informacje



Pokazywanie postów oznaczonych etykietą historia chemii. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą historia chemii. Pokaż wszystkie posty

poniedziałek, 2 lipca 2018

Chemiczne wieści (17.)

Nowy materiał wybuchowy podobny do trotylu
TNT czyli trinitrotrotyl, to dość stary związek, wciąż używany jako materiał wybuchowy ze względu na stabilność termiczną, niską wrażliwość na uderzenia oraz stosunkowo łatwe przerabianie w stanie stopionym. Niestety przy okazji jest toksyczny i wolno ulega degradacji w przyrodzie. Ostatnio doniesiono o odkryciu nowego materiału, który zachowując podobną stabilność i łatwotopliwość co TNT, a przy tym jest od niego silniejszy i mniej toksyczny.
Credit: LANL

Zaprezentowany związek to znitrowany bis-oksadiazol. Zmierzona siła wybuchowa jest około 50% większa niż TNT.[1]


Dagerotypy na nowo odczytane
Dagerotypia była pierwszą stosowaną praktycznie techniką fotograficzną rozwijaną od lat 30. XIX wieku. Potem wprawdzie wyparła ją technika kolodionowa, ale do tego czasu utrwalono degerotypowo wiele miejsc i osób, których nie dało się ponownie sfotografować. Dagerotyp był trwałym obrazem otrzymywanym na metalowej płytce, zwykle posrebrzanej miedzi. Gładką, dobrze wypolerowaną płytkę uczulano w oparach jodu lub bromu, przez co na powierzchni powstawała stała warstewka soli srebra. Następnie płytkę umieszczano w aparacie.
Ze względu na stosunkowo małą czułość suchego związku, oraz dość ciemne obiektywy (przez problemy z uzyskaniem dobrej ostrości wymagane było użycie wąskiej przesłony) naświetlanie mogło trwać dość długo. Na samym początku wykonanie zdjęcia portretowego wymagało siedzenia nieruchomo przez 15-20 minut, czasem dłużej, w ostrym, jasnym świetle. Na takich portretach często więc widać podpórki o które opierano głowę i ręce przez stosowny czas. Później lepsze, jaśniejsze obiektywy i modyfikacje chemiczne, umożliwiły skrócenie czasów, ale wciąż była to technika nadająca się do raczej statycznych ujęć.
Naświetlona płytka była wywoływana w oparach rtęci, która ujawniała ciemnym kolorem miejsca, na które padało światło. Podczas naświetlania część halogenku redukowała się do metalicznego srebra; rtęć tworzyła z tymi cząsteczkami amalgamat, o cząstkach większych rozmiarów, co ujawniało czarny obraz. Na koniec należało jeszcze utrwalić zdjęcie poprzez wypłukanie nienaświetlonego jodku srebra, który dociemniłby jasne miejsca, używano do tego tiosiarczanu sodu.

Otrzymywano w ten sposób pozytywowy obraz na metalicznym tle, którego nie dało się kopiować, zatem każdy dagerotyp był w pewnym sensie unikatowym egzemplarzem. Przy dobrych ustawieniach obiektywu pozwalał na uzyskanie wysokiej rozdzielczości obrazu.

Niestety po upływie bardzo wielu lat zauważalna stała się stopniowa degradacja obrazu, przez co wiele najstarszych dagerotypów, zwłaszcza tych przechowywanych w złych warunkach, jest już właściwie niewidocznych. Z jednej strony miejsca jasne są przyciemniane przez tworzenie się siarczków i tlenków na powierzchni srebra, z drugiej odparowywanie rtęci z amalgamatu rozjaśnia ciemne partie.
W ostatniej publikacji z Nature, grupa kanadyjskich badaczy z University of Western Ontario postanowiła przyjrzeć się nalotom na dagerotypach od strony chemicznej. Przy pomocy mikroskopowej fluorescencji rentgenowskiej byli w stanie określić skład i grubość warstw na powierzchni płytki, znajdując nakładające się osady organiczne, produkty utlenienia czy produkty reakcji podłoża ze szklanymi płytkami, którymi zakrywano dagerotypy, oraz ślady rtęci z pierwotnego obrazu. Spektroskop skanował płytkę z rozdzielczością 10 mikrometrów, co po nastawieniu promieniowania na długość fali najsilniej pochłanianą przez rtęć umożliwiło odtworzenie obrazu z całkiem niezłą jakością. Na dwóch przebadanych zdjęciach, na których gołym okiem widać było zarys postaci, ujawniono portrety mężczyzny i kobiety.

Przy okazji stwierdzono, że zasadniczo cząstki amalgamatu w dużej mierze dobrze się zachowały, potencjalnie więc płytkę dałoby się oczyścić z innych osadów bez niszczenia obrazu, po dobraniu odpowiednich odczynników. [2]

---------
[1] Pablo E. Guzmàn et al. Bis(1,2,4-oxadiazole)bis(methylene) Dinitrate: A High-Energy Melt-Castable Explosive and Energetic Propellant Plasticizing Ingredient. Organic Process Research & Development, 2018; 22 (6):
[2]  Kozacuk, Madalena S., Tsun-Kong Sham, Ronald R. Martin, Andrew J. Nelson, Ian Coulthard, John P. McElhone. “Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emmission.” Scientific Reports

czwartek, 12 kwietnia 2018

Spóźnione pierwiastki

Wiemy z pewnością, że w dawnych czasach nowe pierwiastki znajdowano po prostu w naturze, wyodrębniając je z minerałów. Oraz, że po pewnym czasie się nam skończyły i zaczęliśmy sztucznie otrzymywać nowe, nietrwałe. Kiedy jednak nastąpiło to przejście? Jaki występujący w naturze pierwiastek był tak rzadki i nieuchwytny, że odkryto go na samym końcu?
Jedna ze starych wersji tablicy Mendelejewa

Złotym okresem odkryć pierwiastków był zdecydowanie XIX wiek, czas gdy rozwój chemii poszedł ostro do przodu, zaś kolejne pokolenia ciekawskich badaczy wsadzały do próbówek co tylko wpadło im w oko. O ile do końca XVIII wieku znano około 34 pierwiastki (chlor, odkryty w 1784 przez Scheelego początkowo uznawano za bardzo trwały tlenek) to do końca XIX wieku odkryto już 49. Natomiast lista naturalnych pierwiastków w wieku XX jest bardzo krótka.

89
Wiek otwiera pierwiastek Aktyn, którego historia była nieco skomplikowana. Nieco wcześniej, w 1899 roku chemik Andree Louis Debierne korzystając z materiałów otrzymanych z blendy smolistej, które zostały małżonkom Curie po wyizolowaniu Radu i Polonu, uzyskał z nich wysoce radioaktywną sól nieznanego pierwiastka. Ogłosił odkrycie, nadając mu nazwę aktyn, był bowiem radio-aktywny.
Świecące pod wpływem własnej promieniotwórczości sole aktynu
Następnie w roku 1902 Friedrich Oscar Giesel zajmując się przeróbką tejże rudy uranu, uzyskał sól bardzo radioaktywnego pierwiastka, który nazwał Emanium, bowiem próbki świeciły w ciemnościach. Gdy minęło parę lat, chemicy uznali, że najprawdopodobniej oba pierwiastki są jednym, w związku z czym pierwszeństwo odkrycia i nazwa przypadły Debierne.
Dopiero w latach 70. chemicy przyjrzeli się uważniej pierwszym doniesieniom. Aktyn Dobiernera opisany w pierwszych artykułach, miał jednak mimo wszystko inne właściwości, niż ten wyizolowany później i poddany dalszym badaniom. Po przeanalizowaniu metody otrzymania uznano, że jednak to Giesel miał rację i to on był odkrywcą pierwiastka. Nazwy jednak nie zmieniono z powrotem na Emanium, bo minęło już kilka dekad i za dużo było zmieniania.[1]

71
Lutet był jednym z ostatnich lantanowców. Jest to grupa pierwiastków, zwykle na tablicach wyrzucana pod resztę pierwiastków, ze względu na właściwości chemiczne niezwykle podobne w jej obrębie. To podobieństwo było zresztą przyczyną problemów w izolacji. Co chwila okazywało się, że zgłoszony nowy lantanowiec w rzeczywistości jest mieszanką dwóch różnych, zaś któryś z tych po wyizolowaniu i zgłoszeniu, ponownie okazywał się mieszaniną. Na końcu takiego ciągu znalazł się lutet.
Zaczęło się od badania minerałów tzw. "ziem rzadkich" nazwanych od nieczęstego występowania. Fiński mineralog John Gadolin w kopalni koło szwedzkiej wioski Ytterby odnalazł minerał, z którego wydzielił tlenek nieznanego pierwiastka. Od nazwy miejsca z którego pochodził, nazwano go Yttrium, czyli po polsku itr. Następnie po kilku dekadach jego kolega po fachu Carl Mossander odkrył, że itr zawiera domieszkę dwóch innych, podobnych pierwiastków, którym nadał niewymyślne nazwy urobione z podziału na sylaby tej pierwotnej - terb i erb. Po kolejnych dekadach Szwajcar de Marignac odkrył, że z kolei erb też nie jest czysty i wydzielił z niego kolejny pierwiastek. Będąc wierny tradycji nadał mu łudząco podobną nazwę Ytterbium, czyli itreb. Jak łatwo się domyśleć, działalność tych panów przyprawia o ból głowy studentów chemii nieorganicznej, którym wszystkie te nazwy się mylą. Natomiast mała szwedzka wioska może się pochwalić tym, że od niej nazwano aż cztery pierwiastki.
Tlenki kilku lantanowców, tzw "zemie rzadkie"

W międzyczasie okazało się, że erb zawiera jeszcze domieszkę holmu i tulu, potem, że holm zawiera w sobie dysproz, a znany od dawna didym to mieszanka neodymu i prazeodymu. Gdy na swoje miejsce wskoczyły jeszcze gadolin, samar i europ, w tak uformowanej grupie pozostały tylko dwie irytujące dziury - pierwiastek 61 i pierwiastek 71.

Dla badaczy dość oczywistym pomysłem było szukanie wśród już znanych i wydzielonych pierwiastków. A nuż któryś okaże się mieszanką. Wreszcie w 1907 roku na trop tej samej substancji wpadli równocześnie trzej badacze - Francuz Gregore Urbain i Austriak Carl Auer von Welsbach i Amerykanin Charles James. Ten ostatni opublikował doniesienie dość późno, i nie sposób było mu stawać w szranki w boju o pierwszeństwo, natomiast pozostali panowie wszczęli kłótnię.
Urbain zaproponował dla pierwiastka nowo wydzielonego i dla oczyszczonego itrebu nazwy lutet - od zlatynizowanej nazwy regionu we Francji - i neoitreb; von Welsbach zaproponował cassiuopeium i abldebaranium, od nazw obiektów astronomicznych. Ponieważ pierwiastek nie może posiadać  różnych nazw, trzeba było w końcu coś ustalić. W 1909 roku komisja zajmująca się ustalaniem dokładnej masy atomowej pierwiastków rozstrzygnęła spór, uznając że Urbain doniósł o wydzieleniu nowego pierwiastka o miesiąc wcześniej, był zatem pierwszy i może nadać pierwiastkowi nazwę.
Mimo to jeszcze do lat 50. w krajach niemieckojęzycznych używano nazwy Cassiopeium i symbolu Cp. [2]


75
Gdy losy nazwy pierwiastka 71 jeszcze się ważyły, rozpoczynało się podobne zamieszanie z pierwiastkiem 75.
Po odkryciu metody wyznaczania prawdziwej liczby atomowej i uporządkowaniu pierwiastków (zamieniono kolejnością potas i argon, które ułożone wedle masy atomowej nie bardzo pasowały do grup) okazało się, że w grupie platynowców lekkich jest jeszcze jeden pierwiastek nieodkryty. Różne grupy chemików zaczęły więc badać spektroskopowo rudy platyny.
W 1925 roku małżeństwo niemieckich chemików Ida i Otto Noddack ogłosiło wykrycie metodą spektroskopii rentgenowskiej śladów nowego pierwiastka w rudach platyny i minerale kolumbicie. Wraz z współpracownikiem Otto Bergiem wyizolowali 1 g soli tego pierwiastka, po przerobieniu 600 kg kolumbitu. Nazwali go renem, od nazwy rzeki na granicy francusko-niemieckiej.
W późniejszych badaniach ten sam zespół ogłosił wykrycie śladów pierwiastka 43, którego też brakowało w układzie okresowym, proponując dla niego nazwę Masurium, dość zresztą kontrowersyjną (pochodzi od latynizacji nazwy Mazur i w uzasadnieniu miała upamiętniać rdzennie niemiecki region). Tego wyniku nie udało się jednak powtórzyć innym badaczom.

