informacje



piątek, 10 stycznia 2014

Ostatnio w laboratorium (36.)

Dawno nie wrzucałem migawek z pracowni.

Gdy skończę kolumnę chromatograficzną, to jest oddzielę pożądany składnik od mieszaniny, muszę ją opróżnić. Wypełnienie, nasączone rozpuszczalnikiem, jest półpłynne, wystarczy więc obrócić kolumnę, podstawić pojemniczek i lekko popukać, aby wypełnienie wypłynęło.
Jest to jednakowoż błotko tiksotropowe - płynie gdy jest wstrząsane ale zastyga gdy już skapnie. Dlatego kolejne porcje spływające do naczynka tworzą rosnący stalagmit, czemu jako chemik-esteta z ciekawością się przyglądam.
Niedawno podczas takiego opróżniania kolumny, kapiące z dwóch miejsc błotko utworzyło taką oto trójwymiarową rzeźbę z czymś w rodzaju łuku:

Czyżby łuk triumfalny sukcesów syntetycznych?

wtorek, 31 grudnia 2013

Kolory ognia - czyli chemia fajerwerków

Być może obserwując fajerwerki strzelające podczas poprzednich Sylwestrów bądź nawet teraz już wypróbowywane przez co niektórych niecierpliwców, mogliście się zastanowić jak to się właściwie dzieje, że iskry płomieni mogą być zafarbowane na jakiś określony kolor. A no, proszę państwa, to już sama chemia działa.


Fajerwerki jako pierwsi wymyślili Chińczycy, niedługo po odkryciu prochu, bo już w VII wieku naszej ery, początkowo w formie zabawki - najpopularniejszym typem były rurki z których wysypywały się kaskady iskier. Szybko wynaleziono też rakiety które znalazły zastosowanie w wojnie - długie, drewniane rakiety z rzeźbioną głową smoka płoszyły konie i ludzi. Podczas bitwy z Mongołami zastosowano też lotne strzały z przymocowanymi małymi rakietkami zwiększającymi zasięg strzału.
Do europy proch trafił w Średniowieczu lecz fajerwerki nie osiągnęły tak dużej popularności jak w swej ojczyźnie i aż do XIX wieku nie były powszechnie dostępne. Przez długi czas nie umiano również wpływać na kolor spalania, mogły być żółte lub białe, mniej lub bardziej jasne. Zmieniło się to wraz z odkryciami chemików, iż pierwiastki potrafią zabarwiać ogień.
Jak z pewnością pamiętacie ze szkoły, atomy składają się z jądra i elektronów w przestrzeni wokół nich. Wprawdzie mechanika kwantowa nieco komplikuje utrwalony obraz małych kulek na orbicie większych kulek, ale takie przybliżenie jest w sam raz dobre aby wytłumaczyć zachodzące zjawiska.
Elektrony wokół jąder grupują się w powłoki zawierające ich określoną liczbę, każda oddzielona jedna od drugiej niewielkim odstępem, coraz dalej aż do ostatniej powłoki walencyjnej. W atomie obojętnym rozkład elektronów w powłokach jest taki, że posiadają najniższą możliwą energię. Jest to stan podstawowy. Nieco inaczej jest jeśli nadamy mu energię, na przykład podgrzewając w płomieniu. Energia przerzuci część elektronów na wyższą powłokę, co jest jednak dla atomów stanem nietrwałym. Bardzo szybko elektrony powracają na swoj miejsce, wypromieniowując energię, ale nie jako ciepło lecz jako światło określonej częstotliwości.

Każdy pierwiastek po wzbudzeniu emituje światło innej długości fali w serii linii widmowych. Najintensywniejsza linia widmowa powoduje że cały płomień w którym rozprowadzone są pary tego pierwiastka, świeci określonym kolorem. W podobny sposób na wzbudzenie reagują jony a także całe molekuły
Zatem aby zabarwić fajerwerki, musimy dodać do nich stosunkowo lotną sól metalu, barwiącego płomień na określony kolor.

Masa palna zawiera zatem przede wszystkim utleniacz, a więc różne saletry, chlorany itp, paliwo czyli węgiel, cukier czy inne związki organiczne, czasem siarkę, dodatki kontrolujące prędkość spalania (i zapobiegające przedwczesnej eksplozji) sól metalu barwiącego i zazwyczaj źródło chloru. Chlorki metali są zwykle dosyć lotne, i dają intensywniejsze kolory, częściowo dzięki emisji cząsteczki chlorku, dlatego taki dodatek pomaga w utrzymaniu barwy, zwykle jest to kauczuk chloroprenowy czy PVC, ewentualnie salmiak.


