informacje



Pokazywanie postów oznaczonych etykietą Z laboratorium. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą Z laboratorium. Pokaż wszystkie posty

sobota, 5 sierpnia 2017

Kiedyś w laboratorium (57.)

Wielokrotnie w różnych wpisach pokazywałem wygodną i szybką metodę sprawdzania składu mieszanin poreakcyjnych, czyli chromatografią cienkowarstwową na wycinanej z arkusza płytce:

Jest prosta, pozwala dobrać skład eluentów, oraz często oddzielone składniki są bardzo ostro widoczne. Niemniej powtórzenie tego samego procesu z identycznym eluentem na kolumnie, często nie daje tak ładnych rezultatów. Oddzielone porcje podróżując wzdłuż kolumny rozmywają się i czasem zaczynają wtórnie na siebie zachodzić. Rozdział nie jest więc tak dobry jak to wyglądało na płytce.

Jednym z pomysłów na to jak rozwiązać ten problem, jest wykonanie rozdziału na bardzo dużej płytce - w systemie TLC preparatywnej:

Rozdzielony wyciąg z liści, widoczne pasma chlorofilu, karotenoidów i fityn
Taka płytka ma formę szklanej tafli o boku kilku lub kilkunastu centymetrów z nałożoną dość grubą warstwą podłoża rozdzielającego. Przy pomocy kapilarki lub pipetki nad dolną krawędzią płytki nakłada się poziomą krechę mieszaniny rozdzielanej, wielokrotnie powtarzają nakładanie. Następnie tak samo jak w małych płytkach, dolną krawędź zanurza się w eluencie. Potrzebna jest do tego odpowiednio duża komora, ja w jednym takim przypadku użyłem komory wielkości małego akwarium. Gdy płytka nasiąknie, krecha mieszaniny rozdziela się na długie pasy, zawierające oddzielone składniki. Aby je teraz ostatecznie oddzielić, bierze się nożyk lub szpatułkę o ostrym brzegu, i wydłubuje ten składnik, o jaki nam chodzi, zdrapując go ze szkła wraz z podłożem:
Zdrapiny zalewa się następnie jakimś mocnym eluentem aby wymyć oddzieloną frakcję. Można w ten sposób rozdzielać do około 0,5-1 g mieszaniny poreakcyjnej.

Ponoć można zdrapywać też plamki ze zwykłych, małych płytek, do celu badań jakąś bardzo czułą metodą analityczną, gdy dysponujemy małą ilością mieszaniny, wtedy do rozdziału wystarcza jedna kropla. Sam nigdy tego nie robiłem, ale słyszałem, że niektórzy się tak bawią.

piątek, 7 lipca 2017

Kiedyś w laboratorium (56.)

Jednym z obowiązków doktorantów jest przeprowadzenie odpowiedniej ilości godzin dydaktycznych ze studentami. W zeszłym roku pomagałem przy preparatyce organicznej, w tym natomiast przy zajęciach z fizyki.

Jedną z zalet tych zajęć było to, że mogłem jeszcze raz samemu przyswoić sobie pewne podstawy. Oraz że czasem miałem okazję zrobić ładne zdjęcia. Tak było podczas prowadzenia ćwiczenia ze spektroskopii - student na stole mierzył spektroskopem kąty ugięcia poszczególnych prążków emisyjnych emitowanych przez lampy z różnymi gazami, a ja próbowałem jakoś ładnie to uchwycić:
Najlepiej wyglądało to przy użyciu siatki dyfrakcyjnej lustrzanej, dającej jasne obrazy. Tutaj lampa ze świecącym helem:
a tu ta sama lampa bez rozszczepienia światła:
Tu zaś widmo lampy z neonem:

Jak widać na prawdę bogate w linie.

poniedziałek, 6 marca 2017

Ostatnio w laboratorium (55.)

Ostatnio w ramach specjalizacji z krystalografii próbowałem wykrystalizować i wstępnie zbadać kokryształ glicyna+kwas glutarowy. Akurat z samą krystalizacją nie było zbyt dużego problemu:
Kokryształy to kryształy tworzone przez równocześnie dwie lub więcej substancji tworzących powtarzalny układ w sieci. Zwykle precyzuje się, że różne cząsteczki oddziałują niejonowo, co odróżnia je od soli, oraz że obie substancje tworzą czyste kryształy w warunkach istnienia kokryształu, co odróżnia je od hydratów i części klatratów.
 Dla danego typu połączenia substancje składowe zachowują stały stosunek stechiometryczny, na przykład dla kryształu chinhydronu na jedną cząsteczkę hydrochinonu przypada jedna cząsteczka chinonu, z którym tworzy kompleks.

