informacje



Pokazywanie postów oznaczonych etykietą zdjęcia. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą zdjęcia. Pokaż wszystkie posty

środa, 31 października 2018

Ostatnio w laboratorium (63.)

Ostatnio w laboratorium przypadkiem uzyskałem efekt, który wcześniej trudno mi było uzyskać zamierzenie w domowych warunkach. Podczas oczyszczania mieszaniny poreakcyjnej stosowałem między innymi ekstrakcję z roztworem wodorowęglanu sodu, dla usunięcia kwaśnych produktów ubocznych, po czym dla zmniejszenia zawartości wody w fazie organicznej przeekstrahowałem ją jeszcze z nasyconą solanką. Nasycony roztwór soli chętnie chłonie wodę. Oczywiście do ostatecznego dosuszenia używa się desykatorów w rodzaju bezwodnego siarczanu sodu, ale bez wstępnego odciągnięcia nadmiaru wody solanką, należałoby użyć tego środka wiążącego całkiem sporo.

Tak więc po rozdzieleniu faz oddzieliłem organiczną od solanki, którą to zlałem do osobnej zlewki. Tą odłożyłem na bok, i zapomniawszy wylać zostawiłem na weekend. W poniedziałek stwierdziłem, że mimo iż na ściankach nie było widać śladów krystalizacji czy większego odparowania, to na dnie zlewki powstało kilka ładnie uformowanych kryształów:

Choć sól kuchenna jest jednym z pierwszych wyborów, gdy tylko przyjdzie nam do głowy robienie sobie w domu kryształków, niespecjalnie się do tego nadaje. Ma niestety skłonność do krystalizowania w zbitych skupiskach drobnokrystalicznych, a różnica rozpuszczalności w wodzie między temperaturą pokojową a wrzątkiem jest mała, przez co wymuszanie krystalizacji przez przesycenie spadkiem temperatury, jest mało efektywne. W większości przypadków próby krystalizacji polegające na zanurzeniu sznurka w solance, kończą się powstaniem czegoś podobnego do białego stalaktytu.

Podczas domowych prób rezygnowałem więc z krystalizacji na sznurku czy nitce, zamiast tego wrzucałem do roztworu jakiś obiekt, który pozostawał całkowicie zanurzony.
Ziarno czarnego pieprzu z przezroczystymi kryształami
Teraz powstało mi natomiast bez żadnych przygotowań, bez powstania drobnokrystalicznych osadów i innych przeszkadzających dodatków, kilka dość regularnych kryształów o wielkości do pół centymetra:
Oczywiście, jak widać, nie są idealne. Są białe, zapewne podczas szybkiego wzrostu pochłaniały z roztworu zanieczyszczenia organiczne i banieczki powietrza. Rosły przyrośnięte do dna, dlatego zamiast regularnych kostek powstały płytki. Ciekawą cechą jest też kształt górnej ściany krystalicznej - posiada regularne wgłębienie, zagłębiające się w kryształ równymi schodkami.

To tak zwany kryształ szkieletowy, powstający w warunkach szybkiego wzrostu w warunkach przesycenia. Woda odparowywała z solanki, bardziej zagęszczony roztwór opadał na dno. Kryształy powstawały więc w warstwie nieruchomego roztworu o dużym stopniu przesycenia. Grawitacja w przypadku górnej ścianki kryształu nie wspomagała ruchu cieczy, zatem szybkość krystalizacji była ograniczana szybkością dyfuzji cząstek, oraz różnicowana anizotropią budowy kryształu.
W takich sytuacjach częstym zjawiskiem jest szybszy przyrost kryształu na krawędziach niż pośrodku ściany, wynika to z lepszej dostępności roztworu (zamiast docierać z połowy przestrzeni, cząstki mają 3/4 objętości z której dochodzą do powierzchni kryształu). Efekt ten może wzmacniać pojawiające się na krysztale pole elektryczne.
© Hershel Friedman - minerals.net

Zależnie od tego jak duży jest stopień przesycenia, oraz jaki jest normalny pokrój kryształów danej substancji, tworzą się więc albo kryształy zachowujące normalny pokrój, ale ze schodkowatymi lejami na ścianach, albo mające formę cienkich lejków, albo przybierające kształty igieł, gwiazdek czy pierzastych dendrytów. Z tworzenia takiego pokroju znany jest właśnie halit, ale obserwowano go też u kwarcu, kalcytu i w kryształach lodu. Łatwo powstaje też podczas krystalizacji bizmutu, metalu o stosunkowo niskiej temperaturze topnienia, z którego da się w amatorskich warunkach uzyskać efektowne kryształy.