Czerwony
Istnieją dwa pierwiastki nadające się do barwienia płomieni na czerwono, dające różne odcienie. Sole Strontu, lekkiego metalu alkalicznego,  dają kolor intensywny, ciemny. Zwykle stosowany jest w formie chlorku lub węglanu; jako azotan strontu pojawia się w znanych wszystkim ze stadionów czerwonych racach.
Kolor jasnoczerwony nadają ogniowi sole litu, są jednak raczej rzadziej używane, zwykle w mieszankach dla uzyskania intensywnego pomarańczu. Zazwyczaj w formie węglanu lub chlorku.

Żółty
Kolor żółty jest bardzo łatwy do uzyskania, tak bardzo że trzeba uważać aby kompletnie nie zamaskował sobą właściwych kolorów. Czynnikiem jest tutaj sód, wszechobecny w ludzkim otoczeniu jako składnik potu. Zazwyczaj używany jest azotan sodu, który jest mało higroskopijny, przez co fajerwerk nie tak łatwo wilgotnieje; można też użyć zwykłej soli kuchennej lub sody oczyszczonej. Czasem używany jest kriolit, czyli fluoroglinian sodu, mający tą zaletę że jest nierozpuszczalny i zupełnie niehigroskopijny. Intensywne światło sodu zagłusza inne kolory, dlatego pirotechnicy starają się nie zanieczyścić nim swych mas palnych

Pomarańczowy
Pomarańczu przyda iskrom pospolity wapń zwykle w formie siarczanu (gips) lub chlorku, bardziej intensywny kolor otrzymuje się dodając domieszki pierwiastków barwiących żółto i czerwono.

Zielony
Kolor ten pojawia się w oparach kilku pierwiastków, lecz zastosowanie znalazł ostatecznie Bar, w formie węglanu i chlorku. Specyficznym przypadkiem jest azotan baru - z dodatkami chlorującymi daje mało intensywną zieleń, bez nich zachowuje się jak zwykła saletra i bardzo często jest używany po prostu jako utleniacz, na przykład w zimnych ogniach

Niebieski
Na niebiesko rakietę zabarwią sole miedzi, ale aby uzyskać taki efekt temperatura plomienia musi być odpowiednio wysoka, w przeciwnym razie metal da mało wyraźną, jasną zieleń. Najlepszy jest tutaj chlorek miedzi I, mogą być też użyte węglany a nawet tlenki z dodatkami chlorującymi. Intensywny odcień daje też zieleń paryska, czyli arsenian-octan miedzi, toksyczny związek.

Indygo
Szczególnie ciemny odcień niebieskiego, określany jako Indygo, dają sole cezu, silnie alkalicznego, rzadkiego metalu. Używany jest tutaj właściwie tylko azotan cezu. Fajerwerki takie muszą ciekawie wyglądać w podczerwieni, metal bowiem emituje bardzo intensywną linię widmową właśnie w tym zakresie, czego niestety gołe oko nie zobaczy.

Fiolet
Odcienie fioletu i różu nada fajerwerkom potas, ale w nieobecności sodu. Dość intensywny kolor można uzyskać stosując azotan rubidu, jest to jednak rzadkie zastosowanie. Najczęściej jednak używa się mieszanki czerwonych związków strontu i niebieskich związków miedzi.