Następnie minęło kilka dekad gdy pojawiło się doniesienie, że nawet w przypadku renu zostali uprzedzeni. W 1909 roku japoński badacz Masataka Ogawa ogłosił wykrycie pierwiastka 43 w thorianicie. Wyizolował niewielką próbkę i nazwał odkryty pierwiastek Nipponium, od jednej z nazw Japonii. Późniejsi badacze z innych krajów nie mogli powtórzyć tego odkrycia, więc nie zostało ono uznane. Dopiero w naszych czasach powrócono do oceny jego dzieł. Po przeanalizowaniu oryginalnych zdjęć z zapisem widma rentgenowskiego Nipponium stwierdzono, że wprawdzie nie zawierały pierwiastka 43, ale mogły zawierać ren, co oznaczałoby, że to Ogawa jest odkrywcą tego pierwiastka mimo błędnego przypisania. Stąd różne źródła uznają za odkrywcę renu albo Ogawę, albo Noddacków albo całą trójkę bez wdawania się w spory.[3]

72
W międzyczasie doszło natomiast do odkrycia pierwiastka 72. Pierwsze zgłoszenie w tej sprawie opublikował znany już nam Urbain przy okazji prac nad oczyszczaniem lantanowców, wydawało się bowiem, że szukany element należy do tej grupy. Ogłoszony w 1911 pierwiastek nazwał Celtium, lecz ponownie nie udało się tego odkrycia potwierdzić innymi metodami. W dużo późniejszym czasie, w związku ze sporami o pierwszeństwo, przebadano spektroskopowo próbki Urbaina, nie znajdując w nich pierwiastka 72.
Próbki metalicznego hafnu pokrytego warstewką tlenków

W 1923 roku pracujący w Kopenhadze fizyk Niels Bohr zasugerował, że z praw okresowości można wywnioskować podobieństwo chemiczne pierwiastka 72 do znanego już cyrkonu, w związku z czym lepiej szukać w jego rudach. Sugestię podłapali chemicy Georg von Hevesy i Dirck Costler. Zbadali oni cyrkon pochodzący z norweskich rud i metodą spektroskopii rentgenowskiej wykazali ślady szukanego pierwiastka. Przy pomocy mozolnej krystalizacji frakcyjnej udało się oddzielić małą próbkę soli nowego pierwiastka. Od zlatynizowanej nazwy Kopenhagi, nazwano go hafnem.
Uznając pierwszeństwo Ogawy w odkryciu renu, hafn okazuje się ostatnim trwałym pierwiastkiem wyizolowanym z próbek naturalnych. Ale nie ostatnim w tym artykule.[4]

91
Istnienie jeszcze jednego pierwiastka między thorem i uranem było przewidywane jeszcze przez Mendelejewa. Ponieważ grupa Aktynowców nie była wtedy uznawana za odrębną, bo znano z niej tylko 2 pierwiastki, brakujący pod numerem 91 był uznawany za podobny do tantalu i w jego rudach go poszukiwano. Dlatego też wszyscy przeoczyli doniesienie Williama Crookesa, który w 1900 roku opisał wyizolowanie z soli uranu substancji, nazwanej przez niego uranem X. On sam nie opisał jej jako pierwiastka, sądził, że to raczej jakaś forma uranu nieco bardziej od niego promieniotwórcza. Na podstawie późniejszych analiz uznano, że uzyskał wtedy mieszankę thoru z pierwiastkiem 91, której dalej nie rozdzielał.
W 1913 roku Kazimierz Fajans i Oswald Göhring wyizolowali szukany pierwiastek badając produkty rozkładu promieniotwórczego uranu. Nazwali go brevium, czyli "krótkotrwały" ocenili bowiem jego czas półtrwania na zaledwie 6 godzin. Następnie w 1917 roku grupa Otto Hanna i Lisie Meitner wyizolowała z rud uranu długożyjący izotop nazwany przez nich protaktynem, bowiem rozpadał się do aktynu. W podobnym czasie na ślad pierwiastka wpadł jeszcze John Cranston, ale nie mógł opublikować odkrycia, bo powołano go na wojnę.
Protaktyn jest błyszczącym, złotawym metalem

Zawikłany węzeł odkryć przecięła dopiero po drugiej wojnie światowej IUPAC, uznając prawo do nazwania pierwiastka dla Hanna i Meitner, ponieważ wyizolowali oni izotop o najdłuższym okresie półtrwania. Historycy nauki w związku z tym jako odkrywców uznają albo Hanna i Meitner, albo całą czwórkę z Fajansem i Goeringiem.[5]

87
Dziura w układzie okresowym na miejscu 43 została załatana sztucznie, gdy w 1934 roku bombardując neutronami molibden otrzymano technet. Dziura w miejscu 61 została załatana sztucznie wraz z otrzymaniem prometu, tymczasem tuż przed wybuchem II wojny światowej francuskiej chemiczce udało się wyizolować ostatni wyodrębniony ze źródeł naturalnych pierwiastek.
Uczennica Marii Curie Skłodowskiej, chemiczka Marguerite Perey, zajmowała się głównie pracą nad izolowaniem i oczyszczaniem aktynu z próbek lantanowców.
 Pod koniec lat 30, przy pomocy precyzyjnych badań aktywności wykazała, że część próbek aktynu jest silniej promieniotwórcza od innych a zakres energii emitowanych cząstek nie pasował do izotopów aktynu. Wniosek, że zawiera dodatek czegoś silniej radioaktywnego nasuwał się sam, zwłaszcza w takiej pracowni. Wprawdzie badana substancja rozpadała się bardzo szybko, ale badając aktywność różnych roztworów, którymi przemywano próbki aktynu stwierdziła, że jest to pierwiastek o właściwościach litowców, czyli poszukiwany od dawna eka-cez.
Perey ogłosiła wyniki w 1939 roku, proponując nazwę catium i symbol Cm, w nawiązaniu do przewidywanej własności najwyższej elektrododatności. Kilka lat później jej przełożona Irena Juliot-Curie zgłosiła zastrzeżenia do takiej nazwy. Zaproponowany skrót zbiegł się ze skrótem proponowanym dla sztucznego pierwiastka kiuru, nazwanego zresztą na cześć jej matki. Ponadto anglojęzycznym chemikom catium kojarzyło się z kotami. Dość, że Perrey zaproponowała ostatecznie zmianę nazwy na francium, czyli frans, od nazwy swojego kraju i ta propozycja została w końcu zaakceptowana.[6]
300 tysięcy atomów fransu w pułapce magnetycznej


Był to ostatni pierwiastek, którego odkrywcy izolowali ze źródeł naturalnych. Było co prawda kilka, które otrzymano sztucznie a potem odkryto w śladowych ilościach w naturze, ale to już nie to samo.
---------
* C Fry, M Thoennessen, Discovery of the Actimium, Thoriom, Protactinium and Uranium Izotopes

[1] https://en.wikipedia.org/wiki/Actinium
[2] https://en.wikipedia.org/wiki/Lutetium
[3] https://en.wikipedia.org/wiki/Rhenium
[4] https://en.wikipedia.org/wiki/Hafnium
[5] https://en.wikipedia.org/wiki/Protactinium
[6] https://en.wikipedia.org/wiki/Francium



sobota, 17 lutego 2018

Kiedyś w laboratorium (58.)

Publikowałem tu już kiedyś zdjęcia widm lamp jarzeniowych z gazami szlachetnymi, teraz wrzucę jeszcze jedno z tamtych ćwiczeń, pokazujące linie emisyjne wodoru w paśmie widzialnym:

 Wyraźnie widoczne są trzy pasma, tzw. "seria Balmera": czerwone o długości fali 656 nm, zielonkawo-niebieskie 486 nm i niebieskofioletowe 434 nm. Nieco bardziej na lewo powinno być jeszcze czwarte pasmo i nawet gołym okiem było je słabo widać, ale na aparacie przy tej jasności lampy się nie załapało, ma długość fali 410 nm i leży na pograniczu widzialnego fioletu i ultrafioletu. Poza zasięgiem aparatu pojawiają się jeszcze pasma ultrafioletowe.
Aparat cyfrowy nie do końca dobrze oddał kolory, środkowe pasmo było patrząc gołym okiem nieco bardziej morskie, dodatkowe widmo w tle miało szerszy zakres żółty a czerwone pasmo nie było tak mocno jasne, aż prześwietlone.

Uzupełniające tło słabsze widmo wielu drobnych linii to prawdopodobnie efekt domieszki azotu w wodorze wypełniającym rurkę jarzeniową.

Linie emisyjne wodoru odegrały dużą rolę w chemii kwantowej. Balmer znalazł ogólny wzór opisujący długość fali poszczególnych linii za pomocą pewnego prostego szeregu. Była to w zasadzie czysta numerologia, czyli dobieranie liczb tak, aby pojawił się między nimi związek, ale rozszerzenie tej formuły pozwoliło przewidzieć odkryte później linie w zakresie ultrafioletu. Wzór został uogólniony przez Rydberga i okazał się przewidywać także linie emisji w dalekim ultrafiolecie, dalszej podczerwieni.
Gdy zaczęła się formować teoria atomu jako układu złożonego z dodatnio naładowanego jądra i elektronów krążących wokół, serie widmowe znalazły wyjaśnienie jako emisje w postaci światła energii, będącej różnicą między energią kolejnych coraz bardziej oddalonych orbit, wydzielaną przez elektrony wzbudzone, spadające z dalekich orbit na te bliższe jądru. Bardzo wąskie linie emisji oznaczają, że zakresy energetyczne dla orbit są dość ściśle określone, zostało to dobrze wyjaśnione dopiero na gruncie kwantowego modelu atomu (w modelu Bohra dozwolone orbity były stacjonarne, bo tak).
Widmo wzbudzonego wodoru było przy tym o tyle łatwe do opisu, że wynikało z najprostszego możliwego układu z jednym elektronem. Opis widm innych pierwiastków nie jest tak łatwy i tylko do części linii widmowych stosuje się wprost wzór Rydberga.

ps. a nowe materiały z laboratorium nie pojawiają się, bo już nie pracuję na UW.


piątek, 19 maja 2017

Anegdoty o chemikach i kolorach

Niebieski


Gdy pies nasika chemikowi na ścianę...
Pittakall to prawdopodobnie pierwszy syntetyczny barwnik organiczny*, jaki pojawił się w handlu, choć nie zdobył zbyt dużej popularności i dość szybko zarzucono jego produkcję. Jego przypadkowym odkrywcą był niemiecki chemik Karl Reichenbach. Na początku XIX wieku zarządzając małą fabryką chemiczną zajął się badaniem produktów suchej destylacji drewna, węgla i szczątków organicznych. To on wydzielił ze smoły różne wartościowe frakcje, w tym kreozot, parafinę czy fenol, a także pierwszy olej opałowy nazwany eupinonem.
Kreozot, będący frakcją smoły z drewna drzew liściastych, miał dość charakterystyczną, silną woń oraz dobre właściwości konserwujące, dlatego chemik zaczął stosować go do impregnowania drewna. Do dziś zresztą jest częstym składnikiem impregnatów, na przykład do podkładów kolejowych.
Postanowił wypróbować go także w zastosowaniu dużo bardziej przyziemnym - przeszkadzało mu, że psy sikają mu zewnętrzną ścianę domu, więc posmarował ją kreozotem aby zapach je odstraszał. Psom najwyraźniej było wszystko jedno, bardzo lubiły tam stawać i podnosić nogę, lejąc bezczelnie po wysmarowanej ścianie. Cóż, widocznie nie było to dobry środek na psy.
Przyglądając się ich działalności zauważył jednak ciekawą rzecz - w miejscu gdzie stały plamy moczu, na ziemi pojawiło się wyraźne, niebieskie zabarwienie. A ponieważ był człowiekiem bardzo praktycznym, zaczął czynić próby powtórzenia reakcji. Szybko wykrył, że mocz nie jest w jej potrzebny, stanowił jedynie alkaliczny reagent. Prowadząc destylację surowej smoły stwierdził, że frakcja o temperaturze wrzenia wyższej niż kreozot, po wprowadzeniu do wody wapiennej lub roztworu wodorotlenku baru, po pewnym czasie zamienia się w ciemnogranatowy proszek.