Zachodzenie kokrystalizacji może wynikać bądź z tworzenia nowej struktury, bądź z możliwości wpasowania się jednej, podobnej rozmiarami cząsteczki, w normalną sieć krystaliczną drugiego związku. Obecnie temat jest intensywnie badany na potrzeby farmaceutyki, bowiem kokryształy leków mogą być bardziej trwałe, trudniej topliwe lub wykazywać odmienną rozpuszczalność niż substancja czynna w formie czystej.[1]

W tym przypadku sposób otrzymania był prosty, lecz nie do końca pewny - rozpuściliśmy po prostu w wodzie glicynę i kwas glutarowy w stosunku molowym 1:1, nieco ogrzaliśmy dla odparowania aby otrzymać roztwór przesycony i wylaliśmy niewielką ilość na szklaną szalkę. Składniki wykrystalizowały w formie igiełkowatych kryształków i pozostawało tylko dobrać do badania odpowiedni, oraz trafić na kokryształ, bo kształtem nie wyróżniał się od kryształów glicyny i kwasu glutarowego które także mogły powstać.
Układ pomiarowy w dyfraktometrze: na końcu szklanej kapilary mały jasny punkcik to kryształ, z lewej strzela wiązka promieniowania, powyżej kamera pozwalająca wypośrodkować kryształ i oświetlenie. Po prawej obudowa detektora.

Pierwszy zbadany kryształek prawdopodobnie należał do poszukiwanego połączenia ale nie dawał sygnału odpowiedniej jakości aby to potwierdzić - był trochę za duży i oprószony drobniejszymi na powierzchni. Ze względu na rozmiar wiązki promieni rentgenowskich, kryształ powinien być mniejszy niż milimetr, oraz powinien być monokryształem bez spękań i przyrośniętych bliźniaków.

Należało więc poszukać następnego. Odpowiednio wyglądającą igłę przyciąłem manipulując pod mikroskopem pęsetą i skalpelem, aby nie była zbyt duża, i przykleiłem na kropelkę do kapilary na końcu główki goniometru. Tym razem szybkie sprawdzenie pokazało sygnał dość dobrej jakości, ale inny niż oczekiwany. Wyselekcjonowany kryształek okazał się glicyną w odmianie alfa.
Zostało mało czasu, więc wybrałem z szalki mały kryształek, którego nie trzeba było ciąć. Niestety podczas próby nałożenia złamała się szklana kapilara do której przyklejane były kryształy. Ostatecznie postanowiliśmy zaryzykować i kryształek został przyklejony do zachowanego kikuta, trochę grubego, ale jeszcze dostatecznego. Kryształ przykleił się krzywo a w dodatku obok przyczepił się czyjś włos. Nie wyglądało to dobrze:
Jednak wstępny pomiar pokazał, że kryształ jest bardzo dobrej jakości, bez zakłóceń, i ma inną grupę przestrzenną. Dzięki temu mogliśmy sprawdzić parametry komórki krystalicznej w bazie i stwierdzić że jest to... glicyna w formie beta.
Odmiana beta jest metastabilna w normalnych warunkach i zwykle szybko zamienia się w formę alfa. Na zajęciach ze studentami kilka miesięcy wcześniej żadnej grupie nie udało się jej uzyskać, a teraz jak na złość. Ponieważ kończył się czas, dalszą krystalizację odłożyliśmy do następnych zajęć.
----------
[1] http://biuletynfarmacji.wum.edu.pl/1305Sokal/Sokal.html

środa, 11 stycznia 2017

Ostatnio w laboratorium (54.)

Kryształy białka lizozymu, otrzymane metodą wiszącej kropli:
Lizozym to enzym bakteriobójczy, powodujący rozkład glikoprotein w ścianie komórkowej bakterii. Po uszkodzeniu ściany następuje pęknięcie i rozpłynięcie się komórki bakterii, czyli tzw. liza, stąd nazwa enzymu. Jego cząsteczka składa się ze 129 aminokwasów.

Lizozym należy do białek które stosunkowo łatwo krystalizują, dlatego wcześnie poznano jego strukturę.

Kryształy na zdjęciach są takie sobie, przede wszystkim bardzo małe, może za parę dni bardziej urosną. Natomiast zachwyciła mnie gra kolorów widoczna pod filtrem polaryzacyjnym. Jestem mimo wszystko trochę estetą.

* * *
Myślę, że dobrze by było przy tej okazji parę rzeczy objaśnić, bo może regularnie zaglądający zastanawiali się nad paroma kwestiami. Ponieważ prace typowo syntetyczne na pracowni prof. Czarnockiego nie bardzo mi wychodziły, ostatecznie zmieniłem promotora i temat pracy, bo istniało ryzyko, że ciągnąc dotychczasowy mógłbym nie otrzymać wyników na satysfakcjonującą pracę doktorską.
Tak że teraz zająłem się czymś bliższym chemii fizycznej, czyli badaniami krystalograficznymi. Prawdopodobnie ostateczny temat będzie zawierał cześć syntetyczną i część krystalograficzną. Na razie jednak nadrabiam teorię i praktykę, bo obsługi dyfraktometru rentgenowskiego na studiach nie miałem, przez pierwszy semestr chodzę też na zajęcia specjalizacyjne ze studentami.

