Ugotowanie jaja na twardo wydaje się najprostszym i najbardziej prozaicznym procesem kuchennym. Staje się on dużo ciekawszy jeśli spojrzeć nań okiem chemika, który wie jak można ten proces przyspieszyć, a nawet odwrócić.
Jajo to jedna z faz rozwoju ptaków i gadów, w której niedojrzały zarodek zostaje wydalony poza organizm matki w otoczce odżywczego białka i tłuszczu zabezpieczonych twardą, nieprzenikalną skorupką. Jest także jednym z podstawowych produktów spożywczych.
Centralnie położone żółtko, będące głównym materiałem zapasowym rosnącego zarodka, zawiera więcej białek niż wodnisty płyn wokół nazywany białkiem. Jego żółty kolor to zasługa karotenoidów z karmy zjadanej przez kurę, głownie luteiny i zeaksantyny, dlatego odcień może różnić się zależnie od fermy i sposobu chowu, niekiedy gdy w karmie zawarta jest papryka, żółtko może wydawać się wręcz czerwone. Zawiera też tłuszcz zasobny w nienasycone kwasy tłuszczowe i znaczną ilość lecytyny będącej emulgatorem.
Pośrodku jaja utrzymują je elastyczne pasy chelazy.
Większość objętości jaja wypełnia wodniste białko zawierające, jak nazwa wskazuje, dużą ilość białek. Są to głównie albuminy, owotransferryna która kompleksuje żelazo, hamując wzrost bakterii, lizozym który niszczy bakterie Gram dodatnie, czy zapobiegająca przedwczesnemu ścinaniu owomucyna, będąca też głównym alergenem jaj.
Całość utrzymywana w szczelnej białkowej błonce, na którą organizm kury osadził twardą skorupkę zawierającą głównie węglan wapnia. Jej kolor zależy tylko od odmiany kury, w dużym stopniu też od upierzenia - lubiane na Zachodzie białe jajka znoszą głównie odmiany kur biało upierzonych, bardziej popularne u nas jasnobrązowe jaja składają głównie odmiany kur nakrapianych i brązowych, niektóre rasy dają jaja oliwkowe, nawet zielonkawe, albo ciemnobrązowe, z dodatkowymi kropkami.
Denaturacja
Proces ścinania, to jest zamiany formy białek z rozpuszczalnej w stałą, nazywany denaturacją. Może następować pod wpływem czynników fizycznych, a więc zmian temperatury, mechanicznego wytrząsania, naświetlania itp. ale też chemicznych jak jony metali ciężkich, mocne kwasy czy nawet wysokie stężenie soli.
W trakcie tego procesu następuje zmiana ukształtowania nici białkowej. Zwykle przybiera ona w naturze pewien określony kształt wymuszany przez oddziaływania aminokwasów, wiązania wodorowe czy mostki siarczkowe. Utrata tego pierwotnego kształtu zmienia właściwości białka, które może przestać pełnić swoją funkcję, na przykład enzymy stają się nieczynne katalitycznie. Jeśli zmiany te są odwracalne, a po użyciu korzystnych warunków (np. rozcieńczenie stężonego roztworu soli) białko wraca do poprzedniej formy, mówimy o denaturyzacji odwracalnej. Ale często dochodzi też do denaturyzacji nieodwracalnej, po której białko nawet w sprzyjających warunkach nie powróci do poprzedniej formy i funkcji. Enzymy usmażonego mięsa nie będą działać, a gumowata masa jajecznicy nie rozpłynie się po ochłodzeniu czy wymoczeniu w wodzie.
W kurzym jajku głównymi białkami wodnistej części są albuminy, zaliczane do globin, których cząsteczki mają kształt z grubsza kulisty, z hydrofobowymi częściami w środku. Z tego zresztą powodu rozpuszczają się w wodzie tworząc koloidy. Przy bliższym spojrzeniu ich cząsteczki wyglądają podobnie do luźnego kłębka wełny, którym niedawno bawił się kot.
Co jednak ważniejsze, w ich składzie dość często pojawia się siarka. Najczęściej jest to aminokwas cysteina. Jest to ważne, bowiem między dwoma atomami siarki w tej samej cząsteczce lubią się tworzyć mostki dwusiarczkowe, to jest wiązania -S-S-. Ich zaistnienie zmusza łańcuch aminokwasowy do zagięcia a więc w dużym stopniu decyduje o kształcie cząsteczki. Albuminy mogą zawierać kilka takich mostków, tworzących dość stabilną strukturę.
Sieciowanie
Co takiego następuje podczas gotowania? Duże drgania termiczne mają na tyle dużą energię, że mostki dwusiarczkowe ulegają zrywaniu, pękają wiązania wodorowe, zaś nić rozplątuje się i częściowo prostuje. W efekcie sąsiednie cząsteczki które wcześniej, będąc małymi kulkami, najwyżej odbijały się od siebie, teraz zaczynają się przeplatać. Cysteiny z ich łańcuchów próbują utworzyć ponownie wiązania, aby powrócić do dawnego kształtu. Ponieważ jednak kłębek białka rozwinął się i splótł z sąsiednimi, nowo powstające mostki dwusiarczkowe łączą różne cząsteczki. W miejsce roztworu w pojedynczymi cząsteczkami powstaje trwała sieć.
Proces ten zużywa dość dużo energii. Co ciekawsze, mimo że temperatura ścinania żółtka jaja jest nieco niższa niż białka, to białko ścina się pierwsze. Wynika to z kiepskiego transportu ciepła oraz wspomnianego pochłaniania energii, zanim żółtko nagrzeje się na tyle, aby się ściąć, białko już dawno się dostatecznie nagrzało.
Naturacja?
Skoro sieć powstaje po utworzeniu przypadkowych połączeń między cząsteczkami białek, powinno być możliwe ich zerwanie oraz oddzielenie od siebie, aby nie kontaktujące się łańcuchy zwinęły się do rozpuszczalnej formy pierwotnej. Taki pomysł testował zespół badaczy pod kierunkiem profesora Gregory'ego Weissa [1]. Pomysł wziął się z prób izolowania pewnych białek powstających podczas procesów nowotworowych - mimo zastosowania ostrożnych warunków często białka izolowane z preparatów biologicznych wytrącały się w formie kłaczków oblepiających ścianki próbówek, będących masą splątanych łańcuchów.
Ale pewnego razu na konferencji zobaczył urządzenie, pozwalające dosłownie odrywać cząsteczki od siebie. Urządzenie (Vortex Fluid Device) wprowadza porcję płynu do tuby która wiruje z dużą prędkością co rozprowadza na jej powierzchni szybko poruszającą się, cienką warstwę. W warstwie tej ciecz porusza się niemal laminarnie, a na cząsteczki między jej warstwami działają duże siły ścinające. Proces ten pozwalał na przykład na oddzielenie od siebie warstw grafenu z cząstek grafitu.
Weiss sprowadził do siebie jedno takie urządzenie i przeprowadził eksperyment. Ugotował jajko na twardo i wyjął białą część. Rozdrobnione białko zmieszał z roztworem mocznika, związku który potrafi zrywać mostki siarczkowe między łańcuchami. W ten sposób wcześniej radzono sobie z denaturacją. Jednak nawet po rozbiciu sieci, wiele łańcuchów białka było ze sobą splątanych, gdy będąc wciąż blisko próbowały się zwinąć w kulkę. Zwykle z takiego roztworu dawało się odzyskać niewiele aktywnych białek.