© www.johnbetts-fineminerals.com



Wraz ze zmianą warunków, forma kryształu może się zmienić. Zmniejszenie stopnia przesycenia roztworu często powoduje wypełnienie jam w ścianach, jedyną pozostałością mogą wówczas być wtrącenia układające się wewnątrz kryształu w stożkowaty wzór.


wtorek, 16 października 2018

Ostatnio w laboratorium (62.)

Gdy chemik wychodzi z pracy do domu, dobrze jest zadbać o to, aby przypadkiem nie wynosił na sobie chemikaliów. Zwłaszcza na rękach, którymi będzie potem dotykał wszystkiego, w tym domowników i siebie. Oczywiście przy pracy z odczynnikami powinno się stosować rękawiczki, ale trudno się zupełnie ustrzec przed pobrudzeniem. Często przed wyjściem do domu, po umyciu rąk sprawdzam ich czystość pod lampą ultrafioletową ustawioną na dalszy, "czarny" zakres. Większość substancji z którymi pracuję, w jakimś stopniu świeci w takim zakresie, zwykle na niebiesko lub żółto.

Dlatego łatwo będzie zrozumieć moje obawy, gdy podczas takich prób stwierdziłem wyraźną fluorescencję samych paznokci, zupełnie jakby czymś się nasączyły:
Dopiero przegląd literatury nieco mnie uspokoił. Otóż wygląda na to, że paznokcie fluoryzują same z siebie. W przeglądzie dermatologicznych badań nad skórą opisano naturalne świecenie naświetlanych ultrafioletem paznokci.[1] Nie dowiedziałem się natomiast co konkretnie w nich świeci, może bilirubina która dość często w stanach chorobowych odkłada się w płytce paznokcia aż do wyraźnego zabarwienia.
Do paznokci mogą też przenikać fluoryzujące leki - po zażyciu tetracykliny obserwuje się żółte świecenie, a po zażyciu atabryny żółto-zielone.[2] Próbuje się wykorzystać to zjawisko w bezinwazyjnej diagnostyce.

---------
[1]   Pierre Agache, Philippe Humbert, Measuring the Skin, Google Books s. 296

[2] https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-4362.1999.00794.x

piątek, 21 września 2018

Ostatnio w laboratorium (61.)

Bardzo ładna rekrystalizacja:
W tym przypadku była to pewna pochodna chinoliny. Kilkakrotna krystalizacja, rozpuszczenie i ponowna krystalizacja pozwoliły na oddzielenie brązowego zanieczyszczenia od jasnokremowego związku bez konieczności użycia chromatografii.

sobota, 17 lutego 2018

Kiedyś w laboratorium (58.)

Publikowałem tu już kiedyś zdjęcia widm lamp jarzeniowych z gazami szlachetnymi, teraz wrzucę jeszcze jedno z tamtych ćwiczeń, pokazujące linie emisyjne wodoru w paśmie widzialnym:

 Wyraźnie widoczne są trzy pasma, tzw. "seria Balmera": czerwone o długości fali 656 nm, zielonkawo-niebieskie 486 nm i niebieskofioletowe 434 nm. Nieco bardziej na lewo powinno być jeszcze czwarte pasmo i nawet gołym okiem było je słabo widać, ale na aparacie przy tej jasności lampy się nie załapało, ma długość fali 410 nm i leży na pograniczu widzialnego fioletu i ultrafioletu. Poza zasięgiem aparatu pojawiają się jeszcze pasma ultrafioletowe.
Aparat cyfrowy nie do końca dobrze oddał kolory, środkowe pasmo było patrząc gołym okiem nieco bardziej morskie, dodatkowe widmo w tle miało szerszy zakres żółty a czerwone pasmo nie było tak mocno jasne, aż prześwietlone.

Uzupełniające tło słabsze widmo wielu drobnych linii to prawdopodobnie efekt domieszki azotu w wodorze wypełniającym rurkę jarzeniową.