Ferdinand du Puigaudeau, Fajerwerki w porcie
Pierwiastki te niekoniecznie nadają się do zabarwiania innych typów płomieni - płomień węglowodorowy świeci głównie dzięki rozżarzonym cząstkom węgla, których blask może zagłuszać efekt emisyjny. Sprawdzałem że w przypadku świecy sól miedzi powoduje, że zielonkawe zabarwienie widoczne jest właściwie tylko w zewnętrznym płaszczu płomienia i końcówce, podobne efekty można zaobserwować w ognisku, po wrzuceniu kolorowych, zadrukowanych pism, gdzie związki miedzi i baru (użytego jako baryt w charakterze wypełniacza masy papierowej) podbarwiają zielonkawo same szczyty ogników.
Efekt możne być jednak wyraźny w przypadku płomieni alkoholi i niektórych paliw, dających ogień raczej niebieski z żółtą końcówką niż cały żółty. Dobrym sposobem zabarwienia płomienia alkoholu jest dodanie do niego kwasu bornego i lekkie ogrzanie, można też dodać do tej mieszanki nieco kwasu siarkowego. W takich warunkach tworzą się estry borowe, dosyć lotne i chętnie tworzące ciemnozielony płomień. W przypadku innych metali podejrzewam, że efekt mogłoby dać nasycenie chlorkiem metalu samego knota, jako że sole są mało rozpuszczalne w alkoholu. Możliwe jest więc zrobienie lampek spirytusowych w różnych kolorach.
Zastanawiam się czy możliwe by było zmieszanie oddestylowanego estru borowego z samym woskiem i zrobienie świecy, ale podejrzewam że efekt byłby jednak słaby

Użyte pierwiastki po spaleniu się zostają uwolnione do atmosfery w formie lotnych popiołów. Niestety często używany w fajerwerkach bar jest pierwiastkiem trującym, zwłaszcza dla ryb. Iluminacje sylwestrowe są jednym z największych źródeł baru w powietrzu, na szczęście jednorazowym. Używając zimnych ogni zwróćcie uwagę na etykiety gdzie radzi się po użyciu umyć ręce - to właśnie z powodu azotanu baru stosowanego jako utleniacz.
Związkiem trującym dla ryb jest też często używany nadchloran, który u ludzi jest związkiem wolotwórczym. Z tego też powodu poszukuje się bardziej ekologicznych formuł. Dosyć ciekawym pomysłem jest zastosowanie kompleksów tetrazoli z metalami, które zawierając śladowe ilości metali intensywnie świecą przy silnym ogrzaniu, zanim całkiem się spalą. Natomiast nadchlorany można zastępować nie trującymi nadjodanami, dającymi dodatkowo żółty kolor spalania.

czwartek, 26 grudnia 2013

Świąteczna rocznica i obrazek

Zastanawiałem się nad tym jaki tu na święta dać wpis. Początkowo myślałem o chemicznym rozbiorze dań świątecznych, ale poza ciekawymi właściwościami buraków nie mogłem znaleźć nic interesującego. Potem przypomniałem sobie o pewnym zabawnym obrazku który idealnie pasował do tego dnia, ale robić wpis dla  jednego obrazka? To może jakaś rocznica, może akurat coś wpadnie.
Zajrzałem więc na świetną stronę On This Day in Chemistry, aby zobaczyć czy na Boże Narodzenie przypada rocznica czegoś ciekawego w chemii i od razu wiedziałem, że pomyślany pierwotnie śmieszny obrazek, pasuje do tego wpisu idealnie.

26 grudnia roku 1898 francuski chemik Pierre Curie i jego żona, chemiczka Maria Curie-Skłodowska, ogłosili odkrycie nowego pierwiastka - Radu - rozpoczynając nową erę chemii i fizyki. Ich małżeństwo i odkrycia są znane, nawet w pewnym stopniu zmitologizowane z bardzo silnym przesunięciem punktu ciężkości na Marię - w efekcie mało kto wie że Piotr też dokonał paru ciekawych odkryć, które zresztą silnie wiązały się z tym najsłynniejszym, dlatego w swej historycznej dygresji poprowadzę wątek od nietypowej strony.