Wprowadził go na rynek jako pigment nadający się do farbowania po rozpuszczeniu w alkaliach. Najwyraźniej jednak nie miał zbyt dobrych właściwości i po pewnym czasie przestał być używany, pojawiając się jedynie od czasu do czasu w historycznych spisach barwników. Dopiero pod koniec XIX wieku ustalono, że jest to związek będący produktem kondensacji pirogallolu, o strukturze podobnej do barwników trifenylometylenowych. W formie anionowej przybierał intensywny kolor. Pigment Reichenbacha był laką, to jest nierozpuszczalną solą barową lub wapniową.
Pittakall jest dziś w zasadzie historyczną ciekawostką. Mam wrażenie, że od ponad stu lat nikt go nie otrzymywał, bo poza wzmiankami w pracach o historii barwników nie znalazłem o nim żadnej dalszej informacji ani tym bardziej zdjęcia próbki. Ponoć miał dość ciemny odcień niebieskiego.[1]

Ftalocyjanina
Kolejny niebieski barwnik także został odkryty niezamierzenie, podczas otrzymywania czegoś innego, i to dwa razy.

W 1927 roku szwajcarscy chemicy Henri Diesbach i Edmond von de Weid zajmowali się znalezieniem lepszej niż już znane metody otrzymywania ftalonitrylu, to jest pochodnej benzenu z dwiema grupami -CN. Znana była już w tym czasie reakcja Sandmeyera, polegająca na podstawieniu soli diazoniowych, gdzie grupa -NN była łatwo zamieniana na inne. Przy jej pomocy otrzymywano ftalonitryl z o-aminobenzonitrylu (a ten z rozkładu termicznego amidu kwasu antranilowego).

Badacze postanowili spróbować nieco innej metody, której substrat był bardziej stabilny i łatwiejszy w otrzymaniu. Była to reakcja Rosenmunda-von Brauna (nie mylić z reakcją Rosenmunda samego, czyli redukcją kwasów do aldehydów) polegająca na podstawieniu halogenku przy pierścieniu aromatycznym, przez anion cyjankowy z cyjanku miedzi.[2]
Jako substratu użyli 1,2-dibromobenzenu. Pomysł był w istocie dosyć prosty, reakcja powinna przebiegać w taki oto sposób:
Produktem powinna być bezbarwna lub nieco żółtawa krystaliczna substancja. Jakież więc było zdziwienie chemików, gdy po reakcji znaleźli w kolbie osad intensywnie niebieski.
Produkt był bardzo trwały, nierozpuszczalny w wodzie i dość trudno w innych rozpuszczalnikach. Po wyznaczeniu przez analizę elementarną składu C26H18N6Cu uznali, że prawdopodobnie mają do czynienia ze związkiem kompleksowym ftalonitrylu i pirydyny, zawierającym jeden atom miedzi i po dwie cząsteczki tych związków [3]. Ale mylili się.

Drugimi odkrywcami byli chemicy w fabryce Scottish Dyes (dziś ICI), którzy w 1928 roku analizowali metodę przemysłowego otrzymywania ftalimidu. Bezwodnik ftalowy był w tej syntezie poddawany reakcji z amoniakiem w stężonym roztworze wodnym, zaś jako reaktorów używano emaliowanych żeliwnych kotłów. Mechaniczne mieszadło powodowało, że emalia z czasem się zdzierała, zaś pilnujący procesu technolodzy zauważyli, że partie produktu z tych najbardziej wytartych kotłów były zanieczyszczone drobnym, niebieskawym osadem. Było zresztą zauważalne, że na niebieskawy kolor zabarwił się odsłonięty metal.
Po zebraniu większej ilości zanieczyszczenia, pracownicy fabryki zdali sobie sprawę z tego, że potencjalnie mógłby to być niezły pigment, miał bowiem niską rozpuszczalność i bardzo dużą siłę barwiącą. Kolejną więc syntezę przeprowadzono dodając do masy wiórki żelazne, był to jednak proces mało wydajny. Należało odpowiedzieć na pytanie, co właściwie zachodzi w reaktorze i jaki  związek otrzymano.

Po wpływem silnych alkaliów związek tracił metal, powstała wolna forma nadal była niebieska ale o dużo słabszym odcieniu. Można było połączyć ją z innymi metalami, zwłaszcza ze szczególnie chętnie wiązaną miedzią, tworząc kompleksy bardzo trwałe i intensywnie zabarwione. Analizy  pokazały, że związek ma charakter aromatyczny i być może zawiera układ skumulowanych pierścieni. Dopiero w 1933 roku Patrick Linstead zaproponował dla związku budowę makrocykliczną, podobną do porfiryny, z czterema fragmentami benzopirolu połączonymi przez mostkowe azoty, co potwierdziły potem badania rentgenowskie.


 Firma ICI zaczęła produkować pigment w 1934 roku po udoskonaleniu metod pod nazwą Monastral Blue, lub błękit ftalocyjaninowy. Był wielkim osiągnięciem. Niebieskich pigmentów było w tym czasie niewiele, w zasadzie istniały tylko nieorganiczne oparte o sole miedzi i ultramarynę, oraz indygo i jego pochodne. Błękit ftalocyjaninowy miał tą zaletę, że będąc barwnikiem organicznym posiadał wysoką odporność na blaknięcie, miał dużą siłę barwiącą, był na tyle słabo rozpuszczalny że nie migrował do innych warstw malarskich, oraz był dosyć odporny na czynniki fizyczne i chemiczne. Związek ten rozkłada się dopiero w temperaturze 600 stopni.
Do dziś jest jednym z najczęściej wykorzystywanych barwników, zwłaszcza do farb do metalu, ale też atramentów czy tuszu do długopisów. Jest na przykład składnikiem standardowego tuszu niebieskiego do drukarek, a ze względu na znikomą toksyczność także pigmentów do tatuażu.

Niezamierzony niebieski pigment
To odkrycie także miało pewien element przypadkowości.

Zespół profesora Subramaniana, na uniwersytecie stanowym w Oregonie, zajmował się badaniami tlenkowych materiałów ceramicznych z solami ziem rzadkich, które mogłyby potencjalnie znaleźć zastosowanie w elektronice. Niektóre mogłyby okazać się  magnesami stałymi, inne nadprzewodnikami niskotemperaturowymi, ferroelektrykami czy superopornikami. Studenci profesora biorący udział w pracach testowali więc różne mieszanki tlenków i chlorków metali, które po wymieszaniu w młynie kulowym na bardzo drobny proszek wypalano w odpowiedniej temperaturze.
Doktorant Andrew E. Smith spróbował pewnego razu nietypowej mieszanki tlenku itru, indu i manganu VI. Dwutlenek manganu jest intensywnie czarny, dlatego po zmieleniu uzyskał ciemnoszary proszek. Następnie wsadził go na chwilkę do pieca aby się wygrzał. Temperatura szybko osiągnęła prawie 1100 stopni, a tlenki przereagowały ze sobą, tworząc nowe połączenie. Akurat to konkretne nie miało szczególnie ciekawych własności elektrycznych czy magnetycznych, lecz jedna właściwość rzucała się w oczy od razu po wyjęciu z pieca - otrzymany proszek okazał się niesamowicie niebieski.[4]
Gdy profesor zobaczył próbkę od razu przyszło mu do głowy, że to może znaleźć zastosowanie. Właściwie jeszcze przed publikacją na temat związku zaczęto starania nad komercjalizacją.

Jak się okazało podczas wyprażania powstaje związek zawierający warstwy tlenku manganu o nietypowej koordynacji w formie bipiramidy trygonalnej. W każdej takiej jednostce atom manganu otoczony jest przez pięć atomów tlenu, w tym trzy w płaszczyźnie warstwy i po jednym nad i pod nią. W takim położeniu oddziaływanie ligandów powoduje rozszczepienie poziomów energetycznych orbitali d manganu w taki sposób, że związek pochłania światło czerwone i zielone dając w efekcie niebieski kolor.

Wcześniej znany był pigment oparty o manganian baru, ale miał małą stabilność, nowy pigment nazwany YInMn nie tylko jest odporny na utlenienie czy redukcję, ale też zachowuje kolor w bardzo wysokich temperaturach i nie blaknie pod wpływem wilgoci. Szybko okazało się, że dobrze nadaje się zarówno do farb olejowych jak i wodnych, a także jako pigment do barwienia mas plastycznych. W tych zastosowaniach ważną własnością jest też jego nietoksyczność. Inne pigmenty nieorganiczne podobnej trwałości zwykle zawierają sole rakotwórczego kobaltu lub sole miedzi.

Podczas dalszych badań stwierdzono, że choć związek silnie pochłania światło czerwone, to zarazem silnie odbija podczerwień, osiągając jeden z najwyższych współczynników odbicia dla materiałów niemetalicznych (srebro odbija niemal 100% podczerwieni). Dzięki temu powierzchnie pomalowane farbą z tym pigmentem bardzo mało się nagrzewają, co miałoby znaczenie w przypadku na przykład dachów w cieplejszych krajach

Obecnie pigment zaczyna powoli wchodzić na rynek, niedawno producent kredek świecowych i pasteli Crayola ogłosił wprowadzenie kredki z YInMn, trwa konkurs na wymyślenie nazwy [5].
Jednak wbrew temu co piszą media, pigment nie posiada nowego, dopiero teraz odkrytego odcienia niebieskiego. W najbardziej optymalnym składzie YIn0.8Mn0.2O3 , związek ma kolor błękitu kobaltowego lub nieco cieplejszy, mimo zupełnie różnego przebiegu krzywej absorpcji:

Odcień może płynnie zmieniać się w zależności od stosunku itru do manganu. Dodatek innych metali, na przykład tytanu czy cynku może natomiast zmienić kolor na zielony lub fioletowy.[6]
 W zespole prof. Subramaniana trwają prace nad uzyskaniem pigmentu czerwonego o odcieniu i intensywności nie stosowanych dziś z powodu toksyczności pigmentów rtęciowych jak cynober.

Może jeszcze kiedyś napiszę coś o projektowaniu barwników aby pokazać, jak takie rzeczy otrzymuje się planowo, bez czekania na szczęśliwy przypadek.
-------
* Aczkolwiek wcześniej niż Pittakall bo w XVIII wieku stworzono kwas pikrynowy, przez pewien czas używany do farbowania wełny, zastosowanie jako barwnik znalazł jednak dużo później. Półsyntetyczny był natomiast otrzymany w podobnym czasie indygokarmin, znany jako błękit saksoński, pozyskiwany przez traktowanie indygo dymiącym kwasem siarkowym.

