informacje



Pokazywanie postów oznaczonych etykietą metale. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą metale. Pokaż wszystkie posty

czwartek, 12 kwietnia 2018

Spóźnione pierwiastki

Wiemy z pewnością, że w dawnych czasach nowe pierwiastki znajdowano po prostu w naturze, wyodrębniając je z minerałów. Oraz, że po pewnym czasie się nam skończyły i zaczęliśmy sztucznie otrzymywać nowe, nietrwałe. Kiedy jednak nastąpiło to przejście? Jaki występujący w naturze pierwiastek był tak rzadki i nieuchwytny, że odkryto go na samym końcu?
Jedna ze starych wersji tablicy Mendelejewa

Złotym okresem odkryć pierwiastków był zdecydowanie XIX wiek, czas gdy rozwój chemii poszedł ostro do przodu, zaś kolejne pokolenia ciekawskich badaczy wsadzały do próbówek co tylko wpadło im w oko. O ile do końca XVIII wieku znano około 34 pierwiastki (chlor, odkryty w 1784 przez Scheelego początkowo uznawano za bardzo trwały tlenek) to do końca XIX wieku odkryto już 49. Natomiast lista naturalnych pierwiastków w wieku XX jest bardzo krótka.

89
Wiek otwiera pierwiastek Aktyn, którego historia była nieco skomplikowana. Nieco wcześniej, w 1899 roku chemik Andree Louis Debierne korzystając z materiałów otrzymanych z blendy smolistej, które zostały małżonkom Curie po wyizolowaniu Radu i Polonu, uzyskał z nich wysoce radioaktywną sól nieznanego pierwiastka. Ogłosił odkrycie, nadając mu nazwę aktyn, był bowiem radio-aktywny.
Świecące pod wpływem własnej promieniotwórczości sole aktynu
Następnie w roku 1902 Friedrich Oscar Giesel zajmując się przeróbką tejże rudy uranu, uzyskał sól bardzo radioaktywnego pierwiastka, który nazwał Emanium, bowiem próbki świeciły w ciemnościach. Gdy minęło parę lat, chemicy uznali, że najprawdopodobniej oba pierwiastki są jednym, w związku z czym pierwszeństwo odkrycia i nazwa przypadły Debierne.
Dopiero w latach 70. chemicy przyjrzeli się uważniej pierwszym doniesieniom. Aktyn Dobiernera opisany w pierwszych artykułach, miał jednak mimo wszystko inne właściwości, niż ten wyizolowany później i poddany dalszym badaniom. Po przeanalizowaniu metody otrzymania uznano, że jednak to Giesel miał rację i to on był odkrywcą pierwiastka. Nazwy jednak nie zmieniono z powrotem na Emanium, bo minęło już kilka dekad i za dużo było zmieniania.[1]

71
Lutet był jednym z ostatnich lantanowców. Jest to grupa pierwiastków, zwykle na tablicach wyrzucana pod resztę pierwiastków, ze względu na właściwości chemiczne niezwykle podobne w jej obrębie. To podobieństwo było zresztą przyczyną problemów w izolacji. Co chwila okazywało się, że zgłoszony nowy lantanowiec w rzeczywistości jest mieszanką dwóch różnych, zaś któryś z tych po wyizolowaniu i zgłoszeniu, ponownie okazywał się mieszaniną. Na końcu takiego ciągu znalazł się lutet.
Zaczęło się od badania minerałów tzw. "ziem rzadkich" nazwanych od nieczęstego występowania. Fiński mineralog John Gadolin w kopalni koło szwedzkiej wioski Ytterby odnalazł minerał, z którego wydzielił tlenek nieznanego pierwiastka. Od nazwy miejsca z którego pochodził, nazwano go Yttrium, czyli po polsku itr. Następnie po kilku dekadach jego kolega po fachu Carl Mossander odkrył, że itr zawiera domieszkę dwóch innych, podobnych pierwiastków, którym nadał niewymyślne nazwy urobione z podziału na sylaby tej pierwotnej - terb i erb. Po kolejnych dekadach Szwajcar de Marignac odkrył, że z kolei erb też nie jest czysty i wydzielił z niego kolejny pierwiastek. Będąc wierny tradycji nadał mu łudząco podobną nazwę Ytterbium, czyli itreb. Jak łatwo się domyśleć, działalność tych panów przyprawia o ból głowy studentów chemii nieorganicznej, którym wszystkie te nazwy się mylą. Natomiast mała szwedzka wioska może się pochwalić tym, że od niej nazwano aż cztery pierwiastki.
Tlenki kilku lantanowców, tzw "zemie rzadkie"

W międzyczasie okazało się, że erb zawiera jeszcze domieszkę holmu i tulu, potem, że holm zawiera w sobie dysproz, a znany od dawna didym to mieszanka neodymu i prazeodymu. Gdy na swoje miejsce wskoczyły jeszcze gadolin, samar i europ, w tak uformowanej grupie pozostały tylko dwie irytujące dziury - pierwiastek 61 i pierwiastek 71.

Dla badaczy dość oczywistym pomysłem było szukanie wśród już znanych i wydzielonych pierwiastków. A nuż któryś okaże się mieszanką. Wreszcie w 1907 roku na trop tej samej substancji wpadli równocześnie trzej badacze - Francuz Gregore Urbain i Austriak Carl Auer von Welsbach i Amerykanin Charles James. Ten ostatni opublikował doniesienie dość późno, i nie sposób było mu stawać w szranki w boju o pierwszeństwo, natomiast pozostali panowie wszczęli kłótnię.
Urbain zaproponował dla pierwiastka nowo wydzielonego i dla oczyszczonego itrebu nazwy lutet - od zlatynizowanej nazwy regionu we Francji - i neoitreb; von Welsbach zaproponował cassiuopeium i abldebaranium, od nazw obiektów astronomicznych. Ponieważ pierwiastek nie może posiadać  różnych nazw, trzeba było w końcu coś ustalić. W 1909 roku komisja zajmująca się ustalaniem dokładnej masy atomowej pierwiastków rozstrzygnęła spór, uznając że Urbain doniósł o wydzieleniu nowego pierwiastka o miesiąc wcześniej, był zatem pierwszy i może nadać pierwiastkowi nazwę.
Mimo to jeszcze do lat 50. w krajach niemieckojęzycznych używano nazwy Cassiopeium i symbolu Cp. [2]


75
Gdy losy nazwy pierwiastka 71 jeszcze się ważyły, rozpoczynało się podobne zamieszanie z pierwiastkiem 75.
Po odkryciu metody wyznaczania prawdziwej liczby atomowej i uporządkowaniu pierwiastków (zamieniono kolejnością potas i argon, które ułożone wedle masy atomowej nie bardzo pasowały do grup) okazało się, że w grupie platynowców lekkich jest jeszcze jeden pierwiastek nieodkryty. Różne grupy chemików zaczęły więc badać spektroskopowo rudy platyny.
W 1925 roku małżeństwo niemieckich chemików Ida i Otto Noddack ogłosiło wykrycie metodą spektroskopii rentgenowskiej śladów nowego pierwiastka w rudach platyny i minerale kolumbicie. Wraz z współpracownikiem Otto Bergiem wyizolowali 1 g soli tego pierwiastka, po przerobieniu 600 kg kolumbitu. Nazwali go renem, od nazwy rzeki na granicy francusko-niemieckiej.
W późniejszych badaniach ten sam zespół ogłosił wykrycie śladów pierwiastka 43, którego też brakowało w układzie okresowym, proponując dla niego nazwę Masurium, dość zresztą kontrowersyjną (pochodzi od latynizacji nazwy Mazur i w uzasadnieniu miała upamiętniać rdzennie niemiecki region). Tego wyniku nie udało się jednak powtórzyć innym badaczom.

Następnie minęło kilka dekad gdy pojawiło się doniesienie, że nawet w przypadku renu zostali uprzedzeni. W 1909 roku japoński badacz Masataka Ogawa ogłosił wykrycie pierwiastka 43 w thorianicie. Wyizolował niewielką próbkę i nazwał odkryty pierwiastek Nipponium, od jednej z nazw Japonii. Późniejsi badacze z innych krajów nie mogli powtórzyć tego odkrycia, więc nie zostało ono uznane. Dopiero w naszych czasach powrócono do oceny jego dzieł. Po przeanalizowaniu oryginalnych zdjęć z zapisem widma rentgenowskiego Nipponium stwierdzono, że wprawdzie nie zawierały pierwiastka 43, ale mogły zawierać ren, co oznaczałoby, że to Ogawa jest odkrywcą tego pierwiastka mimo błędnego przypisania. Stąd różne źródła uznają za odkrywcę renu albo Ogawę, albo Noddacków albo całą trójkę bez wdawania się w spory.[3]

72
W międzyczasie doszło natomiast do odkrycia pierwiastka 72. Pierwsze zgłoszenie w tej sprawie opublikował znany już nam Urbain przy okazji prac nad oczyszczaniem lantanowców, wydawało się bowiem, że szukany element należy do tej grupy. Ogłoszony w 1911 pierwiastek nazwał Celtium, lecz ponownie nie udało się tego odkrycia potwierdzić innymi metodami. W dużo późniejszym czasie, w związku ze sporami o pierwszeństwo, przebadano spektroskopowo próbki Urbaina, nie znajdując w nich pierwiastka 72.
Próbki metalicznego hafnu pokrytego warstewką tlenków

W 1923 roku pracujący w Kopenhadze fizyk Niels Bohr zasugerował, że z praw okresowości można wywnioskować podobieństwo chemiczne pierwiastka 72 do znanego już cyrkonu, w związku z czym lepiej szukać w jego rudach. Sugestię podłapali chemicy Georg von Hevesy i Dirck Costler. Zbadali oni cyrkon pochodzący z norweskich rud i metodą spektroskopii rentgenowskiej wykazali ślady szukanego pierwiastka. Przy pomocy mozolnej krystalizacji frakcyjnej udało się oddzielić małą próbkę soli nowego pierwiastka. Od zlatynizowanej nazwy Kopenhagi, nazwano go hafnem.
Uznając pierwszeństwo Ogawy w odkryciu renu, hafn okazuje się ostatnim trwałym pierwiastkiem wyizolowanym z próbek naturalnych. Ale nie ostatnim w tym artykule.[4]

91
Istnienie jeszcze jednego pierwiastka między thorem i uranem było przewidywane jeszcze przez Mendelejewa. Ponieważ grupa Aktynowców nie była wtedy uznawana za odrębną, bo znano z niej tylko 2 pierwiastki, brakujący pod numerem 91 był uznawany za podobny do tantalu i w jego rudach go poszukiwano. Dlatego też wszyscy przeoczyli doniesienie Williama Crookesa, który w 1900 roku opisał wyizolowanie z soli uranu substancji, nazwanej przez niego uranem X. On sam nie opisał jej jako pierwiastka, sądził, że to raczej jakaś forma uranu nieco bardziej od niego promieniotwórcza. Na podstawie późniejszych analiz uznano, że uzyskał wtedy mieszankę thoru z pierwiastkiem 91, której dalej nie rozdzielał.
W 1913 roku Kazimierz Fajans i Oswald Göhring wyizolowali szukany pierwiastek badając produkty rozkładu promieniotwórczego uranu. Nazwali go brevium, czyli "krótkotrwały" ocenili bowiem jego czas półtrwania na zaledwie 6 godzin. Następnie w 1917 roku grupa Otto Hanna i Lisie Meitner wyizolowała z rud uranu długożyjący izotop nazwany przez nich protaktynem, bowiem rozpadał się do aktynu. W podobnym czasie na ślad pierwiastka wpadł jeszcze John Cranston, ale nie mógł opublikować odkrycia, bo powołano go na wojnę.
Protaktyn jest błyszczącym, złotawym metalem