Przygotowuję powoli wpis na temat tego krystalografii i tego jak można kryształom zrobić prześwietlenie.

wtorek, 29 listopada 2016

Chromatografia czarnych markerów

Czyli o tym, że czerń może się różnić od czerni.

Mając chwilkę czasu w laboratorium, zabawiłem się w rozdzielanie na składniki czarnych markerów, jakie były na stanie pracowni do szkła i plastiku:
W jaki sposób? Techniką jaka posłużyła mi do tego zadania, była chromatografia cienkowarstwowa.

O chromatografii kiedyś już pisałem (artykuł). Jest to technika rozdzielająca mieszaniny na poszczególne składniki, pozwalająca dzięki porównaniu ze wzorcami też na ich oznaczenie. Odkryta na początku XX wieku przez rosyjskiego botanika Cwieta stała się dziś jedną z podstawowych technik analitycznych.
Cały proces opiera się o zachodzenie dwóch przeciwstawnych zjawisk - adsorpcji substancji na powierzchni chłonnego materiału i jej wypieraniu przez cząsteczki rozpuszczalnika. To na ile mocno substancja zwiąże się z podłożem zależy w dużej mierze od tego co to jest za substancja i jakie jest to podłoże.
Na adsorbencie będącym materiałem polarnym, wchłaniającym wodę, łatwiej będą się osadzać substancje polarne, hydrofilowe, zaś aby je dobrze wymyć trzeba użyć także odpowiednio silnego, polarnego rozpuszczalnika. Podobne do podobnego. Siła oddziaływania substancji z podłożem zależy od budowy i wielkości cząsteczki - obecność atomów niemetali z wolnymi parami elektronowymi (tlen, siarka, azot) sprzyja tworzeniu wiązań wodorowych, które mocniej wiążą cząsteczkę. Dla układów gdy podłoże jest niepolarne, tłuste, siłę wiązania zwiększają grupy węglowodorowe. Duża cząsteczka niepolarna może się lepiej wiązać z niepolarnym podłożem niż mała.
Natomiast siła z jaką rozpuszczalnik wymywa substancję zależy od tego jak silnie z nią oddziałuje i od tego na ile silnie wiąże się z podłożem.

Wszystkie te efekty powodują, że różne substancje mają różną siłę osadzania się na materiale chłonnym, czyli różne powinowactwo. Jeśli umieścimy mieszaninę na początku masy adsorbenta i będziemy przepuszczać przez niego rozpuszczalnik, składniki najsłabiej oddziałujące z podłożem popłyną najszybciej, a te najmocniej popłyną najwolniej. Przypomina to sytuację gdy na stadionie sportowym do biegu na kilometr zgłosi się mieszanka młodzików i dobrze wytrenowanych sportowców - ci lepsi szybko oddzielą się od słabszych, tworząc osobną grupkę.
Spróbujmy zrozumieć na czym polega to zróżnicowanie prędkości. Powierzchnia ziaren podłoża jest na tyle duża, że rozpuszczona porcja substancji nie przepływa po prostu kanalikami, tylko zostaje cała skutecznie wyłapana i osadzona. Ale zarazem z tyłu czysty rozpuszczalnik wymywa substancję i przeprowadza przez nasycone ziarna do przodu, gdzie osadza się na jeszcze nie pokrytym podłożu. Bardziej więc przypomina to ruch wydmy gnanej wiatrem niż prosty przepływ. Jeśli substancja lepiej oddziałuje z podłożem, jest słabiej wymywana przez rozpuszczalnik. W efekcie więcej czasu pozostaje związana i zostaje w tyle za lepiej wymywanymi.
W ten sposób skomplikowane mieszaniny kilkunastu czy kilkudziesięciu składników mogą zostać rozdzielone.
Barwne składniki wyciągu z zielonych liści

W moim przypadku podłożem, adsorbentem, była cienka warstwa masy krzemionkowej osadzona na aluminiowej folii. Miałem do użytku na pracowni cały arkusz, który zużywałem przy kolejnych syntezach podczas sprawdzania, czy reakcja zaszła, a gdy został mi na koniec taki nierówno wycięty kawałek, postanowiłem użyć go do opisanego tu doświadczonka.
Na starcie, nad brzegiem płytki, naniosłem kropki czterema czarnymi markerami, jakie akurat miałem dostępne. Jako naczynia użyłem najmniejszej zleweczki i przykrywki od naczynka pomiarowego. Nie pamiętam jaki dokładnie był skład rozpuszczalnika, ale generalnie był to chlorek metylenu z odrobiną octanu etylu, bo tego akurat używałem.
Aby proces chromatograficzny zachodził, należało wytworzyć ruch rozpuszczalnika w materiale płytki, użyłem tu znanego zjawiska podciągania kapilarnego - wlałem do zlewki taką ilość rozpuszczalnika, aby cały dolny brzeg był zanurzony, ale też aby zarazem same plamki mi się w nim nie moczyły, i przykryłem całość nakrywką, aby nie parowało. Zanim płytka nasiąknęła co górnego brzegu minęło kilka minut, toteż film nakręcony podczas procesu trochę przyspieszyłem:



Jak widzicie cztery z pozoru identycznie czarne plamki rozwinęły się w różnokolorowe pasma.