[1] George B. Kauffman, Pittacal - The first synthetic dyestuff, Journal of Chemical Education (12) 1977 str. 753
[2] Sandmeyer-von Braun reaction
[3] De Diesbach, Henri; von Der Weid, Edmond (1927). "Quelques sels complexes des o-dinitriles avec le cuivre et la pyridine". Helvetica Chimica Acta. 10: 886. 
[4]  http://oregonstate.edu/ua/ncs/archives/2009/nov/accidental-discovery-produces-durable-new-blue-pigment-multiple-applications-0
[5] http://oregonstate.edu/ua/ncs/archives/2017/may/pigment-discovered-oregon-state-university-inspires-new-crayola-crayon-color
[6]  http://chemistry.oregonstate.edu/content/story-yinmn-blue

piątek, 22 kwietnia 2016

Reakcja nie całkiem charakterystyczna

Czyli dłuższa anegdota o odkryciu pewnego związku.

Wraz z rozwojem przemysłu w XIX wiecznej Europie, w tym maszyn parowych i pieców hutniczych, duże znaczenie jako paliwo zaczął odgrywać węgiel kamienny. Dla pewnych zastosowań korzystniejszym niż surowe paliwem był koks, otrzymany przez ogrzewanie węgla bez dostępu powietrza tak, że ulatywała zeń woda i lotnie związki. Koks, o wyższej wartości opałowej, zużywano głównie do wytopu stali; gazy palne zużywano do oświetlania ulic w latarniach i jako gaz do kuchenek; wykraplana woda pogazowa zawierająca amoniak była zużywana do produkcji nawozów sztucznych.

 Jedynym produktem ubocznym jaki nie dawał się wprost zastosować była smoła pogazowa, często po prostu wylewana albo po oddzieleniu najbardziej lotnych składników używana do impregnacji drewna. Szybko zainteresowali się nią chemicy świadomi, że jest mieszanką wielu interesujących substancji. Stwierdzili oni na przykład, że przez destylację surowej smoły można otrzymać frakcje o rozmaitych właściwościach. Z jednych odzyskiwano naftalen, z innych dawało się wyprodukować fenol, zaś najlżejsza i niskowrząca frakcja dawała się zastosować jako rozpuszczalnik i olej oświetleniowy. Frakcja ta stanowiła też zresztą uciążliwe zanieczyszczenie gazu koksowniczego używanego do oświetlenia, zauważalne zwłaszcza gdy doprowadzany gaz był jeszcze ciepły. Wykraplała się na chłodnych kloszach latarń i przemieszana z sadzą zbierała na dnie.
Tam też na lepkie zanieczyszczenie zwrócił uwagę w 1825 roku Michael Faraday, który będąc bardzo praktycznym człowiekiem podjął się jej destylacji, chcąc otrzymać palny olej. Przydatnym produktem okazała się jedna z frakcji, o temperaturze wrzenia 80°C. Była to rzadka, lekko żółtawa ciecz spalająca się bardzo kopcącym płomieniem i będąca dobrym rozpuszczalnikiem. W następnych dekadach nauczono się wyodrębniać ją na duża skalę ze smoły pogazowej, a ze względu na obfite występowanie w benzolu, cieczy absorbowanej z gazu koksowniczego na stałych pochłaniaczach, nazwano ją benzenem.

Benzen odegrał dużą rolę w rozwoju chemii organicznej. To od niego pewną grupę niereaktywnych związków, często posiadających charakterystyczny zapach, nazwano związkami aromatycznymi. W tym wczesnym okresie duży problem sprawiało chemikom określenie jego struktury cząsteczkowej. Całkiem niedawno przyjęło się uważać, że pierwiastki składają się z atomów, a związki ze złożeń tych atomów w drobne całostki, nazwane cząsteczkami, o określonej budowie i układzie połączonych atomów. Jedyną informację o przypuszczalnym składzie cząsteczki stanowiły stosunki ilościowe pierwiastków składowych. Wiedząc w jakich ilościach łączą się ze sobą atomy, należało domyśleć się jaką prawdopodobnie tworzyły ze sobą strukturę.
Chemikiem który włożył w tą dziedzinę najwięcej, był opisywany już tutaj August Friedrich Kekule. On to po raz pierwszy na podstawie swych badań ustalił, że węgiel w związkach organicznych łączy się z maksymalnie czterema innymi atomami. W późniejszym okresie zastanawiając się jak połączyć ze sobą budulcowe atomy, doszedł do wniosku, że atomy węgla w bardziej skomplikowanych związkach muszą łączyć się tworząc łańcuchy. Wedle opowiadanej przezeń po latach anegdoty, myśl tą podsunął mu sen w którym dostrzegł tańczące atomy, które w pewnym momencie zaczęły się bawić w lokomotywę.
Pomysł ten nie dawał się jednak zastosować do niektórych związków, czego przykładem był benzen, złożony z węgla i wodoru w stosunku 1:1, i zawierający najwyraźniej sześć węgli. Rozwiązanie podsunął mu kolejny sen, w którym tańczące atomy utworzyły węża, a ten w pewnym momencie uchwycił swój ogon i w takiej formie wirował mu przed oczami. No tak - załóżmy że atomy są połączone w pierścień i mają wolną możliwość przyłączenia jeszcze tylko po jednym, a skład będzie się zgadzał.

Po upływie kolejnych lat chemicy coraz śmielej poczynali sobie z tworzeniem nowych pochodnych tego związku, aż w roku 1879 słynny chemik Bayer, założyciel zakładu produkującego między innymi Aspirynę, zauważył bardzo specyficzną reakcję - gdy wytrząsnął benzen ze stężonym kwasem siarkowym i dodał izatyny, żółtopomarańczowej substancji otrzymywanej z indygo, powstawało wyraźne niebieskie zabarwienie, zauważalne nawet przy niewielkich ilościach substancji. Wyglądało zatem na to, że odkryto prostą i szybką reakcję charakterystyczną, pozwalającą wykrywać benzen.

Odkrycie szybko zostało uznane i niektórzy postępowi profesorowie chemii zaczęli uczyć o tej reakcji na uniwersytetach. Jednym z nich był profesor Wiliam Weith wykładający chemię na uniwersytecie w Zurychu. Miał on specjalny lektorat poświęcony związkom aromatycznym, podczas którego pokazywał najbardziej charakterystyczne reakcje. Niestety na początku 1882 roku zmarł, toteż zajęciami podczas wiosennego semestru zajął się jego bliski przyjaciel Viktor Meyer.
Gdy przygotowywał się do zajęć polecił swojemu asystentowi aby przygotował mu próbkę benzenu. Tylko miał być czysty, tak aby pokaz poszedł bez problemów.
W dniu wykładu asystent dostarczył odpowiednią ilość związku. Meyer omówił historię i strukturę benzenu, po czym przeszedł do omawiania reakcji. Można wyobrazić sobie jak mówi studentom, że gdy teraz wytrząsie benzen ze stężonym kwasem i doda izatyny, to zobaczymy piękny niebieski kolor. Następnie tak jak mówił wytrząsa w próbówce benzen i stężony kwas, dodaje izatynę i... nic się nie dzieje. Powtarza reakcję, bo może coś akurat źle zrobił, ale nic nie pomaga. No cóż, tak się czasem zdarza, powtórzymy na następnych zajęciach.

Po skończonym wykładzie zwrócił się zatem do asystenta z delikatnym zapytaniem, co on u licha mu na te zajęcia przygotował. Bo jeśli nie szyny i nie izatyna, to benzen był zły. Asystent, znany później Traugott Sandmeyer bronił się że ależ skąd, przygotował benzen czysty, jak profesor chciał, wszystko wedle przepisu z dekarboksylacji kwasu benzoesowego bo tylko wtedy dawało się otrzymać zupełnie czysty. To już było zastanawiające. Jeszcze tego samego dnia Meyer wziął komercyjnie dostępny benzen otrzymywany z powęglowego benzolu, wytrząsnął z kwasem, dodał izatyny i otrzymał zgodnie z opisem Bayera piękny niebieski barwnik, znany jako indofenina.
Nie wiedząc co z tym faktem począć, wziął większą ilość komercyjnego benzenu, wytrząsnął z kwasem, oddzieloną warstwę kwasową zobojętnił stwierdzając, że wydzieliła mu się rzadka, lekko żółtawa ciecz o charakterystycznym zapachu, która wydawała się identyczna z benzenem. Meyer sądził zatem, że benzen występuje w dwóch formach, jednej mało aktywnej i drugiej "zaktywizowanej" i wchodzącej w reakcję barwną. Powtórzenie reakcji z otrzymaną cieczą pozwoliło mu na wytworzenie większej ilości niebieskiego barwnika, który wysłał do zbadania Bayerowi. Ten orzekł, że faktycznie jest to indofenina, ale zarazem w analizie elementarnej wyszło mu, że związek zawiera siarkę, której nie było w izatynie. Dalsze testy "aktywizowanego benzenu" pokazały, że musi być to substancja różna od benzenu. W odróżnieniu od niego nie krystalizowała w lodzie, i wrzała w temperaturze 84 stopni, w porównaniu z 80 stopni dla benzenu zupełnie czystego. Wreszcie analiza chemiczna wykazała, że jest to związek zawierający jeden atom siarki, cztery atomy węgla i cztery wodoru.
I tak Meyer odkrył Tiofen.

Odkrycie tiofenu zelektryzowało ówczesnych chemików. Okazało się że przez kilka dekad nie zauważyli, że benzen ze smoły węglowej jest mieszanką dwóch związków, przy czym ten drugi, tiofen, stanowił w niektórych partiach do 10%

Tiofen należy do grupy pięciokątnych związków aromatycznych, w których aromatyczność nadaje im zdelokalizowany układ sześciu elektronów - dwóch pochodzących z wiązań podwójnych na części węglowej i jednej wolnej pary pożyczonej z heteroatomu. Pełnowęglowy odpowiednik czyli cyklopentadien nie jest aromatyczny, a dodatkowo efekty antyaromatyczne tylko zmniejszają jego trwałość. Dążąc do utrwalenia chętnie odszczepia jeden wodór tworząc karboanion cyklopentadienylowy który już jest aromatyczny.
Podstawienie jednego węgla w tym układzie heteroatomem posiadającym wolną parę elektronową tworzy aromatyczną cząsteczkę obojętną. Gdy tym atomem jest tlen, otrzymujemy furan, gdy azot jest to pirol. Udało się także otrzymać analogiczne cząsteczki z niektórymi metalami i półmetalami, takie jak silol z krzemem, arsol z arsenem, stannol z cyną a nawet tytanol z tytanem. Zachowują one częściową aromatyczność, ale znacznie osłabioną.

Dziś możemy już odpowiedzieć na pytanie co takiego zachodziło w próbówce Meyera i co właściwie wykrywała reakcja. Tiofen w odróżnieniu od benzenu jest bardziej reaktywny. Tyle samo bo sześć elektronów stłoczonych jest jednak na mniejszym bo pięcioatomowym pierścieniu. Większe zagęszczenie ładunku (oraz karboanionowe struktury mezomeryczne) powoduje, że chętniej reaguje z czynnikami elektrofilowymi. Takim czynnikiem może być też proton uwalniany przez odpowiednio silny kwas.
Podczas wytrząsania benzolu ze stężonym kwasem, tiofen ulegał protonowaniu i w formie jonowej przechodził do warstwy kwasowej. Dalsza reakcja z izatyną jest dość skomplikowana i nie zupełnie rozgryziona, zaczyna się prawdopodobnie od sprotonowania izatyny i wytworzenia formy z ładunkiem dodatnim, która jako elektrofil atakuje cząsteczkę tiofenu. Powstające połączenie dimeryzuje i ulega przegrupowaniu tworząc niebieski barwnik:
Indofenina występuje w kilku izomerach różniących się konformacją trans/cis na wiązaniach podwójnych, w zasadzie więc powstaje mieszanina izomerów. Reakcja ma dziś jeszcze zastosowanie do oznaczania niektórych mało podstawionych pochodnych tiofenu.

