić środowisku więcej szkody niż pożytku. W tym roku Amerykańska Agencja Ochrony Środowiska uznała, że z tego powodu, olej palmowy nie powinien być zaliczany do ekologicznych paliw odnawialnych[2]
Popyt na malezyjskie biopaliwa, wraz z wysokimi cenami ropy spowodował, że w wyniku eksportowania większości oleju za granicę, zaczęło go brakować na rynku krajowym, choć jest tu głównym olejem spożywczym[3] Dyskusyjną kwestią jest to na ile zamiana zbiorów rolniczych na paliwa wpływa na globalny wzrost cen żywności, szacuje się że proceder ten odpowiada za jedną trzecią wzrostu cen kukurydzy w USA. Wszystko to pokazuje, że co za dużo, to nie zdrowo i nawet najświetniejsza technologia, wprowadzana bez rozmysłu, może przynieść negatywne skutki.
Plantacja palmy olejowej na Jawie. W tle lasy tropikalne |
Dodatkowym problemem jaki pojawia się w tym procesie, jest gliceryna, powstająca jako odpad. Szacunkowo z każdej tony oleju powstaje 100 kg gliceryny, z którą trzeba coś zrobić. Część można oczyścić i przetworzyć na kosmetyki lub farmaceutyki, ale popyt na taki surowiec jest ograniczony, stąd próby wykorzystania jej jako surowca w przemyśle chemicznym. Głównym procesem jest konwersja do epichlorohydryny, będącej głównym surowcem do wytwarzania żywic epoksydowych. Powtórna estryfikacja kwasem octowym daje produkt, mogący służyć do zmniejszenia lepkości paliw. Utleniając, można zamienić ją na kwas cytrynowy. Najciekawszym jednak pomysłem jest bezpośrednia konwersja do metanolu - powstały alkohol można by zawrócić do procesu i zwiększyć samowystarczalność instalacji produkcyjnej[4].
I tak minęła mi pierwsza proekologiczna pracownia.
------
[1] Kimberly J. Swanson , 1 Michael C. Madden , 2 i Andrew J. Ghio 2 Biodiesel Exhaust: The Need for Health Effects Research, Environ Health Perspect v.115 (4), kwiecień 2007 PMC1852688
[2] http://thehill.com/blogs/e2-wire/e2-wire/206781-epa-palm-oil-based-fuels-flunk-the-climate-test
[3] http://www.abc.net.au/news/2007-07-19/biofuel-demand-makes-fried-food-expensive-in/2506908
[4] http://www.greencarcongress.com/2008/11/new-process-for.html