Generalnie rzecz biorąc nie ma czarnych barwników. Czerń powstaje wtedy, gdy substancja pochłania tak dużo światła, że oko nie rejestruje konkretnego koloru. Zwykle jednak po mocnym rozjaśnieniu czerń okazuje się być bardzo, bardzo ciemnym konkretnym kolorem. Mogą istnieć czarne pigmenty, to jest stałe substancje pochłaniające w dużym stopniu wszystkie kolory światła, tu najczęściej używany jest węgiel. Trudno jednak zastosować pigment w farbach wodnych i w flamastrach, w których tusz z wkładu przesiąka do końcówki przez porowaty materiał, działający raczej jak sito dla stałych cząstek.
Producenci używają więc mieszanek różnych barwników o dużej sile barwienia. Gdy na dany barwnik pada światło białe, pochłania on z zakresu pewne kolory a odbija inne. Jeśli dobierzemy barwniki tak, że każdy kolor będzie po trochę pochłaniany, mieszanka będzie wyglądała na czarną. A jak pokazało moje małe doświadczenie, różni producenci lubią też używać różnych, unikalnych mieszanek:
Jak widać markery Granit i BIC mają podobny składnik podstawowy - dość polarny, intensywnie fioletowy barwnik, zostający z tyłu. Zastanawiałem się czy nie jest to aby fiolet krystaliczny, ale nie miałem gencjany do porównania. Jednak dalsze składniki różnią się wyraźnie - w jednym jest to łatwo rozpuszczalny brunatny składnik, w drugim dwa składniki, jeden żółtobrązowy drugi natomiast nieco różowawy. Może być on identyczny ze składnikiem markera trzeciego "Pilot", leżącym na tej samej wysokości. Tam podstawowym barwnikiem jest leżący niżej składnik granatowy.
W przypadku czwartego markera, Pentel Pen, składniki okazały się w układzie na tyle dobrze rozpuszczalne, że bez wyraźnego oddzielenia popłynęły na sam koniec, tworząc czarną plamkę.

Ten obraz poszerzyć może badanie wyglądu płytki w ultrafiolecie, ujawniające składniki nie widoczne gołym okiem. Substancje fluoryzujące świecą własnym światłem:
Jak widzimy pojawia się nam kolejna różnica między dwoma pierwszymi markerami - BIC zawiera dodatkowy składnik świecący w ultrafiolecie na jasno niebiesko. Możliwe, że w mniejszej ilości zawierają go też dwa po bokach, słabo świecące na tej samej wysokości. Takie świecenie na brzegu kolorowej plamy oznacza, że w zastosowanym układzie rozpuszczalników nałożyły się nam na siebie dwie substancje, a więc nie udało się ich zupełnie rozdzielić.
Po co niewidoczny gołym okiem składnik w markerach? Ponieważ świeci w ultrafiolecie, to musi go też pochłaniać, jest to więc zapewne składnik chroniący pozostałe barwniki przed degradacją na świetle, powstrzymujący blaknięcie rysunków.

Różnice w składzie tuszu markerów, ale też tuszu długopisów czy atramentu piór wiecznych mają istotne znaczenie w kryminalistyce, aby wyryć czy badane dokumenty, na przykład testament, nie były później uzupełniane. Jeśli sprawca użył innego długopisu, różny skład potwierdzi dopiski. Oczywiście nie wkładamy w tym celu dokumentu do naczynia z rozpuszczalnikiem aby spojrzeć na powstające kolorowe plamki. Bądź pobiera się drobną próbkę z dokumentu i bada którąś do dokładnych technik chromatograficznych, jak wysokosprawna cieczowa, bądź wyznacza technikami nieinwazyjnymi, jak spektroskopia Ramana czy UV-Vis

A jak wykonać podobne doświadczenie u siebie w domu? Specjalistycznych płytek TLC nie trzeba kupować. Za cienki materiał chłonny wystarczy arkusz grubej bibuły, na przykład gęsty filtr do kawy, można też próbować ze sztywnym, kredowym papierem. Mi kiedyś udało się to z papierem do kserowania.
Wycinamy z papieru pasek o takiej szerokości aby zmieściły się nam kropki wszystkich flamastrów jakie chcemy zbadać, długi na kilka centymetrów. Znajdujemy wysokie naczynie o płaskim dnie, może to być słoik, szklanka, opakowanie po czymś, tak aby nasz pasek się w nim mieścił.
Teraz kwestia rozpuszczalnika - dość dobrymi, mocno wymywającymi, jest spirytus i zmywacz do lakieru do paznokci. Jeśli okażą się zbyt mocne i podczas próby wszystkie kolory od razu pójdą do góry, możemy spróbować domieszać jakiegoś słabszego składnika, może to być na przykład jakiś rozpuszczalnik do usuwania tłustych plam. Jeśli badamy markery nierozpuszczalne, pomocne może być dodanie odrobiny wody - wprawdzie jest bardzo polarna, ale gdy składniki barwne się w wodzie słabo rozpuszczają, woda może pogorszyć ich wymywanie z papieru i spowolnić. Tu już trzeba sobie poeksperymentować.