Zawikłany węzeł odkryć przecięła dopiero po drugiej wojnie światowej IUPAC, uznając prawo do nazwania pierwiastka dla Hanna i Meitner, ponieważ wyizolowali oni izotop o najdłuższym okresie półtrwania. Historycy nauki w związku z tym jako odkrywców uznają albo Hanna i Meitner, albo całą czwórkę z Fajansem i Goeringiem.[5]

87
Dziura w układzie okresowym na miejscu 43 została załatana sztucznie, gdy w 1934 roku bombardując neutronami molibden otrzymano technet. Dziura w miejscu 61 została załatana sztucznie wraz z otrzymaniem prometu, tymczasem tuż przed wybuchem II wojny światowej francuskiej chemiczce udało się wyizolować ostatni wyodrębniony ze źródeł naturalnych pierwiastek.
Uczennica Marii Curie Skłodowskiej, chemiczka Marguerite Perey, zajmowała się głównie pracą nad izolowaniem i oczyszczaniem aktynu z próbek lantanowców.
 Pod koniec lat 30, przy pomocy precyzyjnych badań aktywności wykazała, że część próbek aktynu jest silniej promieniotwórcza od innych a zakres energii emitowanych cząstek nie pasował do izotopów aktynu. Wniosek, że zawiera dodatek czegoś silniej radioaktywnego nasuwał się sam, zwłaszcza w takiej pracowni. Wprawdzie badana substancja rozpadała się bardzo szybko, ale badając aktywność różnych roztworów, którymi przemywano próbki aktynu stwierdziła, że jest to pierwiastek o właściwościach litowców, czyli poszukiwany od dawna eka-cez.
Perey ogłosiła wyniki w 1939 roku, proponując nazwę catium i symbol Cm, w nawiązaniu do przewidywanej własności najwyższej elektrododatności. Kilka lat później jej przełożona Irena Juliot-Curie zgłosiła zastrzeżenia do takiej nazwy. Zaproponowany skrót zbiegł się ze skrótem proponowanym dla sztucznego pierwiastka kiuru, nazwanego zresztą na cześć jej matki. Ponadto anglojęzycznym chemikom catium kojarzyło się z kotami. Dość, że Perrey zaproponowała ostatecznie zmianę nazwy na francium, czyli frans, od nazwy swojego kraju i ta propozycja została w końcu zaakceptowana.[6]
300 tysięcy atomów fransu w pułapce magnetycznej


Był to ostatni pierwiastek, którego odkrywcy izolowali ze źródeł naturalnych. Było co prawda kilka, które otrzymano sztucznie a potem odkryto w śladowych ilościach w naturze, ale to już nie to samo.
---------
* C Fry, M Thoennessen, Discovery of the Actimium, Thoriom, Protactinium and Uranium Izotopes

[1] https://en.wikipedia.org/wiki/Actinium
[2] https://en.wikipedia.org/wiki/Lutetium
[3] https://en.wikipedia.org/wiki/Rhenium
[4] https://en.wikipedia.org/wiki/Hafnium
[5] https://en.wikipedia.org/wiki/Protactinium
[6] https://en.wikipedia.org/wiki/Francium



czwartek, 15 marca 2018

Chemiczne wieści (16.)

Galfen
Były już monoatomowe warstwy węgla (grafen), krzemu, azotku boru i tego typu materiałów, teraz czas na rzadki metal przejściowy gal.
Gal znany jest jako metal o wyjątkowo niskiej temperaturze topnienia, mogący roztopić się w dłoni; jego stopy z cyną i indem pozostają ciekłe w temperaturze pokojowej i zastępują w pewnych zastosowaniach toksyczną rtęć. Niektóre jego związki, jak azotek i arsenek znane są jako dobre półprzewodniki, mające zastosowanie w elektronice, stąd po otrzymaniu grafenu zastanawiano się nad możliwością wytwarzania podobnych warstw analogu z galem.

Stosowana w podobnych sytuacjach technika osadzania na fazie stałej nie dawała dobrych rezultatów, gal miał skłonność albo do tworzenia ciekłej fazy nieuporządkowanej albo drobnych kryształków. Trudno było też liczyć na oddzielenie warstw, jakie gal tworzy w czystych kryształach odmiany alfa, te bowiem za mocno ze sobą oddziałują. Indyjscy badacze spróbowali więc jeszcze jednej, dość zabawnej metody. Ogrzali oni gal do temperatury 29,7 °C , czyli odrobinkę ponad temperaturę topnienia. Do kropli przyłożyli podłoże, którym mógł być kwarc, grafit lub krzem, o temperaturze niewiele niższej, po czym szybko wyciągnęli. Na podłożu została warstewka galu o grubości kilku atomów.
Credit: Ajayan Research Group/Rice University

Przy czym nie polegało to po prostu na tym, że rozprowadzili na powierzchni bardzo cienką warstwę a ona już zastygła. W temperaturach bliskich topnieniu, warstwy galu były na tyle słabo związane, że nastąpiło oderwanie ich od siebie - część powstającego podczas ochładzania stałego metalu została na powierzchni  kropli, część na podłożu. Otrzymana warstwa jest lepiej związana z podłożem niż grafen i zależnie od typu podłoża wykazuje różne właściwości. [1]


Rekordowe wiązanie węglowe
Typowa długość pojedynczego wiązania C-C w związkach organicznych, wynosi 1,54 A, wiązania podwójne i potrójne są krótsze. Niedawno uzyskano związek, w którym geometria wymusza na wiązaniu, aby wyraźniej się rozciągnęło.

Credit: Ishigaki Y. et al., Chem, March 8, 2018
Badania krystalograficzne potwierdziły, że w tym prostym węglowodorze między grupami metylenowymi wiązanie ma długość 1,806 A, największą odnotowaną w stabilnym związku organicznym.[2] Rzecz dotyczy oczywiście klasycznego wiązania kowalencyjnego. W niektórych badaniach notowano dłuższe przypadki bardziej nietypowych wiązań, na przykład wiązanie dwuelektronowe-czterocentrowe w dimerze rodników tetranitryloetylenu, o długości 2,98 A.[3]

 Biopaliwo z drewna w mikrofalówce
Grupa badaczy z Chin opublikowała informacje o obiecującej metodzie syntezy lewulinianu metylu z biomasy zawierającej celulozę. Estry kwasu lewulinowego używane są jako nietoksyczne, mało lotne rozpuszczalniki oraz dodatki do paliwa, zwłaszcza diesla i biodiesla, można je otrzymać przez termiczny rozkład glukozy w warunkach odwadniających i estryfikację powstałego kwasu. Dotychczasowe przemysłowe metody używały jako katalizatorów bądź stężonego kwasu siarkowego, bądź związków metali ciężkich.

W opublikowanej metodzie konwersja celulozy (będącej przecież polimerem glukozy) dokonuje się przy pomocy siarczanu glinu z ogrzewaniem mikrofalowym, co pozwala przyspieszyć reakcję bardziej niż konwencjonalne ogrzewanie. Reakcja prowadzona jest w metanolu z dodatkiem wody, która hamuje tworzenie zesmołowanych produktów ubocznych i formację eteru dimetylowego. W najbardziej optymalnym układzie reakcja prowadzona przez 40 minut w temperaturze 180 stopni, pozwala na przekształcenie w lewulinian 70% celulozy, co oznacza, że metoda najpewniej znajdzie zastosowanie przemysłowe.[4]


Hel w ciśnieniowych solach
Po ostatnim doniesieniu o wysokociśnieniowym połączeniu helu z sodem, w którym kationy sodu i pary elektronowe utworzyły sól elektrydową z wnękami zawierającymi hel, zaczęto badać możliwość występowania innych takich "soli-nie soli". Pisałem o nich w zeszłym roku (Link).

W ostatnim doniesieniu z Nature analizuje się wyniki eksperymentów z wysokociśnieniowymi formami związków jonowych, do których wprowadzono hel. Udało się w ten sposób otrzymać połączenia MgF2-He i MgO-He.
Ściśle rzecz traktując, nie są to związki chemiczne helu, nie doszło bowiem do powstania wiązań czy przeniesienia części ładunku. Również badania rozkładu ładunku stwierdziły, że orbitale helu są jedynie nieco zdeformowane atomami wokół. Niemniej wprowadzenie dodatkowych atomów do struktury krystalicznej dość wyraźnie ją zmienia, zmianie ulega symetria sieci oraz liczba koordynacyjna jonów. Najbardziej wyraźne jest to w przypadku tlenku magnezu, który w normalnej postaci tworzy sieć krystaliczną typu halitu (F/m3m) w układzie regularnym. W formie "nahelowanej" tworzy sieć w układzie heksagonalnym (P63/mmc) podobnym do molibdenitu.

Oczywiście zastanawiającą sprawą jest przyczyna dla której w ogóle hel tworzy takie połączenia. Z obliczeń wynika, że hel obniża energię związaną z odpychaniem pewnych fragmentów sieci. W kryształach zawierających jeden jon o podwójnym ładunku i dwa o pojedynczym ładunku przeciwnym, w strukturze można wyróżnić linie atomów w których jon jednego rodzaju przedzielony jest dwoma drugiego rodzaju. Te dwa jony obok siebie nieco się odpychają. W warunkach wysokociśnieniowych, gdy atomy są do siebie przybliżane przez nacisk, odpychanie to nabiera znaczenia.
Włączenie w strukturę helu, który wchodzi pomiędzy pary takich samych jonów oddala od siebie te fragmenty sieci, zmniejszając energię związaną z odpychaniem, nie zmieniając natomiast pozostałych sił przyciągających w pozostałych fragmentach sieci. Zatem  w warunkach wysokiego ciśnienia, obojętna przekładka helu może być korzystna energetycznie dla stabilizacji sieci.

Badacze wskazują przy okazji, że tworzenie takich połączeń może sprzyjać wiązaniu w głębinach ziemi, w minerałach płaszcza, dużych ilości helu, w który nasza planeta może się okazać bardziej zasobna, niż to się dotychczas wydawało.[5]
-------
[1]  Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick, Praveena Manimunda, Syed Asif S. Asif, Anthony Stender, Robert Vajtai, Abhishek K. Singh, Chandra S. Tiwary and Pulickel M. Ajayan; Atomically thin gallium layers from solid-melt exfoliation, Science Advances  09 Mar 2018: Vol. 4, no. 3, e1701373 DOI: 10.1126/sciadv.1701373

[2]  Yusuke Ishigaki, Takuya Shimajiri, Takashi Takeda, Ryo Katoono, Takanori Suzuki; Longest C–C Single Bond among Neutral Hydrocarbons with a Bond Length beyond 1.8 Å, Chem.  (2018.)
[3] Novoa J. J.; Lafuente P.; Del Sesto R. E.; Miller J. S. (2001-07-02). "Exceptionally Long (2.9 Å) C–C Bonds between [TCNE]− Ions: Two-Electron, Four-Center π*–π* C–C Bonding in π-[TCNE]22−". Angewandte Chemie International Edition. 40 (13): 2540–2545
[4]  Yao-Bing Huang, Tao Yang,a Yu-Ting Lin, Ying-Zhi Zhu, Li-Cheng Li and Hui Pan, Facile and high-yield synthesis of methyl levulinate from celluloseGreen Chem., 2018, Advance Article

[5] Zhen Liu. et. al.; Reactivity of He with ionic compounds under high pressure, Nature Communications volume 9, Article number: 951 (2018)

poniedziałek, 22 stycznia 2018

Chemiczne wieści (14.)

Radioaktywne ocieplenie
Następujące w ostatnich dekadach ocieplenie globalnego klimatu, związane z przekształceniami ekosystemów, wycinaniem lasów i działalnością przemysłową, okazuje się wywoływać nietypowy skutek - woda w oceanach staje się coraz bardziej radioaktywna.

Porównując wyniki pomiarów zawartości radioizotopów w wodzie Oceanu Arktycznego, badacze z USA stwierdzili, że zawartość izotopu radu 227 wzrosła dwukrotnie w ciągu dziesięciu lat. Wzrost dotyczył głównie rejonów, które odmarzają latem silniej niż w poprzednich dekadach. Najprawdopodobniej brak całorocznej pokrywy lodu morskiego intensyfikuje mieszanie wód, zwiększa oddziaływanie fal i zwiększa siłę prądów przypowierzchniowych. Powoduje to spłukanie i przemieszczanie osadów dennych, zwłaszcza na płytkich obszarach szelfów kontynentalnych. Takie obszary są pokryte osadami rzecznymi, zawierającymi związki uranu i toru, praktycznie nierozpuszczalne w wodzie morskiej. Podczas naturalnego rozpadu powstaje z nich rad, który jest lepiej rozpuszczalny, ale zwykle więźnie w warstwach osadowych. Chyba, że poruszy je silniej mieszana wiatrem woda.

Największym źródłem radu jest w oceanie arktycznym wschodniosyberyjski szelf oceaniczny, rozległy obszar bardzo płytkiego morza w pobliżu cieśniny Beringa. [1]

Substancje sprzyjające życiu w meteorycie
Poszukiwacze życia w kosmosie z pewnością zainteresują się wiadomością, że w pewnych meteorytach udało się znaleźć mieszankę podstawowych substancji, sprzyjających powstaniu życia. Przebadano między innymi meteoryt Monahans, który spadł w marcu 1998 roku w Teksasie. Dwa fragmenty spadły na miasto, jeden wbił się w piasek koło boiska szkolnego, drugi wybił niewielki kraterek w asfalcie ulicy.[2] W ich składzie, oprócz ziaren typowych dla chondrytów węglistych, znajdowały się także błękitne kryształy halitu, czyli soli kamiennej, i podobnego sylwinu. Drugim badanym był meteoryt spadły kilka miesięcy później w Maroko, także zawierający halit, możliwe że oba pochodziły z tego samego źródła.

Po latach przeanalizowano dokładniej skład minerału, mając na uwadze, że podczas szybkiej krystalizacji halit może zamykać w małych pęcherzykach porcje roztworu wokół kryształu. Jak się okazało, kryształy z meteorytu zawierają tego typu inkluzje z wodą i związkami organicznymi. Są to głównie alifatyczne węglowodory, związki aromatyczne z grupami aminowymi i tiolowymi, ale także pewna ilość aminokwasów w tym występujące w białkach glicyna, alfa-alanina i beta-alanina, czy niebiałkowe jak kwas gamma-aminomasłowy czy eta-aminokapronowy. Oceniono, że takie aminokwasy mogły powstać w wyniku reakcji chemicznych prostych gazów na ziarnach mineralnych w niezbyt wysokich temperaturach. Pod względem składu enancjomerycznego były to w zasadzie racematy, tylko alanina wykazywała 5% nadmiar formy L.
Analiza ilości izotopów azotu w aminokwasach wykazała inny stosunek niż na Ziemi, co dowodziło pozaziemskiego źródła.[3]

Wcześniejsze badania meteorytu wskazywały na uformowanie się jego materii w stosunkowo dużym obiekcie planetoidalnym, zawierającym przynajmniej w pewnym okresie rezerwuary ciepłej, słonej wody, może w formie warstwy pokrytej lodem, o szacunkowej średnicy 150-250 km. W takich warunkach drogą dość powolnego narastania tworzyły się kryształy halitu, sylwinu i innych lekkich minerałów. Następnie zostały wyrzucone na powierzchnię pokrytą skalnym regolitem, gdzie scementowały się z ziarnami glinokrzemianów i związków węglistych. Ciemne ziarna meteorytu pochłonęły przez ten czas gazy szlachetne z wiatru słonecznego, co wskazuje na zaleganie tego fragmentu blisko powierzchni. Kolejne zdarzenie wyrzuciło bryłkę przemieszanych minerałów, która ostatecznie spadła na Ziemię. Szacunkowy wiek to 4,5 mld lat, czyli materia pochodzi z okresu bliskiego formowaniu się Układu Słonecznego.[4]
Jak na taki mały kamyczek, na prawdę sporo informacji.

Galoantymonen
Pierwszy przykład obojętnego związku z podwójnym wiązaniem Ga=Sb.

Chemicy bardzo chętnie sprawdzają, czy pewne teoretycznie możliwe połączenia pierwiastków, faktycznie są w stanie występować. Tworzono już takie związki, jak z podwójnym wiązaniem bor-bor czy sześciokrotnym molibden-molibden. Ostatnia publikacja z Nature opisuje eksperymenty na kompleksach metaloorganicznych, w których występuje rzadkie wiązanie gal-bizmut i gal-antymon. Ze względu na zbliżoną elektroujemność i małą energię, metale przejściowe niechętnie tworzą między sobą wiązania. W tym przypadku pomogło dobranie odpowiednio rozbudowanego ligandu organicznego.
Gdy jedno z testowanych połączeń, zawierające gal, antymon, dwa ligandy organiczne i połączony jonowo chlor zredukowano przy pomocy grafitku potasu, między atomami metalu powstało wiązanie podwójne, zwykle kojarzone bardziej ze związkami organicznymi. [5]

Fluorescencja sterowana temperaturą
Zespół opracowujący materiał do koncetratorów światła słonecznego, dokonał przy okazji ciekawego odkrycia materiału, który nie tylko świeci ale też bardzo wyraźnie zmienia kolor świecenia w zależności od temperatury.

Koncentrator fotowoltaiczny to specyficzne urządzenie, które skierowuje padające na niego światło w stronę ogniw fotowoltaicznych. Wydajność energetyczna takiego ogniwa często zależy od natężenia padającego światła, jeśli będzie oświetlone słońcem, będzie osiągać swoją maksymalną sprawność, ale niech tylko słońce zakryje cienka warstwa chmur a nie dość, że na ogniwo będzie padać mniej światła, to jeszcze ono samo będzie przetwarzać na prąd mniejszą ilość tego światła. Stąd powstał pomysł, aby skupiać światło na ogniwach może mniejszych, ale dzięki lepszej wydajności i tak dostarczających więcej prądu. Oprócz koncentratorów typowo optycznych, opartych o szkła czy lustra, sporo uwagi poświęca się koncentratorom luminescencyjnym.

Urządzenie takie ma postać półprzezroczystej płytki, zawierającej materiał, który pochłania część światła przechodzącego i równocześnie sam świeci, ale już bez zachowania kierunku. Ponieważ płytka luminescencyjna jest cienka oraz ma dużo większą gęstość niż powietrze dookoła, wyświecane we wszystkich kierunkach wtórne światło odbija się od wewnątrz w płytce i wylatuje na zewnątrz samymi krawędziami. To tam instaluje się ogniwa słoneczne. Płytka o rozmiarach szyby okiennej może pochłaniać boczną powierzchnią 10% światła, co daje efekt słabego przyciemnienia, ale ta zebrana całą płaszczyzną ilość energii, gdy zostanie skierowania w stronę krawędzi, daje już całkiem jasne światło, z którego można pozyskać trochę prądu.

W opisanym w artykule, który wpadł mi w oko [6], układzie zbierającym, użyto zielonego barwnika fluorescencyjnego umieszczonego w matrycy ciekłego kryształu z dodatkiem perylenodiimidu, będącego akceptorem elektronowym. No i znów trzeba nieco wyjaśnić - ciekłe kryształy to substancje zawierające gęsto upakowane cząsteczki bardzo długie i płaskie, które w pewnych niskich temperaturach zyskują właściwości podobne do krystalicznych. W warstwach tworzonych przez cząsteczki, wszystkie są z braku miejsca ułożone tak samo, choć mają pewną swobodę ruchu. Są niby krystalicznie uporządkowane, ale wciąż są ciekłe. Po podgrzaniu do odpowiednio wysokiej temperatury cząsteczki tracą to uporządkowanie, stając się chaotyczną cieczą.

Badacze zwrócili uwagę na to, że gdy badana mieszanina znajduje się w fazie ciekłokrystalicznej, to jest z cząsteczkami poukładanymi w porządku i ściśle, będący silnym akceptorem perylenodiimid jest słabo rozpuszczalny i tworzy agregaty. W takiej fazie za świecenie odpowiada wyłącznie wolny barwnik, który świeci na zielono. Po podgrzaniu cieczy do powstania fazy nieuporządkowanej, akceptor staje się dobrze rozpuszczalny. Dzięki temu może tworzyć z barwnikiem kompleksy donor-akceptor. W takim połączeniu barwnik reaguje na światło inaczej, i tym razem świeci na czerwono.
Do uzyskania kompletnie innego koloru wystarczy zmiana temperatury o 30 stopni.


-----
[1] Ignatius G. Rigor et al. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances, 2018; 4 (1): eaao1302 DOI: 10.1126/sciadv.aao1302
[2]  https://www.lpi.usra.edu/meteor/?code=16719
[3] Queenie H. S. Chan et al. Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 2018 DOI: 10.1126/sciadv.aao3521
[4] http://www.meteoritestudies.com/protected_MONAHANS.HTM
[5]  Chelladurai Ganesamoorthy et al. From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond, Nature Communications 9, Article number: 87 (2018)
[6] Michael G. Demije et.al.  Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix, Angew. Chem. Int. Ed. Volume 57, Issue 4
January 22, 2018 Pages 1030–1033 - Artykuł dostępny na zasadach Open Acces

niedziela, 30 października 2016

Dlaczego osm jest najgęstszym pierwiastkiem?

Witam po dłuższej przerwie.

Jak to mamy możliwość obserwować na co dzień, substancje i materiały różnią się między sobą między innymi tym, że podobnej wielkości kawałki mają różny ciężar. Klocki drewna rzucone na wodę pływają łatwo, bryły lodu wynurzają nad powierzchnię tylko końcówki a kamień tonie. Miarą tej właściwości jest gęstość, czyli masa mieszcząca się w danej objętości. Na gęstość wpływają różne cechy, na przykład porowatość potrafiąca znacznie zmniejszyć gęstość materiału (niektóre aerożele są niemal tak lekkie jak powietrze), zawartość wody, ale w większym stopniu rodzaj substancji.

Najgęstszym materiałem na ziemi jest metaliczny osm, metal szlachetny podobny do platyny. Jego gęstość to ok. 22,65 g/cm3, co oznacza, że kostka o boku 10 cm waży 22,5 kg. Jest dwa razy gęstszy od ołowiu, który już jest uważany za bardzo ciężki. Gęstością dorównuje mu tylko iryd (niektóre pomiary pokazują nawet nieco większą gęstość irydu ale to już zależy od sposobu pomiaru). W związku z tym rodzi się oczywiste pytanie - dlaczego osm jest aż tak ciężki?

Jedną z oczywistych przyczyn, jest jego wysoka masa atomowa - 190,23 u. Jego atomy są więc ciężkie i ta sama ich ilość waży więcej niż dla wielu innych metali. Jednakowoż nie jest osm wcale najcięższym pierwiastkiem, większą masę atomową (207 u) ma choćby ołów, który ma przecież dwa razy mniejszą gęstość

Kolejnym czynnikiem warunkującym jest promień atomowy, czyli wielkość atomu liczona do ostatniej powłoki elektronowej. Im mniejsze są atomy tym więcej może się ich zmieścić w tej samej objętości. W układzie okresowym dają się zauważyć dwie ogólne reguły wielkości atomów - pierwsza jest dość oczywista - w dół wielkość atomów rośnie, mają bowiem coraz bardziej dodatnie jądro, coraz większą ilość elektronów a w związku z regułami ich upakowania w przestrzeni, coraz więcej sięgających dalej powłok na których mogą się pomieścić.
 Druga jest natomiast mniej intuicyjna - wzdłuż okresu, od lewej do prawej, atomy się zmniejszają, mimo że krąży wokół nich coraz więcej elektronów. Wynika to stąd, że w okresie nie przybywają nowe zewnętrzne powłoki elektronowe, a elektrony zapełniają jedynie odpowiednie dla danego bloku podpowłoki, najpierw s, potem p, a dla cięższych pierwiastków też d i f. Natomiast ze wzrostem masy jądra rośnie ładunek przyciągający elektrony, co zmniejsza całkowitą średnicę atomu.
 Efekt ten najwyraźniejszy jest w górnych okresach. W dolnych okresach zmniejszanie się średnic atomów jest nawet większe niż by to wynikało z samego zwiększenia ładunku jądra. Tłumaczy się to bardzo słabym osłanianiem ładunku jądra przez orbital f, przez co najbardziej zewnętrzne elektrony czują przyciąganie nieco silniej.

Osm znajduje się w najniższym okresie z trwałymi pierwiastkami, mając w sobie także słabo ekranujący orbital f, jest zatem bardzo masywnym atomem, którego średnica nie jest tak duża jak to by można oczekiwać. Tyle tylko, że jeszcze mniejsze atomy ma wspomniany ołów, więc musi tu dokładać się jeszcze dodatkowy efekt.

Metale w stanie stałym nie stanowią po prostu atomów ułożonych jeden obok drugiego. Są połączone wiązaniami poprzez uwspólnione elektrony, związane na tyle słabo. że przeskakują z atomu na atom, tworząc zdezorganizowany "gaz elektronowy". To dzięki nim metale przewodzą prąd i ciepło, oraz dobrze odbijają światło. Połączenie dwóch atomów wiązaniem przybliża je do siebie, i to tym bardziej im większa jest energia tego wiązania. Na to więc jak dużo masy możemy zmieścić w objętości, będzie wpływała długość wiązania metalicznego.
Osm znajduje się w układzie okresowym w bloku D, co oznacza że zewnętrzne elektrony walencyjne pochodzą z orbitalu d mieszczącego 10 elektronów w 5 powiązanych parach. Podczas tworzenia wiązań z innymi atomami w metalu tworzą się orbitale molekularne, na które wchodzą elektrony, odchodząc od stanu podstawowego. W kolejnych, coraz cięższych atomach, na orbital molekularny wchodzi coraz więcej elektronów, przez co wzrasta uśredniona siła wiązania. Jednak po minięciu połowy pojemności orbitalu, w cięższych atomach elektrony zaczynają tworzyć pary co zmniejsza ich zdolność do wiązania. W efekcie najsilniej związane są atomy w metalach leżących w połowie bloku D a najsłabiej te leżące na początku i końcu. Silniej związane atomy leżą bliżej siebie i więcej się ich zmieści w danej objętości.
Miarą tych oddziaływań jest energia kohezji, która wzrasta w dół grupy i do środka bloku. Największą energię kohezji ma wolfram, zaraz za nim tantal, ren, osm i iryd, potem energia dość szybko spada. Przekłada się to wprost na temperatury topnienia i wrzenia - najtrudniej topliwym metalem jest wolfram, po nim ren, tantal i osm.

Podsumowując
Spróbujmy więc podsumować wszystkie efekty - osm leży w dość daleko w układzie okresowym i ma wysoką masę atomową, ale ze względu na wysoki ładunek jądra wielkość jego atomów nie jest tak duża. Znajduje w najniższym okresie z trwałymi pierwiastkami i tuż za środkiem bloku D, co przekłada się na wysoką energię kohezji i krótkie wiązania metaliczne. W związku z tym w danej objętości zmieścić się może dużo jego masywnych atomów. Wprawdzie są pierwiastki o większej od niego energii kohezji, ale po pierwsze o nieco mniejszej masie atomowej a po drugie o nieco większej średnicy atomów w stanie podstawowym. Są też pierwiastki o dużo mniejszych atomach i większej masie, ale wyraźnie mniejszej energii kohezji.
Po prostu trzy funkcje regulujące gęstość pierwiastków przebiegają tak, że ich suma osiąga minimum dla tego pierwiastka. Dla któregoś musiało się trafić. Ze względnie dużej, mimo pewnego spadku, energii kohezji korzysta jeszcze iryd, który jest drugim najgęstszym pierwiastkiem.

Czy to już koniec? Nie stworzymy jeszcze gęstszych materiałów? Cóż, sztucznie otrzymaliśmy jeszcze cięższe pierwiastki, uzupełniające 7 okres. Jeśli powyższe prawa stosują się do nich tak samo, to pierwiastki pośrodku okresu powinny być bardzo ciężkie i z wysoką energią kohezji. Teoretyczne obliczenia pokazują, że metaliczny has (Hs) o liczbie atomowej 108, który leży w układzie okresowym pod osmem, powinien mieć gęstość 41 g/cm3, a więc dwa razy większą. Jednak ze względu na bardzo krótki okres półtrwania, wynoszący około minuty dla najtrwalszych izotopów, zmierzenie tego bezpośrednio jest niemożliwe.

ed.
Gęstość metali rośnie wraz ze spadkiem temperatury. Dla irydu współczynnik objętościowej kurczliwości temperaturowej jest nieco większy niż dla osmu, a ponieważ ich gęstości są zbliżone pojawiają się przypuszczenia, że w bardzo niskich temperaturach, rzędu 50 K iryd może jednak wyprzedzać osm.[1] Pomiar gęstości w tak niskich temperaturach jest jednak nieco kłopotliwy i nie wiele było takich badań a teoretyczne wartości na tyle się zbliżają, że różnica staje się mniejsza niż granica błędu. Kto wie, może jednak przy dokładniejszych badaniach okaże się, że osm jest najgęstszy tylko w pewnym zakresie temperatur?
------------
[1]  John W. Arblaster, Is Osmium Always the Densest Metal?, Johnson Matthey Technol. Rev., 2014, 58, (3), 137 doi:10.1595/147106714x682337

*  https://en.wikipedia.org/wiki/Lanthanide_contraction
* https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Metals_and_Alloys:_Structure,_Bonding,_Electronic_and_Magnetic_Properties
* https://www.itp.tu-berlin.de/fileadmin/a3233/upload/SS12/TheoFest2012/Kapitel/Chapter_6.pdf
http://pubs.acs.org/doi/pdf/10.1021/ct500532v

wtorek, 6 października 2015

Chemiczne wieści (2.)

Wysokociśnieniowy osm.
Zachowanie się materiałów pod ekstremalnie wysokim ciśnieniem to dość ciekawa sprawa Ciała stałe zasadniczo uznaje się za nieściśliwe, jednak w rzeczywistości mają pewną niewielką ściśliwość, zaś poddanie ich wysokiemu ciśnieniu powoduje zbliżenie budujących je atomów, czasem powodując przemianę do nowej formy uporządkowania lub ujawnienie się nietypowych cech.

Zespół naukowców pod kierunkiem niemieckiego uniwersytetu Bayreuth dokonał ostatnio dość szczególnego odkrycia. Przy pomocy nowej komory ciśnieniowej udało się im wytworzyć najwyższe dotąd otrzymane ciśnienie statyczne - nacisk 770 GPa, czyli ciśnienie dwa razy większe niż w jądrze Ziemi. Ciśnieniu temu poddano natomiast najbardziej gęsty metal - osm - znany też z bardzo niskiej ściśliwości.
Jeśli prawie najmniej ściśliwy materiał poddano najwyższemu ciśnieniu, to chyba powinno z tego coś wyniknąć? Wbrew oczekiwaniom osm nie przyjął żadnej nowej struktury krystalicznej, jedynie atomy nieco się do siebie przybliżyły, zachowując ten sam układ co w warunkach normalnych. Zaskoczeniem okazało się natomiast coś innego - pomiędzy atomami oprócz znanych już wiązań metalicznych, utworzonych przez elektrony walencyjne, zaczęły się także pojawiać oddziaływania utworzone przez elektrony wewnętrznych powłok elektronowych, które nigdy nie biorą udziału w tworzeniu wiązań. [1]

Wcześniej znane były wyliczenia teoretyczne sugerujące możliwość tworzenia wiązań między wewnętrznymi elektronami przy dużych ciśnieniach, ale teraz taka możliwość znalazła jakieś potwierdzenie w badaniach rentgenowskich rzeczywistego materiału.

Najtrudniej topliwy materiał
Tantal, metal przejściowy podobny do cyrkonu, jest znany z wysokotopliwego węgliku, który staje się płynny dopiero w temperaturze 3880*C, podobną temperaturę topnienia ma węglik hafnu. Połączenie tych substancji daje materiał o jeszcze większej odporności na temperaturę, dla składu Ta4HfC5 topiący się dopiero przy 3990 stopniach Celsiusza. Ale fizykochemicy nie poprzestają. Nowe wyliczenia jakie właśnie opublikowano sugerują możliwość stworzenia jeszcze trwalszego materiału. Wedle symulacji mieszany węglik-azotek hafnu o optymalnym składzie HfN0,38C0,51, osiągnąć może temperaturę topnienia nawet do 4400*C.[2]
Pozostaje teraz tylko poczekać na próby uzyskania nowego materiału.

Bateria z grzybów
W poprzednim odcinku wieści mówiłem już o otrzymywaniu kwantowych kropek ze zmiksowanej kapusty, dlatego baterie do telefonów ze zwęglonych grzybów nie będą chyba aż tak zaskakujące.
Wszystko co trzeba o metodzie. Udostępnione przez University of California

Jednym z głównych komponentów baterii litowych jest grafitowa anoda, zwykle wytwarzana z syntetycznego grafitu porowatego. Jego wytworzenie w ilościach przemysłowych jest jednak nieco skomplikowane i niezbyt ekologiczne, stąd liczne próby stworzenia dobrej alternatywy. Jedną z tych prób opisuje praca badaczy z University of California.
Wzięli oni cienki plaster wycięty z owocnika grzyba, akurat w tym przypadku była to pieczarka, po czym poddali go zwęgleniu w hydroreaktorze w wysokiej temperaturze. Otrzymany zwęglony plaster dodatkowo wyżarzono uzyskując porowaty materiał złożony ze splecionych węglowych włókien zachowujących strukturę strzępek grzyba i przewodzący prąd, będący dobrym zamiennikiem grafitu. Anoda wytworzona ze zwęglonego grzyba nie potrzebuje dodatkowych lepiszczy, dobrze przyjmuje płynny elektrolit i dobrze oddziałuje z jonami. Bardzo możliwe że ze względu na strukturę będzie wytrzymywała więcej cykli ładowania.[3]

Woda orto, woda para 
Jądro atomu wodoru to proton, który jako samotna cząstka posiada szczególną właściwość jaką jest spin. W dużym uproszczeniu można przedstawić to jako wektor momentu pędu protonu, mogącego obracać się bądź w jedną lub w drugą stronę - opis kwantowy tego zjawiska jest dużo bardziej skomplikowany. Ponieważ proton jest cząstką naładowaną, jego spin powoduje powstanie małego jądrowego pola magnetycznego. W sytuacji gdy mamy cząsteczkę wodoru składającą się z dwóch atomów te jądrowe pola magnetyczne oddziałują ze sobą i możliwe stają się dwie sytuacje którym odpowiadają różne energie - wodór orto ma spiny skierowane w tą samą stronę, wodór para w przeciwną. Ta druga sytuacja jest minimalnie korzystniejsza energetycznie jednak różnica energii jest na tyle mała że w warunkach normalnych wodór posiada mieszankę cząsteczek z tych dwóch stanów z przewagą ortowodoru.

To zresztą ciekawa sytuacja - pod wpływem temperatury trwalszy parawodór przechodzi w ortowodór, natomiast przemiana w drugą stronę jest powolna bowiem utrudnia ją zabronione przejście kwantowe. W efekcie w wodorze gazowym przeważa mniej trwała energetycznie odmiana, co ma też przełożenie na skład wodoru ciekłego. W niskich temperaturach powolna przemiana ortowodoru w trwalszy parawodór ma istotne znaczenie dla przechowywania, bowiem przemiana ta przebiega z wydzielaniem ciepła. Aby więc ułatwić przechowywanie ciekłego wodoru, katalizuje się tą przemianę przy pomocy odpowiedniego dielektryka otrzymując przewagę trwalszej formy.
Wróćmy jednak do naszego newsa.

W cząsteczce wody dwa wodory znajdują się na tyle blisko siebie, że także i u nich powinna być możliwa izomeria spinowa, jednak dotychczas nie udało się tego wykryć. Cząsteczki wody oddziaływały ze sobą powodując ciągłą zmianę spinów, toteż trudno było uchwycić sygnał od populacji poszczególnych izomerów. Jak się jednak okazało, możliwe jest odizolowanie od siebie cząsteczek. Zespół badaczy z University of Suthampton otrzymał pochodną fullerenu C60 z pojedynczymi cząsteczkami wody wewnątrz węglowej kul. Tego typu połączenie stanowi kolejny przykład związków cząsteczek "połączonych acz nie związanych" jak omawiane tu kiedyś katenany.
Cząstki C60@H2O były wystarczająco odizolowane aby w niskich temperaturach możliwe było wykrycie czystych sygnałów izomerów spinowych wody i przemian jednego w drugi.
[4]

Paliwo z powietrza
Temat przeróbki dwutlenku węgla na paliwo jest aktualnie bardzo gorący, stąd też w ostatnich miesiącach ukazało się wiele doniesień dotyczących nowych sposobów takiej syntezy.
Wedle doniesień z początku sierpnia zespół z Argonne National Laboratory stworzył nowy katalizator do reakcji zamiany dwutlenku węgla i wody w metanol. Znane dotychczas katalizatory oparte o tlenki cynku i glinu zostały zmodyfikowane poprzez precyzyjne umieszczenie na powierzchni tlenku cynku klastrów czterech atomów miedzi, stanowiących centrum katalityczne do którego przyłącza się cząsteczka CO2. Materiał pozwala na przeprowadzanie reakcji w warunkach niższego ciśnienia i temperatury, co poprawia opłacalność całego procesu produkcyjnego. [5]

A co robić z metanolem?  Można go użyć jako paliwa, ale można też poddać innym procesom. Pod koniec września pojawiła się praca zespołu z ETH w Zurychu na temat nowego katalizatora umożliwiający ekonomiczny proces konwersji metanol-olefina (MTO). Metanol lub eter dimetylowy pod odpowiednim ciśnieniem może ulegać przemianie na powierzchni tlenku cynku, z wytworzeniem etenu. [6]

Mniej toksyczne wydobycie złota
Jednym ze sposobów na uzyskanie złota ze złóż w których występuje w postaci rozproszonej, jest metoda rtęciowa, w której wykorzystuje się zdolność rtęci do rozpuszczania złota i tworzenie amalgamatu, od którego może być oddzielona przez destylację. Dziś już w zasadzie się od niej odchodzi z powodu wysokiej szkodliwości, mimo to wciąż używają jej małe kopalnie w biedniejszych rejonach świata, co jest źródłem zanieczyszczeń. Szacuje się że nawet 40% rocznych emisji rtęci do środowiska pochodzi z małych kopalni Indonezji i środkowej Afryki.
Oczywiście można próbować różnych zakazów, ale trudno jest je egzekwować, tym bardziej że praca w kopalniach stanowi często jedyne źródło utrzymania najbiedniejszych. Jest też jednak ich przekleństwem - pracownicy mieszający skałę z rtęcią, wyciskający amalgamat (nawet ręcznie) a zwłaszcza pracujący przy wypalaniu amalgamatu dla usunięcia rtęci po kilku latach zaczynają chorować. Skażenie wraz z zanieczyszczonym złotem przenosi się do miast gdzie na opary rtęci narażone są rodziny złotników przetapiających surowe złoto.

Jednym z ciekawych sposobów aby sprawić, że proces stanie się mniej groźny dla tych, którzy nie chcą z niego zrezygnować, jest dostarczenie wytwórcom tanich aparatów do bezpieczniejszej destylacji.
Geochemik Marcello Veiga z kanadyjskiego Uniwersytetu Inżynierii i Górnictwa opracował przyrząd podobny do blaszanej retorty, takiej jak używane przez dawnych alchemików. Zbiornik w którym wyżarzany jest amalgamat kończy się długą opadającą rurą, której wąski koniec kończy się w zbiorniku z zimną wodą. Opary rtęci zamiast trafiać do atmosfery są skraplane a krople metalu zbierane na dnie zbiornika, dzięki czemu może być użyty ponownie. W efekcie emisje rtęci spadają o 90%, mniej jej trafia do środowiska a pracownicy są mniej narażeni na toksyczne opary[7]


---------
[1] The most incompressible metal osmium at static pressures above 750 GPa;L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L. V. Pourovskii, M. I. Katsnelson, J. M. Wills, and I. A. Abrikosov; Nature (2015); DOI: 10.1038/nature14681
[2]  Prediction of the material with highest known melting point fromab initiomolecular dynamics calculations. Qi-Jun Hong, Axel van de Walle. Physical Review B, 2015; 92 (2) DOI: 10.1103/PhysRevB.92.020104
[3] Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries. Brennan Campbell, Robert Ionescu, Zachary Favors, Cengiz S. Ozkan, Mihrimah Ozkan. Scientific Reports, 2015; 5: 14575 DOI: 10.1038/srep14575
[4]  Electrical detection of ortho–para conversion in fullerene-encapsulated water. Benno Meier, Salvatore Mamone, Maria Concistrè, Javier Alonso-Valdesueiro, Andrea Krachmalnicoff, Richard J. Whitby, Malcolm H. Levitt. Nature Communications, 2015; 6: 8112 DOI: 10.1038/ncomms9112

[5]   Carbon Dioxide Conversion to Methanol over Size-Selected Cu4Clusters at Low Pressures. Cong Liu, Bing Yang, Eric Tyo, Soenke Seifert, Janae DeBartolo, Bernd von Issendorff, Peter Zapol, Stefan Vajda, Larry A. Curtiss. Journal of the American Chemical Society, 2015; 137 (27): 8676 DOI: 10.1021/jacs.5b03668
[6]  Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina, Aleix Comas-Vives, Maxence Valla, Christophe Copéret, Philippe Sautet.. ACS Central Science , 2015 r.; 150807151553006 DOI: 10,1021 / acscentsci.5b00226

[7]  http://www.rsc.org/chemistryworld/2015/08/chemistry-saves-thousands-gold-miners-mercury-poisoning

wtorek, 5 maja 2015

Czarne czy zielone?

Zaszedłem do sklepu aby przy okazji innych zakupów kupić też oliwki. Wybrałem słoiczek czarnych i oczywiście pierwsze co zrobiłem, to zajrzałem na masę netto i na skład. A tam oprócz soli i innych typowych składników zalewy, znalazłem też "stabilizator - glukonian żelazawy". Stabilizator czego? - zaciekawiłem się. A no stabilizator czarnej barwy.

Oliwka europejska to gatunek typowo śródziemnomorski. Jest wiecznie zielonym, niskim drzewem, często przybierającym formy krzewiaste. Za sprawą silnego systemu korzeniowego, dużej zdolności regeneracji i wolnego wzrostu może żyć długo, nawet ponad tysiąc lat. Owocem oliwki jest pestkowiec o tłustym miąższu otaczającym dużą pestkę. Większość światowych zbiorów jest przetwarzana na cenioną w kuchni oliwę, zdecydowanie mniejsza trafia na nasze stoły w formie zamarynowanej w soli lub occie.
I tutaj właśnie zaczyna się interesująca nas kwestia - owoc oliwki po zupełnym dojrzeniu ma kolor ciemnofioletowy, jednak większość oliwek zbiera się gdy są jeszcze zielone, niedojrzałe, głownie ze względu na lepszy smak. Skąd więc oliwka czarna?
Różne źródła różnie to podawały, ale wydaje się że są dwa typy - zebrane oliwki mogą być poddawane dalszej fermentacji, podczas której ciemnieją. Wydaje się jednak, że częściej poddawane są specjalnemu procesowi, polegającym na macerowaniu w alkalicznej zalewie z dodatkiem soli żelaza i przedmuchiwanej powietrzem. W alkalicznym środowisku związane polifenole w skórce oliwki ulegają uwolnieniu i mogą być utleniane przez powietrze do form ciemno zabarwionych. Sole żelaza dodatkowo tworzą z polifenolami ciemne kompleksy - opisałem to kiedyś w artykule o atramencie z dębowych galasów. W efekcie zielona oliwka staje się czarna.[1]
Identyczne procesy zachodzą podczas fermentacji, tutaj są jednak szybsze i dają równomierny kolor. Nawiasem mówiąc zielone oliwki są chronione przez dostępem powietrza aby same nie zaczęły ciemnieć - stąd zwykle zalewa zawiera kwas askorbinowy jako przeciwutleniacz.

Dodatek soli żelaza do zalewy utrwala kolor czarnych oliwek i zapobiega odbarwieniom. Ale czy wobec tego - zastanowią się niektórzy - czy przypadkiem aby taka czerniona oliwka nie jest szkodliwa? Wydaje się, że nie - sam owoc mógł wchłonąć nieco żelaza. Glukonian żelazawy jest natomiast solą nieszkodliwą - stanowi połączenie żelaza z pochodną glukozy, kwasem glukonowym. Połączenie to charakteryzuje się tym, że w takiej formie żelazo jest stosunkowo dobrze przyswajalne, stąd też używa się do w suplementach do leczenia anemii. Dopiero dość duże dawki mogą wywołać biegunki i podrażnienia, co związane jest z toksycznym działaniem samego żelaza.[2]

W anglojęzycznym internecie zauważyć można charakterystyczną pomyłkę - otóż wiele osób widząc nazwę "gluconate" sądzi, że jest to składnik zawierający gluten. A to nie prawda.

Wygląda na to, że sprzedawane w sklepach oliwki, nie są tak czarne jak to by się wydawało.
-------
[1] http://www.oliveoilsource.com/asktheexpert/are-olives-dyed-make-them-black
[2] http://en.wikipedia.org/wiki/Iron%28II%29_gluconate

sobota, 11 kwietnia 2015

Dlaczego sód wybucha w wodzie?

Czytelnik zwrócił jakiś czas temu moją uwagę na intrygujący artykuł ze styczniowego wydania The Nature*, sugerując że byłby to dobry temat na wpis. Po zapoznaniu się z tematem przyznałem mu rację. Bo to w sumie ciekawe, że tak znane i często wykonywane doświadczenie zawiera w sobie tak nietypowy i dopiero teraz poznany mechanizm.

Pierwiastki z grupy litowców to lekkie, miękkie metale o dużej aktywności, które reagują z powietrzem i wodą. W tym ostatnim przypadku reakcja jest silnie egzotermiczna doprowadzając często do zapalenia się powstającego wodoru zaś większe kawałki po prostu wybuchają, a dla najbardziej reaktywnych rubidu i cezu mamy do czynienia z detonacją wytwarzającą falę uderzeniową.
Tym jednak co zastanawiało badaczy, jest mechanizm wybuchu - eksplozja doprowadza często do rozdrobnienia reagującego kawałka, sądzono jednak że jej źródło jest zewnętrzne, a więc jest to wybuch wodoru na powierzchni, będący wynikiem gwałtownego przyspieszenia przebiegu reakcji. Jednak powierzchnia kontaktu metalu z wodą jest w tym przypadku raczej mała, zaś powstająca warstwa wodoru powinna raczej hamować proces niż przyspieszać - dla małych kawałków sodu powstający w reakcji gaz często jest w stanie unieść metal nad powierzchnię wody, działając niczym poduszka powietrzna.

Z dotychczasowych doświadczeń wynikało, że wybuch większych kawałków następuje gdy pod wpływem ciepła reakcji nastąpi częściowe stopienie, dlatego badacze z zespołu Pavela Jungwirtha z Czeskiej Akademii Nauk wybrali do badań stop sodu z potasem, będący eutektykiem ciekłym w temperaturze pokojowej. Wrzucenie kropli stopu do wody wywoływało natychmiastowy wybuch. Krople wkraplano do cylindra z wodą, filmując każdy wybuch bardzo szybką kamerą, przy czym upuszczano je z odpowiedniej wysokości, tak aby przerwać początkowo powstającą warstewkę gazu. Aby w obserwacjach nie przeszkadzało następujące później zapalenie się wodoru, cylinder napełniono gazem obojętnym.
Proces wybuchu kropli stopu okazał się bardzo szybki:
Rozpryskiwanie się bocznych strużek następuje już przy pierwszym kontakcie, zanim kropla zdąży zagłębić się w wodzie. Równocześnie podgląd od spodu ujawnił, że kropla rozpadła się na wiele drobnych igiełek ciekłego metalu. Kolejną ciekawą rzeczą jaką widać na zdjęciach jest fioletowy kolor rozprysku - sam sód jak i jego jony nie mają takiego koloru, dlatego najbardziej prawdopodobnym wyjaśnieniem było uznanie, że za kolor odpowiada krótko żyjące indywiduum - zsolwatowany elektron.

Solwatacja to proces otaczania jonu rozpuszczanego w roztworze przez cząsteczki rozpuszczalnika. Woda ma dość duży moment dipolowy i mimo obojętności elektrycznej jej cząsteczki są przyciągane przez pole elektryczne wokół jonu. Tak dzieje się przy rozpuszczaniu soli w wodzie, a wydzielanie się przy tym pewnej energii ma wpływ na łatwość rozpuszczania. Jon otoczony cząsteczkami rozpuszczalnika, to jon zsolwatowany:
W tym przypadku do wody został w dużych ilościach wprowadzony najmniejszy możliwy anion - wolny elektron. I na krótką chwilę, zanim nie doszło do reakcji redukcji wody, został on otoczony jej cząsteczkami. Ponieważ elektron może przyjmować w takiej postaci różne stany energetyczne, pochłania część światła widzialnego i nadaje wodzie fioletowy kolor. Znacznie trwalsze roztwory ze zsolwatowanym elektronem można otrzymać w ciekłym amoniaku i niektórych aminach, rozpuszczając w nich aktywne metale; roztwory takie mają kolor od niebieskiego co brunatnego a w dużych stężeniach elektronów zaczynają odbijać światło i wyglądają jak płynny metal.

Ale skończmy tą dygresję.
Było więc wiadomo że tuż po kontakcie sodu z wodą, zaczyna być on rozpryskiwany na wiele cienkich strużek metalu. Było też wiadome, że przy tym procesie do wody uwalniana jest tak duża ilość wolnych elektronów, że woda na krótko się zabarwia. Wiedząc o tym badacze mogli stwierdzić, że za owo rozpryśnięcie odpowiada znany już od dawna proces, znany dotychczas ze skali mikroskopijnej - eksplozja kulombowska.
Proces opisano teoretycznie już w XIX wieku ale w zasadzie dotyczył on dosyć małej skali.  Jeśli weźmiemy skrawek dowolnej materii i usuniemy elektrony z atomów, powstanie nam skupisko położonych blisko siebie jonów dodatnich. W normalnym przypadku elektrony nie tylko zobojętniają ale też spajają ze sobą atomy. Po ich usunięciu elektrostatyczne odpychanie jednakowych ładunków przeważa nad przyciąganiem i całe skupisko rozpada się na wszystkie strony.
Makroskopowym modelem może być często pokazywane doświadczenie fizyczne, w którym po umieszczeniu garści spreparowanego ryżu w silnym polu elektrycznym, ziarenka zaczynają strzelać we wszystkie strony, odpychane od naelektryzowanego stosiku:

Efekt ten bywa wykorzystywany w laserowej abrazji pewnych materiałów - naświetlenie powierzchni odpowiednio silnym impulsem lasera nadaje jej punktowo tak duża energię, że uciekają z niej elektrony. Pozostałe naładowane jony rozpryskują się i powstaje nam zagłębienie o rozmiarach możliwych do regulowania.
W nieco większej skali eksplozja kulombowska jest używana w technice elektrospreju, używanej w spektroskopii mas - kropelka roztworu umieszczona w silnym polu elektrycznym rozpryskuje się na jeszcze drobniejsze. Zjawisko to ma jeszcze znaczenie w oddziaływaniu promieniowania na materię - uderzenie wysokoenergetycznej cząstki jonizuje część atomów, doprowadzając do ich przemieszczenia i powstania uszkodzenia w strukturze materiału.

W przypadku kropli ciekłego metalu alkalicznego, proces zachodzi w dużej skali.
Gdy tylko kropla zaczyna się stykać z wodą, zachodzi szybka reakcja chemiczna połączona z oddawaniem elektronów wodzie. Ładunek dodatni na powierzchni metalu rośnie na tyle gwałtownie, że początkowe czysto mechaniczne nieregularności kształtu, zaczynają się zachowywać jak indywidualne naładowane cząstki. Odpychane statycznie porcje, zamieniają się w igły płynnego metalu, które są wystrzeliwane w otaczającą wodę w dużym rozdrobnieniu. W efekcie następuje taka sytuacja, do jakiej by doszło gdybyśmy zmieszali z wodą sód w formie drobnego pyłu - gwałtowne zwiększenie powierzchni reagującej powoduje, że w stosunkowo małej objętości wody wydzielonych zostaje bardzo dużo ciepła i gazowego wodoru. Rozprężający się powstały gaz powoduje eksplozję, która rozrzuca gorące cząstki metalu i krople wody. Gdy reakcja jest prowadzona w powietrzu, rozpryśnięte krople w kontakcie z powietrzem zapalają się jasnymi iskrami a od nich zapala się wodór, wywołując drugą eksplozję.
Jest to dokładnie objaśnione na poniższym filmie:


Bonus
A tak wygląda reakcja kilku ton sodu, wrzuconego w beczkach wprost do morza:


W taki sposób unieszkodliwiano pozostałości po pociskach zapalających.
---------
* Mason, P. E. et al., Coulomb explosion during the early stages of the reaction of alkali metals with waterNature Chem. (2015).

poniedziałek, 2 czerwca 2014

Kiedyś w laboratorium (41.)

Kiedyś zauważyłem na pracowni interesujący efekt - po suszeniu THF metalicznym sodem, gdy zestaw już ostygł, cały użyty sód wypłynął w formie równej kuli, mniej więcej wielkości orzecha laskowego:

Uznałem że to ciekawe nie tylko z przyczyn wizualnych - sód jest wprawdzie lekki, ale ma gęstość nieco większą od THF. Najwyraźniej rozpuszczony benzofenon i produkty jego reakcji z wodą na tyle zagęściły rozpuszczalnik, że stał się minimalnie gęstszy od metalu. Skoro jednak metal przyjął kształt kuli, najwidoczniej dla ciekłego sodu gęstości stają się zbliżone.

sobota, 14 grudnia 2013

Zapalniczka i zimne ognie

Na sylwestra, na święta, dla zabawy. W noc ciemną bierzemy do ręki pałeczki zimnych ogni i zapalamy, na przykład zapalniczką. Ale nie zawsze zauważamy że zapalenie zapalniczki i zapalenie zimnych ogni, ma ze sobą coś wspólnego.

To co popularnie nazywamy zimnymi ogniami, to pałeczki z cienkiego drucika pokrytego masą pirotechniczną. Podstawowy skład jest dosyć prosty - utleniacz, opiłki metalu i lepiszcze. Dokładne składniki zależą już od producenta, zwykle w charakterze utleniacza stosuje się saletrę potasową lub azotan baru albo też chloran potasu, zaś metalem są drobne opiłki żelaza z domieszką magnezu lub glinu, natomiast za lepiszcze służy klej dekstrynowy. Dlaczego zatem po zapaleniu takiej mieszanki, zaczynają strzelać z niej jasne iskry?

Mieszanka użyta w zimnych ogniach jest bardzo podobna do prochu, i działanie jest w pewnym stopniu podobne. W wysokiej temperaturze, utleniacz rozkłada się, przekazując tlen cząstce metalu. Ten utlenia się i rozgrzewa aż do temperatury białego żaru, zaś cząstki na zewnętrznej powierzchni są wyrzucane gazami z rozkładu utleniacza i spalenia lepiszcza. Iskra taka trwa dosyć krótko, zwykle gasnąc i stygnąc po przeleceniu kilkunastu centymetrów, stąd drobne iskierki zwykle nie wywołują oparzeń ręki, i dlatego też otrzymały taką popularną nazwę. Z drugiej strony wyraźne czerwone świecenie pręcika powinno nam uświadomić, że fajerwerk ten jest jednak bardzo gorący, upuszczony na dywan lub ubranie może wypalić w nim dziurę.
Inną sytuacją gdy obserwujemy iskrzenie drobnych cząstek metalu, jest cięcie bądź szlifowanie metalu za pomocną szybko obrotowych narzędzi. Powstające wówczas snopy iskier, to właśnie rozżarzone opiłki utleniające się na powietrzu. Zachowanie się metalu podczas obróbki jest w dużym stopniu zależne od składu, jedną z technik prostego określenia z jakiego typu stopem mamy do czynienia, jest metoda iskrowa, polegająca na skrzesaniu iskier szlifierką. Stal niskowęglowa, miękka, daje iskry krótkie i nie rozgałęziające się, stal twarda o wysokiej zawartości węgla daje iskry pękające w powietrzu na snopy drobniejszych iskierek, stopy tytanu dają białe, oślepiająco jasne iskry.

Dlaczego jednak, skoro brak tu jak w przypadku zimnych ogni utleniacza, opiłki metalu iskrzą przy takiej obróbce? Energii dostarcza głównie ciepło tarcia, wystarczające aby metal zaczął się żarzyć, ponadto zaś jeśli drobina metalu jest odpowiednio mała, może zapalić się w powietrzu samoistnie wskutek powierzchniowego utleniania. Substancje samorzutnie zapalające się na powietrzu, nazywamy piroforycznymi, i są to głównie metale aktywne, dla których termodynamicznie trwała jest forma utleniona i które nie ulegają pasywacji. Efekt taki może dać na przykład pył magnezu lub tytanu, ale stosunkowo znanym przykładem jest piroforyczne żelazo:

Można je dość łatwo otrzymać, przez termiczny rozkład szczawianu żelaza w wąskiej próbówce. Powstający przy rozkładzie dwutlenek węgla wypiera powietrze i zapalenie się następuje dopiero po wytrząśnięciu pyłu. Wiele pyłów metali zapala się po zainicjowaniu iskrą, co może przybrać formę eksplozji tak jak wybuch pyłu węglowego. Tragicznym tego przykładem była eksplozja pyłu aluminium w Gorzowskich zakładach Italian Look w 2001 roku, gdy na hali szlifowania części ekspresów do kawy silny wybuch poparzył pracowników - pięciu zmarło.[1] Wśród winnych znalazła się też zakładowa instruktorka BHP które tłumaczyła w sądzie, że nie wiedziała, że pył metalu może wybuchnąć.

Wróćmy jednak do iskier krzesanych przez metal. Powstawanie takich gorących cząstek w wyniku uderzenia o metal twardym przedmiotem, miało w minionych wiekach bardzo pożyteczne zastosowanie w krzesiwkach do krzesania ognia.

Krzesiwo było kawałkiem twardego żelaza, zazwyczaj o wygiętym kształcie, który energicznie uderzano w kamień, zazwyczaj krzemień. Powstające iskry odskakiwały w kierunku krzesania, spadając na hubkę, która będąc łatwopalna chętnie zajmowała się od rozżarzonych okruchów. Jeśli dmuchając udało się rozdmuchać hubkę do pojawienia się ognia, można było dokładać listki, słonki, gałązki itp. aż do ogniska. Hubka będąca rozpałką, stanowiła gąbczasty, częściowo zdrewniały miąższ grzybów nadrzewnych, zwłaszcza hubiaka pospolitego (o starożytności metody świadczy jego nazwa łacińska Fomes fomentarius znacząca dosłownie zapałka zapalająca), nasycony saletrą i rozdrobniony; czasem w zastępstwie używano częściowo zwęglonych strzępków tkaniny lub roślin. Zamiast żelaza użyty mógł być zbity piryt, którego cząstki spalają się w powietrzu, skąd zresztą wziął swą nazwę (pyrites czyli iskrzący).
Sposób ten znany od starożytności, stosowany był aż do XIX stulecia gdy zaczęto stopniowo wprowadzać zapałki, choć zapewne gdzieniegdzie używano go u początków minionego wieku. Tą prostą metodę krzesania udało się zautomatyzować, tworząc mechanizm skałkowy, który już w XVII wieku zastosowano w muszkietach i pistoletach, to zaś zmieniło oblicze wojny i obronności. Mechanizm składał się z dwóch podstawowych części - kurka, w którego szczękach tkwił kawałek krzemienia, oraz krzesiwka, mającego postać blaszki w kształcie litery L na małym zawiasie. Naciśnięcie spustu uwalniało kurek, który napinany sprężyną uderzał w sterczącą blaszkę krzesiwa. To odskakiwało, przez pewien czas intensywnie trąc o krzemień i krzesząc iskry snopiące na odsłoniętą panewkę z prochem.
I choć nikt tego wówczas nie wiedział, mechanizm był pierwowzorem dla zapalniczki, bardzo w późniejszym czasie przydatnego urządzenia.

Pierwsze próby zapalania takim mechanizmem czegoś więcej niż prochu, pojawiały się już dawno - po prostu kładziono na panewkę kawałek hubki. Pomysł jednak najwyraźniej nie był rozwojowy, skoro przenośne konstrukcje bardziej przypominające zapalniczki pojawiają się dopiero w XIX wieku, gdy chemik Dobereiner wynajduje chemiczną zapalarkę - był to mały aparat Kippa, w którym cynk reagował z kwasem siarkowym. Powstający wodór kierowano dyszą na gąbczastą platynę, na tyle silnie katalizującą utlenianie wororu, że zapalał się on niedużym płomieniem. Była to konstrukcja kłopotliwa z uwagi na rozmiary i niebezpieczny kwas.
W połowie tegoż wieku pojawiły się mechanizmy oparte na stalowym kole ciernym krzeszącym iskry na knot nasączony alkoholem, były to jednak urządzenia zawodne z uwagi na wcale nie tak łatwe skrzesanie iskry. Przełom nastąpił dopiero w 1903 roku, gdy Auer von Welsbach, trochę dziś zapomniany wynalazca kilku urządzeń oświetleniowych* odkrył szczególne, piroforyczne właściwości żelazoceru - stopu żelaza z mieszaniną lantanowców otrzymywanych z piasku monacytowego. Był to materiał na tyle łatwo dający dobrze zapalające iskry, że wyposażone w niego zapalniczki stały się poważnym konkurentem zapałek.

Współczesne zapalniczki iskrowe zawierając mechanizm cierny, w którym kamień zapalniczkowy (pręcik żelazoceru lub masa krzemianowa z pyłem żelaza) przyciskany sprężynką do karbowanej powierzchni stalowego kołka, krzesze iskry po szybkim obróceniu tymże kółkiem. Te zapalają gaz uwalniany przez zaworek po przyciśnięciu stopki, bądź opary benzyny w zapalniczkach z knotem nazywanych Zippo.
Lantanowce, nazywane metalami ziem rzadkich, są pierwiastkami mającymi bardzo szerokie zastosowanie w technologii, w tym w fotowoltaice, z tego też powodu są drogie. Jednak stop używany w zapalniczkach jest dosyć tani - na koszt czystego pierwiastka składa się głównie koszt oczyszczania, które ze względu na to, że lantanowce występują na raz w tym samym minerale i mają niezwykle podobne właściwości chemiczne jest dość trudne.
Obecnie coraz częściej ten typ wypierany jest przez zapalniczki piezoelektryczne, gdzie czynnikiem zapalającym jest iskra elektryczna wytworzona przez pewne ściskane kryształy.

No i na koniec mała ciekawostka która zainspirowała ten wpis - nie wszystkie cząstki kamienia zapalniczkowego spalają się przy iskrzeniu - małe cząstki pozostają i mogą zapalić się w sprzyjających okolicznościach, na przykład w gorącym powietrzu nad palnikiem kuchenki gazowej, co wielokrotnie obserwowałem.

--------
* Auer wymyślił na przykład "koszulki żarowe" do lamp gazowych, czyli bawełniane nasadki na końcówkę dyszy spalającej gaz. Po wypaleniu bawełny pozostaje szkielet soli toru i ceru, którymi była nasączona, żarzący się w płomieniu jasnym, białym światłem. To on wpadł też na pomysł że w żarówkach Edisona lepszym żarnikiem niż węgiel będzie cienki drucik wysokotopliwego metalu. Poza tym odkrył kilka pierwiastków.
[1] http://www.polskieradio.pl/5/3/Artykul/591234,Wybuch-w-fabryce-w-Gorzowie-Wlkp-Pracownik-aresztowany

wtorek, 29 października 2013

Suszenie THF

Na pracowniach chemicznych używa się rozmaitych rozpuszczalników, zazwyczaj organicznych, nie mieszających się z wodą. Są one używane do rozpuszczania, eluowania oraz jako medium reakcyjne. Wydawałoby się, że gdy operujemy substancjami wrażliwymi na wilgoć, niemieszające się z wodą, oleiste rozpuszczalniki nie powinny sprawiać kłopotów. W rzeczywistości sama niemieszalność nie gwarantuje nam, że taki na przyklad heksan czy eter nie będą zawierały mimo wszystko śladów wilgoci, a te mogą popsuć nam wydajność procesów, a dla rozpuszczalników mieszalnych, jak aceton czy octan etylu, jest bardzo duża szansa że wchłonęły z powietrza trochę wody.
Więc aby być całkiem pewnym, należy rozpuszczalniki wysuszyć.

Można tu użyć klasycznych odwadniaczy, jak chlorek wapnia czy magnezu, odwadniaczy wiążących wodę chemicznie, jak pięciotlenek fosforu, ale w szczególnych przypadkach, gdy mamy do czynienia z eterami, można użyć metod bardziej agresywnych - na przykład dodając wodorku litu, który reaguje z wilgością z wydzieleniem wodoru. Dziś natomiast mogłem zobaczyć (i obfocić) drugi z częstych sposobów - suszenie metalicznym sodem. A suszony był rozpuszczalnik THF.

THF czyli tetrahydrofuran, może być uznany formalnie za uwodorniony furan - pięcioczłonowy heterocykliczny związek aromatyczny z tlenem w pierścieniu. Nazwy związków często są tworzone właśnie w ten sposób, iż uznaje się jakąś cząsteczkę za uwodornioną lub odwodornioną pochodną jakiegoś innego, bardziej znanego związku. Dość znanym przykładem jest THC - uznany za uwodornioną pochodną cannabinolu. Teoretycznie cykloheksan mógłby być uznany za heksahydrobenzen, ale nazwy takiej się nie stosuje.
Gdy zwodorujemy furan, otrzymamy związek będący formalnie rzecz biorąc cyklicznym eterem, mało reaktywny, nie przeszkadzający w innych reakcjach i wobec tego dobry rozpuszczalnik do reakcji. Ze względu na pewną polarność i mieszalność z wodą, chętnie chłonie wilgoć, dlatego przed użyciem powinno się go na sucho przedestylować za pomocą zaargonowanej chłodnicy (atmosfera beztlenowa ma ograniczać powstawanie wybuchowych nadtlenków). A jednym ze sposobów jego dokładnego wysuszenia, jest użycie metalicznego sodu, w postaci plasterków odcinanych stalowym nożem, jest to bowiem metal miękki jak masło wyjęte z lodówki, albo i bardziej. Niemal natychmiast po wrzuceniu do THF metal pokrywa się szarym osadem tlenków i wodorotlenków, przez co właściwa reakcja zostaje spowolniona. Dlatego dodaje się do niego benzofenonu.

Benzofenon, inaczej difenyloketon, to aromatyczny keton, znany jako środek chroniący przed promieniowaniem ultrafioletowym, dodawany do farb i materiałów dla powstrzymania starzenia, a niektóre pochodne też do kremów do opalania. W naszym przypadku jego cenną właściwością jest łatwa reakcja z metalicznym sodem, prowadząca w wyniku redukcji do powstania anionorodnika, łatwo rozpuszczającego się w oczyszczanym rozpuszczalniku.
 Na + Ph 2 CO → Na + Ph 2 CO · -
Rodnik ten jest reaktywny, chętnie reaguje z wodą i tlenem obecnymi w cieczy, a po przereagowaniu daje nielotne produkty, a ponadto jest zabarwiony na intensywny, niebieski kolor, co widać niemal natychmiast po dodaniu:

Gdy cała zawartość kolby zniebieszczeje intensywnie, można rozpocząć destylację, dla otrzymania potrzebnej ilości beztlenowego i bezwodnego rozpuszczalnika, pobieranego później suchą szklaną strzykawką.

Taki sposób suszenia nie jest całkiem bezpieczny, ze względu na ten sód, ale często się go stosuje w laboratoriach. Podobno znacznie skuteczniejsze w odciąganiu wody są sita molekularne, ale na razie jeszcze ich nie stosowałem (chyba że w charakterze kamyczków wrzennych zamiast porcelanki).

środa, 4 września 2013

Skąd ten zapach?

Każdego kto co nieco liznął na temat mechanizmów odczuwania zapachu, musiało zastanowić jak to się dzieje, że wyraźny i charakterystyczny zapach mają substancje zdecydowanie nielotne, jak żelazo, miedź czy kawałek wapienia.

Zapach żelaza
W znanej powieści "Pachnidło" jedną z pierwszych prób uzyskania nietypowych zapachów otoczenia, jest uzyskanie ekstraktu o zapachu miedzianej gałki u drzwi. Gałka była moczona w chłodnym tłuszczu, z którego po zagęszczaniu uzyskał bohater substancję pachnącą właśnie tak jak metal. Nie jest to ze strony autora taka zupełna fantazja, bo metalowe przedmioty z jakimi się często spotykamy, rzeczywiście mają swój specyficzny, metaliczny zapach, porównywany niekiedy do zapachu zaschniętej krwi. Co takiego jednak pachnie, skoro metal i jego tlenki są nielotne?
Jak można zauważyć, woni takiej nabiera metal używany, często dotykany, nie będzie go miał natomiast dobrze oczyszczony. Zapach ten jest w istocie bardziej związany z nasza skórą. Skóra jest w naturalny sposób natłuszczona za sprawą pracy odpowiednich gruczołów łojowych. Łój jest mieszaniną zawierającą między innymi krótkołańcuchowe nienasycone kwasy tłuszczowe. Kwasy te mają to do siebie, że pod wpływem powietrza i światła łatwo utleniają się do nadtlenków, te z kolei pod wpływem jonów metali na niższych stopniach utlenienia, chętnie redukują się, tworząc rozmaite ketony i alkohole. Wśród nich 1-okten-3-on, związek o silnym, łatwo wyczuwalnym zapachu, choć pewne znaczenie mają też inne ketony. Na powierzchni metalu zawsze obecna jest pewna ilość wolnych jonów, zwłaszcza gdy jest pokryty warstewką zabrudzeń; jony reagują z nadtlenkami i metal zaczyna pachnieć. Aby uzyskać podobny efekt, wystarczy nasmarować dłonie niewielką ilością roztworu żelaza II. Dostarczycielem jonów może być też zaschnięta krew, w czym też naukowcy widzą wytłumaczenie dużego wyczulenia naszych nosów na takie związki.

W przypadku stali i żeliwa, pewne znaczenie mają też zanieczyszczenia metalu. Stal zawiera węgiel oraz domieszki fosforu. W obecności wilgoci cząstki węgla stają się półogniwami z pewnym ładunkiem elektrycznym, na których fosfor może utleniać się do fosforowodoru i organicznych fosfin o nieprzyjemnym zapachu, stąd dodatkowa nuta.[1] Zapach ma też duże znaczenie dla wyczuwania metalicznego smaku - w badaniach z ochotnikami, metaliczny smak wyczuwalny dla soli żelaza znikał po zatkaniu nosa, dla miedzi wyniki były niejednoznaczne.[2] Pewne znaczenie dla smaku metalu ma też powstawanie słabych prądów gdy jeden metal, na przykład kawałek folii aluminiowej, zetknie się z amalgamatową plombą.

Swój własny, nieprzyjemny zapach ma natomiast osm, a to z powodu powstawania na powierzchni lotnego czterotlenku.

Zapach kredy...
Zapach mokrej kredy, bądź świeżego wapienia, jest bardzo charakterystyczny. I smaczny. Trudno dokładnie określić dlaczego, ale często miałoby się ochotę zjeść taki kamień. Jedni opisują go jako "mineralny" inni jako "roślinny" ale spotkałem się też ze stwierdzeniami, że naturalny wapień pachnie jabłkiem i pieczonym chlebem. Moje skojarzenia są raczej synestetyczne, bo kojarzy mi się z wyglądem zmąconej wody,  chociaż niedawno jednak stwierdziłem że kreda z kopalni w Mielniku ma miękki zapach mąki.
Niekiedy mówi się, że ochota na zjedzenie kredy, to skutek niedoboru wapnia. Gdyby ta zasada odnosiła się też do innych substancji, musiałbym stwierdzić w swym organizmie przewlekły niedobór czekolady...
Ale właściwie czym pachnie kreda? Kwesta ta nie została chyba zbyt dokładnie zbadana, skoro żadnego "oficjalnego" wyjaśnienia nie znalazłem. Najczęstsze przypuszczenie odnosi się do tego, że zapach ma kreda bądź pyląca się bądź wilgotna. Prawdopodobnie podczas wysychania tworzą się drobne cząstki, które dostając się do nosa wywołują odczuwane wrażenie.
Dlaczego jednak te drobne cząstki miałyby wywoływać takie nietypowe wrażenia? Sama alkalizacja czy obecność węglanów nie wystarczy, skoro soda oczyszczona nie ma takiej woni, zapewne więc znaczenie ma tutaj wapń. Pierwiastek ten jest ważny dla utrzymania równowagi elektrycznej komórek nerwowych, w tym komórek węchowych. W normalnym przypadku poburzenie receptorów na powierzchni komórki węchowej, powoduje napływ do jej wnętrza jonów wapnia i odpływ jonów chlorkowych; powstająca zmiana potencjału tworzy sygnał przekazywany przez nerw. Mogę zatem domniemywać że dostarczenie wapnia bez jonów chlorkowych na powierzchnię z komórkami węchowymi w jakiś sposób zmienia bądź inicjuje ten proces, przez co mózg odczuwa jakby mieszankę wszystkich zapachów. Myślę że byłby to ciekawy temat badań dla jakiegoś biochemika.

... i innych minerałów
Własny, specyficzny zapach posiadać mogą też inne minerały. Siarka rodzima ma charakterystyczny zapach, szczególnie silny przy pocieraniu, biorący się po trosze z oparów siarki jak i z jej tlenków. Podobnie pachnieć mogą minerały siarczkowe jak piryt, co też jest związane z powolnym utlenianiem, w jakimś stopniu może też z powodu wydzielania siarkowodoru. Minerały arsenu, jak arsenopiryt, mają dla odmiany czosnkowy zapach powstający przy rozdrabnianiu i kruszeniu - chętnie wówczas iskrzą - wywołany arsenowodorem i siarczkiem arsenu. Łupki bitumiczne i pewne odmiany wapieni zawierających domieszki substancji organicznych, przy rozłupywaniu dają niemiły zapach siarkowodoru, skąd też doczekały się nazwy śmierdząca kreda (Stinkstone).
Wśród minerałów szczególnym przypadkiem jest Anozonit - minerał fluoru. Zapach jaki wydziela jest ostry i niezupełnie przyjemny; bywa porównywany do zapachu ozonu albo przepalonej elektroniki. Wiadomo że jest to fluoryt, który utworzył się w pobliżu promieniotwórczych skał, których oddziaływanie zaburzyło jego sieć krystaliczną. Przez długi czas sądzono, że zapach jest wynikiem wybijania przez promieniowanie fluoru, który natychmiast reagował z powietrzem w porach minerału, tworząc ostro pachnący fluorek tlenu i ślady ozonu - niedawno jednak odkryto, że przyczyna jest jeszcze bardziej interesująca.
Fluor jest pierwiastkiem tak ogromnie reaktywnym, że Moissan chcąc go po raz pierwszy wyodrębnić, musiał użyć aparatury wykonanej z platyny, bo ze szkłem reagował bardzo szybko. W mieszaninie z powietrzem bardzo chętnie przechodzi w fluorki tlenu i azotu, reaguje z wodą. Dla wszystkich jest więc oczywiste, że nie występuje w naturze w stanie rodzimym. Albo może inaczej - dotychczas dla wszystkich był to fakt najzupełniej oczywisty. Jednak badania jakim poddał anozonit Florian Kraus, powinny zmienić tą opinię.

Postanowił on sprawdzić dawne teorie przyczyn zapachu tego minerału, ale w sposób nie niszczący - rozkruszenie wystawia wnętrze na działanie wilgoci. Dlatego też zbadał kilka kryształków za pomocą spektrometrii magnetycznego rezonansu jądrowego NMR. Ponieważ jądra atomów fluoru posiadają spin i moment magnetyczny, ich sygnały mogą być obserwowane w ten sposób. Wyniki badania pokazały jednoznacznie, że obserwowany sygnał pochodzi od wolnego, cząsteczkowego fluoru, zamkniętego w mikroporach minerału[3]
To zatem co czuć od kryształków, to mieszanka zapachów fluoru, fluorku tlenu i ozonu. Ciekawe swoją drogą co by przyniosło zbadanie pewnej odmiany halitu, która a sprawą bliskości promieniotwórczych minerałów przybrała fioletowawy kolor - efekt taki może dawać stały koloid sodu.

Zapach karbidu
Każdy kto zetknął się z karbidem pewnie zauważył też niemiły zapach tej substancji. Nie każdy jednak zastanowił się, że bezwonny jest zarówno powstający w reakcji acetylen jak i wodorotlenek wapnia.
 CaC2 + 2H2OCa(OH)2 + C2H2
W tym przypadku sprawa jest łatwa do wyjaśnienia - karbid wytwarza się prażąc wapień z węglem. Wapień naturalny zawiera domieszki innych niż węglan soli wapnia, a więc siarczanu i fosforanu, które po zredukowaniu zamieniają się w siarczek i fosforek wapnia. Te podczas reakcji z wodą wydzielają siarkowodór i związki fosforowodorowe (głównie difosfina, sam fosforowodór jest bezwonny), pierwszy o zapachu zgniłych jaj a drugie o zapachu zepsutego czosnku.
-------
ResearchBlogging.org
* http://www.mindat.org/forum.php?read,6,284681,284731
[1] Glindemann D, Dietrich A, Staerk HJ, & Kuschk P (2006). The two odors of iron when touched or pickled: (skin) carbonyl compounds and organophosphines. Angewandte Chemie (International ed. in English), 45 (42), 7006-9 PMID: 17009284  
[2] Harry T. Lawless, Serena Schlake, John Smythe, Juyun Lim, Heidi Yang, Kathryn Chapman and Bryson Bolton (2004). Metallic Taste and Retronasal Smell Chem. Senses, 29 (1) DOI: 10.1093/chemse/bjh003  
[3] http://www.nature.com/news/stinky-rocks-hide-earth-s-only-haven-for-natural-fluorine-1.10992