Jakie zastosowania ma tiofen?
Jednym które samo się narzuca jest produkcja barwników. Chętnie jest też używany w syntezach nowych leków. Może zastępować pierścień benzenowy bez utraty właściwości leku, a dzięki łatwiejszemu podstawieniu łatwiej jest wytworzyć różnorodne pochodne.
Najciekawszym zastosowaniem jest jednak wytwarzanie politiofenu, polimeru mogącego przewodzić prąd elektryczny.




Spolimeryzowany tiofen po utlenieniu staje się przewodnikiem typu metalicznego. Utleniony tylko częściowo stanowi natomiast organiczny półprzewodnik. Możliwe jest więc wytworzenie na przykład przezroczystej folii przewodzącej prąd, co powinno znaleźć zastosowanie w ogniwach słonecznych. Szersze zastosowanie znalazła dobrze rozpuszczalna pochodna poli(etylenodioksytiofenu) (PEDOT-PSS), która dzięki przewodnictwu jest używana w powłokach antystatycznych, nie pozwalających na elektryzowanie się powierzchni.
Sam poli(etylenodioksytiofen) jest słabo rozpuszczalny w rozpuszczalnikach organicznych. Folie i przewody wytworzone z tego materiału są używane w elastycznych wyświetlaczach OLED.

------------
H. D. Hartough, The Chemistry of Heterocyclic Compounds, Thiophene and Its Derivatives,


* https://en.wikipedia.org/wiki/Thiophene
* https://en.wikipedia.org/wiki/Polythiophene

piątek, 28 listopada 2014

Dwie anegdoty o chemikach

Aby przełamać totalny blog-blok, wrzucam na szybko dwie historyjki z cyklu anegdot o chemikach. Już tu pisałem o serendipity - przypadkach doprowadzających do odkryć. Jak się okazuje takich przypadków było w historii znacznie więcej.

Na skutek złej znajomości języka
Język jest w badaniach chemicznych bardzo ważny. Większość publikacji z jakich się korzysta jest w języku angielskim, pewne znaczenie ma może jeszcze niemiecki, i dlatego powinno się te języki znać. Nieporozumienie językowe może bowiem przynieść zaskakujące skutki.

W 1979 roku w Londyńskim Queen Elizabeth College trwały badania nad uzyskiwaniem halogenopochodnych cukrów, mogących mieć właściwości biologiczne. Podejrzewano że pochodne z dużą ilością takich podstawników mogą być przydatne jako środki owadobójcze podobne do DDT. Jednym z takich cukrów była sacharoza czyli cukier stołowy. Posiada ona osiem grup wodorotlenowych które mogą być bez niszczenia cząsteczki zastąpione atomem chloru, dlatego po standardowym chlorowaniu otrzymano mieszaninę podobnych związków z jedną, dwoma, trzema i więcej podstawionych grup w różnym układzie. Po oczyszczeniu poszczególnych związków, prowadzący badania oddał je swojemu magistrantowi, pochodzącemu z Indii Shashikantowi Phadnisowi, polecając ustnie, aby je przetestował.
Doszło tu jednak do nieporozumienia - student zrozumiał nie że związki należy przetestować (testing) tylko posmakować (tasting). Wziął więc łopatką odrobinę na język i wkrótce doniósł osłupiałemu kierownikowi, że jeden z tych związków smakuje niesamowicie słodko. Tak odkryto słodzik sukralozę, ok. 600 razy słodszy od wyjściowej sacharozy i trzy razy od aspartamu. W porównaniu z innymi słodzikami jest bardzo słabo wchłaniany i trwały termicznie, zarazem jednak jako związek chloroorganiczny budzi kontrowersje.[1]

Słodziki mają jakąś specjalną predylekcję do zbiegów okoliczności...

Dlaczego czasem warto zbadać odpady
Charles J. Pedersen pracując w koncernie chemicznym DuPont zajmował się poszukiwaniem nowych związków kompleksujących metale. Zanieczyszczenia jonami metali ciężkich w ropie i paliwach przyspieszały ich utlenianie, a co za tym idzie, pogorszenie jakości. Wymyślił więc związki które tworzyły z jonami żelaza i miedzi dosyć trwałe kompleksy, przerywając utlenianie. W pewnej chwili zainteresował się problemem selektywnego kompleksowania wanadu. Chcąc sprawdzić jaki związek będzie najefektywniej wiązał jego kationy, postanowił zsyntetyzować pochodną katecholu, łącząc ze sobą dwie cząsteczki przez łańcuch diglikolu etylenowego, i pozostawiając wolne dwie grupy hydroksylowe. Rozumował, że powstający mostek eterowy powinien zwiększyć rozstaw między cząsteczkami powstającego fenolu, co jego zdaniem powinno wyraźnie wpłynąć na kompleksowanie wanadu.
Katechol

Aby połączyć dwie cząsteczki katecholu  jednym mostkiem i nie uzyskać polimeru, zabezpieczył jedną z dwóch grup wodorotlenowych tego związku grupą etylową. Następnie przeprowadził reakcję zabezpieczonego związku z chloropochodną diglikolu, spodziewając się uzyskać poszukiwany związek.

Wstawiając reakcję wiedział zarazem, że substrat jest nadal nieco zanieczyszczony wolnym katecholem, uznał jednak że nie przeszkodzi on w reakcji.
Mieszanina poreakcyjna miała postać szarawej, gęstej mazi, którą należało teraz rozdzielić. Gdy rozpuścił ją w metanolu zauważył, że na dnie zebrało się odrobinę białawego osadu. Było to na prawdę niewiele - związek powstał z wydajnością 0,4%, a ponieważ był mało rozpuszczalny, to na pewno nie był to związek poszukiwany. Pedersen zajmował się produkcją określonego związku do określonego celu i nie miał potrzeby wdawać się w szersze analizy. Niemniej zastanowiła go delikatna, włóknista struktura osadu.

Mając na podorędziu spektroskop UV postanowił zbadać czy ma do czynienia z jakimś fenolem - widmo pokazało że musi to być jakaś podstawiona pochodna katecholu. Postanowił dodać nieco wodorotlenku sodu aby zalkalizować roztwór, oczekując że widmo absorpcji albo nie zmieni się, dla związku bez wolnych grup, albo maksimum absorpcji pogłębi się i przesunie się w stronę mniejszych długości fal. Tymczasem jednak zaobserwował dwie zaskakujące rzeczy - widmo nie przesunęło się lecz podzieliło na mniejsze pasma, zaś związek przedtem bardzo słabo rozpuszczający się w metanolu, po zalkalizowaniu rozpuszczał się bardzo chętnie.
Gdyby był to związek fenolowy, zwiększenie rozpuszczalności tłumaczyłoby się tworzeniem soli, fenole są bowiem dosyć kwaśne, jednak widma NMR i w podczerwieni wykluczały taką możliwość. W dodatku jak wykazał, aby zwiększyć rozpuszczalność związku, wystarczała dowolna sól sodu bądź potasu.
Był to zatem związek łączący się z kationami tych metali, choć nie bardzo miał w jaki sposób. Po analizie elementarnej Pedersenowi wyszedł wzór C10H12O3, z czego wynikałaby struktura:
Potem inne badania wykazały jednak że rzeczywista masa cząsteczkowa jest dwa razy większa. A skoro tak musiała to był taka oto piękna struktura:
Tym samym odkrył pierwszy znany eter koronowy.[2]

Nazwa tej grupy związków makrocyklicznych bierze się od struktury, w której możliwa jest konformacja z atomami tlenu skierowanymi w jedną stronę płaszczyzny, niczym szpice w koronie. Mają niesamowite zdolności do kompleksowania - wynaleziony przez Pedersena związek dibenzo-18-korona-6 bardzo selektywnie kompleksuje potas, robiąc to z taką siłą, iż można za jego pomocą oddzielić kationy potasu od innych metali. Inne etery kompleksują sód, wapń czy magnez, każdy z inną siłą, wszystko zależy od wielkości "oczka" które lepiej pasuje do jednych jonów a gorzej do innych. Skompleksowany jon przestaje być reaktywny, dlatego dodatek odpowiedniego związku do badanej mieszaniny, może zamaskować przeszkadzające metale.
Etery takie mogą zmieniać konformację i rozpuszczalność, możliwe jest więc przeprowadzenie normalnie nierozpuszczalnych kationów metali do fazy organicznej. Mogą też przydać się jako katalizatory.

Za badania nad eterami koronowymi, zapoczątkowanymi dokładniejszą analizą odpadowego produktu, Pedersen został w 1987 roku uhonorowany Nagrodą Nobla z Chemii.

------------
[1] http://www.laleva.org/eng/2006/12/the_history_of_splenda_the_bestselling_artificial_sweetener_in_america.html
[2] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/pedersen-lecture.pdf

niedziela, 20 października 2013

Salmiak

Dwa wspomnienia i trochę historii.

Na pierwszym roku studiów jednym z przedmiotów było laboratorium chemii nieorganicznej. Robiliśmy tam różne podstawowe doświadczenia, jak strącanie osadów, spalanie magnezu i sprawdzanie czy na pewno na zimno nie reaguje z wodą (reagował) reakcje redoks itp. Jednym z nich było sprawdzenie reakcji kwasu solnego i amoniaku.
Oba roztwory umieściłem w małych zleweczkach i nakryłem zlewką dużą. Po chwili z jednej z nich zaczął się unosić biały dym:

który z czasem wypełnił całą zlewkę:
Dym wychodził zapewne ze zleweczki z amoniakiem, ale nie jestem pewien. Skąd wziął się ten dym?
Zarówno roztwór amoniaku jak i kwas solny chętnie uwalniają opary lotnych związków w nich rozpuszczonych - a więc gazowy amoniak i gazowy chlorowodór, te reagują ze sobą dając drobne cząstki stałej soli - chlorku amonu nazywanego salmiakiem:
 NH 3 + HClNH 4 Cl

Cząstki są tak drobne że tworzą dym podobny do mgły. Dawniej zresztą mieszanie par tych dwóch związków było sposobem na wytworzenie sztucznego dymu, z czego jednak zrezygnowano z powodu działania drażniącego oczy.

Salmiak jest jedną z najstarszych znanych soli nieorganicznych, pierwszą solą amoniakalną i jednym z pierwszych związków wytwarzanych sztucznie. Występuje naturalnie ale w dość specyficznych warunkach, łatwo bowiem rozkłada się z wydzieleniem lotnego amoniaku i dobrze rozpuszcza w wodzie; zazwyczaj spotyka się go w pobliżu otworów którymi ulatują gorące gazy wulkaniczne, ale też w miejscach wylotu spalin z podziemnych pożarów węgla i torfu czy wewnętrznych pożarów hałd kopalnianych. W mniejszych ilościach powstaje w pobliżu złóż guana powstającego z ptasich odchodów.
Pierwsze informacje na jego temat pochodzą z Egiptu a konkretnie z oazy Siwa, gdzie w starożytności stała znana i często odwiedzana świątynia Ammona. Greccy pisarze opisują iż w pobliżu świątyni, w miejscu gdzie wielbłądy licznych pielgrzymów oddawały mocz w zasoloną ziemię, krystalizowała biała sól o właściwościach ściągających, nazywana Solą Ammona czyli sal ammonicum. Popularna nazwa salmiak jest więc skrótem. Był używany w medycynie jako środek moczopędny, odkażający i przeczyszczający, zewnętrznie jako składnik maści. Alchemicy widzieli w nim pierwiastek lotności, bowiem przy ogrzewaniu sublimował zaś opary po ochłodzeniu ponownie zamieniały się w stałe cząstki w formie już tu pokazanego dymu. W zasadzie nie jest to typowa sublimacja - wprawdzie w parach występuje gazowy związek, ale składają się one głównie ze związków składowych, a więc amoniaku i chlorowodoru, po ochłodzeniu natychmiast reagujących ze sobą.

Otrzymywano na dużą skalę już na początku średniowiecza z popiołu po spaleniu suszonych odchodów krowy, lub wykrystalizowując z ługu mieszaniny soli i starej uryny. W mieszaninie z ałunem był stosowany w zaprawach farbiarskich. Mniej więcej w XV wieku pokazano, że po zmieszaniu z wapnem wydziela ostre opary, łatwo rozpuszczające się w wodzie. W XVIII wieku nauczono się go otrzymywać z produktów suchej destylacji szczątków zwierzęcych, takich jak rogi, kopyta czy skóry, łapiąc opary w wodzie i zakwaszając ją kwasem solnym.
Sam roztwór przed zakwaszeniem, będący w zasadzie wodą amoniakalną, był używany jako odplamiacz. Z suchych oparów krystalizował w tym procesie węglan amonu, zwany z tego powodu "solą rogu jeleniego" i używany jako pierwszy spulchniacz do pieczywa (dziś jest to "amoniak do ciast") oraz składnik soli trzeźwiących.
Współcześnie chlorek amonu jest używany w metaloplastyce jako składnik pasty oczyszczającej powierzchnię metalu przed lutowaniem, lub metalową formę przed odlewem, zwykle ma postać małych kostek lub stanowi warstewkę pokrywającą laseczkę lutu cynowego. Jego użycie opiera się na fakcie, że podczas rozkładu w wysokiej temperaturze reaguje z tlenkami na powierzchni metalu, przeprowadzając je w stosunkowo dobrze lotne w tych temperaturach chlorki, dzięki temu lutowane powierzchnie są czyste i stop będzie dobrze do nich przylegał.
W mniejszym stopniu używa się go jako dodatku spożywczego (jako E510), głównie do ciast i chleba, ułatwia bowiem wyrośnięcie ciasta drożdżowego. W krajach skandynawskich popularnym smakołykiem są cukierki Salmiakki, będące zagęszczonym wyciągiem z korzenia lukrecji zmieszanym z salmiakiem, który przełamuje intensywnie słodki smak lekko ostrym, słonawym posmakiem, wywołującym przejściowe wrażenie utraty smaku. Nie miałem okazji próbować więc dokładniej nie opiszę. Związek bywa też składnikiem syropów na kaszel, jest bowiem wykrztuśny.

Reakcja pomiędzy oparami prowadząca do powstania salmiaku staje się też przyczyną często spotykanego w laboratoriach zjawiska powstawania białego osadu na szkle. Butelki ze stężonymi kwasami i zasadami często są przechowywane z przeszklonym dygestorium z mechaniczną wentylacją zasysającą opary na zewnątrz pomieszczenia. Nocą jednak wyciąg zazwyczaj jest wyłączany, toteż z butelek wody amoniakalnej i kwasu solnego mogą przez drobne nieszczelności ulatniać się opary. Po pewnym czasie wszystkie szyby dygestorium pokryte są białym, mączystym osadem.
O tym jak dalece zajść może ten proces przekonałem się niedawno, gdy szukając opakowania żelu krzemionkowego otworzyłem jedną z szafek, znajdując tak takie oto cudo:

Naczynie z wodą amoniakalną obrosło porowatą masą białych kryształków, przypominającą szron. Ponieważ w tej samej szafce stała butelka ze stężonym kwasem solnym łatwo się było domyśleć przebiegu procesu - w dawno nieotwieranej szafce na butelce amoniaku powstawał salmiak, przez który jednak nadal przesączały się opary z wnętrza naczynia, dlatego małe kryształki mogły powoli narastać tworząc skupiska podobne do białego mchu.

Odstawiłem ją z powrotem. Niech rośnie.

niedziela, 5 maja 2013

Jeszcze garść anegdot

A oto kilka kolejnych anegdot o chemikach, których nie umieściłem w poprzednich wpisach, bo na przykład wówczas o nich nie wiedziałem albo mi nie pasowały. Tym razem bez jednolitego tematu.

Chaos twórczy
Wynalazków dokonuje się w głowach. Nawet gdy dopomaga nam szczęśliwy zbieg okoliczności, trzeba uwagi aby w przypadku dostrzec nowe zjawisko. Często jednak wynalazek jest jedynie końcowym produktem dłuższego procesu, zaczynającego się w umyśle od myśli "a może by tak spróbować inaczej". Istnieją rozbudowane teorie innowacyjności, mające dopomóc w pomyśleniu o problemie na tyle niestandardowo, aby znaleźć dlań nowe rozwiązanie. Systematyczne i logiczne rozpatrywanie wszystkich możliwości, nawet tych najbardziej banalnych i z pozoru nieużytecznych, powinno doprowadzić wynalazcę do celu.
A gdy logika zawodzi, trzeba pomóc szczęściu. Mieszając, bałaganiąc, bawiąc się...

Robert H. Wentorf Jr. był amerykańskim chemikiem, zajmujący się głównie tworzeniem nowych materiałów. Już w latach pięćdziesiątych zwrócił na siebie uwagę pracami na temat przemian fazowych grafit/diament, w których stwierdził, że dla odpowiednio dużych ciśnień grafit stanie się diamentem dzięki katalizatorom w postaci stopionych metalów przejściowych. W kolejnych latach opracował technologię otrzymywania dużych kryształów, nadających się do użytku technicznego, jednak jego największe odkrycie dotyczyło czegoś innego.
Grafit jest polimorficzną odmianą węgla, będącą sześciokątną siatką tworzącą cienkie płaszczyzny, trzymające się siebie dosyć luźno za sprawą oddziaływań międzycząsteczkowych. Strukturę taką można porównać do stosu kartek papieru, w którym kartka składa się ze ściśle powiązanych włókienek, tworzących mocną strukturę, zaś poszczególne arkusze nie rozsypują się tylko za sprawą tarcia. Wentorf udowodnił, że stosując duże ciśnienie można sprawić, że te płaszczyzny zbliżą się do siebie na odległość podobną do tej, w jakiej znajdują się dobrze powiązane atomy w płaszczyźnie, i dzięki odpowiednim warunkom płaszczyzny scalą się, przechodząc w ścisłą i litą strukturę diamentu.

Gdy później szukał informacji na temat podobnych struktur, zwrócił uwagę na azotek boru. Jest to ciekawa substancja, o właściwościach zaskakująco podobnych do węgla. Bor i azot leża po dwóch stronach węgla w układzie okresowym - ten pierwszy ma o jeden elektron walencyjny mniej niż węgiel, a ten drugi jeden więcej. Jeśli połączyć je ze sobą w strukturę naprzemienną, to cała cząsteczka będzie miała tyle samo elektronów, co jej węglowy analog. Borazyna, będąca sześciokątnym pierścieniem z trzema azotami i trzema borami jest na tyle podobna do węglowego analogu, że bywa nazywana nieorganicznym benzenem.

Borazowym analogiem grafitu jest azotek boru - materiał składający się z warstw sześciokątnych siatek, powiązanych tylko oddziaływaniami międzycząsteczkowymi, mający postać miękkiej masy podobnej do wosku.

 Przeprowadził więc w umyśle analogię - jeśli azotek boru jest tak strasznie podobny do grafitu, z którego można zrobić diament, to czemu nie dałoby się zamienić go w borazowy analog diamentu? Idąc tym tropem szedł dalej "logiczną" ścieżką. Eksperymentował z wysokimi ciśnieniami, i stosował katalizatory z metali przejściowych, odpowiednie strukturą do struktur zamierzonych. Próbował zmieniać rozpuszczalniki, szybko zmieniać temperaturę, słowem - robił wszystko to co sprawdzało się w przypadku diamentów. I nic.
Postanowił zatem użyć innej metody, którą określał zasadą "Zrób jak najszybciej dużo błędów, a potem nie popełnij ani jednego". Chodziło zatem o wprowadzenie w proces twórczy chaosu i przypadkowych czynów,  których jednak potem należy wyłuskać rysującą się zasadę prowadzącą do celu. Zaczął więc wrzucać do reaktorów różne przypadkowe rzeczy - śrubkę, monetę, jakiś drucik leżący na stole...
Gdy przeprowadził kolejną syntezę zauważył że na powierzchni drucika pojawiło się kilka ciemnych ziaren, które mogły zarysować szkło. Dalsze badanie wykazało, że jest to poszukiwany materiał o twardości zbliżonej do diamentu. Sukces!
Ale jaką drogą? Drucik wrzucony do reaktora był wykonany ze stopu magnezu. Podczas rozpuszczania drucika w kwasie, aby oddzielić go od ziaren produktu, dawał się wyczuwać zapach amoniaku. Dla chemika stało się jasne, że magnez zareagował z obecnym w mieszaninie amoniakiem, tworząc azotek magnezu, ten zaś okazał się katalizatorem przemian strukturalnych. Dzięki takiemu katalizatorowi udało się produkować materiał, nazywany Borazonem, o twardości podobnej do diamentu, ale znacznie większej odporności chemicznej i termicznej.[1]

Pomysł tak głupi, że aż dobry
Z powyższą historią wiąże się jeszcze inna.
Jak to już napisałem, grafit składa się z warstw węgla ułożonego w sześciokątne pierścienie. Za sprawą idealnie aromatycznej struktury takich warstw, w jej obrębie materiał wykazuje wysokie przewodnictwo cieplne i elektryczne. Wiązania w takiej warstwie są ponadto bardzo trwałe, a ona sama bardzo mocna, stąd też po sukcesie z produkcją fullerenów i nanorurek, próbowano uzyskać takie monowarstwy. Niestety przez wiele lat bez rezultatu.
Aż do roku 2004 gdy dwóch  naukowców zaczęło bawić się w pracy. Jak tłumaczyli potem, między poważnymi pracami, od czasu do czasu zajmują się sprawdzaniem luźnych, głupich pomysłów. Jednym z nich było pytanie, czy warstwy grafitu można rozdzielić mechanicznie? I to tak, aby otrzymać jak najcieńszy kawałek?
Wzięli więc kawałek czystego grafitu i przylepili do niego taśmę klejącą, którą potem zerwali. Wraz z taśmą odkleił się kawałek grafitu. Przykleili więc drugi kawałek taśmy do otrzymanego kawałka, i rozdzielili ponownie. Po kilku takich rozrywaniach otrzymali małe kawałki grafitu, które prześwitywały. Badanie wykazały, że składają się z od jednej do kilku warstw. Nowo otrzymany materiał, nazwany grafenem, okazał się mieć na tyle niezwykłe właściwości, że zespoły badawcze zaczęły prześcigać się w metodach tworzenia go w większych ilościach. Naukowcy - Andre Geim i Konstantin Nowoselow otrzymali w 2010 roku Nagrodę nobla, a rolka taśmy klejącej i kawałek grafitu trafiły do muzeum.
Bo źle napisali
W 1886 roku dwaj lekarze Kahn i Hepp zajmowali się badaniem, czy naftalen, znany jako składnik naftaliny odstraszającej mole, będzie dobrym środkiem odrobaczającym przewód pokarmowy. Kupili naftalen w aptece i niespecjalnie przejmując się ostrożnością, podawali różnym pacjentom. Akurat na pasożyty związek pomagał bardzo słabo, ale pacjenci stwierdzili, że po zażyciu proszku ich dolegliwości bólowe się zmniejszyły, a jeśli mieli gorączkę to obniżała się. Zachęceni tym sukcesem doktorzy zaczęli czynić starania nad stworzeniem z tej substancji leku, jednak gdy dokładniej sprawdzili swój surowiec coś ich tknęło. Naftalen ma charakterystyczny zapach, natomiast to co oni posiadali, było bezwonne.
Apteczna etykieta na słoiku okazała się być zapisana tak niewyraźnym, "lekarskim" pismem, że trudno było ją odczytać. Oczywiste stało się więc, że testowali na pacjentach jakąś inną, nieznaną im substancję, przyniesioną im przez pomyłkę. Po analizie chemicznej okazało się, że był to acetanilid - acetylowa pochodna aniliny. [2]
Po dalszych testach substancję wprowadzono na rynek w tym samym roku, pod nazwą Antifevrin. Był to pierwszy lek przecowbólowy nie oparty na salicylanach. Niestety okazało się że wywołuje niedotlenienie i zatrucie, dlatego zastąpiono go mniej szkodliwa fenacetyną. Ta, znana jako składnik popularnej "tabletki z krzyżykiem" też okazała się szkodliwa, dlatego dziś stosuje się już tylko kolejną pochodną aniliny - paracetamol.
Ale o historii odkrycia paracetamolu napiszę za kilka dni....


------
[1] http://www.winstonbrill.com/bril001/html/article_index/articles/51-100/article61_body.html
[2] http://portails.inspq.qc.ca/toxicologieclinique/historique-de-lacetaminophene.aspx

niedziela, 10 marca 2013

Anegdoty o chemikach i ich odkryciach

Sukces wpisu o wypadkach dawnych chemików sprawił, że postanowiłem zebrać jeszcze trochę podobnych przypadków. Tym razem jednak nie o wybuchach lecz o odkryciach, i sposobach w jakie do nich dochodzono. A te bywały osobliwe.

Sprzątając
Odkryć można też dokonywać po doświadczeniach, w trakcie mycia sprzętu i zlewania pozostałości. Przydarzyło się to w roku 1933 Ralphowi Willeyowi, który będąc studentem pracował na pół etatu w Dow Chemical Laboratory, na podrzędnym stanowisku chłopca do mycia próbówek. Za którymś razem przytrafiła mu się kolba której za nic nie mógł domyć, gdyż była od wewnątrz pokryta cienką warstwą półprzezroczystej, twardej substancji. Przekonawszy się wreszcie, że jest to materiał bardzo wytrzymały, zgłosił innemu pracownikowi, że ktoś przypadkiem uzyskał substancję o obiecujących właściwościach. Imię tego pracownika nie jest chyba znane, zaś uważny Willey stał się znany jako odkrywa polichlorku winylidenu (PVDC).

Niemniej spektakularne było odkrycie Williama Perkina.
Już jako mały chłopiec po tym jak starszy kolega pokazał mu jakąś sztuczkę z kryształkami, zainteresował się chemią. Ucząc się w dobrej szkole i wykazując nadzwyczajny talent już jako piętnastolatek rozpoczął studia pod przewodnictwem Wilhelma Hoffmana, zostając wreszcie jego asystentem. W roku 1856 zajmował się on próbami syntezy chininy. Wiedziano z grubsza z badań stosunków pierwiastków że zawiera ona części aromatyczne i azot, toteż sprawdzano różne kombinacje, mając nadzieję że za którymś razem wyjdzie. Osiemnastoletni wówczas Perkin zajmował się utlenianiem aniliny przy pomocy chromianu potasu, niestety otrzymywana ze smoły węglowej anilina była mocno zanieczyszczona i po przeprowadzeniu reakcji otrzymał w naczyniu ciemnobrązową smołę, którą nie w sposób było usunąć.
W zasadzie produkt był do wyrzucenia, jednak gdy płukał naczynie alkoholem zauważył, że zabarwił się on na intensywnie fioletowo-różowy kolor, a zanurzona w nim szmatka zafarbowała się bardzo mocno. W tym momencie domyślił się zastosowań praktycznych i gdy tylko opanował metodę produkcji, ustaliwszy że substratem jest zanieczyszczająca anilinę toluidyna, nie czekając na opinię profesora opatentował drugi znany syntetyczny barwnik, nazwany przezeń moweiną - dowodząc przy tym, że oprócz zapału posiadał też żyłkę do interesów. Przekonał krewnych do założenia pierwszej fabryki i farbiarni i już wkrótce zarobił na niej tyle że w wieku 36 lat mógł odejść od pracy zarobkowej i zajmować się chemią wyłącznie dla własnej satysfakcji - czego mu bardzo zazdroszczę.
W późniejszych latach odkrył kilkanaście innych barwników anilinowych.
Wiktoriańska suknia barwiona moweiną

Pierwszym sztucznym barwnikiem była purpurowa fuksyna odkryta przypadkiem przez jego mentora, Wilhelma Hoffmana rok wcześniej. Nie miał on jednak takich zdolności jak jego student, i zanim opatentował ten związek, ubiegł go pewien francuz.

Bawiąc się
Zawsze po skończeniu ćwiczeń z analityki, gdy pozostawało już tylko wylać poreakcyjne mieszanki i umyć próbówki, zwykłem byłem mieszać ze sobą różne wylewane ciecze, aby zobaczyć co się stanie. Zwykle otrzymywałem różnobarwne warstwy, czasem doprowadzałem do jakiejś barwnej reakcji, ale często też nie działo się nic szczególnego. Bawić się w laboratorium, zasadniczo, nie powinno, ale czasem zabawa może być twórcza.
Gdy w 1930 roku Carrots odkrył nowy polimer, będący produktem kondensacji kwasu dikarboksylowego i diaminy, początkowo wydawało się, że nie znajdzie zastosowania, miał bowiem dosyć niską temperaturę topnienia. Jeden z asystentów, Julian Hill, mieszając w kolbie ze świeżym, jeszcze nie skrzepłym materiałem zauważył, że gdy wyciągnął mieszadełko, na jego końcu powstało równe włókienko. Wydawało się jednak że tym sposobem nie da się otrzymać dłuższych włókiem, jednak gdy szef laboratorium był nieobecny, Hill postanowił się pobawić - na jednym końcu korytarza postawił zlewkę ze stopioną masą, zanurzył w niej bagietkę i odbiegł wyciągając kilkunastometrowe włókno cienkie jak włos. W dodatku gdy już ostygło, można było rozciągnąć je jeszcze bardziej zwiększając jego twardość i wytrzymałość.
Później okazało się, że podczas wyciągania długie cząsteczki polimeru porządkują się wzdłuż, a po rozciągnięciu powstałej nici dodatkowo splatają, dając materiał o bardzo pożądanych właściwościach. Pierwsze tego typu włókna roztapiały się w gorącej wodzie, więc trzeba było poczekać kilka lat, aż znaleziono trudnotopliwy polimer kwasu adypinowego i heksanodiaminy, nazwany Nylonem.[1]

Niechcący i błędnie
Odkryć można dokonać wykonując błędnie znany proces i niechcący prowadząc do niebezpiecznych skutków. Przykładem Karl Neumann, który pracując w laboratoriach BASF zajmował się pewnego razu sulfonowaniem naftalenu. W kolbie reakcyjnej znalazł się więc naftalen i dymiący kwas siarkowy. Zawartość kolby należało co pewien czas mieszać, a że akurat na podorędziu nie było bagietki szklanej, wbrew przepisom zaczął mieszać termometrem. Robił to na tyle intensywnie, że stłukł go a metaliczna rtęć wlała się do środka. Powstający siarczan rtęci stał się katalizatorem wywołującym przemianę części naftalenu do bezwodnika ftalowego, co wykazały analizy "zepsutej" zawartości kolby. Poprzednio stosowany proces polegał na utlenieniu naftalenu tlenem i miał niską wydajność. Teraz można było produkować bezwodnik ftalowy na tyle tanio, że można go było wykorzystać jako substrat w produkcji Indygo. Synteza Neumanna została wprowadzona przez BASF w 1897 roku.

Przez nieumyte ręce
Jedną z podstawowych zasad wpajanych początkującym adeptom pracy laboratoryjnej jest to, aby nie próbować żadnej substancji, nawet wody destylowanej, nie wdychać oparów i i niczego nie jeść, oraz dokładnie myć ręce po pracy. Ma to dość oczywiste uzasadnienie, jako że wiele substancji z którymi można się zetknąć na pracowni jest trujących lub szkodliwych, a i trudno wykluczyć zanieczyszczenie nimi miejsc i naczyń wydawałoby się bezpiecznych. Przekonałem się o tym gdy pewnego razu polizałem lejek z sączkiem szklanym, aby przekonać się o fakturze. Niestety wcześniej lejek był czyszczony stężonym kwasem a poprzedni uczeń go nie przemył, dlatego szybko poczułem pieczenie a przez kilka następnych dni nie czułem smaku na koniuszku języka.. Tak czy siak zdarzało się że chemicy o tych regułach bezpieczeństwa zapominali, a zdarzało się że przy okazji odkrywali ciekawe właściwości badanych substancji.

W roku 1878 dwaj chemicy Ira Remsen i Constantin Fahlberg pracowali nad wyodrębnianiem substancji ze smoły węglowej. Po skończonej pracy zaczęli jeść bułki przyniesione z domu jako drugie śniadanie,  zauważyli wtedy, że bułki smakowały bardzo słodko, ale z gorzkawym posmakiem. Remsen myślał nawet, że żona przez pomyłkę posypała masło cukrem, ale potem zauważył ten sam posmak na palcach. Poprzedniego dnia pracowali nad toluenosulfonamidem i nie umyli rąk. Wspólnie opisali syntezę i właściwości związku, nazywając go Sacharyną. Był to pierwszy sztuczny słodzik używany przez cukrzyków, a w czasie wojny również jako zamiennik cukru przy braku dostaw.
Po kilku latach od odkrycia obaj panowie się pokłócili, bo Fahlberg po cichu opatentował metodę syntezy w kilku krajach, nie dając nic wspólnikowi.
Bardzo podobna historia zdarzyła się w 1937 roku, gdy amerykański student chemii  Michael Sveda pracował przy produkcji leków przeciwgorączkowych opartych na sulfonamidach. Paląc papierosa przy laboratoryjnym stole na chwilkę odłożył go w miejsce, gdzie wcześniej kapnął mu jeden z roztworów. Gdy znów wziął go o ust zauważył, że ustnik stał się bardzo słodki. Wkrótce odkryty przezeń słodzik, nazwany cyklaminianem, wprowadzono jako dodatek do gorzkich leków, a potem dosładzano nim napoje.
Kolejnym słodzikiem odkrytym w ten sposób był aspartam. Jego odkrywca Schlatter, szukając leku na wrzody w roku 1965 pobrudził nim dłoń, a potem poślinił palec aby rozdzielić sklejone strony książki. Dwa lata później w identyczny sposób Karl Klaus odkrył acesulfam K.
Poczet oblizujących się chemików zamyka szwajcarski chemik Albert Hofmann, który zajmował się poszukiwaniem silnie działających leków w trujących grzybach. Pochodna kwasu lizergowego, którą stworzył w 1938 roku miała być lekiem na astmę, ale nie została wówczas zbadana. Dopiero w 1943 roku postanowił ponownie przyjrzeć się temu związkowi. Niewielka ilość zanieczyściła mu palce i podczas jedzenia dostała się na usta. Po powrocie do domu doznał uczucia niepokoju, więc położył się do łóżka i przeżył dwugodzinną wizję podobną do fantastycznego snu. Trzy dni potem świadomie zażył większą dawkę, i wracając do domu na rowerze doznał tak silnych halucynacji, że ledwie trafił. Na pamiątkę tego zdarzenia miłośnicy LSD obchodzą 19 kwietnia Dzień Roweru. Ale to już inna historia.
Karteczki nasączone LSD

Te przypadki dotyczyły dobrych stron odkrywanych związków. Jak łatwo się domyśleć o chemikach odkrywających silne trucizny nie mogliśmy usłyszeć, bo nie było by komu ogłosić tego odkrycia.

Bo za długo leżało
Bywa że nowe substancje odkrywane są podczas porządkowania stołu laboratoryjnego, w trakcie sprawdzania starych próbówek i kolb z czymś zapomnianym. Bo przecież niektóre reakcje zachodzą bardzo powoli, i tylko zapominalskość chemika może sprawić, że da on substancjom odpowiednio dużo czasu.

W 1839 roku berliński aptekarz Eduard Simon zajmował się badaniem storaksu - aromatycznej żywicy Ambrowca balsamicznego, o właściwościach odkażających, stanowiącej składnik kadzideł. Próbując uzyskać bardziej aromatyczne składniki przeprowadził destylację z parą wodną i otrzymał oleistą ciecz, którą nazwał styrolem. Zebrał ją do buteleczki, odłożył na półkę i zajął się innymi sprawami. Po kilku dniach okazało się że zawartość butelki zgęstniała do formy twardej galarety, którą nazwał styroloksydem. Kilka lat później podobną substancję uzyskano bez dostępu powietrza. Wreszcie Berthelod stwierdził że w obu przypadkach powstaje ta sama substancja, zaś procesem nie jest utlenianie lecz łączenie cząsteczek w długie łańcuchy. Tak powstające tworzywo sztuczne nazwano polistyrenem. Najpospolitszym jego zastosowaniem jest produkcja styropianu.
Podobna jest historia polichlorku winylu. Chlorek winylu, czyli chlorek etenu, jako pierwszy otrzymał Regnault w 1835 roku. Powstałą lotną ciecz zamknął w buteleczce i położył na parapecie. Gdy po kilku dniach sobie o niej przypomniał znalazł tam brązową, elastyczną masę. Minęło jednak kilka dekad i odkrycia popadło w zapomnienie aż w 1872 roku powtórzyła się w laboratorium Eugena Baumana. Otrzymawszy większą ilość stwierdził, że masa jest podobna do galalitu i gdyby można ją było otrzymywać w dużych ilościach, byłaby dobrą masą plastyczną. Pierwszy zakład produkcji PCW wyglądał osobliwie - na dużym placu ustawiano obszerne butle wypełnione chlorkiem winylu i zostawiano na kilka dni aby świeciło na nie słońce. Potem butle rozbijano a bryły tworzywa przetapiano. Nie był to za bardzo ekonomiczny sposób, więc dopiero wynalezienie katalizatorów polimeryzacji pozwoliło wprowadzić nowy materiał na szeroki rynek.

We śnie
Och, jakże bym tak chciał. Zdrzemnąć się gdzieś a pomysły same przychodzą do głowy. Próbuję zatem drzemek w różnych porach, ale jak na razie bez skutku.
Najbardziej znanym chemikiem, którego sny do czegoś się przydały, był August Kekule - ale nie zrodziły się one z próżni.

W XIX wieku chemia organiczna dopiero raczkowała. Pierwsze syntezy związków organicznych z tych nieorganicznych to lata 20. Pierwsze reakcje na takich związkach zaczęto stosować niedługo później. Jedną z rzeczy jakie nurtowały chemików, była budowa materii - coś co odróżniało jedną substancję od drugiej. W zasadzie jedynym po czym, oprócz ich właściwości fizycznych, rozróżniano między substancjami, był stosunek wagowy składowych pierwiastków. Metan składał się z węgla i wodoru w stosunku 1:4, etan z tego samego, ale w stosunku 1:3 a butan w stosunku 2:5.
Teoria atomowa Daltona pchnęła sprawę do przodu - jeśli pierwiastki składają się z jednakowych cząstek, to związki są różnego rodzaju mieszaninami, w których atomy pierwiastków łączą się ze sobą w różnych kombinacjach. Odkrycie, że różne substancje mogą posiadać ten sam stosunek ilościowy pierwiastków zaciemniło obraz. Wyglądało na to, że różnicą jest nie ilość a sposób łączenia atomów, co siłą rzeczy nasuwało myśl o jakiejś strukturze - tylko jakiej? W powyższych przykładach ze stosunków ilościowych wynikałoby, ze w jednym związku atom węgla łączy się z wodorem przez cztery wiązania, w drugim przez trzy a w kolejnym w bardziej skomplikowany sposób.
Kekule 1857 roku ogłosił, że jego zdaniem liczba możliwych wiązań dla danego pierwiastka jest stała i dla węgla wynosi 4. Rodziło to oczywiste problemy z przypisaniem wszystkim połączeniom odpowiednich atomów i sprawiło że miał się nad czym zastanawiać. Zastanawiał się aż do znużenia. I tak oto, znużony, wracał do domu omnibusem i zdrzemnął się na jednym z siedzeń, gdy przyśniły mu się atomy:
Zatonąłem w marzeniach i przed moimi oczami zaczęły krążyć atomy. Zawsze widziałem te małe twory w ruchu. Teraz widziałem, jak dwa mniejsze łączą się ze sobą w pary, jak większe otaczają dwa mniejsze, a jeszcze większe utrzymywały to wszystko w zawrotnym tańcu. Widziałem, jak większe atomy tworzyły łańcuch, wciągając mniejsze, ale tylko na końcach łańcucha[2]
Obudzony przez konduktora miał gotowe rozwiązanie - ilości wiązań i stosunki będą zachowane, jeśli uznamy, że węgle łączą się same ze sobą tworząc łańcuchy. Tłumaczyło to też stosunki ilościowe w kolejnych, coraz cięższych alkanach, mogąc wywieść je z reguły 2N+2 wskazującej że atomów wodoru jest o dwa więcej niż dwukrotność liczby atomów węgla. Teoria była rozwijana i stosowana do coraz większej ilości związków. Uzupełniono ją, uznając możliwość tworzenia podwójnych wiązań. Aż nasz chemik zajął się próbą ustalenia, wedle tych zasad, struktury benzenu. I poległ.
W przypadku benzenu stosunek ilościowy wynosił 1:1, czyli tyle samo węgla co wodoru. Z badań reakcji podstawienia było wiadomo że zawiera sześć węgli i nijak nie dało się ich połączyć zgodnie z zasadami. Cztery wiązania podwójne się nie mieściły a próby izomerów z bocznymi łańcuchami też nie dawały efektów. I byłby się być może Kekule załamał, gdyby nie drugi sen, jaki naszedł go przed płonącym kominkiem:

Znowu atomy harcowały przed moimi oczami. Tym razem mniejsze grupy trzymały się skromnie z tyłu. Moje duchowe oko, wyostrzone przez powtarzające się podobne wizje, rozróżniło teraz większe twory o różnorodnym kształcie. Długie szeregi, kilkakrotnie ściśle ze sobą złączone, wszystko w ruchu, wijące się wężowato i skręcające się. Patrzę, co się stało? Jeden z węży chwycił swój własny ogon i szyderczo kręcił się przed moimi oczami. Obudziłem się jak rażony piorunem i resztę nocy spędziłem na rozpracowywaniu wniosków z tej hipotezy.[b]
No tak. Jeśli założyć trzy wiązania podwójne i pierścieniową budowę, to wszystko się zgadza.

Czy zatem Kekule miał proroczy sen? Cóż, co do samej opowieści wysnuwane są wątpliwości - chemik opisał je w luźnym przemówieniu z okazji 25 rocznicy swych odkryć, przed tą datą brak poświadczeń. Niewykluczone, że przypisanie snom rozwiązania mogło zasłaniać fakt, że założenia obu teorii zostały dobrane arbitralnie, na zasadzie "tak musi być bo pasuje" i dopiero do nich dołączono poświadczenia doświadczalne. Inni wskazują, że sugestie pierścieniowej budowy tego związku wysnuwano już wcześniej, nie ogłaszając ich jednak jako oficjalnej teorii.
Sen Kekulego bywał zresztą w rozmaity sposób interpretowany - w okresie popularności analizy sennej psycholog Mitserlich uznał że nagłe przebudzenie było wywołane zaniepokojeniem, to z kolei poczuciem utraty władzy; że zaś wedle klasycznej psychoanalizy marzenia senne mają związek ze strefą seksualną, długi wąż gryzący swój ogon został więc przezeń uznany za penisa, nie mogącego podążać, a sen za wyraz frustracji i pożądania, niezaspokojonego po śmierci żony.[3] W taki sposób każdą rzecz można sprowadzić do seksu.
Alternatywne struktury C6H6

Mozołem i pracą
Ale nie zawsze proces odkrywczy wygląda tak ładnie jak to przedstawiałem. Niestety z reguły odkrycie jest końcem długiego procesu, i nawet olśnienie stanowi jedynie początek pracy. Dobitnie przekonał się o tym Paul Ehrlich, twórca chemioterapii. Zgodnie z opracowaną przez siebie teorią "magicznej kuli" wedle której lekiem na określoną chorobę bakteryjną ma być substancja, zatrzymująca ważne procesy w organizmach bakterii i tylko ich, zaczął poszukiwać leku na syfilis.
Wiedział że Atoksyl, lek na śpiączkowe zapalenie mózgu, może też poprawiać stan chorych na syfilis, jednak dopiero w niebezpiecznych dawkach. Uznał zatem że należy znaleźć taką organiczną pochodną arsenu, jaka będzie silnie toksyczna dla prątków kiły, a słabo dla człowieka. Zaczął więc po kolei syntezować - pochodne aminokwasów, kwasów karboksylowych, fenoli, aldehydów itd. Trudno sobie wyobrazić nakład pracy, podczas której tworzył po kilka nowych związków na miesiąc i sprawdzał właściwości. I po kolei stwierdzał, że związki te się nie nadają. Pewną nadzieję dawała arsenofenyloglicyna, zsyntetyzowana jako substancja nr. 418, nawet była testowana w Afryce, ale nie dawała pełnego wyleczenia. Aż wreszcie po czterech latach pracy, w roku 1909 stwierdził, że tym idealnym związkiem jest substancja nr. 606, znana później jako Salwarsan. Paradoksalnie rok wcześniej Erhlich dostał nagrodę Nobla za całkiem inne odkrycia dotyczące surowic odpornościowych.

Serendipity
Skąd biorą się takie szczęśliwe przypadki, nazywane przez anglików "serendipity"? A no stąd, że wszędzie dzieje się wszytko. Jeśli jakieś zdarzenie, proces chemiczny, jest możliwe, to kiedyś musi zaistnieć. Rzecz jednak nie w tym, że pewne zdarzenia mają miejsce, lecz w tym, aby zauważyć je i zrozumieć znaczenie.
W końcu niezamierzona synteza ciekawego związku nie mogła przydarzyć się każdej osobie, a tylko tej, które zajmuje się określonymi procesami - a ta ma większe szanse dostrzec coś ciekawego w tym, co ktoś inny uznałby za nieudany wynik. Jak zauważył trafnie Pauster, któremu podobne przypadki się przydarzały: "Szczęście sprzyja przygotowanym umysłom". Jules H. Comroe opisał przypadkowe odkrycia znacznie dosadniej: "To szukanie igły w stogu siana i odnalezienie córki rolnika". Czego też życzę czytelnikom...
-------
[1]  http://articles.chicagotribune.com/1996-02-04/news/9602040105_1_nylon-du-pont-mr-hill
[2]  http://pl.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz
[3]  http://www.sgipt.org/th_schul/pa/kek/pak_kek0.htm