Przygotowaną mieszankę wlewamy na dno naszego naczynia, wkładamy pasek papieru z naniesionymi u dołu kropkami markerów tak aby opierał się o ściankę. Ponieważ nasiąkający papier traci sztywność, aby się nam nie przewrócił i nie wpadł możemy bądź zawinąć górny brzeg na brzegu naczynia, lub użyć spinacza do papieru, ewentualnie przewlec nitkę przez otwór w papierze i podwiązać. Pasek nie powinien przylegać do ścianki naczynia, rozpuszczalnik będzie wówczas podsiąkał w szczelinie między nimi i całość się rozmyje. Naczynie czymś przykrywamy aby rozpuszczalnik nie parował i czekamy aż cały pasek nasiąknie.

wtorek, 15 listopada 2016

Ostatnio w laboratorium (53.)

Z zajęć na temat krystalochemii - kryształy paracetamolu pod mikroskopem:

Nie zupełnie foremne i z inkluzjami. Miały długość około 1 mm.

czwartek, 16 czerwca 2016

Wczoraj w laboratorium (52.)

Wczoraj w laboratorium zająłem się destylacją tiofosgenu - strasznie śmierdzącego i trującego odczynnika.
Tiofosgen to formalnie rzecz biorąc podwójnie zchlorowana grupa tiokarbonylowa. Jego tlenowy analog fosgen był kiedyś używany jako bojowy gaz duszący, co daje już jakieś pojęcie o własnościach.

Zapach nie jest taki zły, jak oczekiwałem sądząc po obecności siarki. Jest ostry, drażniący a przede wszystkim duszący, podobny do innych prostych chlorków kwasowych.

Po co mi on? Do syntezy tiokarbonylodiimidazolu, a ten z kolei jest mi potrzebny do dalszych syntez. Po przeliczeniu wyszło mi, że taniej będzie otrzymać TCDI z tiofosgenu niż zamawiać gotowy. O ile uda się go w końcu zrobić bo już trzy razy próbowałem i powstawały różne dziwne produkty.


czwartek, 14 kwietnia 2016

Ostatnio w laboratorium (51.)

Ostatnio w laboratorium rozdzielałem ciemną, zesmołowaną mieszaninę poreakcyjną na kolumnie z wypełnieniem krzemionkowym. Eluent (chloroform/metanol) miał współczynnik załamania na tyle zbliżony do ziaren krzemionki, że całość wydawała się przezroczysta. Dzięki czemu bardzo ładnie było widać, jak mieszanina rozdziela się na poszczególne składniki, tworzące osobne prążki:

Nałożyłem trochę za dużo i kolumna się przeładowała, ale to o co mi chodziło udało się oddzielić.

sobota, 13 lutego 2016

Ostatnio w laboratorium (50.)

Gdy wykonuje się małą chromatografię na płytce wycinanej z arkusza, należy pilnować aby brzeg był równy. Jeśli bowiem żel odpryśnie się nierówno na brzegach, eluent będzie szybciej wsiąkał od tej strony, zaś plamki substancji zostaną przesunięte w przeciwną.

W poniższym przypadku nierówny brzeg z obu stron zaowocował dość walentynkowym efektem wizualnym:

niedziela, 31 stycznia 2016

Ostatnio w laboratorium (49.)

Ostatnio w laboratorium wykonywałem reakcję redukcji grupy nitrowej pyłem żelaznym, i po jej zakończeniu postanowiłem przeprowadzić jeszcze jeden prosty, acz zaskakujący eksperyment.

Standardowym sprzętem laboratoryjnym jest mieszadło magnetyczne. Wewnątrz podstawki, często z możliwością podgrzewania, działa magnes który oddziałuje na mieszadło mające postać podłużnej kapsułki. Wirujący magnes w podstawce wymusza wirowanie mieszadełka a zawartość naczynia z takim mieszadełkiem jest intensywnie mieszana.
I otóż widząc jak pył użyty w reakcji czepia się mieszadełka, zastanowiłem się jak wyglądają linie pola magnetycznego podstawki. Położyłem więc na mieszadło kartkę i szalkę Petriego, po czym sypnąłem odrobinę pyłu, który ułożył się w polu w formie podłużnych pasm i prętów:





Pod wpływem pola magnetycznego opiłki sama nabierają magnetyczności. Każdy staje się małym magnesem i ma skłonność przyciągać przeciwny biegun innego, przez co drobne cząstki sklepiają się w sznury. Wskutek samoorganizacji pył żelazny formuje cienkie igły ustawione równolegle do pola i oddzielone pustymi przestrzeniami. Nad biegunami, gdzie linie pola przecinają płaszczyznę pod kątem prostym, tworzy się struktura najeżonych kolców:
Samo uwidocznienie statycznej struktury nie było jednak tak ciekawe, jak zachowanie się pyłu po włączeniu mieszadła:

Igiełki namagnesowanych cząstek zlepiły się w płaski, harmonijkowaty kształt, który nawet przy wysokiej prędkości wirowania zachowywał integralność.

piątek, 11 grudnia 2015

Ostatnio w laboratorium (48.)