Minerał Turmalin znany był już od średniowiecza ze swej niezwykle zmiennej kolorystyki, zmieniającej się często także w obrębie jednej bryły, toteż chętnie wykonywano z niego drobne ozdoby, nie ceniąc go jednak szczególnie. Jedną z ciekawych cech jaka sprzykrzała się właścicielom kamienia, było to że bardzo chętnie kurzył się, a po podgrzaniu przyciągał pył i skrawki tkaniny podobnie jak bursztyn. Zjawisko to pojawiało się po zmianie temperatury kamienia. Dopiero w XIX wieku wykazano, że ogrzewany kryształ elektryzuje się, wytwarzając na dwóch końcach silne ładunki przeciwnego znaku. Zjawisko to nazwano piroelektrycznością.
Efektem tym zainteresował się francuski krystalograf i fizyk Jaques Curie, który wciągnął w badania młodszego brata, też fizyka, Piotra. Wykazali oni że powstawanie ładunku ma pewien związek z rozszerzalnością cieplną kryształów turmalinu - kryształ podczas ogrzewania rozszerza się, ale nie we wszystkich kierunkach lecz bardziej wzdłuż. Powoduje to zaburzenie symetrii jonów w sieci krystalicznej, przez punkt ciężkości jonów dodatnich przestaje się pokrywać z punktem ciężkości jonów ujemnych. To zaburzenie symetrii polaryzuje kryształ. Jak też wykazali, istnieje efekt odwrotny - odkształcenie kryształu w polu elektrycznym.
Bracia oczywiście zastanowili się, czy podobny efekt można wywołać mechanicznie, i rzeczywiście, ściskany kryształ także elektryzował się po dwóch stronach. Ponieważ jednak istniała grupa kryształów elektryzujących się po ściśnięciu ale nie po ogrzaniu, stwierdzili że musi być to osobne zjawisko, nazwane przez nich piezoelektrycznością.
Aby móc dokładnie badać oba zjawiska zbudowali bardzo czuły elektrometr piezoelektryczny, pozwalający precyzyjnie i ilościowo mierzyć zmiany elektryzacji.

Piotr Curie zajął się w późniejszej pracy tajnikami magnetyzmu. Badając powiązanie między namagnesowaniem ciała a jego temperaturą, odkrył prostą zależność, nazwaną potem Prawem Curie, stwierdzającą że namagnesowanie paramagnetyka spada wraz ze wzrostem temperatury. We wzorze określającym prawo znaleźć musiał się specyficzny dla danego ciała współczynnik, nazwany potem stałą Curie. Temperatura w której namagnesowanie spada do zera i magnes przestaje być magnesem, została dla konsekwencji nazwana temperaturą Curie.
Tak więc wkład w naukę miał Piotr już ogromny i właśnie kończył doktorat, gdy znajomy przedstawił mu inteligentną i urodziwą Marię Salomeę Skłodowską, emigrantkę o wielkiej pasji do nauki. Zajmowała się w tym czasie badaniami nad własnościami magnetycznymi stali, ale narzekała na brak miejsca. Laboratorium Piotra było duże i dobrze wyposażone, z nim samym natomiast dało się dogadać. I tak Maria prowadziła swoje badania, Piotr swoje i z czasem zawiązało się pomiędzy nimi coś więcej niż tylko nić porozumienia.
Wreszcie gdy Piotr obronił doktorat i otrzymał profesurę, młodzi badacze ożenili się.

Piotr namawiał żonę na kontynuację pracy naukowej, na rozpoczęcie pracy doktorskiej. Musiała tylko znaleźć sobie jakiś ciekawy temat. Od czasu odkrycia promieni X na topie były podobne badania, dlatego mało opracowanie doniesienie Becquerela wydawało się doskonałym tematem.

Henri Becquerel zajmował się badaniem fluorescencji, to jest zjawiskiem świecenia się pewnych materiałów podczas naświetlenia światłem innego koloru. Gdy usłyszał o promieniach Roentgena zaczął zastanawiać się, czy promieni tych nie wydzielają oprócz światła także substancje fluoryzujące. Wziął kilka znanych mu minerałów fosforyzujących, kładł na kliszę fotograficzną obłożoną szczelnie grubym papierem i wystawiał na słońce. Pod wpływem słońca minerał powinien fluoryzować i jeśli wydzieli przy tym przenikliwe promienie X, to klisza mimo nieprzepuszczalnego dla światła papieru powinna się prześwietlić w miejscu położenia próbki.
Tak też działo się w przypadku pewnych soli uranu.
Niestety przypadek sprawił, że tak pięknie się rysująca koncepcja została podważona. Z powodu pochmurnej pogody odłożył do szuflady próbkę soli i kliszę. Po kilku dniach postanowił mimo wszystko spróbować naświetlania w chwilach gdy słońce przebijało się przez chmury, spodziewając się bardzo słabych obrazów. Tymczasem klisza została zaczerniona bardzo silnie, ale nie tam gdzie położył próbkę wystawiając na słońcu - lecz tam gdzie leżała ona na kliszy w szufladzie.
Początkowo myślał że wcześniej naświetlona próbka cały czas fosforyzowała w szufladzie, ale gdy porównał wyniki z solami uranu które nie fluoryzowały, musiał stwierdzić że promienie wydziela sam pierwiastek, bez konieczności uprzedniej obróbki. Najwyraźniej do wytworzenia niewidzialnych promieni nie potrzebna była lampa próżniowa.