Linie emisyjne wodoru odegrały dużą rolę w chemii kwantowej. Balmer znalazł ogólny wzór opisujący długość fali poszczególnych linii za pomocą pewnego prostego szeregu. Była to w zasadzie czysta numerologia, czyli dobieranie liczb tak, aby pojawił się między nimi związek, ale rozszerzenie tej formuły pozwoliło przewidzieć odkryte później linie w zakresie ultrafioletu. Wzór został uogólniony przez Rydberga i okazał się przewidywać także linie emisji w dalekim ultrafiolecie, dalszej podczerwieni.
Gdy zaczęła się formować teoria atomu jako układu złożonego z dodatnio naładowanego jądra i elektronów krążących wokół, serie widmowe znalazły wyjaśnienie jako emisje w postaci światła energii, będącej różnicą między energią kolejnych coraz bardziej oddalonych orbit, wydzielaną przez elektrony wzbudzone, spadające z dalekich orbit na te bliższe jądru. Bardzo wąskie linie emisji oznaczają, że zakresy energetyczne dla orbit są dość ściśle określone, zostało to dobrze wyjaśnione dopiero na gruncie kwantowego modelu atomu (w modelu Bohra dozwolone orbity były stacjonarne, bo tak).
Widmo wzbudzonego wodoru było przy tym o tyle łatwe do opisu, że wynikało z najprostszego możliwego układu z jednym elektronem. Opis widm innych pierwiastków nie jest tak łatwy i tylko do części linii widmowych stosuje się wprost wzór Rydberga.

ps. a nowe materiały z laboratorium nie pojawiają się, bo już nie pracuję na UW.


piątek, 7 lipca 2017

Kiedyś w laboratorium (56.)

Jednym z obowiązków doktorantów jest przeprowadzenie odpowiedniej ilości godzin dydaktycznych ze studentami. W zeszłym roku pomagałem przy preparatyce organicznej, w tym natomiast przy zajęciach z fizyki.

Jedną z zalet tych zajęć było to, że mogłem jeszcze raz samemu przyswoić sobie pewne podstawy. Oraz że czasem miałem okazję zrobić ładne zdjęcia. Tak było podczas prowadzenia ćwiczenia ze spektroskopii - student na stole mierzył spektroskopem kąty ugięcia poszczególnych prążków emisyjnych emitowanych przez lampy z różnymi gazami, a ja próbowałem jakoś ładnie to uchwycić:
Najlepiej wyglądało to przy użyciu siatki dyfrakcyjnej lustrzanej, dającej jasne obrazy. Tutaj lampa ze świecącym helem:
a tu ta sama lampa bez rozszczepienia światła:
Tu zaś widmo lampy z neonem:

Jak widać na prawdę bogate w linie.

środa, 11 stycznia 2017

Ostatnio w laboratorium (54.)

Kryształy białka lizozymu, otrzymane metodą wiszącej kropli:
Lizozym to enzym bakteriobójczy, powodujący rozkład glikoprotein w ścianie komórkowej bakterii. Po uszkodzeniu ściany następuje pęknięcie i rozpłynięcie się komórki bakterii, czyli tzw. liza, stąd nazwa enzymu. Jego cząsteczka składa się ze 129 aminokwasów.

Lizozym należy do białek które stosunkowo łatwo krystalizują, dlatego wcześnie poznano jego strukturę.

Kryształy na zdjęciach są takie sobie, przede wszystkim bardzo małe, może za parę dni bardziej urosną. Natomiast zachwyciła mnie gra kolorów widoczna pod filtrem polaryzacyjnym. Jestem mimo wszystko trochę estetą.

* * *
Myślę, że dobrze by było przy tej okazji parę rzeczy objaśnić, bo może regularnie zaglądający zastanawiali się nad paroma kwestiami. Ponieważ prace typowo syntetyczne na pracowni prof. Czarnockiego nie bardzo mi wychodziły, ostatecznie zmieniłem promotora i temat pracy, bo istniało ryzyko, że ciągnąc dotychczasowy mógłbym nie otrzymać wyników na satysfakcjonującą pracę doktorską.
Tak że teraz zająłem się czymś bliższym chemii fizycznej, czyli badaniami krystalograficznymi. Prawdopodobnie ostateczny temat będzie zawierał cześć syntetyczną i część krystalograficzną. Na razie jednak nadrabiam teorię i praktykę, bo obsługi dyfraktometru rentgenowskiego na studiach nie miałem, przez pierwszy semestr chodzę też na zajęcia specjalizacyjne ze studentami.

Przygotowuję powoli wpis na temat tego krystalografii i tego jak można kryształom zrobić prześwietlenie.

czwartek, 14 kwietnia 2016

Ostatnio w laboratorium (51.)