Ostatnio w laboratorium po skończeniu wydawałoby się prostego przekształcenia musiałem rozdzielić mieszaninę poreakcyjną, która wbrew przepisowi przybrała kolor brunatno-zielony. Gdy już z kolumny chromatograficznej zeszła większość frakcji, końcowe zanieczyszczenia rozwinęły się, ukazując swe dość intensywne, jak na to rozcieńczenie, i różnorodne kolory:
Cóż, gdyby nie to, że spieszę się aby do końca miesiąca przebrnąć przez najważniejszy etap syntezy katalizatora, wolałbym sprawdzić co też takiego dziwnego mi tu powstało. Na razie jedynie kolory te oznaczają, że powstała mi znaczna ilość produktów ubocznych, jakich tu być nie powinno, toteż chyba będę musiał użyć nieco mniej agresywnych reagentów...

czwartek, 26 listopada 2015

Dziś w laboratorium (47.)

Dziś w laboratorium po wyłączeniu dość prostej reakcji redukcji i rozwinięciu kropli, otrzymałem na płytce TLC oświetlonej ultrafioletem zjawiskowy wzór składników mieszaniny poreakcyjnej:
Wzór efektowny ale też nieco niepokojący bo oznacza, że reakcja która powinna zajść czysto i niemal ilościowo wytworzyła dużo więcej produktów o różnorodnych właściwościach niż to zakładałem.

sobota, 3 października 2015

Kiedyś w laboratorium (47.)

Kiedyś na zajęciach z analityki robiliśmy doświadczenie z elektroforezą aminokwasów.

Aminokwasy zgodnie z nazwą są związkami, które zależnie od warunków mogą być kwasami lub zasadami - posiadają grupę karboksylową mogącą odszczepiać proton, która zwykle decyduje o właściwościach kwaśnych, oraz grupę aminową która mogłaby przyjąć proton w odpowiednio zakwaszonym środowisku. W szczególnych warunkach zjonizowane są obie grupy i punkt ten nazywany izoelektrycznym.
 Ponieważ w aminokwasach o różnej budowie stała protonowania grupy aminowej i stała deprotonacji grupy karboksylowej przybierają różne wartości, toteż w roztworach o tym samym odczynie różne aminokwasy będą przyjmowały bądź formę anionu bądź kationu. A gdy do roztworu przyłożymy napięcie elektryczne, każdy pomknie w inną stronę.

Przyciąganie jonów do elektrody o przeciwnym znaku powoduje ich migrację, której prędkość zależy od wielkości i stopnia naładowania cząsteczki. Wskutek tego możliwy staje się rozdział naładowanych cząstek w polu elektrycznym na podobnej zasadzie jak to się ma przy chromatografii. Techniki tej używa się do rozdziału białek, peptydów i fragmentów DNA na przykład podczas badań genetycznych, co kiedyś już opisywałem.

W tym przypadku jednak poprzestaliśmy na sytuacji dużo prostszej - na kilka pasków bibuły nasączonej przewodzącym buforem nałożyliśmy próbki kilku aminokwasów i przez pewien czas podłączyliśmy paski do elektrod. Te aminokwasy które w odczynie buforu były anionami pomknęły w stronę elektrody dodatniej zaś te będące kationami w stronę elektrody ujemnej. Plamy aminokwasów ujawnialiśmy ninhydryną:
Jak dogrzebię się do starego zeszytu to dopiszę jeszcze który pasek odpowiadał któremu z aminokwasów.

sobota, 15 sierpnia 2015

Kiedyś w laboratorium (46.)

Kiedyś na zajęciach z chemii nieorganicznej robiliśmy doświadczenie z barwieniem skrobi jodem. Zawiesinę zabarwionej skrobi obserwowaliśmy potem przez mikroskop. Niestety użyliśmy za dużo jodu i zamiast struktury ziarna, obserwowaliśmy tylko czarne grudki:
Skrobia zabarwiona jodem, pow. około 400 razy
Jednak gdy przeglądałem preparat, szukając jakiegoś ładnego kadru, natrafiłem na nieoczekiwany bonus - fragment tkanki roślinnej, który bardzo ładnie zabarwił się na niebieskawo:
Widać dobrze jądro jednej z komórek i chyba jakieś zawieruszone organelle.

piątek, 26 czerwca 2015

Kiedyś w laboratorium (45.)