Teraz jednak Weiss wprowadził roztwór rozpuszczonej w moczniku jajecznicy do urządzenia, którym siły ścinające działające na warstwę cieczy na powierzchni wirującej 5000 razy na minutę próbówki, odrywały poszczególne łańcuchy, tworząc roztwór odplątanych, odseparowanych protein. Po pięciu minutach wirowania, roztwór rozcieńczono buforem sprzyjającym powstawaniu formy natywnej. Dalsze badania wykazały, że udało się odzyskać 85% aktywnego lizozymu, ważnego białka przeciwbakteryjnego jaj kurzych.
Po co rozpuszczać ścięte białko? Niektóre białka są używane w biologii i medycynie, dla innych ich aktywność katalityczna pozwala je wykryć, co wykorzystują testy biomedyczne (przykładowo często oznaczany we krwi wskaźnik ALAT to poziom białkowego enzymu aminotransferazy alaninowej). Umiejętność przywracania im aktywnej formy po tym, jak wskutek niekorzystnych warunków podczas izolacji ścięły się jak się wydawało nieodwracalnie, może być więc bardzo przydatna.
Fizykochemia bezy
Proces denaturacji białka ma znaczenie też dla innego dania - piany białkowej a zwłaszcza jej słodkiej wersji czyli bez. Podczas roztrzepywania masy czysto fizyczne działanie trzepaczki powoduje, że część cząsteczek albuminy ulega rozwinięciu. Ponieważ ich wnętrza są hydrofobowe, rozwinięte cząsteczki przyklejają się do małych pęcherzyków powietrza, co tworzy stabilną pianę.
Denaturacja w tym przypadku jest jednak w dużym stopniu odwracalna - piana pozostawiona sama sobie po pewnym czasie wypuszcza bąbelki i rozpływa się, chyba że utrwalimy ją termicznie podczas wypieku.
Dawni kucharze dążący do tego, aby piana będąca podstawą lekkich kremów trzymała się długo i była sztywna, już dawno zauważyli że dobrą pianę otrzymuje się w naczyniach miedzianych lub srebrnych. Współcześnie wiemy, że ma to uzasadnienie - przenikające do ubijanej masy jony miedzi kompleksowały owomucynę, która przeszkadza w tworzeniu mostków dwusiarczkowych w surowym jaju, tym samym zwiększały trwałość piany [2]. Przy czym ilości te były śladowe i nie wpływały na smak.
Przy okazji przypominam mój stary wpis o naturalnych barwnikach do farbowania pisanek:
https://nowaalchemia.blogspot.com/2012/04/kraszanki-czyli-o-wielkanocnej-chemii.html
-------
[1] Gregory A. Weiss et al. Shear-Stress-Mediated Refolding of Proteins from Aggregates and Inclusion Bodies, Chem. bio. chem. Volume 16, Issue 3, Pages 393–396
[2] http://www.nature.com/nature/journal/v308/n5960/abs/308667a0.html
* https://www.washingtonpost.com/news/speaking-of-science/wp/2015/01/28/how-and-why-chemists-figured-out-how-to-unboil-an-egg/
* https://en.wikipedia.org/wiki/Egg_white
* https://en.wikipedia.org/wiki/Yolk
* https://en.wikipedia.org/wiki/Egg
* https://en.wikipedia.org/wiki/Denaturation_(biochemistry)
informacje
sobota, 15 kwietnia 2017
piątek, 7 kwietnia 2017
Chemiczne rekordy (1.)
Czyli krótki opis substancji, które w czymś są wyjątkowe. Na razie rekordy bardziej fizyko-chemiczne.
Największa rozpuszczalność w wodzie i najgęstszy roztwór wodny
Rozpuszczalność jest miarą określającą jaka masa danego związku jest w stanie rozpuścić się w rozpuszczalniku. Silnie zależy od temperatury, zwykle jest podawana w gramach substancji na 100 gramów rozpuszczalnika. To jak duża będzie jej wartość oprócz zupełnie oczywistej kwestii siły oddziaływań między cząsteczkami, zależy też od masy molowej związku. Im większa będzie masa molowa, tym cięższa będzie ta sama ilość cząsteczek związku. Dla lekkiej wody jeden mol to 18 gramów, co przy gęstości około 1 g/cm3 daje nam mniej niż kieliszek. Dla azotanu potasu taka sama ilość cząsteczek waży 101 gramów. W 100 g wody rozpuścić się może ponad 300 g tego związku, czyli całe trzy mole.
Aby uzyskać wysoką rozpuszczalność w gramach na 100 g wody, należy więc znaleźć sól o stosunkowo wysokiej masie molowej, która dobrze się rozpuszcza. Palmę pierwszeństwa dzierży wśród prostych soli octan cezu. Wprawdzie molowa rozpuszczalność nie jest duża, bo wynosi około 5 mol/dm3 ale dzięki dużej masie molowej cezu, rozpuszczalność wynosi 1010 g/100g wody.
Oznacza to, że w szklance wody, rozpuścić mogą się ponad dwa kilogramy tej soli!
W mineralogii jedną z prostych metod rozpoznawania minerałów jest badanie gęstości względnej wobec gęstych cieczy - minerały mniej gęste pływają a gęstsze toną. Używa się w tym celu odpowiednio gęstych fluorowcowodorów, ale także roztworów wodnych o wysokiej gęstości, w tym nasyconego octanu cezu.
Nieco mniej rozpuszczalny od octanu mrówczan cezu, używany jest też jako płyn w płuczkach do głębokich odwiertów, na przykład ropy naftowej, aby utrzymywać w nich nacisk zapobiegający nagłym wyrzutom gazów. Nasycony roztwór ma gęstość 2,3 g/cm3.
Jeszcze większą gęstość, mimo mniejszej rozpuszczalności, można uzyskać dla nasyconego roztworu wolframianu cezu WO4Cs2, wynosi ona 2,9 g/cm3 co oznacza, że pływa w nim beton. Następny w kolejności jest poliwolframian sodu którego roztwór osiąga 3,1 g/cm3. Ale rekordzistą pod tym względem jest tzw. roztwór Clerici.
Jest to roztwór mieszaniny mrówczanu i malonianu talu, innego ciężkiego pierwiastka o własnościach podobnych do metali alkalicznych. Przy odpowiednio dobranej proporcji roztwór ma w temperaturze pokojowej gęstość 4,25 g/cm3, co oznacza że pływa w nim diament a tonie cyrkonia.
W praktyce jest rzadko używany ze względu na korozyjność i fakt, że rozpuszczalne sole talu są silnie trujące.
Najcięższy gaz
Najlżejszym gazem w warunkach standardowych jest wodór, znany z baloników hel jest od niego nieco bardziej gęsty. A jaki gaz jest najcięższy?
Gazem o największej gęstości w warunkach standardowych, jest sześciofluorek wolframu. Jego gęstość to 13 g/l jest więc około 11 razy cięższy od powietrza. To gaz bezbarwny, trujący, hydrolizujący w wodzie z wydzieleniem fluorowodoru, powodujący obrzęk płuc. Poniżej temperatury 17*C skrapla się do żółtawej cieczy.
W przemyśle jest używany do osadzania warstewki wolframu na ogrzanych powierzchniach, jego wytwarzanie i destylacja są też sposobem na otrzymanie metalu wysokiej czystości.