Ostatnio w laboratorium rozdzielałem ciemną, zesmołowaną mieszaninę poreakcyjną na kolumnie z wypełnieniem krzemionkowym. Eluent (chloroform/metanol) miał współczynnik załamania na tyle zbliżony do ziaren krzemionki, że całość wydawała się przezroczysta. Dzięki czemu bardzo ładnie było widać, jak mieszanina rozdziela się na poszczególne składniki, tworzące osobne prążki:

Nałożyłem trochę za dużo i kolumna się przeładowała, ale to o co mi chodziło udało się oddzielić.

sobota, 13 lutego 2016

Ostatnio w laboratorium (50.)

Gdy wykonuje się małą chromatografię na płytce wycinanej z arkusza, należy pilnować aby brzeg był równy. Jeśli bowiem żel odpryśnie się nierówno na brzegach, eluent będzie szybciej wsiąkał od tej strony, zaś plamki substancji zostaną przesunięte w przeciwną.

W poniższym przypadku nierówny brzeg z obu stron zaowocował dość walentynkowym efektem wizualnym:

piątek, 11 grudnia 2015

Ostatnio w laboratorium (48.)

Ostatnio w laboratorium po skończeniu wydawałoby się prostego przekształcenia musiałem rozdzielić mieszaninę poreakcyjną, która wbrew przepisowi przybrała kolor brunatno-zielony. Gdy już z kolumny chromatograficznej zeszła większość frakcji, końcowe zanieczyszczenia rozwinęły się, ukazując swe dość intensywne, jak na to rozcieńczenie, i różnorodne kolory:
Cóż, gdyby nie to, że spieszę się aby do końca miesiąca przebrnąć przez najważniejszy etap syntezy katalizatora, wolałbym sprawdzić co też takiego dziwnego mi tu powstało. Na razie jedynie kolory te oznaczają, że powstała mi znaczna ilość produktów ubocznych, jakich tu być nie powinno, toteż chyba będę musiał użyć nieco mniej agresywnych reagentów...

czwartek, 26 listopada 2015

Dziś w laboratorium (47.)

Dziś w laboratorium po wyłączeniu dość prostej reakcji redukcji i rozwinięciu kropli, otrzymałem na płytce TLC oświetlonej ultrafioletem zjawiskowy wzór składników mieszaniny poreakcyjnej:
Wzór efektowny ale też nieco niepokojący bo oznacza, że reakcja która powinna zajść czysto i niemal ilościowo wytworzyła dużo więcej produktów o różnorodnych właściwościach niż to zakładałem.

sobota, 3 października 2015

Kiedyś w laboratorium (47.)

Kiedyś na zajęciach z analityki robiliśmy doświadczenie z elektroforezą aminokwasów.

Aminokwasy zgodnie z nazwą są związkami, które zależnie od warunków mogą być kwasami lub zasadami - posiadają grupę karboksylową mogącą odszczepiać proton, która zwykle decyduje o właściwościach kwaśnych, oraz grupę aminową która mogłaby przyjąć proton w odpowiednio zakwaszonym środowisku. W szczególnych warunkach zjonizowane są obie grupy i punkt ten nazywany izoelektrycznym.
 Ponieważ w aminokwasach o różnej budowie stała protonowania grupy aminowej i stała deprotonacji grupy karboksylowej przybierają różne wartości, toteż w roztworach o tym samym odczynie różne aminokwasy będą przyjmowały bądź formę anionu bądź kationu. A gdy do roztworu przyłożymy napięcie elektryczne, każdy pomknie w inną stronę.

Przyciąganie jonów do elektrody o przeciwnym znaku powoduje ich migrację, której prędkość zależy od wielkości i stopnia naładowania cząsteczki. Wskutek tego możliwy staje się rozdział naładowanych cząstek w polu elektrycznym na podobnej zasadzie jak to się ma przy chromatografii. Techniki tej używa się do rozdziału białek, peptydów i fragmentów DNA na przykład podczas badań genetycznych, co kiedyś już opisywałem.

W tym przypadku jednak poprzestaliśmy na sytuacji dużo prostszej - na kilka pasków bibuły nasączonej przewodzącym buforem nałożyliśmy próbki kilku aminokwasów i przez pewien czas podłączyliśmy paski do elektrod. Te aminokwasy które w odczynie buforu były anionami pomknęły w stronę elektrody dodatniej zaś te będące kationami w stronę elektrody ujemnej. Plamy aminokwasów ujawnialiśmy ninhydryną:
Jak dogrzebię się do starego zeszytu to dopiszę jeszcze który pasek odpowiadał któremu z aminokwasów.

środa, 7 stycznia 2015

Kiedyś w laboratorium (44.)