Maria wzięła ten temat na warsztat i próbując zbadać wpływ tajemniczych promieni na materię, stwierdziła że wywołują one elektryzację. A ponieważ w laboratorium męża stał niezwykle precyzyjny przyrząd do badania tejże, szybko wykazała, że zdolność do jonizacji zależy od stężenia uranu w próbce. Mniej uranu, mniejsza jonizacja; więcej uranu, większa jonizacja. Aby potwierdzić teorię badała zależność dla różnych soli i minerałów i tu wykryła anomalię.
Zdolność do jonizacji blendy uranowej, była kilkakrotnie większa niż by to wynikało z ilości uranu. Posunęła się nawet do tego, ze zsyntetyzowała sztuczną postać minerału o takiej samej zawartości uranu jaj w naturalnym - i nadal promieniowanie minerału było większe.
Myśl, że w minerale ukrył się jakiś pierwiastek o silniejszej zdolności jonizującej była prosta ale w swej prostocie genialna. Oboje małżonkowie - bo Piotr też zaineresował się tematem - w optymistycznej naiwności sądzili ze pierwiastka musi być w minerale dużo, toteż rozkruszyli kilka bryłek i rozpuścili w kwasie, po czym zaczeli rozdzielać mieszaninę na składniki.
Oddzielili uran i w pozostałości stwierdzili silną aktywność frakcji zawierającej bizmut. Ponieważ sam bizmut nie był aktywny, poszukiwany pierwiastek misiał mieć podobne do niego właściwości. Zgłoszenie odkrycia zostało opublikowane w lipcu 1898 roku.
Jednak gdy badali pozostałości po wydzieleniu polonu, stwierdzili że jedna z frakcji także wykazuje dużą aktywność. Nie był to Polon, zatem w mieszaninie musiał kryć się kolejny pierwiastek. Badania spektroskopowe frakcji o właściwości Baru wykazały pojawienie się karminowej linii emisyjnej, której nie obserwowano u znanych pierwiastków. 26 grudnia małżonkowie zgłosili odkrycie nowego pierwiastka - nazwano go Radem.

Tak więc na odkrycie złożyło się kilka rozmaitych czynników.

A obrazek? Oto on:
Prawda że pasuje?

sobota, 14 grudnia 2013

Zapalniczka i zimne ognie

Na sylwestra, na święta, dla zabawy. W noc ciemną bierzemy do ręki pałeczki zimnych ogni i zapalamy, na przykład zapalniczką. Ale nie zawsze zauważamy że zapalenie zapalniczki i zapalenie zimnych ogni, ma ze sobą coś wspólnego.

To co popularnie nazywamy zimnymi ogniami, to pałeczki z cienkiego drucika pokrytego masą pirotechniczną. Podstawowy skład jest dosyć prosty - utleniacz, opiłki metalu i lepiszcze. Dokładne składniki zależą już od producenta, zwykle w charakterze utleniacza stosuje się saletrę potasową lub azotan baru albo też chloran potasu, zaś metalem są drobne opiłki żelaza z domieszką magnezu lub glinu, natomiast za lepiszcze służy klej dekstrynowy. Dlaczego zatem po zapaleniu takiej mieszanki, zaczynają strzelać z niej jasne iskry?