Innym bardzo gęstym gazem jest czysty radon, nietrwały pierwiastek promieniotwórczy z grupy gazów szlachetnych. Jego gęstość to 9 g/l.
Najbardziej znanym gęstym gazem, który wdychany powoduje niesamowite pogrubienie głosu, jest sześciofluorek siarki, obojętny i nietoksyczny gaz o gęstości 6 g/l. Możliwe jest na przykład umieszczenie łódki z folii tak, aby pływała na zebranej w naczyniu warstwie.
Najgęstsza ciecz
Najgęstszą cieczą (w warunkach standardowych) jest metaliczna rtęć o gęstości 13,5 g/cm3. Jak na metal tworzy bardzo słabe wiązania metaliczne stąd bardzo niska temperatura topnienia -38,8*C. Zastanawiałem się czy nieco gęstsze nie będą niektóre ciekłe amalgamaty, ale wygląda na to, że dodatek jakiegokolwiek metalu zmniejsza gęstość powstałego połączenia.
-------
* https://en.wikipedia.org/wiki/Clerici_solution
* https://en.wikipedia.org/wiki/Density
Największa rozpuszczalność w wodzie i najgęstszy roztwór wodny
Rozpuszczalność jest miarą określającą jaka masa danego związku jest w stanie rozpuścić się w rozpuszczalniku. Silnie zależy od temperatury, zwykle jest podawana w gramach substancji na 100 gramów rozpuszczalnika. To jak duża będzie jej wartość oprócz zupełnie oczywistej kwestii siły oddziaływań między cząsteczkami, zależy też od masy molowej związku. Im większa będzie masa molowa, tym cięższa będzie ta sama ilość cząsteczek związku. Dla lekkiej wody jeden mol to 18 gramów, co przy gęstości około 1 g/cm3 daje nam mniej niż kieliszek. Dla azotanu potasu taka sama ilość cząsteczek waży 101 gramów. W 100 g wody rozpuścić się może ponad 300 g tego związku, czyli całe trzy mole.
Aby uzyskać wysoką rozpuszczalność w gramach na 100 g wody, należy więc znaleźć sól o stosunkowo wysokiej masie molowej, która dobrze się rozpuszcza. Palmę pierwszeństwa dzierży wśród prostych soli octan cezu. Wprawdzie molowa rozpuszczalność nie jest duża, bo wynosi około 5 mol/dm3 ale dzięki dużej masie molowej cezu, rozpuszczalność wynosi 1010 g/100g wody.
Oznacza to, że w szklance wody, rozpuścić mogą się ponad dwa kilogramy tej soli!
W mineralogii jedną z prostych metod rozpoznawania minerałów jest badanie gęstości względnej wobec gęstych cieczy - minerały mniej gęste pływają a gęstsze toną. Używa się w tym celu odpowiednio gęstych fluorowcowodorów, ale także roztworów wodnych o wysokiej gęstości, w tym nasyconego octanu cezu.
Nieco mniej rozpuszczalny od octanu mrówczan cezu, używany jest też jako płyn w płuczkach do głębokich odwiertów, na przykład ropy naftowej, aby utrzymywać w nich nacisk zapobiegający nagłym wyrzutom gazów. Nasycony roztwór ma gęstość 2,3 g/cm3.
Jeszcze większą gęstość, mimo mniejszej rozpuszczalności, można uzyskać dla nasyconego roztworu wolframianu cezu WO4Cs2, wynosi ona 2,9 g/cm3 co oznacza, że pływa w nim beton. Następny w kolejności jest poliwolframian sodu którego roztwór osiąga 3,1 g/cm3. Ale rekordzistą pod tym względem jest tzw. roztwór Clerici.
Jest to roztwór mieszaniny mrówczanu i malonianu talu, innego ciężkiego pierwiastka o własnościach podobnych do metali alkalicznych. Przy odpowiednio dobranej proporcji roztwór ma w temperaturze pokojowej gęstość 4,25 g/cm3, co oznacza że pływa w nim diament a tonie cyrkonia.
W praktyce jest rzadko używany ze względu na korozyjność i fakt, że rozpuszczalne sole talu są silnie trujące.
Najcięższy gaz
Najlżejszym gazem w warunkach standardowych jest wodór, znany z baloników hel jest od niego nieco bardziej gęsty. A jaki gaz jest najcięższy?
Gazem o największej gęstości w warunkach standardowych, jest sześciofluorek wolframu. Jego gęstość to 13 g/l jest więc około 11 razy cięższy od powietrza. To gaz bezbarwny, trujący, hydrolizujący w wodzie z wydzieleniem fluorowodoru, powodujący obrzęk płuc. Poniżej temperatury 17*C skrapla się do żółtawej cieczy.
W przemyśle jest używany do osadzania warstewki wolframu na ogrzanych powierzchniach, jego wytwarzanie i destylacja są też sposobem na otrzymanie metalu wysokiej czystości.
Innym bardzo gęstym gazem jest czysty radon, nietrwały pierwiastek promieniotwórczy z grupy gazów szlachetnych. Jego gęstość to 9 g/l.
Najbardziej znanym gęstym gazem, który wdychany powoduje niesamowite pogrubienie głosu, jest sześciofluorek siarki, obojętny i nietoksyczny gaz o gęstości 6 g/l. Możliwe jest na przykład umieszczenie łódki z folii tak, aby pływała na zebranej w naczyniu warstwie.
Najgęstsza ciecz
Najgęstszą cieczą (w warunkach standardowych) jest metaliczna rtęć o gęstości 13,5 g/cm3. Jak na metal tworzy bardzo słabe wiązania metaliczne stąd bardzo niska temperatura topnienia -38,8*C. Zastanawiałem się czy nieco gęstsze nie będą niektóre ciekłe amalgamaty, ale wygląda na to, że dodatek jakiegokolwiek metalu zmniejsza gęstość powstałego połączenia.
-------
* https://en.wikipedia.org/wiki/Clerici_solution
* https://en.wikipedia.org/wiki/Density
poniedziałek, 3 kwietnia 2017
To już szósty rok!
To nie żart, minął szósty rok na tym blogu.
Zacznę od podsumowania wewnętrznych statystyk:
Blog wyświetlano 890 tysięcy razy, toteż od zeszłego roku przybyło 200 tysięcy, szacuję że niestety jakieś 10-15% to wejścia botów
- średnia dzienna przeglądalność to około 500-600 wyświetleń
- przybyło 120 komentarzy
Kilka artykułów opublikowanych w ciągu tego roku wywołało większe zainteresowanie, szczególnie "Witamina lewa i prawa" który przeczytano 24 tysiące razy, co dało mu ostatecznie drugie miejsce wśród najpopularniejszych (wpis o Ałunie jest nie do pobicia). Chętnie czytano też artykuł "Co to jest ksylitol?" wyświetlony 12 tysięcy razy, oraz "Dlaczego osm jest najgęstszym pierwiastkiem?" wyświetlony 11 tysięcy razy - co było dla mnie pewnym zaskoczeniem, bo niekoniecznie jest to łatwa tematyka.
Do sukcesów minionego roku mogę też zaliczyć nawiązanie współpracy z "Przekrojem" w czym fakt istnienia tego bloga miał pewien udział.