Gdy jeszcze zajmowałem się syntezami na potrzeby pracy magisterskiej, zaintrygował mnie sposób w jaki wykrystalizowała jedna z otrzymanych oksazolin:
W miarę odparowywana na wyparce, stężenie związku z cienkiej warstwie roztworu rosło, aż od pewnego punktu rozpoczęła się szybka krystalizacja. Jednak zamiast promienistych igieł, kryształy uformowały wyraźne prążki. Musiała nastąpić jakaś specyficzna organizacja, tworząca regularny kształt:

Z innymi oksazolinami czegoś takiego nie obserwowałem. Później zagęszczałem jeszcze jedną frakcję z tym związkiem i w innym naczyniu zachował się identycznie, widocznie to jego właściwość.

ps. znalazłem pracę w IChO PAN w Warszawie, za parę dni opiszę szerzej.

środa, 16 lipca 2014

Barwienie bakterii metodą Grama

Dawno, dawno temu, kiedy jeszcze uczyłem się w technikum chemicznym, jednym z przedmiotów była bioanaliza, gdzie uczyliśmy się jak badać mocz, rozpoznawać pod mikroskopem różne limfocyty, albo badać zawartość cholesterolu w osoczu.
Jednym z ciekawszych ćwiczeń była hodowla bakterii z powietrza - sterylną płytkę z podłożem odkrywało się na określony czas w nieruchowym powietrzu pomieszczenia, zakrywało i wstawiało do inkubatora. Bakterie które znajdowały się w powietrzu osiadały na płytce i tworzyły kolonie - jedna bakteria tworzyła jedną kolonię. Zliczając ilość kolonii na powierzchni płytki i znając czas wystawienia płytki, można było policzyć stężenie bakterii w powietrzu - całkiem proste.

Jednak otrzymane bakterie dobrze jest też jakoś zidentyfikować. Oprócz opisanych już kiedyś metod hodowli na podłożu różnicującym, inną techniką jest barwienie metodą Grama. Badanie obejmuje kilka etapów, a wszystkie je sfotografowałem.

Zasadnicza różnica między typami bakterii jaką wykrywa się w tym badaniu, to grubość i przenikliwość ściany komórkowej - w jednym bakteriach jest cienka, w innych stosunkowo gruba. Ma to wpływ na ogólną fizjologię bakterii, zaś dla medycyny znaczenie ma różna wrażliwość na leki - zasadniczo bakterie o grubszej ścianie komórkowej są bardziej odporne, z powodu słabszego wchłaniania antybiotyku do wnętrza. Różna grubość ścian komórkowych wykrywana jest przez selektywne wybarwianie fioletem krystalicznym. W jaki sposób?

Na początek należy sobie wybrać jakąś kolonię z której będziemy robić rozmaz:

Ja akurat wybrałem sobie taką w której na kolonię żółtą naciekała biała, mając nadzieję że uda mi się złapać dwa różne typy. Masę kolonii pobierałem ezą, to jest pętelką z drutu z rączką. Tę jednak należało przedtem wyżarzyć, aby usunąć wszystkie inne bakterie:

Ponieważ kolonia miała postać stałej masy, najpierw nabrałem nieco soli fizjologicznej:

potem nieco kolonii:

i rozmazałem na płytce:
Rozmaz należało teraz wysuszyć i utrwalić, aby bakterie dobrze przylegały do podłoża. Dlatego po podsuszeniu w suszarce przeciągnęliśmy płytki nad płomykiem lampki spirytusowej, tak aby masa bakteryjna "przyschła" do płytki.
Wszystkie płytki należało teraz umieścić nad tacką, założyć rękawiczki i uważać na ubranie, bo można się było nieźle pobrudzić. Najpierw każda płytka została zalana roztworem fioletu krystalicznego:
Następnie czekaliśmy dwie minuty, po czym zlaliśmy barwnik do tacki:
Nie usuwając całej cieczy, zalewaliśmy płytki płynem Lugola - na powierzchni płynu powstawała błyszcząca warstewka, jak podejrzewam był to wydzielający się jod. Płyn dzięki temu błyszczał i opalizował, wyglądając jak odwłok złotego żuka:


Po około trzydziestu sekundach zlaliśmy ciecz i dokładnie przemyliśmy alkoholem:

A następnie wodą:
Na sam koniec zalaliśmy płytki roztworem fuksyny:
Pół minuty potem zlaliśmy ją do tacki, płytki przemyliśmy wodą i osuszyliśmy w suszarce. Tak zabarwione płytki nadawały się do badania mikroskopowego:

Co takiego następowało podczas wybarwiania? Gdy zalewaliśmy płytki roztworem fioletu krystalicznego, wnikał on do bakterii zabarwiając je wszystkie. Dodany potem roztwór jodu dodatkowo przyciemniał zabarwienie poprzez tworzenie kompleksów jodu z barwnikiem. Na tym etapie zabarwione były wszystkie.
Jednak gdy przemywaliśmy płytki alkoholem, zaznaczyła się różnica - łatwo wypłukiwał on barwnik z bakterii o cienkiej ściance, natomiast nie był w stanie odbarwić bakterii o ścianie grubej. W efekcie te pierwsze stawały się bezbarwne, zaś te drugie ciemnofioletowe. Gdy zalaliśmy płytki fuksyną, odbarwione bakterie o cienkiej ścianie zabarwiły się na różowo. Te o grubej także, ale mocniejszy kolor fioletu zagłuszał róż.
W efekcie bakterie o ściance cienkiej zabarwiły się na różowo a te o grubej na ciemno fioletowo. Rożróżnianie bakterii pod mikroskopem jest zatem bardzo łatwe - bakterie Gram+ są fioletowe a Gram- różowe.

Akurat mnie, jako chemika-estetę bardziej zainteresowały kryształy fuksyny, które wykrystalizowały na płytce. Tutaj pęk kryształów w otoczeniu bakterii gram-ujemnych (powiększenie ok. 400X):
A tutaj w otoczeniu gram-dodatnich (pow. ok. 600X):


I na koniec mieszanka dwóch różnych typów bakterii:


poniedziałek, 2 czerwca 2014

Kiedyś w laboratorium (41.)

Kiedyś zauważyłem na pracowni interesujący efekt - po suszeniu THF metalicznym sodem, gdy zestaw już ostygł, cały użyty sód wypłynął w formie równej kuli, mniej więcej wielkości orzecha laskowego:

Uznałem że to ciekawe nie tylko z przyczyn wizualnych - sód jest wprawdzie lekki, ale ma gęstość nieco większą od THF. Najwyraźniej rozpuszczony benzofenon i produkty jego reakcji z wodą na tyle zagęściły rozpuszczalnik, że stał się minimalnie gęstszy od metalu. Skoro jednak metal przyjął kształt kuli, najwidoczniej dla ciekłego sodu gęstości stają się zbliżone.

wtorek, 20 maja 2014

Czasem w laboratorium (40.)

Często w laboratoriach przez dłuższy czas używa się tych samych, przymocowanych na stałe, chłodnic szklanych, na przykład w zestawach do suszenia rozpuszczalników lub w wyparkach. Woda w nich nie zawsze jest spuszczana po użyciu, toteż wewnątrz, w wilgotnych i dobrze doświetlonych warunkach, chętnie rosną zielonkawe glony:

Wedle zasłyszanej opinii chemicy dzielą się na tych, który co jakiś czas rozbierają chłodnicę i czyszczą glony, i tych którym to nie przeszkadza, na zasadzie "jak będzie za duże to się spłucze".

Zawsze to jakaś roślinka...

środa, 7 maja 2014

Chemiczne ogrody

Każdy pewnie kiedyś słyszał o tym doświadczeniu - do odpowiedniego roztworu wrzuca się małe kryształki, i po chwili zaczynają z nich wyrastać łodyżki i gałązki, podobne do fantastycznych wodorostów albo kwiatów. Mieliśmy coś takiego w małej skali na drugim roku:

Pytanie zatem - jak to powstaje i jak można coś takiego samemu zrobić?

Sama procedura sporządzania jest bardzo prosta - naczynie napełnia się roztworem krzemianu sodu, po czym wrzuca do niego kryształki soli metali przejściowych. Wokół kryształka powstaje mała banieczka, która uwypukla się aż z jej szczytu wysnuwać się zaczyna cienka wić, czasem rozgałęziająca się. Stopniowo wzrasta aż dotrze do powierzchni gdzie czasem jeszcze jest zdolna wyprodukować pływające zgrubienie. Gdy "roślinki" przestają rosnąć, naczynie można zamknąć i postawić w widocznym miejscu.
Krzemian sodu to inaczej szkło wodne, możliwe do dostania jako środek konserwujący do kamienia i betonu, natomiast sole metali przejściowych powinny być możliwe do kupienia w sklepach z odczynnikami. Samo wykonanie we własnym zakresie nie jest więc tak skomplikowane.
Mechanizm powstawania takich tworów także.

Szkło wodne, to roztwór krzemianów sodu i potasu, które można otrzymać stapiając krzemionkę z wodorotlenkami tych pierwiastków. Powstałe krzemiany tworzą gęsty, dosyć lepki roztwór o lekko opalizującym wyglądzie. Prawdopodobnie roztwór nie zawiera swobodnych anionów krzemianowych, lecz różnej wielkości połączenia liniowe i rozgałęzione aż do rozmiaru cząstek koloidalnych. Jest to  i tak dobrze, bo z większością metali kwas krzemowy daje sole nierozpuszczalne.
Dodawane przez nas sole zwierają właśnie te metale, dające nierozpuszczalne krzemiany, dlatego gdy wrzucimy do roztworu kryształek, powstanie na nim natychmiast nierozpuszczalna warstewka krzemianu i reakcja ustanie. Warstewka ta nie przepuszcza krzemianów, więc reakcja nie może postępować dalej.
Zarazem jednak jest to warstewka na tyle cienka, iż przepuszcza wodę, stanowi więc błonę półprzepuszczalną. Gdy woda zacznie przenikać pod błonkę, rozpuści kryształek soli wewnątrz, tworząc bardzo stężony roztwór.
Prawa osmotyki mówią, że jeśli dwa roztwory o tym samym rozpuszczalniku ale różnych stężeniach przedzielimy membraną, przepuszczającą rozpuszczalnik, to zacznie on przenikać z roztworu mniej stężonego do bardziej. Ma to źródło w prostych prawach - od strony roztworu bardziej rozcieńczonego w membranę uderza w tym samym czasie więcej cząsteczek wody niż od strony bardziej zatężonego, można więc mówić o wyższym ciśnieniu cząstkowym; jeśli zaś część uderzających w błonkę cząsteczek może przez nią przeniknąć, to będzie następował przepływ rozpuszczalnika. W momencie gdy ciśnienia cząstkowe po obu stronach się wyrównają, bo roztwór bardziej rozcieńczony się zatężył a bardziej stężony rozcieńczył, przepływ ustaje.

Przepływ ten może, w sytuacji gdy błonka otacza pewną zamkniętą przestrzeń, doprowadzać do znacznego wzrostu ciśnienia, lub zmienić poziom roztworu, co też następuje w naszym przypadku - błonka wokół kryształu napina się, rozpierana rosnącą objętością roztworu, aż pęka. Gdy tylko błonka pęknie w jakimś punkcie, wokół wylewającej się porcji roztworu soli powstaje na nowo cienka błonka krzemianów. Przez błonkę do środka wnika woda, rozpuszcza się nowa porcja soli a ciśnienie rośnie do kolejnego pęknięcia.
Wzrost roślinek jest więc wynikiem ciągłego rozrywania wciąż powstającej błonki, i trwa do momentu aż rozpuści się cała sól z wrzuconego kryształka, a stężenia między środkiem a zewnętrzem się wyrównają.
Jeśli chodzi o kształt, to jest determinowany przez dwie siły - ciśnienie hydrostatyczne i siłę wyporu. Wielkość ciśnienia hydrostatycznego zależy od wielkości słupa roztworu nad danym punktem. O góry rosnącej błonki słup ten, a więc i ciśnienie, są nieco niższe niż przy dnie, dlatego tam najłatwiej jest ciśnieniu wewnątrz rozerwać błonkę i gałązka rośnie do góry. Dodatkowo roztwory soli w pęcherzyku są zwykle nieco lżejsze niż szkło wodne i dlatego powstająca gałązka zachowuje pion. Jakieś znaczenie mają też pęcherzyki powietrza przyczepiające się do błonki.

Kolor powstającej roślinki zależy od dodanej soli. Chlorek wapnia i siarczan glinu dadzą pędy białe, siarczan miedzi niebieskie, chlorki chromu III, niklu II i żelaza II dadzą rośliny zielone o różnych odcieniach, chlorek kobaltu da roślinę fioletowo-różową. Kształt pędu bardziej zależy od wielkości i kształtu pierwotnej grudni niż od rodzaju soli. Swój wpływ ma też stężenie szkła wodnego, od którego zależy grubość pędów.
Zastanawia mnie czy efekt taki dałyby kryształy kwasu cytrynowego, który powinien pokrywać się błonką uwodnionej krzemionki.

Doświadczenie to znane jest od dawna, i znane są liczne jego warianty. do najciekawszych należy chyba eksperyment na międzynarodowej stacji kosmicznej, gdzie chciano sprawdzić, czy w stanie nieważkości roślinki przybiorą jakieś ciekawe kształty - okazało się że brak kierowania przez ciśnienie hydrostatyczne, powoduje powstawanie nieregularnych odgałęzień skierowanych w różne strony.