Zdjęcia z archiwum - po zakończeniu ćwiczenia na preparatyce, podczas którego używaliśmy stopionego fenolu, zwróciłem uwagę na piękny pęk włóknistych kryształów powstały na dnie zlewki:
Wyglądały trochę jak lód. Sam fenol w formie proszku był nieco różowawy.


ps. Dopiero teraz zauważyłem, że to mój 200 wpis.

środa, 7 stycznia 2015

Kiedyś w laboratorium (44.)

Gdy jeszcze zajmowałem się syntezami na potrzeby pracy magisterskiej, zaintrygował mnie sposób w jaki wykrystalizowała jedna z otrzymanych oksazolin:
W miarę odparowywana na wyparce, stężenie związku z cienkiej warstwie roztworu rosło, aż od pewnego punktu rozpoczęła się szybka krystalizacja. Jednak zamiast promienistych igieł, kryształy uformowały wyraźne prążki. Musiała nastąpić jakaś specyficzna organizacja, tworząca regularny kształt:

Z innymi oksazolinami czegoś takiego nie obserwowałem. Później zagęszczałem jeszcze jedną frakcję z tym związkiem i w innym naczyniu zachował się identycznie, widocznie to jego właściwość.

ps. znalazłem pracę w IChO PAN w Warszawie, za parę dni opiszę szerzej.

środa, 10 grudnia 2014

Kiedyś w laboratorium (43.)

We wpisie na temat metod ujawniania odcisków palców wspominałem o traktowaniu badanych powierzchni jodem, który wchłaniając się w tłuszczowy ślad odbitki linii papilarnych, zabarwia je na żółto.

Jeszcze zanim skończyłem pracownię magisterską miałem okazję to przetestować, przy okazji wywoływaniu chromatogramu w jodzie. Kawałek papieru do ksero przyciśnięty mocno palcami, włożyłem do słoiczka ze stałym jodem, po kilku chwilach odciski ujawniły się dość dobrze, ten który znalazł się bliżej dna, zabarwił się aż nadto:
mimo wszystko kontrast był słaby. Być może jednak przypominacie sobie, iż ślady ujawniane jodem można było wzmocnić opryskując je roztworem skrobi. Akurat takiej zawiesiny na podorędziu nie miałem, ponieważ jednak papier często jest wygładzany przez powleczenie masą zawierającą skrobię, postanowiłem delikatnie zwilżyć papier - przyłożyłem go do ust i nachuchałem aż zwilgotniał.
Rzeczywiście ślady pociemniały a nawet sfioletowiały:
Metoda działa.


czwartek, 14 sierpnia 2014

Kiedyś w laboratorium (42.)

Dawno, dawno temu za wieloma latami, uczyłem się bioanalizy i jednym z ćwiczeń było identyfikowanie szczepów bakterii przy pomocy szeregu podłóż różnicujących. Szereg w całości omówię kiedy indziej, natomiast teraz na szybko opowiem o jednym podłożu - agarze TSI czyli trójcukrowy żelazowy.

Jest to podłoże produkowane w formie słupkoskosu - próbówka w części napełniona w całym przekroju, jest to tzw. "słupek", a w części napełniona ukośnie:
Podłoże zawiera barwnik czerwień fenolową, siarczan żelaza, tiosiarczan sodu oraz cukry: laktozę, glukozę i sacharozę. Rozróżnianie bakterii opiera się na strasznie prostej zasadzie - czy bakteria metabolizuje cukry i które i czy przerabia tiosiarczany na siarczki.
Metabolizowanie cukrów powoduje powstanie kwaśnych metabolitów, pod wpływem których czerwień fenolowa robi się żółta. jeśli bakteria fermentuje glukozę, podłoże początkowo będzie żółte, lecz ulatnianie kwaśnych produktów ze skosu spowoduje, że będzie on czerwony a słupek zółty. Metabolizowanie laktozy daje żółte zabarwienie obu części
Jeśli bakteria metabolizuje tiosiarczan do siarkowodoru, zareaguje on z żelazem, dając czarny osad siarczku żelaza. W przypadku badanego szczepu wynik był następujący:
Zmieniona barwa słupka - zatem bakteria metabolizująca glukozę, zapewne enterobakteria. Czarny pierścień - zatem metabolizuje tiosiarczany. W tym przypadku była to salmonella, być może serotypu Typhi, już nie pamiętam.

A teraz na parę dni wyjeżdżam na zlot astronomiczny. Życzcie mi dobrej pogody.