Jeśli chodzi o plany, mam nadzieję że uda się wystartować z serią wpisów z propozycjami małych doświadczeń do wykonania w domu, kuchni, garażu czy ostatecznie na szkolnej pracowni chemicznej. Na razie robię parapetowe próby z czym uda się najprościej, bez specjalistycznych zakupów
Zacznę od podsumowania wewnętrznych statystyk:
Blog wyświetlano 890 tysięcy razy, toteż od zeszłego roku przybyło 200 tysięcy, szacuję że niestety jakieś 10-15% to wejścia botów
- średnia dzienna przeglądalność to około 500-600 wyświetleń
- przybyło 120 komentarzy
Kilka artykułów opublikowanych w ciągu tego roku wywołało większe zainteresowanie, szczególnie "Witamina lewa i prawa" który przeczytano 24 tysiące razy, co dało mu ostatecznie drugie miejsce wśród najpopularniejszych (wpis o Ałunie jest nie do pobicia). Chętnie czytano też artykuł "Co to jest ksylitol?" wyświetlony 12 tysięcy razy, oraz "Dlaczego osm jest najgęstszym pierwiastkiem?" wyświetlony 11 tysięcy razy - co było dla mnie pewnym zaskoczeniem, bo niekoniecznie jest to łatwa tematyka.
Jeśli chodzi o plany, mam nadzieję że uda się wystartować z serią wpisów z propozycjami małych doświadczeń do wykonania w domu, kuchni, garażu czy ostatecznie na szkolnej pracowni chemicznej. Na razie robię parapetowe próby z czym uda się najprościej, bez specjalistycznych zakupów
środa, 29 marca 2017
Żywność z mikrofalówki
W ciągu ostatnich kilkunastu lat kuchenki mikrofalowe stały się takim powszechnym sprzętem domowym, jak zmywarki czy roboty kuchenne. Ze względu na swój nieoczywisty sposób działania obrosły jednak wieloma mitami. W tym też takimi, jakie mogą zainteresować chemika.
Jak działa mikrofalówka?
Mikrofale są falami promieniowania elektromagnetycznego, podobnie jak fale radiowe czy światło widzialne. Oznacza to, że w punkcie przestrzeni przez który przechodzą, pojawia się pole elektryczne i magnetyczne, których wektor natężenia (kierunek w którym następuje zmiana) zmienia zwrot co pewien okres, zależny od częstotliwości.
Dość arbitralnie uznaje się za mikrofale, falę o długości (odległość w przestrzeni między dwoma punktami o takim samym wektorze pola) od 1 mm do 30 cm. Niosą więcej energii niż dłuższe fale radiowe, ale mniej niż krótsza podczerwień.
Ogrzewanie przez nie ciał następuje wskutek oddziaływania z dipolami. Jeśli cząsteczka związku chemicznego ma nierównomiernie i niesymetrycznie rozłożony ładunek elektryczny, to nabiera momentu dipolowego, to jest zachowuje się jak układ leżących blisko ładunku dodatniego i ujemnego. Następuje to wtedy, gdy tworzą ją atomy różniące się elektroujemnością, to jest zdolnością do przyciągania elektronów, i nie są ułożone tak, że posiadają środek symetrii. W przeciwnym przypadku części cząsteczki powtarzające się po obu stronach tegoż środka ściągałyby ładunek w przeciwne strony i nie było by żadnego wyróżnionego kierunku.
Zerowy moment dipolowy ma liniowa cząsteczka dwutlenku węgla, a wyraźny niezerowy na przykład cząsteczka wody.
Dipole, które zachowują się jak układ przeciwnych ładunków, reagują na pola elektryczne lub magnetyczne. W stałym, dostatecznie silnym polu, będą się obracać równolegle do wektora jego siły, tak aby do źródła mającego ładunek dodatni lub ujemny obrócony był fragment cząsteczki o przeciwnym ładunku.
Podobnie rzecz się ma gdy na dipol oddziałuje fala elektromagnetyczna - cząsteczka wpada w zmienne pole, którego wektor co chwila zmienia się, wskazując raz to w jedną raz to w przeciwną stronę. W przypadku fal krótkich, jak dla światła widzialnego, gdzie długość fali jest liczona w nanometrach, czas przez jaki cząsteczka omiatana falą znajduje się w polu o jednym kierunku jest tak krótki, że nie nadąża zareagować. W przypadku długich, jak fale radiowe, wprawdzie pozostaje ona w polu danego kierunku długo, ale sama fala niesie ze sobą niską energię. Pośrodku znalazły się mikrofale - na tyle długie, aby cząsteczka zdążała zareagować, i zarazem niosące dostatecznie dużo energii aby po jej otrzymaniu cząsteczka pokonała swoją bezwładność.
W skrócie - cząsteczki będące dipolami w polu elektrycznym będącym składową mikrofal, zaczynają drgać. A drgania całych cząsteczek to właśnie to, co fizycy nazywają temperaturą. Energia kinetyczna rozedrganych mikrofalami cząsteczek dipola rozchodzi się przez oddziaływanie z innymi cząsteczkami. Mikrofalówki domowe posiadają źródła mikrofal o częstotliwości 2,45 GHz, co odpowiada długości fali 12,2 cm. Fala tej długości działa przede wszystkim na cząsteczki wody, posiadające wyraźny moment dipolowy. To od wody rozgrzewa się całe danie. Fale wnikają wgłąb porcji na 2-3 cm, co w zasadzie oznacza, że przenikają ją całą od momentu włączenia.
Ten typ ogrzewania różni się od konwencjonalnego przede wszystkim szybkością - w przypadku gotowanej kiełbaski rozchodzenie się ciepła następuje od zewnątrz do środka. Najpierw zużywamy ciepło na zagotowanie wody. Potem woda przekazuje energię zewnętrznym warstwom kiełbaski, te poprzez oddziaływania cząsteczek przekazują energię warstwom głębszym i tak dalej aż całość ogrzeje się na tyle, aby dało się to zjeść. Bywa że większe kawały mięsa zostają niedogotowane w środku. To rozchodzenie się ciepła nie jest zbyt szybkie, praktycznie żadnej roli nie pełni tu konwekcja wody wewnątrz jedzenia, mięso czy tkanki roślinne zwykle nie są zbyt dobrymi przewodnikami ciepła. Trzeba więc utrzymywać w stanie wrzenia wodę z naszą kiełbaską odpowiednio długo.
Mikrofale przenikają porcję jedzenia od razu od momentu włączenia, a ciepło jest wytwarzane w środku, przez co uzyskanie tej samej temperatury następuje krócej. Jedzenie jest wręcz cieplejsze w środku niż na zewnątrz, ze względu na wypromieniowanie ciepła przez powierzchnię, mającą kontakt z wcale nie gorącym powietrzem. Ma to pewien paradoksalny skutek, możliwy do zaobserwowania w doświadczeniu z kostkami sera - na talerz mikrofalówki kładziemy kostki żółtego sera, jedną dużą drugą mniejszą. Po włączeniu na średnią moc możemy zauważyć, że większa kostka stopi się szybciej.
Fale używane w kuchence mikrofalowej mają długość 12,2 cm. Są zatrzymywane przez metalową siatkę widoczną w szkle drzwiczek, ale obecną też w ściankach, której oczka są dużo mniejsze.
Utrata witamin
Teksty temat tego jak bardzo złe jest ogrzewanie jedzenia w mikrofalówce najczęściej powtarzają twierdzenie, że mikrofala "wyjaławia żywność" lub "niszczy wszystkie składniki odżywcze". W tym wyjaławianiu coś jest na rzeczy, bo podgrzanie jedzenia zwykle zabija bakterie, a w tym przypadku równomierne rozgrzanie od środka rozwiązuje problem niedosmażenia mięsiwa. Jak jednak wygląda sprawa składników odżywczych? W końcu takie na przykład witaminy są często wrażliwe na obróbkę cieplną.
Podczas ogrzewania część witamin bądź rozkłada się, bądź utlenia. Na to jak dużo substancji przereaguje, oprócz temperatury wpływ ma też czas trwania procesu. Jeśli w mikrofali osiągnięcie tego samego podgrzania następuje szybciej, można spodziewać się mniejszych strat witamin. I to pokazały badania. Znalazłem obszerny polskojęzyczny przegląd prac na ten temat.
Dla witaminy C stwierdzono, że ogrzewanie w mikrofali brokułów wywołuje mniejsze straty niż podczas zwykłego gotowania, porównywalnie małe dawało gotowanie pod ciśnieniem. Gotowanie tak ziemniaków, kalafiora, brukselki i fasolki szparagowej dawało straty znacząco mniejsze niż dla gotowania zwykłego. [1]
Dla witaminy B1 obserwowane straty przy gotowaniu mikrofalowym były bądź porównywalne (dla ciecierzycy) lub nieco mniejsze (dla boćwiny i zielonej fasolki) niż w zwykłym gotowaniu. Dla witaminy B2 straty w mikrofali były porównywalne lub mniejsze, z wyjątkiem zielonego groszku gdzie były większe. Dla witaminy PP straty w gotowanej ciecierzycy były mniejsze. [2]
Polifenole
Do najczęściej powtarzanych argumentów należy niszczenie polifenoli i flawonoidów podczas ogrzewania w mikrofali. Niekiedy artykuły powołują się na konkretne badanie, w którym stwierdzono, że w gotowanych tak brokułach zawartość tych związków spada aż o 97%. Faktycznie, takie dane pojawiają się w cytowanym badaniu. Artykuły jednak nie są chętne wejść w szczegóły - brokuły były w tym badaniu gotowane w wodzie przy pomocy mikrofal, większość strat polifenoli wynikała nie z rozkładu tylko z rozpuszczenia się ich w wodzie, którą wylewano. W czasie tego samego badania stwierdzono też stratę 66% polifenoli podczas gotowania tradycyjnego.[3]
Sami autorzy przyznają zresztą, że te wyniki znacząco odbiegają od uzyskanych w innych badaniach, przykładowo japońscy badacze badający gotowanie cebuli stwierdzili, że między gotowaniem tradycyjnym a mikrofalowym nie ma różnicy dla strat polifenoli [4] a indyjski zespól badający w ten sposób 14 warzyw stwierdził, że straty podczas gotowania na parze i w mikrofali były mniejsze niż podczas gotowania zwykłego.[5]
Tak, że no owszem, bardzo dużą stratę zawartości polifenoli stwierdzono, ale tylko w jednym badaniu. Ponieważ główną przyczyną strat było rozpuszczanie polifenoli w wodzie którą potem odlewano, można się domyśleć, że w przypadku potraw których część stanowią warzywa, i z których nie odlewa się wody, straty będą bardzo małe.
Zmiana kształtu białek
Kolejnym częstym argumentem, jest zmienianie kształtu białek i powodowanie, że stają się nienaturalne. A jeśli coś jest nienaturalne to organizm tego nie poznaje i nie trawi.
Jest to kolejna wieść z kategorii "coś dzwoni ale nie wiadomo w którym uniwersytecie". Owszem, ogrzewanie żywności w mikrofalówce zmienia struktury białek, i to na takie których w naturze nie ma. Tylko że nie jest to nic nadzwyczajnego, zachodzi też podczas smażenia i gotowania. Proces ten nazywa się denaturacją. Przykładowo podczas smażenia jajecznicy rozpuszczalne w wodzie albuminy, będące białkami o cząsteczkach w kształcie kłębków sznurka, rozwijają się i prostują, po czym tworzą siatkę wielu przeplecionych łańcuchów. Taka struktura nie występuje w naturze. Jednak organizm nie ma z nią żadnego problemu. Nasz żołądek nie trudni się rozpoznawaniem struktury białka i testowaniem naturalności konformacji, tylko wytwarza enzymy które tą strukturę naturalną czy nie, niszczą i trawią.
Izomeryzacja aminokwasów
W paru miejscach widziałem, że dla udowodnienia szkodliwego wpływu powoływano się na badania na temat izomeryzacji aminokwasów.[6] Jak to już było tłumaczone we wpisie o witaminie C, w pewnych przypadkach asymetria cząsteczki powoduje, że związki chemiczne mogą posiadać dwie formy, podobne jak lustrzane odbicia ale nie nakładające się.
Takimi związkami są na przykład alfa-aminokwasy budujące białka, ale też często występujące w organizmach swobodnie. Spośród dwóch podobnych form - L i D, w organizmach żywych występują praktycznie tylko aminokwasy L.
No i otóż, jak wykazano podczas ogrzewania mleka w mikrofali, część wolnych aminokwasów ulega izomeryzacji w nienaturalną formę D. Co to powoduje? Wedle artykułów szkodzi i ma uzasadniać szkodliwość mikrofalówek.
Czy D-aminokwasy, które normalnie nie wchodzą w skład białek żywych organizmów, nie występują w przyrodzie i pojawiają się dopiero po nienaturalnym ogrzaniu mikrofalami? Nie.
Nie są zbyt częste, ale pojawiają się w organizmach i żywności wskutek spontanicznej izomeryzacji. Reakcja taka, jak wiele innych, ma pewną określoną szybkość, która zwiększa się po ogrzaniu. I to zupełnie niezależnie od sposobu ogrzewania.
W pewnym badaniu ogrzewano mleko bądź w mikrofalówce lub konwencjonalnie i zbadano zawartość izomerów D kwasu asparaginowego i glutaminowego. Przed ogrzaniem mleko zawierało około 0,4-0,45% tych izomerów, po ogrzaniu zarówno mikrofalowym jak i zwykłym ich zawartość zwiększyła się o 0,25%. Między próbkami ogrzewanymi na różne sposoby przez ten sam czas nie było różnic w zawartości D-izomerów.[7]
W zasadzie z uwagi na to, że mikrofalami można ogrzać mleko szybciej, można by się spodziewać mniejszych poziomów tych izomerów.
Wspomniane izomery D nie są tak znów nienaturalne, skoro dokładne badania wykazują ich niewielkie ilości w różnych produktach naturalnych. W obszernym przeglądzie badań stwierdzono na przykład, że izomery aminokwasów białkowych występują zarówno w mleku surowym jak i pasteryzowanym. Większe ilości pojawiają się w produktach fermentowanych, a więc kefirze, jogurcie i serach, zwłaszcza w serze długo dojrzewającym, wskutek metabolizmu bakterii. Śladowe ilości pojawiają się w mięsie kurczaka i bekonie, i zwiększają po smażeniu, a nawet w chlebie gdzie podpieczenie tosta zwiększa poziom D-aminokwasów prawie dwa razy.[8]
Wykrywa się je także w ludzkim organizmie i podejrzewa, że mogą pełnić pewne funkcje biologiczne, być na przykład neuroprzekaźnikami, trudno więc straszyć ich obecnością.
Enzymy
W paru artykułach wspomniano o niszczeniu przez mikrofale enzymów z jedzenia. To prawda, ale przyczyną jest samo podgrzanie. Enzymy są białkami a wysoka temperatura zmienia ich strukturę i je unieczynnia. Nie ma znaczenia w jaki sposób odbywa się ogrzanie.
Nitrozoaminy
Nitrozoaminy to rakotwórcze produkty reakcji zachodzących w wysokiej temperaturze między aminami i azotynami. Pojawiają się w przetworzonym mięsie podczas pieczenia i smażenia. Artykuły o mikrofalówkach często twierdzą, że podczas ogrzewania w nich tworzy się konkretnie d-nitrozodietanoloamina (NDMA), trudno powiedzieć czemu akurat ta. Są badania na temat powstawania nitrozoamin w ogóle. Na przykład porównując boczek pieczony w mikrofali ze smażonym na patelni, stwierdzono powstawanie nitrozoamin w obu, w tym smażonym w większej ilości.[9]
W badaniu zawartości NDMA w koreańskich owocach morza ogrzewanych na sześć różnych sposobów, stwierdzono że najwyższe poziomy tej substancji powstawały podczas ogrzewania na grillu na węgiel drzewny, a najmniejsze przy ogrzaniu w mikrofalówce i gotowaniu w ciśnieniowej kuchence parowej.[10]
Inne dziwaczne argumenty
Artykuły o mikrofalówkach często są doprawione dziwacznymi wieściami, które w zasadzie nie stanowią żadnych argumentów, ale mają robić atmosferę. Do najczęściej powtarzanych należy wiadomość że ZSRR zakazało domowych mikrofalówek ze względu na dbanie o zdrowie obywateli, tylko nie wiadomo kiedy - daty wahają się od lat 50 do lat 80. Czasem pojawia się twierdzenie, że wynaleźli ją Naziści.
Inną często przytaczaną opowieścią jest śmierć pacjenta któremu przetoczono krew, wcześniej podgrzaną w mikrofalówce, oczywiście wskutek szkodliwego wpływu mikrofal na krew. Taka historia faktycznie miała miejsce w 1989 roku w stanie Oklahoma w USA. Ale przyczyna śmierci była inna - pielęgniarka miała ogrzać krew przechowywaną w lodówce do temperatury ciała pacjenta. Zamiast użyć standardowej łaźni z ciepłą wodą, użyła mikrofali, określając potrzebny czas na wyczucie. W efekcie krew zamiast ogrzać się do tych około 36 stopni, przegrzała się. Wprawdzie ochłodzono ją ale z powodu za wysokiej temperatury doszło do częściowej hemolizy, czyli pęknięcia czerwonych krwinek. Po wprowadzeniu jej do krążenia pojawiły się skrzepy, będąc przyczyną śmierci pacjentki. W 1995 roku rodzina zmarłej dostała odszkodowanie.[11]
Do tego dochodzą takie dziwne twierdzenia jak gromadzenie się mikrofal w jedzeniu, wodzie a nawet meblach kuchennych (!).
Prawdziwy problem
Prawdziwy problem w żywności z mikrofalówki jest taki, że niezbyt dobrą jakość ma żywność do niej wkładania. Gotowe zestawy do podgrzania to często już na wstępie mocno przetworzona żywność z dużą ilością tłuszczy, małą błonnika i witamin. Nie powinny stanowić podstawowej diety w ciągu dnia.
--------
[1] http://www.ptfarm.pl/pub/File/Bromatologia/2013/3/BR%203-2013%20s.%20241-249.pdf
[2] https://www.ptfarm.pl/pub/File/Bromatologia/2013/3/BR%203-2013%20s.%20250-257.pdf
[3] http://www.ingentaconnect.com/content/jws/jsfa/2003/00000083/00000014/art00018;jsessionid=1smkxaf0ymund.victoria
[4] https://www.ncbi.nlm.nih.gov/pubmed/11349895
[5] http://www.ijfans.com/vol2issue3/9.pdf
[6] https://www.ncbi.nlm.nih.gov/pubmed/1968186
[7] https://www.ncbi.nlm.nih.gov/pubmed/7911811
[8] http://www.acta.sapientia.ro/acta-alim/C2-1/alim2-1.pdf
[9] https://www.ncbi.nlm.nih.gov/pubmed/2307266
[10] http://www.tandfonline.com/doi/abs/10.1080/0265203021000014770
[11] http://wyomcases.courts.state.wy.us/applications/oscn/DeliverDocument.asp?citeID=4387
Jak działa mikrofalówka?
Mikrofale są falami promieniowania elektromagnetycznego, podobnie jak fale radiowe czy światło widzialne. Oznacza to, że w punkcie przestrzeni przez który przechodzą, pojawia się pole elektryczne i magnetyczne, których wektor natężenia (kierunek w którym następuje zmiana) zmienia zwrot co pewien okres, zależny od częstotliwości.
Dość arbitralnie uznaje się za mikrofale, falę o długości (odległość w przestrzeni między dwoma punktami o takim samym wektorze pola) od 1 mm do 30 cm. Niosą więcej energii niż dłuższe fale radiowe, ale mniej niż krótsza podczerwień.
Ogrzewanie przez nie ciał następuje wskutek oddziaływania z dipolami. Jeśli cząsteczka związku chemicznego ma nierównomiernie i niesymetrycznie rozłożony ładunek elektryczny, to nabiera momentu dipolowego, to jest zachowuje się jak układ leżących blisko ładunku dodatniego i ujemnego. Następuje to wtedy, gdy tworzą ją atomy różniące się elektroujemnością, to jest zdolnością do przyciągania elektronów, i nie są ułożone tak, że posiadają środek symetrii. W przeciwnym przypadku części cząsteczki powtarzające się po obu stronach tegoż środka ściągałyby ładunek w przeciwne strony i nie było by żadnego wyróżnionego kierunku.
Zerowy moment dipolowy ma liniowa cząsteczka dwutlenku węgla, a wyraźny niezerowy na przykład cząsteczka wody.
Dipole, które zachowują się jak układ przeciwnych ładunków, reagują na pola elektryczne lub magnetyczne. W stałym, dostatecznie silnym polu, będą się obracać równolegle do wektora jego siły, tak aby do źródła mającego ładunek dodatni lub ujemny obrócony był fragment cząsteczki o przeciwnym ładunku.
Podobnie rzecz się ma gdy na dipol oddziałuje fala elektromagnetyczna - cząsteczka wpada w zmienne pole, którego wektor co chwila zmienia się, wskazując raz to w jedną raz to w przeciwną stronę. W przypadku fal krótkich, jak dla światła widzialnego, gdzie długość fali jest liczona w nanometrach, czas przez jaki cząsteczka omiatana falą znajduje się w polu o jednym kierunku jest tak krótki, że nie nadąża zareagować. W przypadku długich, jak fale radiowe, wprawdzie pozostaje ona w polu danego kierunku długo, ale sama fala niesie ze sobą niską energię. Pośrodku znalazły się mikrofale - na tyle długie, aby cząsteczka zdążała zareagować, i zarazem niosące dostatecznie dużo energii aby po jej otrzymaniu cząsteczka pokonała swoją bezwładność.
W skrócie - cząsteczki będące dipolami w polu elektrycznym będącym składową mikrofal, zaczynają drgać. A drgania całych cząsteczek to właśnie to, co fizycy nazywają temperaturą. Energia kinetyczna rozedrganych mikrofalami cząsteczek dipola rozchodzi się przez oddziaływanie z innymi cząsteczkami. Mikrofalówki domowe posiadają źródła mikrofal o częstotliwości 2,45 GHz, co odpowiada długości fali 12,2 cm. Fala tej długości działa przede wszystkim na cząsteczki wody, posiadające wyraźny moment dipolowy. To od wody rozgrzewa się całe danie. Fale wnikają wgłąb porcji na 2-3 cm, co w zasadzie oznacza, że przenikają ją całą od momentu włączenia.
Ten typ ogrzewania różni się od konwencjonalnego przede wszystkim szybkością - w przypadku gotowanej kiełbaski rozchodzenie się ciepła następuje od zewnątrz do środka. Najpierw zużywamy ciepło na zagotowanie wody. Potem woda przekazuje energię zewnętrznym warstwom kiełbaski, te poprzez oddziaływania cząsteczek przekazują energię warstwom głębszym i tak dalej aż całość ogrzeje się na tyle, aby dało się to zjeść. Bywa że większe kawały mięsa zostają niedogotowane w środku. To rozchodzenie się ciepła nie jest zbyt szybkie, praktycznie żadnej roli nie pełni tu konwekcja wody wewnątrz jedzenia, mięso czy tkanki roślinne zwykle nie są zbyt dobrymi przewodnikami ciepła. Trzeba więc utrzymywać w stanie wrzenia wodę z naszą kiełbaską odpowiednio długo.
Mikrofale przenikają porcję jedzenia od razu od momentu włączenia, a ciepło jest wytwarzane w środku, przez co uzyskanie tej samej temperatury następuje krócej. Jedzenie jest wręcz cieplejsze w środku niż na zewnątrz, ze względu na wypromieniowanie ciepła przez powierzchnię, mającą kontakt z wcale nie gorącym powietrzem. Ma to pewien paradoksalny skutek, możliwy do zaobserwowania w doświadczeniu z kostkami sera - na talerz mikrofalówki kładziemy kostki żółtego sera, jedną dużą drugą mniejszą. Po włączeniu na średnią moc możemy zauważyć, że większa kostka stopi się szybciej.
Fale używane w kuchence mikrofalowej mają długość 12,2 cm. Są zatrzymywane przez metalową siatkę widoczną w szkle drzwiczek, ale obecną też w ściankach, której oczka są dużo mniejsze.
Utrata witamin
Teksty temat tego jak bardzo złe jest ogrzewanie jedzenia w mikrofalówce najczęściej powtarzają twierdzenie, że mikrofala "wyjaławia żywność" lub "niszczy wszystkie składniki odżywcze". W tym wyjaławianiu coś jest na rzeczy, bo podgrzanie jedzenia zwykle zabija bakterie, a w tym przypadku równomierne rozgrzanie od środka rozwiązuje problem niedosmażenia mięsiwa. Jak jednak wygląda sprawa składników odżywczych? W końcu takie na przykład witaminy są często wrażliwe na obróbkę cieplną.
Podczas ogrzewania część witamin bądź rozkłada się, bądź utlenia. Na to jak dużo substancji przereaguje, oprócz temperatury wpływ ma też czas trwania procesu. Jeśli w mikrofali osiągnięcie tego samego podgrzania następuje szybciej, można spodziewać się mniejszych strat witamin. I to pokazały badania. Znalazłem obszerny polskojęzyczny przegląd prac na ten temat.
Dla witaminy C stwierdzono, że ogrzewanie w mikrofali brokułów wywołuje mniejsze straty niż podczas zwykłego gotowania, porównywalnie małe dawało gotowanie pod ciśnieniem. Gotowanie tak ziemniaków, kalafiora, brukselki i fasolki szparagowej dawało straty znacząco mniejsze niż dla gotowania zwykłego. [1]
Dla witaminy B1 obserwowane straty przy gotowaniu mikrofalowym były bądź porównywalne (dla ciecierzycy) lub nieco mniejsze (dla boćwiny i zielonej fasolki) niż w zwykłym gotowaniu. Dla witaminy B2 straty w mikrofali były porównywalne lub mniejsze, z wyjątkiem zielonego groszku gdzie były większe. Dla witaminy PP straty w gotowanej ciecierzycy były mniejsze. [2]
Polifenole
Do najczęściej powtarzanych argumentów należy niszczenie polifenoli i flawonoidów podczas ogrzewania w mikrofali. Niekiedy artykuły powołują się na konkretne badanie, w którym stwierdzono, że w gotowanych tak brokułach zawartość tych związków spada aż o 97%. Faktycznie, takie dane pojawiają się w cytowanym badaniu. Artykuły jednak nie są chętne wejść w szczegóły - brokuły były w tym badaniu gotowane w wodzie przy pomocy mikrofal, większość strat polifenoli wynikała nie z rozkładu tylko z rozpuszczenia się ich w wodzie, którą wylewano. W czasie tego samego badania stwierdzono też stratę 66% polifenoli podczas gotowania tradycyjnego.[3]
Sami autorzy przyznają zresztą, że te wyniki znacząco odbiegają od uzyskanych w innych badaniach, przykładowo japońscy badacze badający gotowanie cebuli stwierdzili, że między gotowaniem tradycyjnym a mikrofalowym nie ma różnicy dla strat polifenoli [4] a indyjski zespól badający w ten sposób 14 warzyw stwierdził, że straty podczas gotowania na parze i w mikrofali były mniejsze niż podczas gotowania zwykłego.[5]
Tak, że no owszem, bardzo dużą stratę zawartości polifenoli stwierdzono, ale tylko w jednym badaniu. Ponieważ główną przyczyną strat było rozpuszczanie polifenoli w wodzie którą potem odlewano, można się domyśleć, że w przypadku potraw których część stanowią warzywa, i z których nie odlewa się wody, straty będą bardzo małe.
Zmiana kształtu białek
Kolejnym częstym argumentem, jest zmienianie kształtu białek i powodowanie, że stają się nienaturalne. A jeśli coś jest nienaturalne to organizm tego nie poznaje i nie trawi.
Jest to kolejna wieść z kategorii "coś dzwoni ale nie wiadomo w którym uniwersytecie". Owszem, ogrzewanie żywności w mikrofalówce zmienia struktury białek, i to na takie których w naturze nie ma. Tylko że nie jest to nic nadzwyczajnego, zachodzi też podczas smażenia i gotowania. Proces ten nazywa się denaturacją. Przykładowo podczas smażenia jajecznicy rozpuszczalne w wodzie albuminy, będące białkami o cząsteczkach w kształcie kłębków sznurka, rozwijają się i prostują, po czym tworzą siatkę wielu przeplecionych łańcuchów. Taka struktura nie występuje w naturze. Jednak organizm nie ma z nią żadnego problemu. Nasz żołądek nie trudni się rozpoznawaniem struktury białka i testowaniem naturalności konformacji, tylko wytwarza enzymy które tą strukturę naturalną czy nie, niszczą i trawią.
Izomeryzacja aminokwasów
W paru miejscach widziałem, że dla udowodnienia szkodliwego wpływu powoływano się na badania na temat izomeryzacji aminokwasów.[6] Jak to już było tłumaczone we wpisie o witaminie C, w pewnych przypadkach asymetria cząsteczki powoduje, że związki chemiczne mogą posiadać dwie formy, podobne jak lustrzane odbicia ale nie nakładające się.
Takimi związkami są na przykład alfa-aminokwasy budujące białka, ale też często występujące w organizmach swobodnie. Spośród dwóch podobnych form - L i D, w organizmach żywych występują praktycznie tylko aminokwasy L.
No i otóż, jak wykazano podczas ogrzewania mleka w mikrofali, część wolnych aminokwasów ulega izomeryzacji w nienaturalną formę D. Co to powoduje? Wedle artykułów szkodzi i ma uzasadniać szkodliwość mikrofalówek.
Czy D-aminokwasy, które normalnie nie wchodzą w skład białek żywych organizmów, nie występują w przyrodzie i pojawiają się dopiero po nienaturalnym ogrzaniu mikrofalami? Nie.
Nie są zbyt częste, ale pojawiają się w organizmach i żywności wskutek spontanicznej izomeryzacji. Reakcja taka, jak wiele innych, ma pewną określoną szybkość, która zwiększa się po ogrzaniu. I to zupełnie niezależnie od sposobu ogrzewania.
W pewnym badaniu ogrzewano mleko bądź w mikrofalówce lub konwencjonalnie i zbadano zawartość izomerów D kwasu asparaginowego i glutaminowego. Przed ogrzaniem mleko zawierało około 0,4-0,45% tych izomerów, po ogrzaniu zarówno mikrofalowym jak i zwykłym ich zawartość zwiększyła się o 0,25%. Między próbkami ogrzewanymi na różne sposoby przez ten sam czas nie było różnic w zawartości D-izomerów.[7]
W zasadzie z uwagi na to, że mikrofalami można ogrzać mleko szybciej, można by się spodziewać mniejszych poziomów tych izomerów.
Wspomniane izomery D nie są tak znów nienaturalne, skoro dokładne badania wykazują ich niewielkie ilości w różnych produktach naturalnych. W obszernym przeglądzie badań stwierdzono na przykład, że izomery aminokwasów białkowych występują zarówno w mleku surowym jak i pasteryzowanym. Większe ilości pojawiają się w produktach fermentowanych, a więc kefirze, jogurcie i serach, zwłaszcza w serze długo dojrzewającym, wskutek metabolizmu bakterii. Śladowe ilości pojawiają się w mięsie kurczaka i bekonie, i zwiększają po smażeniu, a nawet w chlebie gdzie podpieczenie tosta zwiększa poziom D-aminokwasów prawie dwa razy.[8]
Wykrywa się je także w ludzkim organizmie i podejrzewa, że mogą pełnić pewne funkcje biologiczne, być na przykład neuroprzekaźnikami, trudno więc straszyć ich obecnością.
Enzymy
W paru artykułach wspomniano o niszczeniu przez mikrofale enzymów z jedzenia. To prawda, ale przyczyną jest samo podgrzanie. Enzymy są białkami a wysoka temperatura zmienia ich strukturę i je unieczynnia. Nie ma znaczenia w jaki sposób odbywa się ogrzanie.
Nitrozoaminy
Nitrozoaminy to rakotwórcze produkty reakcji zachodzących w wysokiej temperaturze między aminami i azotynami. Pojawiają się w przetworzonym mięsie podczas pieczenia i smażenia. Artykuły o mikrofalówkach często twierdzą, że podczas ogrzewania w nich tworzy się konkretnie d-nitrozodietanoloamina (NDMA), trudno powiedzieć czemu akurat ta. Są badania na temat powstawania nitrozoamin w ogóle. Na przykład porównując boczek pieczony w mikrofali ze smażonym na patelni, stwierdzono powstawanie nitrozoamin w obu, w tym smażonym w większej ilości.[9]
W badaniu zawartości NDMA w koreańskich owocach morza ogrzewanych na sześć różnych sposobów, stwierdzono że najwyższe poziomy tej substancji powstawały podczas ogrzewania na grillu na węgiel drzewny, a najmniejsze przy ogrzaniu w mikrofalówce i gotowaniu w ciśnieniowej kuchence parowej.[10]
Inne dziwaczne argumenty
Artykuły o mikrofalówkach często są doprawione dziwacznymi wieściami, które w zasadzie nie stanowią żadnych argumentów, ale mają robić atmosferę. Do najczęściej powtarzanych należy wiadomość że ZSRR zakazało domowych mikrofalówek ze względu na dbanie o zdrowie obywateli, tylko nie wiadomo kiedy - daty wahają się od lat 50 do lat 80. Czasem pojawia się twierdzenie, że wynaleźli ją Naziści.
Inną często przytaczaną opowieścią jest śmierć pacjenta któremu przetoczono krew, wcześniej podgrzaną w mikrofalówce, oczywiście wskutek szkodliwego wpływu mikrofal na krew. Taka historia faktycznie miała miejsce w 1989 roku w stanie Oklahoma w USA. Ale przyczyna śmierci była inna - pielęgniarka miała ogrzać krew przechowywaną w lodówce do temperatury ciała pacjenta. Zamiast użyć standardowej łaźni z ciepłą wodą, użyła mikrofali, określając potrzebny czas na wyczucie. W efekcie krew zamiast ogrzać się do tych około 36 stopni, przegrzała się. Wprawdzie ochłodzono ją ale z powodu za wysokiej temperatury doszło do częściowej hemolizy, czyli pęknięcia czerwonych krwinek. Po wprowadzeniu jej do krążenia pojawiły się skrzepy, będąc przyczyną śmierci pacjentki. W 1995 roku rodzina zmarłej dostała odszkodowanie.[11]
Do tego dochodzą takie dziwne twierdzenia jak gromadzenie się mikrofal w jedzeniu, wodzie a nawet meblach kuchennych (!).
Prawdziwy problem
Prawdziwy problem w żywności z mikrofalówki jest taki, że niezbyt dobrą jakość ma żywność do niej wkładania. Gotowe zestawy do podgrzania to często już na wstępie mocno przetworzona żywność z dużą ilością tłuszczy, małą błonnika i witamin. Nie powinny stanowić podstawowej diety w ciągu dnia.
--------
[1] http://www.ptfarm.pl/pub/File/Bromatologia/2013/3/BR%203-2013%20s.%20241-249.pdf
[2] https://www.ptfarm.pl/pub/File/Bromatologia/2013/3/BR%203-2013%20s.%20250-257.pdf
[3] http://www.ingentaconnect.com/content/jws/jsfa/2003/00000083/00000014/art00018;jsessionid=1smkxaf0ymund.victoria
[4] https://www.ncbi.nlm.nih.gov/pubmed/11349895
[5] http://www.ijfans.com/vol2issue3/9.pdf
[6] https://www.ncbi.nlm.nih.gov/pubmed/1968186
[7] https://www.ncbi.nlm.nih.gov/pubmed/7911811
[8] http://www.acta.sapientia.ro/acta-alim/C2-1/alim2-1.pdf
[9] https://www.ncbi.nlm.nih.gov/pubmed/2307266
[10] http://www.tandfonline.com/doi/abs/10.1080/0265203021000014770
[11] http://wyomcases.courts.state.wy.us/applications/oscn/DeliverDocument.asp?citeID=4387
Subskrybuj:
Posty (Atom)