Mieszanka użyta w zimnych ogniach jest bardzo podobna do prochu, i działanie jest w pewnym stopniu podobne. W wysokiej temperaturze, utleniacz rozkłada się, przekazując tlen cząstce metalu. Ten utlenia się i rozgrzewa aż do temperatury białego żaru, zaś cząstki na zewnętrznej powierzchni są wyrzucane gazami z rozkładu utleniacza i spalenia lepiszcza. Iskra taka trwa dosyć krótko, zwykle gasnąc i stygnąc po przeleceniu kilkunastu centymetrów, stąd drobne iskierki zwykle nie wywołują oparzeń ręki, i dlatego też otrzymały taką popularną nazwę. Z drugiej strony wyraźne czerwone świecenie pręcika powinno nam uświadomić, że fajerwerk ten jest jednak bardzo gorący, upuszczony na dywan lub ubranie może wypalić w nim dziurę.
Inną sytuacją gdy obserwujemy iskrzenie drobnych cząstek metalu, jest cięcie bądź szlifowanie metalu za pomocną szybko obrotowych narzędzi. Powstające wówczas snopy iskier, to właśnie rozżarzone opiłki utleniające się na powietrzu. Zachowanie się metalu podczas obróbki jest w dużym stopniu zależne od składu, jedną z technik prostego określenia z jakiego typu stopem mamy do czynienia, jest metoda iskrowa, polegająca na skrzesaniu iskier szlifierką. Stal niskowęglowa, miękka, daje iskry krótkie i nie rozgałęziające się, stal twarda o wysokiej zawartości węgla daje iskry pękające w powietrzu na snopy drobniejszych iskierek, stopy tytanu dają białe, oślepiająco jasne iskry.

Dlaczego jednak, skoro brak tu jak w przypadku zimnych ogni utleniacza, opiłki metalu iskrzą przy takiej obróbce? Energii dostarcza głównie ciepło tarcia, wystarczające aby metal zaczął się żarzyć, ponadto zaś jeśli drobina metalu jest odpowiednio mała, może zapalić się w powietrzu samoistnie wskutek powierzchniowego utleniania. Substancje samorzutnie zapalające się na powietrzu, nazywamy piroforycznymi, i są to głównie metale aktywne, dla których termodynamicznie trwała jest forma utleniona i które nie ulegają pasywacji. Efekt taki może dać na przykład pył magnezu lub tytanu, ale stosunkowo znanym przykładem jest piroforyczne żelazo:

Można je dość łatwo otrzymać, przez termiczny rozkład szczawianu żelaza w wąskiej próbówce. Powstający przy rozkładzie dwutlenek węgla wypiera powietrze i zapalenie się następuje dopiero po wytrząśnięciu pyłu. Wiele pyłów metali zapala się po zainicjowaniu iskrą, co może przybrać formę eksplozji tak jak wybuch pyłu węglowego. Tragicznym tego przykładem była eksplozja pyłu aluminium w Gorzowskich zakładach Italian Look w 2001 roku, gdy na hali szlifowania części ekspresów do kawy silny wybuch poparzył pracowników - pięciu zmarło.[1] Wśród winnych znalazła się też zakładowa instruktorka BHP które tłumaczyła w sądzie, że nie wiedziała, że pył metalu może wybuchnąć.

Wróćmy jednak do iskier krzesanych przez metal. Powstawanie takich gorących cząstek w wyniku uderzenia o metal twardym przedmiotem, miało w minionych wiekach bardzo pożyteczne zastosowanie w krzesiwkach do krzesania ognia.

Krzesiwo było kawałkiem twardego żelaza, zazwyczaj o wygiętym kształcie, który energicznie uderzano w kamień, zazwyczaj krzemień. Powstające iskry odskakiwały w kierunku krzesania, spadając na hubkę, która będąc łatwopalna chętnie zajmowała się od rozżarzonych okruchów. Jeśli dmuchając udało się rozdmuchać hubkę do pojawienia się ognia, można było dokładać listki, słonki, gałązki itp. aż do ogniska. Hubka będąca rozpałką, stanowiła gąbczasty, częściowo zdrewniały miąższ grzybów nadrzewnych, zwłaszcza hubiaka pospolitego (o starożytności metody świadczy jego nazwa łacińska Fomes fomentarius znacząca dosłownie zapałka zapalająca), nasycony saletrą i rozdrobniony; czasem w zastępstwie używano częściowo zwęglonych strzępków tkaniny lub roślin. Zamiast żelaza użyty mógł być zbity piryt, którego cząstki spalają się w powietrzu, skąd zresztą wziął swą nazwę (pyrites czyli iskrzący).
Sposób ten znany od starożytności, stosowany był aż do XIX stulecia gdy zaczęto stopniowo wprowadzać zapałki, choć zapewne gdzieniegdzie używano go u początków minionego wieku. Tą prostą metodę krzesania udało się zautomatyzować, tworząc mechanizm skałkowy, który już w XVII wieku zastosowano w muszkietach i pistoletach, to zaś zmieniło oblicze wojny i obronności. Mechanizm składał się z dwóch podstawowych części - kurka, w którego szczękach tkwił kawałek krzemienia, oraz krzesiwka, mającego postać blaszki w kształcie litery L na małym zawiasie. Naciśnięcie spustu uwalniało kurek, który napinany sprężyną uderzał w sterczącą blaszkę krzesiwa. To odskakiwało, przez pewien czas intensywnie trąc o krzemień i krzesząc iskry snopiące na odsłoniętą panewkę z prochem.
I choć nikt tego wówczas nie wiedział, mechanizm był pierwowzorem dla zapalniczki, bardzo w późniejszym czasie przydatnego urządzenia.

Pierwsze próby zapalania takim mechanizmem czegoś więcej niż prochu, pojawiały się już dawno - po prostu kładziono na panewkę kawałek hubki. Pomysł jednak najwyraźniej nie był rozwojowy, skoro przenośne konstrukcje bardziej przypominające zapalniczki pojawiają się dopiero w XIX wieku, gdy chemik Dobereiner wynajduje chemiczną zapalarkę - był to mały aparat Kippa, w którym cynk reagował z kwasem siarkowym. Powstający wodór kierowano dyszą na gąbczastą platynę, na tyle silnie katalizującą utlenianie wororu, że zapalał się on niedużym płomieniem. Była to konstrukcja kłopotliwa z uwagi na rozmiary i niebezpieczny kwas.
W połowie tegoż wieku pojawiły się mechanizmy oparte na stalowym kole ciernym krzeszącym iskry na knot nasączony alkoholem, były to jednak urządzenia zawodne z uwagi na wcale nie tak łatwe skrzesanie iskry. Przełom nastąpił dopiero w 1903 roku, gdy Auer von Welsbach, trochę dziś zapomniany wynalazca kilku urządzeń oświetleniowych* odkrył szczególne, piroforyczne właściwości żelazoceru - stopu żelaza z mieszaniną lantanowców otrzymywanych z piasku monacytowego. Był to materiał na tyle łatwo dający dobrze zapalające iskry, że wyposażone w niego zapalniczki stały się poważnym konkurentem zapałek.

Współczesne zapalniczki iskrowe zawierając mechanizm cierny, w którym kamień zapalniczkowy (pręcik żelazoceru lub masa krzemianowa z pyłem żelaza) przyciskany sprężynką do karbowanej powierzchni stalowego kołka, krzesze iskry po szybkim obróceniu tymże kółkiem. Te zapalają gaz uwalniany przez zaworek po przyciśnięciu stopki, bądź opary benzyny w zapalniczkach z knotem nazywanych Zippo.
Lantanowce, nazywane metalami ziem rzadkich, są pierwiastkami mającymi bardzo szerokie zastosowanie w technologii, w tym w fotowoltaice, z tego też powodu są drogie. Jednak stop używany w zapalniczkach jest dosyć tani - na koszt czystego pierwiastka składa się głównie koszt oczyszczania, które ze względu na to, że lantanowce występują na raz w tym samym minerale i mają niezwykle podobne właściwości chemiczne jest dość trudne.
Obecnie coraz częściej ten typ wypierany jest przez zapalniczki piezoelektryczne, gdzie czynnikiem zapalającym jest iskra elektryczna wytworzona przez pewne ściskane kryształy.

No i na koniec mała ciekawostka która zainspirowała ten wpis - nie wszystkie cząstki kamienia zapalniczkowego spalają się przy iskrzeniu - małe cząstki pozostają i mogą zapalić się w sprzyjających okolicznościach, na przykład w gorącym powietrzu nad palnikiem kuchenki gazowej, co wielokrotnie obserwowałem.

--------
* Auer wymyślił na przykład "koszulki żarowe" do lamp gazowych, czyli bawełniane nasadki na końcówkę dyszy spalającej gaz. Po wypaleniu bawełny pozostaje szkielet soli toru i ceru, którymi była nasączona, żarzący się w płomieniu jasnym, białym światłem. To on wpadł też na pomysł że w żarówkach Edisona lepszym żarnikiem niż węgiel będzie cienki drucik wysokotopliwego metalu. Poza tym odkrył kilka pierwiastków.
[1] http://www.polskieradio.pl/5/3/Artykul/591234,Wybuch-w-fabryce-w-Gorzowie-Wlkp-Pracownik-aresztowany