środa, 5 marca 2014

Kiedyś w laboratorium (38.)

Kiedyś po odparowaniu roztworu na wyparce, stwierdziłem że odbieralnik jest już prawie pełen, i należy zlać powstałą tam mieszankę różnych rozpuszczalników. Gdy zamieszałem odbieralnikiem, stwierdziłem że wśród wykroplonych tam rozpuszczalników znalazł się też jakiś niemieszalny z całą resztą ale o podobnej gęstości. Swobodnie unosząc się utworzył obły kształt załamujący światło:

Był to chyba dioksan, którego używany przy reakcjach Buchwalda-Hartwiga.
Obecnie bardziej pilnujemy tego aby zbierać z wyparki czyste mieszanki.

Ciekawe czy dałoby się w taki sposób otrzymać idealną kulę?

piątek, 24 stycznia 2014

Ostatnio w laboratorium (37.)

W postępach syntetycznych dotarłem już do trzeciego z pięciu zaplanowanych ligandów, zawierającego grupę izopropylową przy pierścieniu oksazolinowym. Problemy z oczyszczeniem powodowały jednak, że otrzymałem niespełna 20 mg związku, więc będę musiał chyba powtórzyć reakcję. Oprócz widma NMR mogłem z tak małą ilością zbadać jeszcze temperaturę topnienia. Przy okazji sfotografowałem drobne kryształki związku:

Topiły się w 159 stopniach. A oto wysumulowany kształt cząsteczki:

piątek, 10 stycznia 2014

Ostatnio w laboratorium (36.)

Dawno nie wrzucałem migawek z pracowni.

Gdy skończę kolumnę chromatograficzną, to jest oddzielę pożądany składnik od mieszaniny, muszę ją opróżnić. Wypełnienie, nasączone rozpuszczalnikiem, jest półpłynne, wystarczy więc obrócić kolumnę, podstawić pojemniczek i lekko popukać, aby wypełnienie wypłynęło.
Jest to jednakowoż błotko tiksotropowe - płynie gdy jest wstrząsane ale zastyga gdy już skapnie. Dlatego kolejne porcje spływające do naczynka tworzą rosnący stalagmit, czemu jako chemik-esteta z ciekawością się przyglądam.
Niedawno podczas takiego opróżniania kolumny, kapiące z dwóch miejsc błotko utworzyło taką oto trójwymiarową rzeźbę z czymś w rodzaju łuku:

Czyżby łuk triumfalny sukcesów syntetycznych?

czwartek, 31 października 2013

Ciekawe zjawisko w laboratorium

Raz już tu opisywałem "wulkany pyłowe" jakie zauważyłem nasączając wypełnienie chromatograficzne, nie jest to jednak jedyne ciekawe acz drobne zjawisko jakie zauważyłem podczas pracy laboratoryjnej.

 Po wlaniu na kolumnę 'błotka" żelu wypełnienia, odstawiłem opróżnioną zlewkę na bok. Nie była oczywiście opróżniona do końca, bo jej nie przemywałem, toteż na ściankach i krawędzi pozostała warstewka szybko wysychającego żelu. Gdy przyjrzałem się jej po kilku minutach ze zdumieniem zauważyłem wyrosły na krawędzi krzaczkowaty porost:

Wyglądał jak szron i w pierwszej chwili nawet tak myślałem, zwłaszcza że po strąceniu części, kawałki stopniały na palcu, a płyn po roztopieniu nie pachniał wcale rozpuszczalnikiem (chlorek metylenu+heksan). Z drugiej strony nie był aż tak zimny, a nie sądziłem aby parujący bez dmuchania chlorek mógł się tak bardzo ochłodzić. Gdy niedawno ponownie zauważyłem to zjawisko, zebrałem część porostu szklaną płytką - po stopnieniu otrzymałem kroplę wody z niewielką ilością krzemionkowego wypełnienia. Najwyraźniej całość formuje się z wypełnienia zwilżonego wodą kondensującą na chłodnej powierzchni, które wyrasta od dołu w miarę wysychania rozpuszczalnika, co uwalnia większe porcje wypełnienia.
Niemniej zaskakująca jest forma, wręcz krystaliczna. Będę musiał na przyszłość sfilmować formowanie się krzaczków.

Słyszał ktoś o czymś takim? Może odkryłem nieznane zjawisko....