informacje



sobota, 5 sierpnia 2017

Kiedyś w laboratorium (57.)

Wielokrotnie w różnych wpisach pokazywałem wygodną i szybką metodę sprawdzania składu mieszanin poreakcyjnych, czyli chromatografią cienkowarstwową na wycinanej z arkusza płytce:

Jest prosta, pozwala dobrać skład eluentów, oraz często oddzielone składniki są bardzo ostro widoczne. Niemniej powtórzenie tego samego procesu z identycznym eluentem na kolumnie, często nie daje tak ładnych rezultatów. Oddzielone porcje podróżując wzdłuż kolumny rozmywają się i czasem zaczynają wtórnie na siebie zachodzić. Rozdział nie jest więc tak dobry jak to wyglądało na płytce.

Jednym z pomysłów na to jak rozwiązać ten problem, jest wykonanie rozdziału na bardzo dużej płytce - w systemie TLC preparatywnej:

Rozdzielony wyciąg z liści, widoczne pasma chlorofilu, karotenoidów i fityn
Taka płytka ma formę szklanej tafli o boku kilku lub kilkunastu centymetrów z nałożoną dość grubą warstwą podłoża rozdzielającego. Przy pomocy kapilarki lub pipetki nad dolną krawędzią płytki nakłada się poziomą krechę mieszaniny rozdzielanej, wielokrotnie powtarzają nakładanie. Następnie tak samo jak w małych płytkach, dolną krawędź zanurza się w eluencie. Potrzebna jest do tego odpowiednio duża komora, ja w jednym takim przypadku użyłem komory wielkości małego akwarium. Gdy płytka nasiąknie, krecha mieszaniny rozdziela się na długie pasy, zawierające oddzielone składniki. Aby je teraz ostatecznie oddzielić, bierze się nożyk lub szpatułkę o ostrym brzegu, i wydłubuje ten składnik, o jaki nam chodzi, zdrapując go ze szkła wraz z podłożem:
Zdrapiny zalewa się następnie jakimś mocnym eluentem aby wymyć oddzieloną frakcję. Można w ten sposób rozdzielać do około 0,5-1 g mieszaniny poreakcyjnej.

Ponoć można zdrapywać też plamki ze zwykłych, małych płytek, do celu badań jakąś bardzo czułą metodą analityczną, gdy dysponujemy małą ilością mieszaniny, wtedy do rozdziału wystarcza jedna kropla. Sam nigdy tego nie robiłem, ale słyszałem, że niektórzy się tak bawią.

niedziela, 9 lipca 2017

Chemiczne wieści (11.)

Dwie wody
Woda to jedna z najprostszych substancji na naszej planecie, złożona z jednych z najlżejszych pierwiastków - i paradoksalnie właśnie dlatego skomplikowana. Duża elektroujemność tlenu w połączeniu z faktem że wodór ma najmniejszy atom z wszystkich pierwiastków powodują, że po spolaryzowaniu wiązania atomy wodoru stają się bardzo skoncentrowanymi punktami dodatniego ładunku. Między nimi a pełnymi elektronów bardzo elektroujemnymi niemetalami mogą powstawać słabe oddziaływania elektrostatyczne, to jest wiązania wodorowe. Ze względu na budowę, cząsteczka wody może utworzyć aż cztery takie połączenia, z czego skwapliwie korzysta.
Tworzenie się takich oddziaływań między cząsteczkami wody, które w przeciętnych temperaturach mimo wszystko szybko się zrywają, na tyle "skleja" cząsteczki, że woda wykazuje anomalnie wysoką temperaturę wrzenia i krzepnięcia. W przypadku pozostałych niemetali obowiązuje prosta zasada - im lżejszy główny atom tym niższe są te graniczne temperatury. Siarczek wodoru, mający dwa razy cięższy atom centralny, jest już gazem o niskiej temperaturze wrzenia. Gdyby zasada obowiązywała do końca, woda byłaby gazem o temperaturze skraplania około -100 stopni.

Z faktu tworzenia takich wiązań wynika też kilka innych nietypowych własności, lecz szczegóły molekularne nie zostały jeszcze do końca poznane. Najnowsza publikacja dorzuca jedno ciekawe rozwiązanie, i zarazem nową zagadkę - otóż jak się okazuje pewne zachowania bardzo wyziębionej wody daje się wytłumaczyć przy założeniu, że tak na prawdę mamy do czynienia z mieszaniną dwóch różnych wód.

Oprócz kilkunastu odmian krystalicznych lodu, znamy też formy amorficzne, otrzymane przez bardzo szybkie schłodzenie wody, co nie pozwala cząsteczkom uporządkować się w kryształy. Zależnie od warunków przeprowadzenia procesu, można otrzymać dwie fazy szkliste różniące się gęstością, z różnym upakowaniem. Podczas badań przemian fazowych tych form stwierdzono, że podczas topnienia zamieniają się w ciecz, której właściwości zależą od tego z jakiej formy amorficznego lodu powstała.
Dla ciał szklistych, a więc nieuporządkowanych, nie ma właściwie klasycznego topnienia. Zwiększanie temperatury powoduje mięknięcie materiału następujące w pewnym przedziale, w wyniku którego najpierw otrzymuje się ciało bardzo plastyczne, mogące pod wpływem sił płynąć, a potem dopiero ciecz.
W przypadku amorficznego lodu stwierdzono, że na powierzchni ogrzewanych bryłek pojawia się faza płynna, mogąca występować w dwóch formach: wysokiej gęstości i niskiej gęstości. Fazy te są metastabilne w danych warunkach. Mowa o temperaturach rzędu 100 K czyli -170 C, znacznie poniżej temperatur zamarzania. W tak niskiej temperaturze powstająca ciecz pozostaje płynna, bo brakuje dodatkowej energii potrzebnej na uporządkowanie cząsteczek w krystaliczny lód.

Powstałe dwie fazy wody mogą przechodzić jedna w drugą ale istnieje pomiędzy nimi granica. W obserwowanym przypadku w cienkiej warstwie na powierzchni lodu szklistego istniały osobne domeny jednej z faz. Fazy różnią się gęstością i lepkością. Sądzi się, że może to wytłumaczyć niektóre nietypowe własności przechłodzonej wody - nieliniowa zmiana parametrów fizycznych to wynik powstawania wskutek fluktuacji obszarów zawierających w istocie dwie różne fazy ciekłe.[1]

Spirala hydratacyjna
Cząsteczki wody z powodu silnego momentu dipolowego zwykły otaczać rozpuszczane cząsteczki przylegającą powłoką hydratacyjną. Niedawne badania rentgenowskie cząsteczek DNA pokazały, że na łańcuchu powłoka ta przybiera ciekawą formę. Podstawowe domeny DNA to zasady purynowe, między którymi oddziaływania łączą nici, następnie cukier deoksyryboza i dalej reszta fosforanowa. Nici są skręcone w helisę, to jest formę przypominającą skręconą drabinę. Ponieważ cząstki deoksyrybozy są przestrzennie dość duże, w modelu DNA pojawiają się dwie szczeliny skręcone tak samo jak nici.

No i otóż jak stwierdzono, w wyniku hydratacji w tą szczelinę wchodzą cząsteczki wody tworząc spiralną strukturę, która podobnie jak samo DNA jest chiralna, ale zarazem na tyle trwałą że da się ją zaobserwować spektroskopowo.
Ma to o tyle znaczenie, że pewne leki (ale też toksyny) działają poprzez przyłączanie się do łańcucha DNA. Jeśli woda tworzy wyraźną strukturę w samym rowku helisy, to zbliżające się cząsteczki muszą ją wypychać. Uwzględniając ten efekt można zaprojektować cząsteczki łatwiej wpasowujące się w szczelinę.[2]

Oszacować czas zbrodni
Po opuszczeniu ciała, krew podlega różnego rodzaju przemianom chemicznym i fizycznym. Najpierw krzepnie i wysycha, następnie pod wpływem tlenu, światła i wilgoci pewne składniki mogą ulegać rozkładowi. Bardzo stara plama krwi może wyglądać jak złożona z brudu, mieć kolor brązowy, brudnożółty czy nawet zielonkawy. Jak niedawno odkryto powolne zachodzenie tego typu przemian można zbadać i na tej podstawie z całkiem niezłą dokładnością oszacować jak stara jest plama. Co z pewnością znajdzie zastosowanie w kryminalistyce.

Zastosowaną techniką była w tym przypadku spektroskopia Ramanowska. W tym typie bada się widmo światła rozproszonego przez próbkę. Jeśli oświetlimy ją światłem o pewnej konkretnej częstotliwości fali, w widmie światła rozproszonego pojawią się dodatkowe sygnały o innych częstotliwościach. Ich źródłem są drgające fragmenty cząsteczek, podlegające zmianom długości i położenia wiązań. W istocie technika ta bada podobne zjawiska jak w spektroskopii w podczerwieni.
Ze złożenia informacji o tym, że w badanej substancji znajdują się konkretne fragmenty dające konkretne przesunięte sygnały, można wywnioskować z czym mamy do czynienia.

W tym przypadku próbki krwi rozmazanej na powierzchniach poddano naturalnemu starzeniu przez okres do dwóch lat. Co pewien czas badano widmo próbek. W trakcie starzenia, pewne sygnały zanikały, zaś inne pojawiały się tam gdzie ich nie było, świadcząc o przemianach chemicznych w próbce. Na podstawie wielu porównań możliwe było określenie zmian w sygnałach pojawiających się już po upływie kilku godzin od pobrania krwi. Bazując na tak powstałej skali badacze byli w stanie określić przybliżony wiek plamy krwi z dokładnością do 70%. [3]
 http://www.sciencedirect.com/science/article/pii/S2468170917300218

--------
[1]  Anders Nilsson et al. Diffusive dynamics during the high-to-low density transition in amorphous ice. PNAS, June 26, 2017 DOI: 10.1073/pnas.1705303114
[2]  1. M L McDermott, H Vanselous, S A Corcelli and P B Petersen, ACS Centr. Sci., 2017, DOI: 10.1021/acscentsci.7b00100
[3]  Kyle C. Doty, Claire K. Muro, Igor K. Lednev; Predicting the time of the crime: Bloodstain aging estimation for up to two years, Forensic Chemistry Volume 5, September 2017, Pages 1–7

piątek, 7 lipca 2017

Kiedyś w laboratorium (56.)

Jednym z obowiązków doktorantów jest przeprowadzenie odpowiedniej ilości godzin dydaktycznych ze studentami. W zeszłym roku pomagałem przy preparatyce organicznej, w tym natomiast przy zajęciach z fizyki.

Jedną z zalet tych zajęć było to, że mogłem jeszcze raz samemu przyswoić sobie pewne podstawy. Oraz że czasem miałem okazję zrobić ładne zdjęcia. Tak było podczas prowadzenia ćwiczenia ze spektroskopii - student na stole mierzył spektroskopem kąty ugięcia poszczególnych prążków emisyjnych emitowanych przez lampy z różnymi gazami, a ja próbowałem jakoś ładnie to uchwycić:
Najlepiej wyglądało to przy użyciu siatki dyfrakcyjnej lustrzanej, dającej jasne obrazy. Tutaj lampa ze świecącym helem:
a tu ta sama lampa bez rozszczepienia światła:
Tu zaś widmo lampy z neonem:

Jak widać na prawdę bogate w linie.

poniedziałek, 26 czerwca 2017

Czy warto iść na studia chemiczne?

Ponieważ matury już się skończyły a temat studiów zaczyna się coraz częściej pojawiać w hasłach wyszukiwania bloga, postanowiłem napisać na ten temat kilka uwag. Nie wiem na ile będą komukolwiek przydatne. A zatem - czy warto iść na studia chemiczne? A no zarazem tak i nie.


Czy iść?
Wszystko zależy od zainteresowań danej osoby, jeśli ktoś interesuje się chemią, całkiem nieźle idzie mu ogółem w dziedzinach ścisłych, to powinien taką możliwość rozważyć. W moim przypadku wyglądało to tak, że naukami ścisłymi zainteresowałem się w szkole podstawowej, w piątej klasie brałem udział w olimpiadach, zamiast liceum wybrałem technikum chemiczne. Wobec tego wybieranie powiedzmy studiów ekonomicznych, filologicznych czy budowlanych mijałoby się z moimi predyspozycjami i byłoby marnowaniem już zużytego czasu.

Z drugiej strony nie może to być decyzja na tej zasadzie, że ktoś nie czuje się "humanistą" więc idzie na "jakiś kierunek ścisły". Gdy zaczynałem studia w UPH w Siedlcach na pierwszym semestrze zapisanych było ponad 120 osób, w tym takie które poszły tu na zasadzie "bo ten wydział jest blisko domu" albo "bo koleżanka mówiła że będzie tu zdawać" czy też "nie szło mi z polskiego i z biologii też więc poszedłem na chemię". Takie osoby szybko się wykruszyły, niektóre zmieniły kierunek już po miesiącu, inne odpadały podczas zaliczeń semestru czy końca roku. Do samego końca dotrwało ledwie 40 osób.

Kolejną rzeczą nad jaką warto się zastanowić, jest to, czy w ogóle trzeba iść na jakieś studia. W społeczeństwie panuje niestety powszechne przekonanie, że po studiach człowiek znajdzie pracę, ale po jakichkolwiek. Nieważne co skończyłeś, jak masz dyplom to coś tam znajdziesz. Że wystarczy mieć odpowiednie dokumenty i dyplomy z okrągłą pieczątką, a magiczne zaklęcie zadziała. Rozsiewają to chyba dyrektorowie prywatnych uczelni, które w tak sprzyjającym środowisku wyskakują jak grzyby po deszczu.
Niestety ale magister politologii nie umiejący obsługiwać krajzegi będzie dla dyrektora firmy meblarskiej równie bezużyteczny co świeżo upieczony maturzysta z podobną przypadłością. Natomiast obaj nie powinni mieć problemu aby pracować na kasie w Biedronce.

Jak będzie na chemii?
Cóż, nie łatwo. To w końcu dziedzina ścisła. Oprócz znajomości samej chemii konieczne będzie podszkolenie się z dziedzin sąsiednich, na pierwszym roku pojawi się na przykład bardziej niż w przeciętnym liceum zaawansowany kurs matematyki, potrzebny aby zrozumieć pewne zależności teoretyczne, a więc rozwiązywanie całek, macierze, układy równań itp. Zapewne trafi się też kurs z podstawowej fizyki, obejmujący tak "chemiczne" ćwiczenia jak badanie ruchu wahadła fizycznego, czy przewodnictwa.

Materiał kursów przedmiotowych jest często obszerny i wymaga zapamiętania dużej ilości nowych pojęć. Pewną trudność dla absolwenta liceum może też sprawiać nauczenie się jak korzystać z wykładów, gdzie wykładowca ciągnie cały czas temat i nie mówi nic o tym co trzeba zapisać do zeszytu. Z kolei na zajęciach laboratoryjnych dużo uwagi poświęca się samodzielnej pracy z próbówkami i odczynnikami, co dla jednych może być zachętą a dla innych barierą

Co po chemii?
Jednym z najważniejszych pytań jakie zadaje sobie maturzysta jest, czy po tych studiach znajdzie pracę.  To znaczy mam nadzieję, że zada sobie takie pytanie.
Wybieranie na studia kierunku pożądanego w gospodarce z pewnością zwiększa szanse na to, że pracodawcy będą takiego absolwenta szukać, a akurat chemików jest w kraju niedostatek. Dużo oczywiście zależy od tego w jakim konkretnym kierunku się w trakcie studiów i etapu magisterskiego wyspecjalizujecie. Chemik analityk znający się na najczęściej używanych technikach jak chromatografia, kolorymetria, spektroskopia IR czy krystalografia proszkowa powinien znaleźć wiele ofert które będą odpowiadać jego zdolnościom. Chemicy organicy też powinni znaleźć odpowiednie oferty na przykład w firmach farmaceutycznych.

Jednym z problemów związanych z szukaniem pracy po studiach jest jednak to, że niekoniecznie samo wykształcenie w odpowiednim kierunku jest warunkiem najważniejszym. W większości ogłoszeń pojawia się także wymóg posiadania doświadczenia w pracy w podobnych jak u pracodawcy laboratoriach. Z tym może być problem. Jedną z szans na nabycie takiego doświadczenia są letnie praktyki studenckie; postaranie się o to aby dostać się na praktyki do dobrej firmy, po pierwsze daje pewne doświadczenie i jest już jakimś dodatkowym plusem w CV, a po drugie zwiększa szanse, że po skończeniu studiów będzie chciał nas zatrudnić ten sam pracodawca. Tak udało się mojemu koledze z roku - dostał się na dwumiesięczne praktyki w laboratorium kontroli jakości fabryki Cocacoli i po obronieniu magistra poszedł tam pracować.

Inni studenci korzystają z tego, że firmy chętnie zatrudniają studentów aby korzystać z ulg podatkowych, na etapie studiów magisterskich, gdy obciążenie zajęciami jest mniejsze, można więc próbować znaleźć pracę jeszcze przed ukończeniem studiów.

*poprawiony błąd w "nie ważne"