informacje



piątek, 28 listopada 2014

Dwie anegdoty o chemikach

Aby przełamać totalny blog-blok, wrzucam na szybko dwie historyjki z cyklu anegdot o chemikach. Już tu pisałem o serendipity - przypadkach doprowadzających do odkryć. Jak się okazuje takich przypadków było w historii znacznie więcej.

Na skutek złej znajomości języka
Język jest w badaniach chemicznych bardzo ważny. Większość publikacji z jakich się korzysta jest w języku angielskim, pewne znaczenie ma może jeszcze niemiecki, i dlatego powinno się te języki znać. Nieporozumienie językowe może bowiem przynieść zaskakujące skutki.

W 1979 roku w Londyńskim Queen Elizabeth College trwały badania nad uzyskiwaniem halogenopochodnych cukrów, mogących mieć właściwości biologiczne. Podejrzewano że pochodne z dużą ilością takich podstawników mogą być przydatne jako środki owadobójcze podobne do DDT. Jednym z takich cukrów była sacharoza czyli cukier stołowy. Posiada ona osiem grup wodorotlenowych które mogą być bez niszczenia cząsteczki zastąpione atomem chloru, dlatego po standardowym chlorowaniu otrzymano mieszaninę podobnych związków z jedną, dwoma, trzema i więcej podstawionych grup w różnym układzie. Po oczyszczeniu poszczególnych związków, prowadzący badania oddał je swojemu magistrantowi, pochodzącemu z Indii Shashikantowi Phadnisowi, polecając ustnie, aby je przetestował.
Doszło tu jednak do nieporozumienia - student zrozumiał nie że związki należy przetestować (testing) tylko posmakować (tasting). Wziął więc łopatką odrobinę na język i wkrótce doniósł osłupiałemu kierownikowi, że jeden z tych związków smakuje niesamowicie słodko. Tak odkryto słodzik sukralozę, ok. 600 razy słodszy od wyjściowej sacharozy i trzy razy od aspartamu. W porównaniu z innymi słodzikami jest bardzo słabo wchłaniany i trwały termicznie, zarazem jednak jako związek chloroorganiczny budzi kontrowersje.[1]

Słodziki mają jakąś specjalną predylekcję do zbiegów okoliczności...

Dlaczego czasem warto zbadać odpady
Charles J. Pedersen pracując w koncernie chemicznym DuPont zajmował się poszukiwaniem nowych związków kompleksujących metale. Zanieczyszczenia jonami metali ciężkich w ropie i paliwach przyspieszały ich utlenianie, a co za tym idzie, pogorszenie jakości. Wymyślił więc związki które tworzyły z jonami żelaza i miedzi dosyć trwałe kompleksy, przerywając utlenianie. W pewnej chwili zainteresował się problemem selektywnego kompleksowania wanadu. Chcąc sprawdzić jaki związek będzie najefektywniej wiązał jego kationy, postanowił zsyntetyzować pochodną katecholu, łącząc ze sobą dwie cząsteczki przez łańcuch diglikolu etylenowego, i pozostawiając wolne dwie grupy hydroksylowe. Rozumował, że powstający mostek eterowy powinien zwiększyć rozstaw między cząsteczkami powstającego fenolu, co jego zdaniem powinno wyraźnie wpłynąć na kompleksowanie wanadu.
Katechol

Aby połączyć dwie cząsteczki katecholu  jednym mostkiem i nie uzyskać polimeru, zabezpieczył jedną z dwóch grup wodorotlenowych tego związku grupą etylową. Następnie przeprowadził reakcję zabezpieczonego związku z chloropochodną diglikolu, spodziewając się uzyskać poszukiwany związek.

Wstawiając reakcję wiedział zarazem, że substrat jest nadal nieco zanieczyszczony wolnym katecholem, uznał jednak że nie przeszkodzi on w reakcji.
Mieszanina poreakcyjna miała postać szarawej, gęstej mazi, którą należało teraz rozdzielić. Gdy rozpuścił ją w metanolu zauważył, że na dnie zebrało się odrobinę białawego osadu. Było to na prawdę niewiele - związek powstał z wydajnością 0,4%, a ponieważ był mało rozpuszczalny, to na pewno nie był to związek poszukiwany. Pedersen zajmował się produkcją określonego związku do określonego celu i nie miał potrzeby wdawać się w szersze analizy. Niemniej zastanowiła go delikatna, włóknista struktura osadu.

Mając na podorędziu spektroskop UV postanowił zbadać czy ma do czynienia z jakimś fenolem - widmo pokazało że musi to być jakaś podstawiona pochodna katecholu. Postanowił dodać nieco wodorotlenku sodu aby zalkalizować roztwór, oczekując że widmo absorpcji albo nie zmieni się, dla związku bez wolnych grup, albo maksimum absorpcji pogłębi się i przesunie się w stronę mniejszych długości fal. Tymczasem jednak zaobserwował dwie zaskakujące rzeczy - widmo nie przesunęło się lecz podzieliło na mniejsze pasma, zaś związek przedtem bardzo słabo rozpuszczający się w metanolu, po zalkalizowaniu rozpuszczał się bardzo chętnie.
Gdyby był to związek fenolowy, zwiększenie rozpuszczalności tłumaczyłoby się tworzeniem soli, fenole są bowiem dosyć kwaśne, jednak widma NMR i w podczerwieni wykluczały taką możliwość. W dodatku jak wykazał, aby zwiększyć rozpuszczalność związku, wystarczała dowolna sól sodu bądź potasu.
Był to zatem związek łączący się z kationami tych metali, choć nie bardzo miał w jaki sposób. Po analizie elementarnej Pedersenowi wyszedł wzór C10H12O3, z czego wynikałaby struktura:
Potem inne badania wykazały jednak że rzeczywista masa cząsteczkowa jest dwa razy większa. A skoro tak musiała to był taka oto piękna struktura:
Tym samym odkrył pierwszy znany eter koronowy.[2]

Nazwa tej grupy związków makrocyklicznych bierze się od struktury, w której możliwa jest konformacja z atomami tlenu skierowanymi w jedną stronę płaszczyzny, niczym szpice w koronie. Mają niesamowite zdolności do kompleksowania - wynaleziony przez Pedersena związek dibenzo-18-korona-6 bardzo selektywnie kompleksuje potas, robiąc to z taką siłą, iż można za jego pomocą oddzielić kationy potasu od innych metali. Inne etery kompleksują sód, wapń czy magnez, każdy z inną siłą, wszystko zależy od wielkości "oczka" które lepiej pasuje do jednych jonów a gorzej do innych. Skompleksowany jon przestaje być reaktywny, dlatego dodatek odpowiedniego związku do badanej mieszaniny, może zamaskować przeszkadzające metale.
Etery takie mogą zmieniać konformację i rozpuszczalność, możliwe jest więc przeprowadzenie normalnie nierozpuszczalnych kationów metali do fazy organicznej. Mogą też przydać się jako katalizatory.

Za badania nad eterami koronowymi, zapoczątkowanymi dokładniejszą analizą odpadowego produktu, Pedersen został w 1987 roku uhonorowany Nagrodą Nobla z Chemii.

------------
[1] http://www.laleva.org/eng/2006/12/the_history_of_splenda_the_bestselling_artificial_sweetener_in_america.html
[2] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/pedersen-lecture.pdf

1 komentarz:

  1. Niemiecki w chemii? Do drugiej wojny światowej może tak, teraz nie liczy się w nauce. Tutaj 99,99% wszystkich rzeczy jest w j.angielskim.

    OdpowiedzUsuń