środa, 16 lipca 2014

Barwienie bakterii metodą Grama

Dawno, dawno temu, kiedy jeszcze uczyłem się w technikum chemicznym, jednym z przedmiotów była bioanaliza, gdzie uczyliśmy się jak badać mocz, rozpoznawać pod mikroskopem różne limfocyty, albo badać zawartość cholesterolu w osoczu.
Jednym z ciekawszych ćwiczeń była hodowla bakterii z powietrza - sterylną płytkę z podłożem odkrywało się na określony czas w nieruchowym powietrzu pomieszczenia, zakrywało i wstawiało do inkubatora. Bakterie które znajdowały się w powietrzu osiadały na płytce i tworzyły kolonie - jedna bakteria tworzyła jedną kolonię. Zliczając ilość kolonii na powierzchni płytki i znając czas wystawienia płytki, można było policzyć stężenie bakterii w powietrzu - całkiem proste.

Jednak otrzymane bakterie dobrze jest też jakoś zidentyfikować. Oprócz opisanych już kiedyś metod hodowli na podłożu różnicującym, inną techniką jest barwienie metodą Grama. Badanie obejmuje kilka etapów, a wszystkie je sfotografowałem.

Zasadnicza różnica między typami bakterii jaką wykrywa się w tym badaniu, to grubość i przenikliwość ściany komórkowej - w jednym bakteriach jest cienka, w innych stosunkowo gruba. Ma to wpływ na ogólną fizjologię bakterii, zaś dla medycyny znaczenie ma różna wrażliwość na leki - zasadniczo bakterie o grubszej ścianie komórkowej są bardziej odporne, z powodu słabszego wchłaniania antybiotyku do wnętrza. Różna grubość ścian komórkowych wykrywana jest przez selektywne wybarwianie fioletem krystalicznym. W jaki sposób?

Na początek należy sobie wybrać jakąś kolonię z której będziemy robić rozmaz:

Ja akurat wybrałem sobie taką w której na kolonię żółtą naciekała biała, mając nadzieję że uda mi się złapać dwa różne typy. Masę kolonii pobierałem ezą, to jest pętelką z drutu z rączką. Tę jednak należało przedtem wyżarzyć, aby usunąć wszystkie inne bakterie:

Ponieważ kolonia miała postać stałej masy, najpierw nabrałem nieco soli fizjologicznej:

potem nieco kolonii:

i rozmazałem na płytce:
Rozmaz należało teraz wysuszyć i utrwalić, aby bakterie dobrze przylegały do podłoża. Dlatego po podsuszeniu w suszarce przeciągnęliśmy płytki nad płomykiem lampki spirytusowej, tak aby masa bakteryjna "przyschła" do płytki.
Wszystkie płytki należało teraz umieścić nad tacką, założyć rękawiczki i uważać na ubranie, bo można się było nieźle pobrudzić. Najpierw każda płytka została zalana roztworem fioletu krystalicznego:
Następnie czekaliśmy dwie minuty, po czym zlaliśmy barwnik do tacki:
Nie usuwając całej cieczy, zalewaliśmy płytki płynem Lugola - na powierzchni płynu powstawała błyszcząca warstewka, jak podejrzewam był to wydzielający się jod. Płyn dzięki temu błyszczał i opalizował, wyglądając jak odwłok złotego żuka:


Po około trzydziestu sekundach zlaliśmy ciecz i dokładnie przemyliśmy alkoholem:

A następnie wodą:
Na sam koniec zalaliśmy płytki roztworem fuksyny:
Pół minuty potem zlaliśmy ją do tacki, płytki przemyliśmy wodą i osuszyliśmy w suszarce. Tak zabarwione płytki nadawały się do badania mikroskopowego:

Co takiego następowało podczas wybarwiania? Gdy zalewaliśmy płytki roztworem fioletu krystalicznego, wnikał on do bakterii zabarwiając je wszystkie. Dodany potem roztwór jodu dodatkowo przyciemniał zabarwienie poprzez tworzenie kompleksów jodu z barwnikiem. Na tym etapie zabarwione były wszystkie.
Jednak gdy przemywaliśmy płytki alkoholem, zaznaczyła się różnica - łatwo wypłukiwał on barwnik z bakterii o cienkiej ściance, natomiast nie był w stanie odbarwić bakterii o ścianie grubej. W efekcie te pierwsze stawały się bezbarwne, zaś te drugie ciemnofioletowe. Gdy zalaliśmy płytki fuksyną, odbarwione bakterie o cienkiej ścianie zabarwiły się na różowo. Te o grubej także, ale mocniejszy kolor fioletu zagłuszał róż.
W efekcie bakterie o ściance cienkiej zabarwiły się na różowo a te o grubej na ciemno fioletowo. Rożróżnianie bakterii pod mikroskopem jest zatem bardzo łatwe - bakterie Gram+ są fioletowe a Gram- różowe.

Akurat mnie, jako chemika-estetę bardziej zainteresowały kryształy fuksyny, które wykrystalizowały na płytce. Tutaj pęk kryształów w otoczeniu bakterii gram-ujemnych (powiększenie ok. 400X):
A tutaj w otoczeniu gram-dodatnich (pow. ok. 600X):


I na koniec mieszanka dwóch różnych typów bakterii: