informacje



Pokazywanie postów oznaczonych etykietą alkohole. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą alkohole. Pokaż wszystkie posty

czwartek, 30 kwietnia 2020

OH - te grupy!

Gdy pisałem opinię o tej nieszczęsnej lekcji chemii w TVP przyszło mi do głowy, że czymś, czego brakowało w obu tych lekcjach, a co stanowiło punkt wspólny, było wyjaśnienie czym różni się grupa wodorotlenową w alkoholach i w wodorotlenkach metali. Pojawia się ona w wielu miejscach - jest połączona z metalami  w wodorotlenkach, z niemetalami w kwasach, z węglem w alkoholach, z pełniącym inną funkcję węglem w kwasach karboksylowych, czasem pełni rolę grupy kwasowej w związkach nienasyconych. Czym różni się w tych sytuacjach? Co różni wodorotlenek chromu i kwas chromowy?
W dużej mierze to, czy silniejsze jest wiązanie między tlenem a wodorem czy może jednak między tlenem a innym pierwiastkiem. Nie wiem czy objaśnienia te będą pasowały poziomem do 7 klasy, ale cóż, lepiej czasem wyjaśnić dokładniej, niż potem prostować.



Elektroujemność i siła wiązań
Tlen to niemetal o wysokiej elektroujemności wynoszącej 3,5 w skali Paulinga, to jest o dużej skłonności przyciągania elektronów. Wynika to ze stosunkowo małego rozmiaru przy ładunku jądra wynoszącym +6 i słabszego ekranowania przez podpowłoki p, na których zgromadzona jest ponad połowa ładunków ujemnych.  Z tych powodów generalnie elektroujemność pierwiastków rośnie w prawo, wraz ze wzrostem ładunku, i ku górze układu okresowego, wraz ze spadkiem wielkości atomu, z maksimum w reaktywnym fluorze.
Dla wodoru elektroujemność jest średnia - 2,2. Podobna jak dla niektórych metali i półmetali. To najmniejszy atom ale też z najmniejszym ładunkiem jądra. Wiązanie tlen - wodór jest więc spolaryzowane, większość ładunku jest przesunięta na tlen, ale nie ma jeszcze charakteru jonowego.
Podobnie rzecz wygląda dla wiązania węgiel-tlen. Różnica elektroujemności nie za duża, sumarycznie więc wiązanie jest polaryzowanym kowalencyjnym.

Gdy tlen jest połączony z jakimś metalem sytuacja wygląda inaczej. Metale zwykle mają niską elektroujemność, słabiej wiążą najdalsze elektrony, toteż duża różnica w sile ściągania ładunku powoduje niemal zupełne przejście elektronu na tlen. W ujęciu klasycznym jest to po prostu przeskok elektronu z metalu na tlen i powstanie jonów, łączących się dzięki przyciąganiu elektrostatycznemu. W ujęciu chemii kwantowej nie jest tak do końca, bo nawet wiązania jonowe mają pewien kilkuprocentowy udział kowalencyjny, część ładunku dzielona jest pomiędzy atomami. Między jonami gęstość elektronowa wykazuje minimum.

Dla zachowania się grupy X-O-H rodzaj wiązań ma zasadnicze znaczenie. Pęknięcie wiązania, to jest jego dysocjacja, dla różnych typów zachodzi na różne sposoby. Wiązanie jonowe wprawdzie jest stosunkowo mocne, na jego rozerwanie przez drgania termiczne trzeba zastosować wysoką temperaturę, ale też w pewnych szczególnych warunkach jony łatwo się rozdzielają. W zasadzie nie musi tutaj następować przesuwanie się ładunku, bo elektrony już są przesunięte, trzeba tylko osłabić ich elektrostatyczne przyciąganie.
Na siłę przyciągania przeciwnych ładunków wpływa między innymi stała dielektryczna ośrodka. Dla takiej na przykład wody jest ona wysoka, około 80 razy większa niż w próżni. Tyle więc razy osłabnie siła przyciągana jonów całkowicie otoczonych wodą. Inny mechanizm, który ma tutaj udział, to solwatacja, to jest otoczenie jonu cząsteczkami rozpuszczalnika.
Woda ma akurat o tyle cenną właściwość, że jest wyraźnie polarna, to jest wykazuje przesunięcie gęstości ładunku w jedną stronę cząsteczki. Solwatacja między jonem a rozpuszczalnikiem polarnym także przypomina przyciąganie ładunków. Cząsteczki są ściągane tą stroną, która posiada cząstkowy ładunek przeciwny, do napakowanego elektronami tlenu zbliżać się więc będą wodorami. W wyniku tego jon zaczyna silniej oddziaływać z rozpuszczalnikiem i może zostać wyrwany z kryształu.

W efekcie paradoksalnie w rozpuszczalnikach o pewnych właściwościach wiązanie jonowe puszcza całkiem łatwo. Układ X-O-H rozpada się więc na jony X+ i HO- a my mówimy o związku, że jest zasadą. Grupa hydroksylowa mająca charakter bardziej jonu chętnie też reaguje z dodatnio naładowanymi protonami (a właściwie jonami oksoniowymi), stąd reakcja zobojętnienia, zachodząca też z wodorotlenkami nierozpuszczalnymi.

Z drugiej strony znamy związki, w których to wodór chętnie odchodzi. Są to kwasy tlenowe, najczęściej z niemetalami, ale też z niektórymi metalami przejściowymi. W kwasie siarkowym H2SO4 pojawiają się dwa układy S-O-H. Szczególnym przypadkiem są takie metale jak chrom i wanad, które tworzą zarówno wodorotlenki jak i kwasy. Czym więc różni się układ Cr-O-H w kwasie chromowym od układu Cr-O-H w wodorotlenku chromu? Stopniem utlenienia atomu centralnego.
Stopień utlenienia to sposób na określenie tego jakiego atom pierwiastka w związku doznaje nadmiaru lub niedoboru ładunku względem swojego stanu podstawowego obojętnego. Definiuje się go jako liczba możliwych wiązań jonowych jakie mógłby utworzyć będąc w takim stanie elektronowym. Ale my poprzestańmy na definicji mówiącej o ilości odczuwanego ładunku.

Jeśli atom w związku odczuwa niedobór ładunku, a więc ma dodatni stopień utlenienia, jest właściwie trochę jonem dodatnim. W związku z tym przesuwa ku sobie trochę ładunku ujemnego z połączonego z nim tlenu. Wiązanie z tlenem staje się więc dużo mniej spolaryzowane. Z drugiej strony ubytek ładunku z tlenu, który współdzieli poprzez spolaryzowane wiązanie część ładunku z wodorem, powoduje wyssanie większej części tego uwspólnionego ładunku z wodoru. Wodór staje się więc nieco bardziej kationem a wiązanie z tlenem nabiera charakteru dużo bardziej jonowego, niż by to wynikało z prostej różnicy elektroujemności. A skoro jest bardziej jonowe, to chętniej ulega rozerwaniu w specyficznych warunkach odpowiednio dobranego rozpuszczalnika.  Odszczepianie protonu to właśnie to, co robią kwasy.

 W przypadku niemetali, które już mają wysoką elektroujemność, a więc skłonność ściągania ładunku, wysysanie elektronów z tlenu następuje o tyle łatwo, że praktycznie każdy ich związek wodorotlenowy ma charakter kwasowy. Jednak ze wzrostem stopnia utlenienia niemetalu efekt jest coraz wyraźniejszy, bo nie dość, że atom jest bardzo elektroujemny, to jeszcze ma niedobór ładunku. Dlatego tlenowe kwasy niemetali są coraz bardziej kwaśne im wyższy jest stopień utlenienia. Kwas siarkowy VI jest wyraźnie mocniejszy od siarkowego IV, a ten od siarkowego II. Z klasów tlenowych chloru najmocniejszy jest kwas nadchlorowy (kw. chlorowy VII).
Dla ujemnych stopni utlenienia obserwujemy odwrotne zjawisko - atom centralny odczuwa dużo ładunku, odsuwa więc od siebie ładunek tworzący wiązanie z tlenem co zwiększa jego polaryzację. Dlatego chrom o stanie utlenienia -2 tworzy wodorotlenek, będący zasadą, a na stanie utlenienia +6 tworzy kwas chromowy.

Nie są to jedyne przyczyny, dodatkowy efekt daje stabilizacja ładunku ujemnego - cząsteczka oddająca proton staje się anionem, ale im trudniej jest jej utrzymać ten ładunek, tym mniej chętnie równowaga reakcji przesuwa się w tę stronę. Stabilizacja powoduje, że powstała po deprotonacji zasada jest trwalsza i zarazem mniej chętnie protonuje się z powrotem. Równowaga reakcji przesuwa się więc ku częstszemu oderwaniu atomu wodoru. I tu oczywiście im bardziej elektroujemny lub bardziej utleniony jest atom centralny, tym chętniej ładunek stabilizuje się w obrębie cząsteczki.
Może w tym też pomagać geometria układu tworząca pewne stabilniejsze struktury elektronowe.

W kwasach mających wiele możliwych do oddania protonów obserwuje się, że drugi i kolejny odrywają się już mniej chętnie. Wynika to głównie stąd, że zabierający ze sobą ładunek dodatni proton jest przyciągany przez ujemny ładunek reszty, oraz po części przez wpływ zwiększenia ujemnego ładunku na pozostałe tu omówione efekty.
Trzeci proton kwasu ortofosforowego odrywa się dopiero w dość zasadowych warunkach.

A węgiel?
Jak sytuacja wygląda dla związków organicznych? Jak się rzekło, różnica elektroujemności między tlenem a węglem nie jest taka znów duża, z kolei węgiel ma dosyć ograniczone możliwości jeśli chodzi o stan utlenienia, dochodzi maksymalnie do +4. Tymczasem mamy z jednej strony alkohole, które nie odszczepiają chętnie ani grupy OH ani wodoru, a z drugiej strony mamy kwasy karboksylowe i fenole, które chętnie pozbywają się tego ostatniego.

W pewnym stopniu działają tutaj opisane już efekty, ale decydującym staje się stabilizacja ujemnego ładunku. Popatrzmy na fenole - związki z grupą OH przy pierścieniu aromatycznym. Już samo to sąsiedztwo dużo daje. W układzie aromatycznym elektrony, z których normalnie utworzyłyby się wiązania podwójne, tworzą układ rozciągnięty na cały pierścień. Gęstość elektronowa w obrębie tego pierścienia jest dość duża. Wykazuje on ponadto właściwości magnetyczne jak jedna pętelka cewki. Pierścień ma skłonność ściągać do siebie ładunki z grup sąsiadujących. Gdy więc bezpośrednio do pierścienia przyłączana jest grupa wodorotlenowa, jej proton staje się bardziej aktywny, a jego wiązanie z tlenem bardziej spolaryzowane.

Z drugiej strony ładunek ujemny pozostający po oderwaniu protonu ma dużo możliwości stabilizacji. Może powstać wiązanie podwójne z pierścieniem, ładunek może przejść na pierścień i przesuwać się w różne strony tworząc kilka struktur mezomerycznych. Wreszcie sama skłonność układu aromatycznego aby ściągać ładunek pomaga w jego utrzymaniu. W efekcie fenole są lekko kwaśne, prototypowy benzeno-fenol tworzy sól wodorotlenkiem sodu.
 Pozytywnie na ten efekt działają grupy wyciągające elektrony z pierścienia, a więc fluorowce, grupy nitrowe. Zmniejszają gęstość ładunku w układzie aromatycznym, co pociąga za sobą też elektrony z tlenu. 2,4,6-Trójnitrofenol, czyli kwas pikrynowy, jest dzięki temu mocniejszy niż kwas octowy.

Mapa potencjału elektrostatycznego kwasu octowego. Czerwony kolor na tlenach oznacza zagęszczenie na nich elektronów, niebieski kolor na karboksylowym wodorze oznacza, że jest on najbardziej zubożony w ładunek i najchętniej odchodzi.

Trochę podobnie wygląda sytuacja z kwasami karboksylowymi, gdzie anion może być stabilizowany w strukturach mezomerycznych możliwych w całej tej grupie. Ładunek z wodoru grupy OH jest też odciągany za sprawą drugiego tlenu. Jeśli do węgla karboksylowego przyłączona jest grupa, która odciąga z niego elektrony, to kwasowość związku wzrasta. Stąd kwas chlorooctowy jest mocniejszy od octowego a dichlorooctowy on mono-chloro. W szczególności kwas trifluorooctowy jest za sprawą tego efektu bardzo mocny, oddając protony łatwiej niż kwas fosforowy.

Czym w takim razie są alkohole? Pechowcami bez dobrych warunków. W większości przypadków żaden z tych efektów nie pomaga w znaczący sposób ani oderwaniu całej grupy OH ani nawet samego tylko wodoru. Aby oderwać od nich proton trzeba użyć dość mocnych zasad, przykładowo w reakcji z metalicznym sodem lub litem tworzą alkoholany, będące w pewnych warunkach wygodnymi organicznymi zasadami. Oderwanie od nich całej grupy alkoholowej wymaga specyficznych warunków, zwykle obecności mocnych kwasów.
Czasem pomóc im mogą pewne dodatkowe grupy, jeśli położone są wystarczająco blisko. Grupy wyciągające ładunek, a więc azotanowe lub fluorowce, połączone z pierwszym węglem za grupą hydroksylową zwiększają kwasowość alkoholu. W skrajnym przypadku nonafluoro-tertbutanolu, trzy grupy trifluorometanowe działają tak silnie, że alkohol jest tylko trochę mniej kwaśny od kwasu octowego.


Podsumowując
Grupa OH zmienia właściwości zależnie od tego z czym jest połączona. Dla związków nieorganicznych połączenie z metalem o niskiej elektroujemności lub niskim/ujemnym stopniu utlenienia będzie miało charakter soli z jonowym wiązaniem M-OH, z grupą wodorotlenową reagującą z kwasami i w części przypadków ulegającej w rozpuszczalnikach polarnych pełnej dysocjacji jako anion. Związki takie nazywamy więc wodorotlenkami lub zasadami metalicznymi a grupę wodorotlenkową.
Dla związków z niemetalami, czasem z niektórymi metalami przejściowymi na wysokim stopniu utlenienia, chętniej będzie się oddzielał wodór od tlenu. Związki takie nazywamy wtedy kwasami tlenowymi.

Dla związków organicznych, które ze względu na stabilizację ładunku ujemnego w strukturze oraz efekty przyciągania elektronów zwiększają trwałość anionowej zasady, także wodór będzie chętniej odchodził, i jeśli grupą organiczną z którą był połączony była karboksylowa, wtedy związek to kwas karboksylowy, jeśli zaś był to pierścień aromatyczny wówczas jest to fenol.

Jeśli natomiast reszta organiczna to nasycony węglowodór, bez szczególnych dodatków, wówczas ani  wodór ani cała grupa OH nie będą zbyt chętnie się odszczepiać, i wtedy związek taki nazwiemy alkoholem a grupę alkoholową.

-----


sobota, 4 kwietnia 2020

Chemia w TVP okiem chemika

W związku ze szczególną sytuacją panującą obecnie w kraju i na świecie, i w wyniku odwołania zajęć w szkołach, zaczęto szukać rozwiązań zdalnych. Część lekcji daje się przekazać uczniom różnymi systemami do tego przeznaczonymi, niektóre materiały są przekazywane przez Skype czy WhatsAp, a niektórzy nauczyciele nagrywają lekcje w VR używając do tego gry Half Life.
Jednym z realizowanych pomysłów są lekcje w telewizji publicznej, co samo w sobie jest inicjatywą słuszną i pożyteczną. Z wykonaniem tych lekcji jest jednak bardzo różnie...

Media społecznościowe podchwyciły już błędy na lekcjach matematyki i języków, ale to przecież nie koniec repertuaru. W ramach programu wyemitowano też lekcje chemii, które przydałoby się również przeanalizować.

Nie będę tu oceniał osób nauczycielek ani próbował wykazywać kto tu lepiej uczy. Sam bym z biegu takiej lekcji nie poprowadził, musiałbym wykonać jakieś próby - tym bardziej, że podczas studiów nie brałem udziału w oferowanym kursie nauczycielskim, uznając ten kierunek za niezbyt perspektywiczny, więc nie mam nawet teoretycznych podstaw co do tego, jak lekcje powinno się prowadzić.
Z relacji, jakie pojawiają się w mediach wynika, że nauczyciele prowadzący zajęcia byli brani z łapanki, a wszystko było nagrywane na chybcika bez możliwości sprawdzenia już nagranego materiału i ewentualnych poprawek, dlatego wyszło jak wyszło.

Obejrzałem dwie na razie dostępne lekcje nagrane przez TVP i nie wygląda to zbyt dobrze. Nauczycielki chyba za mało się przygotowały i nawet jeśli miały jakiś plan, to ze zdenerwowania zapomniały co miało być pierwsze a co drugie, stąd zawracanie wątku, przypominanie w połowie wywodu definicji, które powinny być na początku i chyba też z tego powodu nadmierne uproszczenia.

Oglądając te lekcje zastanawiałem się, jak nauczyciele wyobrażali sobie grupę docelową. Wiele tłumaczeń brzmi, jakby miały trafić do uczniów mających pierwszą lekcję chemii, którym trzeba kolokwialnie tłumaczyć, że wiązania to takie jakby rączki, które łączą atomy. Tymczasem mają to być w założeniu zajęcia kontynuujące przeciętny materiał z kwietnia, gdy to uczeń powinien się już z pewnymi pojęciami osłuchać i nie trzeba mu ich powtarzać.


Lekcja 1, 8 klasa, Pochodne węglowodorów.

Tutaj od razu widać i słychać, że prowadząca jest spięta i przez to plącze się jej co miała powiedzieć a co już powiedziała, dlatego czasem tłumaczy jedną rzecz po kilka razy w kolejnych zdaniach. Generalnie materiał wygląda na nagrany od razu na żywo, w pewnym momencie prowadząca się zacina i to jest w dostępnej na VOD wersji. Nie wiem jak było w rzeczywistości, jeśli nagrano to wcześniej w studio, to można było przecież poprawić i przemontować.
Sposób doboru ujęć nie pomaga - gdy nauczycielka składa modele cząsteczek, wybrane zostaje zbliżenie z boku, przy którym część cząsteczki zasłaniają rzeczy na stole. Czasem następuje przejście na nieznaczące ujęcie na model sieci krystalicznej stojący na stole, a czasem, gdy coś jest zapisywane na tablicy, pokazane zostaje ujęcie z oddalenia, które utrudnia odczytanie.

Sposób wyjaśnienia pojęć raz bywa taki właśnie jak do dzieci z przedszkola, a kiedy indziej za bardzo zagmatwany. Weźmy sprawę, od jakiej odcinek się zaczyna - nauczycielka tłumaczy, że różnorodność węglowodorów zależy od "zmiennej ilości atomów węgla i wodoru w cząsteczce" oraz "różnej budowy łańcucha węglowego". Sęk w tym, że różnorodność węglowodorów i różnorodność budowy, to to samo (cząsteczki o różnej budowie to różne związki). W dodatku zostało to tak powiedziane, jakby różnorodność była dla węglowodorów czymś charakterystycznym.
Charakterystyczne dla węglowodorów ma być też to, że mają łańcuch węglowodorowy, co brzmi jak masło maślane i nie jest zupełnie dokładne, bo węglowodorem jest też metan, który łańcucha nijak nie ma w sobie utworzyć. Gdy dochodzimy do najważniejszej cechy, czyli składu węglowodorów, nauczycielka myli się mówiąc, że inne związki organiczne zawierają "atomy innych atomów pierwiastków".
Zamiast tych kilku kolejnych zdań, zdążających do tematu lekcji dookoła, wystarczyłoby zacząć od najważniejszych pojęć, coś w stylu: "Z pewnością mieliście już mówione na chemii o węglowodorach, czyli związkach organicznych, które posiadają w składzie tylko węgiel i wodór, jak wskazuje nazwa. Dziś zajmiemy się pochodnymi węglowodorów, które zawierają w cząsteczce jeszcze inne pierwiastki." Tyle, bez dalszego kombinowania.  Rozważania o przyczynach istnienia wielu izomerów związków organicznych nie są na tym etapie lekcji potrzebne.

Co jest tematem lekcji? Alkohole i to ogółem a nie tylko jednowodorotlenowe. Co wystarczy o nich powiedzieć na początek? Że są tym rodzajem pochodnych węglowodorów, które posiadają w cząsteczce atom tlenu, połączony z węglem wiązaniem pojedynczym, i na drugim wiązaniu przy tlenie mający kolejny wodór. Stąd też grupę połączoną z węglowodorem nazywa się wodorotlenową, a nie węglowodorową jak to ponownie palnęła prowadząca.
 To mówi nam wszystko o alkoholach różnego typu. Metod ich otrzymywania jest wiele i akurat opisane przyłączenie wody do alkenu nie jest jakąś szczególną, nie służy też ono za bardzo utrwaleniu pojęć, bo kojarzy etanol a etenem.
Na tym etapie tłumaczenie, że alkohole zawierają grupę węglowodorową i wodorotlenową, następujące zaraz po pomyleniu nazw tych grup na modelu, jedynie miesza uczniom w głowie i następuje za późno. A tłumaczenie czemu te już dwa razy opisane pochodne węglowodorów są  nazywane "pochodnymi węglowodorów" jest podobnie zbyt późne i niepotrzebne.

Smaku alkoholi raczej bym nie nazwał gorzkim. Chyba, że mowa o denaturacie skażonym. Etanol nie zawiera w sobie substancji powodujących uzależnienie, bo sam w sobie jest substancją. Alkohole różnią się wieloma właściwościami fizycznymi.
Wystarczyłoby wziąć do porównania alkohol heksylowy by pokazać, że w wodzie rozpuszcza się słabo i tworzy oddzielną fazę, a na przykład alkohol cetylowy ma formę stałą i także się w wodzie nie rozpuszcza. Gdy różnica między wielkością części organicznej jest mała, kolejne alkohole są do siebie podobne, jak metanol i etanol, ale wraz ze wzrostem różnic budowy wzrastają różnice właściwości. Przedstawianie podobieństw na przykładzie dwóch najprostszych alkoholi może więc wprowadzać w błędne przekonanie, że wszystkie alkohole mają tak samo.
Luteina - alkohol, który ma formę stałą, nie jest rozpuszczalny w wodzie na dodatek ma intensywny kolor.













 Ja bym ten temat tłumaczył całkiem od tyłu - wyjaśnił czym są alkohole, podał wzór ogólny i dopiero potem przykłady i dalej metody otrzymywania, po to właśnie, aby nie musieć zawracać z wątkiem i aby nie używać pojęć jeszcze nieobjaśnionych. Tutaj często pojawia się pojęcie a potem definicja albo wyskakuje w trakcie dalszych objaśnień, albo nie pojawia się w ogóle, jak to jest z "szeregiem homologicznym" która to nazwa pada jako rzekomo oczywisty wniosek i dalej nie jest tłumaczona.

Lekcja 2, 7 klasa, wodorotlenki metali
Prowadząca mówi przystępniej, ale nie ustrzegła się od błędów. W zasadzie im więcej i szybciej mówi, tym więcej popełnia pomyłek. Jako przykład środka mającego zawierać wodorotlenki pokazuje butelkę, sądząc po kształcie zawierającą żel do czyszczenia z chloranami. Kreciki i tego typu środki mają formę sypką i z takiej butelki się ich nie wysypie.

Dalsze problemy to najczęściej sytuacja z kategorii "niby tak jest, ale nie do końca". Akurat z metali jeden ma w temperaturze pokojowej formę płynną, to rtęć. Natomiast inne metale, choć mają budowę krystaliczną, bardzo rzadko ujawniają ją makroskopowo. Zwykle są po prostu ciałem stałym o kształcie nadanym i nie wyglądają jak kryształki.
Czy wodorotlenek sodu tworzy cząsteczkę taką, jak na obrazku? Może w formie gazowej, ale w formie stałej jest to wspomniana postać krystaliczna z siatką połączonych w jedno wielu jonów. Wzór  takiego związku obrazuje więc raczej obojętne elektrycznie fragmenty sieci, odpowiadające stosunkowi molowemu, niż rzeczywiste cząsteczki i ma charakter czysto dydaktyczny.

Wodorotlenki metali mają zawsze formę ciał stałych w temperaturze pokojowej, a to ze względu na silnie jonowy charakter wiązań. Substancja higroskopijna to taka, która chłonie wodę, sama nie musi być w niej dobrze rozpuszczalna. Pomylono pojęcia.
Piktogram na opakowaniu wodorotlenku potasu oznaczał substancję żrącą a nie trującą. Substancja żrąca niekoniecznie musi się dobrze rozpuszczać w wodzie.
Rozpuszczając się w wodzie, wodorotlenki nie uwalniają "anionów metali".
Ołów już od kilkunastu lat nie występuje na stacjach benzynowych, bo mamy benzynę bezołowiową. Natomiast nadal występuje w pociskach do broni palnej i wielu ciężarkach i tutaj lepiej by było poprowadzić skojarzenia.
Przedstawiony na tablicy wodorotlenek ołowiu IV jest bytem mocno teoretycznym. Ze względu na mało metaliczny charakter pierwiastka i wysoki stopień utlenienia, miałby raczej charakter kwasu; znane są zresztą jego sole, ołowiany IV. Miałby, bo czystego kwasu orto-ołowiowego nie wyizolowano. Wybór akurat niego do zobrazowania budowy wodorotlenków jest więc nie najszczęśliwszy, a w sumie poświęcono mu najwięcej czasu, nawet zbudowano model jego cząsteczki i przez to niestety zapewne najmocniej utrwali się w świadomości ucznia.

Wodorotlenki w formie stałej słabo przewodzą prąd. Wynika to z tego samego powodu co inne właściwości - tworzą sieć krystaliczną połączoną mocnymi wiązaniami jonowymi. Jony są więc dość dobrze związane i nie migrują pod wpływem pola elektrycznego. Brak ruchu nośników ładunku to brak przepływu prądu. Aby dobrze przewodzić prąd muszą zostać rozpuszczone w wodzie, ale niestety wodorotlenki większości metali są rozpuszczalne bardzo słabo.
Wartościowość to nie wyjaśnienie "z jakimi pierwiastkami i za pomocą jakich wiązań" może się wiązać dany atom, tylko po prostu liczba możliwych do utworzenia wiązań pojedynczych możliwych dla atomu w danym stanie elektronowym. Od położenia w kolumnie układu okresowego zależy tylko wartościowość maksymalna, dany pierwiastek może przyjmować różne zależnie od stopnia utlenienia. Wystarczyłoby pokazać wodorotlenek żelaza II i żelaza III aby wykazać tę różnicę.
Wcale nie jest tak, że "możemy przy pomocy różnych metali otrzymać wodorotlenek miedzi". To kolejna pomyłka.
Rtęć tworzy wodorotlenek, ale jest on nietrwały w normalnych temperaturach.
Wskazany na tablicy wodorotlenek miedzi nie dotyczy dobrze rozpuszczalnych związków pierwiastków z I lub II grupy.

Ten materiał wygląda już na zmontowany, składany z paru części i raczej nie był nadawany na żywo. Dziwne więc, że nie dano prowadzącej możliwości poprawienia, bo przypuszczam, że oglądając nagrania sama by wyłapała większość baboli.

Podsumowując
Lekcje były nagrywane szybko i bez dbania o jakość. Stremowane nauczycielki popełniły wiele błędów i nikomu nie zależało na tym, aby coś w tym poprawić. To tylko pokazuje jak realizatorzy traktują widzów. Misja telewizji ma zostać odbębniona bez przykładania się, bo nie ma na to czasu.

Szkoda, że nie znalazło się tu miejsce na doświadczenia bardziej efektowne niż mieszanie bezbarwnych alkoholi z wodą. Może gdyby prowadzące dostały więcej czasu na samą lekcję, to znalazłaby się chwilka na pokazanie na przykład wytrącania wodorotlenków z roztworów soli, a tak niestety poza samą tablicą i mazakiem nie było tutaj niczego zapadającego w pamięć. To zresztą stały problem lekcji chemii w wielu szkołach, co relacjonowali mi czytelnicy.

Obawiam się, że teraz telewizja będzie miała duży problem ze znalezieniem kogokolwiek chętnego na prowadzenie następnych lekcji.

środa, 14 lutego 2018

Słodziki cukropochodne

Jakiś czas temu kupiłem w sklepie bezcukrowe cukierki, zaciekawiony co też to za dziwo. Smakowały dziwnie, były raczej słodkawe i można by powiedzieć, że smak był stonowany, bo zarówno słodycz, owocowy posmak jak i mentolowa nuta nie stanowiły wyraźnej dominanty. Ze składu wynikało, że faktycznie nie zawierały cukru, ponad 80% stanowił tajemniczo brzmiący izomalt i syrop izomaltitolowy, co do których domyśleć się mogłem jedynie po nazwie, że zapewne są to alkohole cukrowe pochodne maltozy. Substancje takie, otrzymywane z naturalnych cukrów są stosunkowo często używane jako zamienniki cukru.
A ponieważ jest ich dość dużo, dobrze było poświęcić im osobny wpis.

Cukry to grupa związków organicznych, charakteryzująca się licznymi grupami hydroksylowymi (-OH) połączonymi z atomami węgla tworzącymi łańcuch nasycony, podobnie jak w alkoholach, oraz przynajmniej jedną grupą aldehydową (-CHO) lub ketonową (-C=O), za sprawą której możliwe jest dla nich utworzenie formy pierścieniowej jako hemiacetal. Są też nazywane węglowodanami, bo ich skład pierwiastkowy daje się sprowadzić do wzoru Cx(H2O)y, choć jest trochę wyjątków, jak cukry deoksy.
Na atomach węgla z dołączonymi grupami hydroksylowymi pojawia się szczególna geometria asymetrycznego ułożenia czterech podstawników, przy której możliwe stają się dwie konfiguracje - R i S, różniące się kolejnością przestrzenną dwóch podstawników.

Sytuacja taka dotyczy każdego atomu węgla z grupą hydroksylową, z wyjątkiem końcowego, który ma dwa takie same podstawniki, wodory. Ponieważ cukry zawierają wiele takich atomów, możliwych staje się wiele izomerów, różniących się tylko konfiguracją na poszczególnych węglach ale o takim samym składzie i budowie ogólnej. Dla cukrów sześciowęglowych cztery atomy węgla posiadają asymetrię, a ponieważ dla każdego możliwe są dwie konfiguracje, to istnieje 16 różnych cukrów sześciowęglowych. Jednym z nich jest glukoza.
Najpowszechniej używany do słodzenia cukier stołowy, czyli sacharoza, to związek złożony z dwóch cząsteczek cukrów, glukozy i fruktozy.

Ponieważ formalnie rzecz biorąc cukry są ketonami lub aldehydami, bo posiadają jedną taką grupę, można poddać je utlenieniu, do otrzymania kwasu karboksylowego, lub redukcji. W tym ostatnim przypadku zarówno grupa ketonowa jak i aldehydowa zamienią się w kolejny człon C-OH. Słodziki takie jak ksylitol czy sorbitol są zatem formalnie alkoholami!
Oczywiście nikt się nimi nie upije. Mają one smak słodki podobny do smaku wyjściowych cukrów, jednak zwykle nie są tak łatwo wchłaniane przez organizm, a co za tym idzie, nie mają tak samo dużej kaloryczności. Z tego też powodu zaczęły być używane jako niskokaloryczne słodziki polepszające smak żywności, zwłaszcza tej przeznaczonej dla cukrzyków, muszących dbać o poziom glukozy i insuliny. A ponieważ cukrów wyjściowych jest dużo, to i alkoholi cukrowych znamy i używamy dość wiele. Omówię te faktycznie stosowane w przemyśle spożywczym.

Omówienie alkoholi cukrowych najlepiej zacząć od tych najkrótszych, a więc po kolei:

Glicerol (E 442)
Lepiej znany jako gliceryna, składnik tłuszczów, bardziej kojarzony jako składnik kosmetyków. Łańcuch zawiera tylko trzy węgle. Jeszcze prostszy glikol etylenowy też bywa uznawany za alkohol cukrowy choć jego aldehyd nie jest cukrem, ale tego w żywności nie spotkamy.
Gliceryna to higroskopijna, gęsta, syropowata ciecz o lekko słodkawym smaku stanowiącym około 50-60% słodkości sacharozy. Raczej nie jest używana jako jedyny słodzik, bardziej służy za rozpuszczalnik wzmacniający smak innych środków słodzących, ponadto służy do zagęszczania i zapobiegania wysychaniu. Jest też składnikiem lukrów do ozdabiania ciastek, zapewnia bowiem półpłynną konsystencję bez krystalizacji w opakowaniu. Mieszając się z wodą nieco się ogrzewa, stąd może być mieszana ze słodzikami które ochładzają się przy rozpuszczaniu jeśli akurat nie jest to pożądane

Jako dodatek do żywności jest bezpieczna, organizm metabolizuje ją tylko częściowo, włączając do szlaku przetwarzania węglowodanów ale z minimalnym użyciem insuliny, stąd też jej bardzo niski indeks glikemiczny. Nie stanowi pożywki dla bakterii wywołujących próchnicę ani dla jelitowych, może jednak wykazywać efekt przeczyszczający, znany zresztą wszystkim używającym glicerynowych czopków. Bywa używana jako dodatkowy słodzik w żywności dla diabetyków oraz jako zamiennik alkoholu w preparatach farmaceutycznych i wyciągach ziołowych (gliceryty) jeśli akurat sam alkohol nie jest wskazany.

Erytrytol
Produkt redukcji erytrozy, czterowęglowego cukru prostego zawartego między innymi w ogonkach liści rabarbaru, od  którego wziął nazwę (greckie "erythros" czyli "zaczerwieniony"). Wyjściowy cukier nie występuje w naturze zbyt często, dlatego substratem jest glukoza. Poddaje się ją fermentacji z użyciem kolonii grzybów z rodzaju Moniliella lub Aureobasidium, które zwykle odpowiadają za psucie się wysokosłodzonej żywności. Rozbijają one sześciowęglową cząsteczkę glukozy i w warunkach beztlenowych końcowym produktem jest gotowy erytrytol obok innych polioli.

Związek ten ma smak bardzo podobny co sacharozy i niewiele mniejszą słodkość, rzędu 70-80%. Wykazuje synergizm z innymi słodzikami, częściowo maskując gorzki posmak, stąd chętne użycie wraz ze stewią. Co jednak najbardziej interesujące, nie jest prawie w ogóle metabolizowany. Większość zażytej dawki wchłania się jeszcze w jelicie cienkim, po czym w formie niezmienionej zostaje wydalona z moczem. Około 10% dostaje się do jelita grubego, tam jednak bakterie nie za bardzo się nim interesują. Powoduje to, że w odróżnieniu od ksylitolu czy sorbitolu, które w większości przedostają się do okrężnicy i działają osmotycznie, erytrytol nie wywołuje rozwolnienia czy wzdęć.
Ostatecznie tylko niewielka ilość zostaje zmetabolizowana, bez wykorzystania insuliny, stąd przypisuje się mu indeks glikemiczny bliski zeru i kaloryczność ok. 0,2 Kcal.
[1]

Jego diastereoizomerem, różniącym się konfiguracją, jest treitol. Nie jest jednak używany jako słodzik.

Ksylitol
Pięciowęglowy poliol otrzymywany przez redukcję ksylozy, składnika zdrewniałych części roślin. W naturze w wolnej postaci występuje rzadko, głownie w soku niektórych owoców. Jego słodkość jest zbliżona do sacharozy, natomiast indeks glikemiczny wielokrotnie niższy. Wynika to stąd, że jest słabo wchłaniany, duża część pozostaje w treści jelit, część wchłoniętego jest wydalana z moczem. Pewna ilość ksylitolu może być trawiona przez bakterie jelitowe do krótkołańcuchowych kwasów tłuszczowych i w takiej formie wykorzystana; ponadto pewna ilość wchłoniętego związku może być zamieniana w glikogen w wątrobie, ale jest to proces powolny. Łącznie efekty te dają kaloryczność możliwą do wykorzystania przez organizm około 2,4 Kcal, o 40% mniejszą od cukru stołowego.

Przechodzenie dużej ilości ksylitolu do treści jelita grubego skutkuje działaniem osmotycznym, zauważalnym zwłaszcza u osób, których dieta nie zawierała dotychczas takiego składnika. Zanim organizm się przyzwyczai i zacznie inaczej reagować, odpowiednio duża jednorazowa dawka działa rozwalniająco. Ponadto pewien stopień trawienia przez bakterie jelitowe może u niektórych skutkować wzdęciami. Poza tymi drobnymi przypadłościami nie zaobserwowano szkodliwego działania nawet bardzo dużych dawek.

Ksylitol jest natomiast toksyczny dla psów i niektórych ptaków, ze względu na zbyt silne pobudzenie wydzielania insuliny. Dawanie zwierzętom diabetycznych smakołyków raczej nie jest dobrym pomysłem. Napisałem o nim osobny artykuł, tam więcej informacji (Link).

Sorbitol
Alkohol sześciowęglowy otrzymywany przez redukcję glukozy, w naturze występujący w niewielkich ilościach w soku jabłkowym i śliwkowym, po raz pierwszy wyizolowano go z owoców jarzębiny, skąd wzięła się nazwa. Jest chętnie używany w żywności dietetycznej czy gumach do żucia "bez cukru". Jest w małym stopniu wchłaniany i przechodzi do treści jelita grubego, gdzie w zbyt dużej ilości może działać przeczyszczająco. Prawdopodobnie obok samego tylko błonnika przyczynia się do przeczyszczającego działania suszonych śliwek, w których występuje obficie. Bywa używany w medycynie jako diuretyk do obniżania ciśnienia wewnątrz oka

Mannitol 
Drugi alkohol sześciowęglowy, od sorbitolu różniący się konfiguracją na asymetrycznych atomach węgla, formalnie będący produktem redukcji mannozy. Zwykle otrzymywany przez uwodornianie fruktozy, ale także stosunkowo duża część zapotrzebowania jest uzupełniana ze źródeł naturalnych, obficie występuje w niektórych krasnorostach i owocach, oraz w soku jesionu mannowego od którego wziął nazwę. Słodkość podobna do cukru stołowego i niski indeks glikemiczny powodują, że także jest chętnie używany jako słodzik.

Stopiony tworzy masę podobną do szkła, która jest praktycznie niehigroskopijna, stąd użycie w cukierkach, gumach do żucia, w polewach pokrywających draże oraz jako składnik ozdób cukierniczych.

Mannitol ma ważne zastosowania medyczne. W formie zastrzyku dożylnego jest używany do szybkiego obniżania ciśnienia wewnątrz gałki ocznej, co wykorzystuje się w leczeniu jaskry, oraz obniża nadmierne ciśnienie wewnątrzczaszkowe. Dodatkowo może zmniejszać obrzęki regulując wydalanie wody. Dożylnie zwiększa też wydzielanie wody przez nerki, co wykorzystuje się przy leczeniu skąpomoczu i przy eliminacji toksyn.

Laktitol
Zredukowana forma laktozy, dwucukru występującego w mleku. Laktoza składa się z cząsteczki glukozy i cząsteczki galaktozy. Laktitol jest otrzymywany poprzez selektywne zredukowanie tylko składowej cząsteczki glukozy, w związku z czym formalnie jest połączeniem galaktozy z mannitolem. Słodycz stanowi około 40% słodkości białego cukru. Ponieważ związek jest dość stabilny w wysokich temperaturach oraz mikrobiologicznie, jest chętnie używanym dodatkiem do dietetycznych wypieków, ciasteczek, czekolady i kremów.

W większych ilościach może działać przeczyszczająco, bywa składnikiem leków przeciw zaparciom. Nie jest polecany osobom nie trawiącym galaktozy.

Maltitol
Produkt częściowej redukcji maltozy, dwucukru złożonego z dwóch cząsteczek glukozy, naturalnie obecnego w dekstrynach i słodzie. Redukcji ulega tylko jedna cząsteczka składowa, toteż formalnie jest to połączenie glukozy i sorbitolu. Produkuje się go w wyniku uwodornienia syropu kukurydzianego, produktu częściowej hydrolizy skrobi. Powstaje wówczas mieszanina maltitolu, sorbitolu i częściowo uwodornionych wielocukrów.
Właściwości fizyczne ma bardzo podobne do sacharozy - podobny smak, gęstość, temperaturę topnienia, skłonność do karmelizacji, dlatego może zastępować ją we wszystkich zastosowaniach spożywczych.
W bardzo dużych ilościach na raz, działa przeczyszczająco, choć ryzyko jest w tym przypadku małe.

Izomalt
Mieszanina częściowo zredukowanych dwucukrów. Wytwarzana w dwuetapowym procesie - najpierw sacharoza jest poddawana reakcji z enzymem otrzymywanym z pewnych bakterii, który zamienia ją w izomaltulozę. Jest to dwucukier w którym glukoza i fruktoza są połączone w inny sposób. W sacharozie jest to wiązanie łączące atom nr.1 jednej cząsteczki z atomem nr.2 drugiej. W izomaltulozie wiązanie przeskakuje w pozycję 1-6. Skutkuje to tym, że jest to cukier o właściwościach redukujących.
Uwodornienie izomaltulozy daje mieszaninę dwóch związków, w związku z tym, że w części przypadków uwodorniła się tylko składowa cząsteczka glukozy a w innym tylko fruktozy, powstaje więc glukozo-sorbitol czyli maltitol, oraz glukozo-mannitol.

Izomalt jest używany głównie do bezcukrowych cukierków, łatwo bowiem tworzy przezroczystą, niehigroskopijną masę i nie ma skłonności do zlepiania się z innymi cukierkami. Jest odporny na krystalizację, stąd użycie do ozdób cukierniczych i rzeźb z topionego cukru

Uwodorniony hydrolizat skrobiowy (HSH)
Mieszanina różnych związków, otrzymywana przez uwodornienie dekstryn wytwarzanych przez częściową hydrolizę skrobi. Może zawierać wyraźną przewagę jednego alkoholu cukrowego, na przykład sorbitolu czy mannitolu, jeśli jednak ponad 50% stanowią częściowo zredukowane wielocukry, używa się właśnie takiej nazwy. Słodkość zależy od stopnia uwodornienia, dochodzi do 50% słodkości białego cukru. Stanowi dodatkowy składnik obok innych słodzików, oraz środek zwiększający lepkość i gęstość

-------
[1] http://ncl.csircentral.net/920/1/th1868.pdf


poniedziałek, 23 października 2017

Alkohol w proszku, bezwonna przyprawa i molekularne kubki

Plotki o alkoholu w proszku krążyły już od dawna, ale dopiero w ostatnich latach produkt tego typu pojawił się na międzynarodowym rynku. Czytający te doniesienia z pewnością zastanawiali się jakiej to nietypowej chemii musiano użyć, aby zatrzymać w sypkiej postaci tak lotny związek jak alkohol etylowy.
Związek jaki został tu użyty rzeczywiście jest ciekawy, ale równocześnie bardzo prosty - w zasadzie zwykła skrobia, tylko zawinięta w małe kółko...

Omawiałem już tu kiedyś nietypowe połączenia cząsteczek "połączonych acz nie powiązanych" gdzie geometria powodowała, że dwie osobne cząsteczki tworzyły nierozerwalny układ. Teraz zajmę się przypadkiem słabszego powiązania - związku inkluzyjnego, będącego formą kompleksów typu gość-gospodarz.
W połączeniu tego rodzaju cząsteczka większa, nazywana gospodarzem, tworzy "wnękę" której kształt i rozmiar pasują do mniejszej cząsteczki "gościa". Mniejsza cząsteczka wsuwa się w większą, zagłębia we wnękę a gdy już się tam dobrze umości oddziaływania między nią a cząsteczką gospodarza tworzą kompleks, w wielu przypadkach zaskakująco trwały. Wnęka gospodarza może też nie istnieć w związku samotnym, lecz powstaje wskutek przyjmowania odpowiedniej konformacji owijającej go wokół gościa. Brzmi to bardzo intymnie.
W przypadku inkluzji, cząsteczka gospodarza tworzy wnękę na tyle dużą, że goszcząca w niej molekuła jest niemal całkiem odizolowana od środowiska zewnętrznego. Powstałe połączenie często ma inne właściwości niż związki osobne - jeśli w normalnej sytuacji "gość" jest nierozpuszczalny w danym rozpuszczalniku, a "gospodarz" jest, to stworzony kompleks prawdopodobnie będzie się rozpuszczał.

Spośród różnych znanych układów, najbardziej popularnymi i najdłużej badanymi są cyklodekstryny. Są to fragmenty łańcucha skrobi, zamknięte w formę małych pierścieni, zawierających od 6 do ponad 30 członów glukozy połączonych wiązaniami glikozydowymi poprzez tlen.
Po raz pierwszy cyklodeksytryny opisano w 1891 roku jako substancję wytwarzaną przez bakterie z rodzaju Bacillus, gdy w latach 30. zorientowano się w ich pierścieniowej budowie, szybko zaczęto badać kompleksy tworzone z małymi cząsteczkami organicznymi. Po odkryciu, że bakterie Bacillus wytwarzają cyklodekstryny ze skrobi przy pomocy specjalnego enzymu cykloglukotransferazy, zaczęto produkować je na większą skalę, traktując skrobię lub dekstrynę tymże enzymem wyizolowanym z bakterii. Długie na kilkaset lub kilkadziesiąt członów - cząstek glukozy - łańcuchy skrobi są rozcinane na krótsze fragmenty i łączone w pierścienie. Zwykle izoluje się trzy najważniejsze frakcję - alfa składającą się z 6 glukoz, beta złożoną z 7 glukoz i gamma złożoną z ośmiu glukoz. Użycie enzymów z różnych gatunków bakterii pozwala na otrzymanie także większych pierścieni, do ok. 36 glukoz.

Cyklodekstryny przyjmują szczególną, nie płaską geometrię - płaszczyzny pierścieni glukozy budujących okrąg nachylają się ku sobie, przez co związek przyjmuje formę zbliżoną do ściętego stożka, lub też, jak to się często określa, do kubka z obciętym dnem.  W takim układzie po stronie szerszego otworu zagęszczają się grupy hydroksylowe, przez co od tej strony cząsteczka jest hydrofilowa, natomiast po stronie otworu węższego, grupy hydroksylowe odginają się na zewnątrz, zaś okolice tego otworu i wnętrze nabierają charakteru hydrofobowego:
Dla zdolności kompleksowania ma to dość istotne znaczenie - cząsteczki organiczne na tyle małe aby zmieścić się we wnęce cyklodekstryny i mające właściwości hydrofobowe będą chętnie wnikać do środka. Duże cząsteczki hydrofilowe nie będą wnikały, ale mogą oddziaływać z zagęszczonymi grupami hydroksylowymi na obrzeżu. Cząsteczki mające fragmenty hydrofobowe i hydrofilowe będą częściowo wsuwać się a częściowo wystawać.
Alfa cyklodekstryna tworzy "kubek" o wysokości 0,78 nanometrów i średnicy wewnętrznej 0,57 nm; beta cyklodekstryna przy tej samej wysokości ma wnękę o średnicy 0,78 nm a gamma 0,95. Wielkości tych wnęk determinują rodzaj cząsteczek które mogą do nich wniknąć - zbyt duże się nie zmieszczą, zaś bardzo małe będą słabiej oddziaływały.

Jeśli chodzi o rodzaj sił wciągających cząsteczki do wnętrza cyklodekstryny, to oprócz sił van deer Walsa znaczenie ma tu też adsorbcja hydrofobowa. Cząsteczka hydrofobowa słabo oddziałuje z wodą i podobnymi do niej rozpuszczalnikami, efekty oddziaływań między cząsteczkami wody prowadzą do odpychania grupy hydrofobowej. W tej sytuacji cząsteczki hydrofobowe będą dążyły do utworzenia agregatów, zaś w naszym przypadku mała cząsteczka hydrofobowa będzie wpychana do mającego takie właściwości wnętrza cyklodekstryny.
Cząsteczki zawierające fragmenty z elektroujemnymi niemetalami mogą dodatkowo tworzyć wiązania wodorowe z grupami -OH na obrzeżu. Ponadto możliwe jest tworzenie kompleksów koordynacyjnych. Cyklodekstryny to jedne z nielicznych cząsteczek organicznych kompleksujących aniony. Gdy hydrofobowa cząsteczka jest dłuższa niż wynosi głębokość pierścienia, możliwe jest dołączenie drugiego. Tak powstały kompleks o stosunku 1:2 nazywa się molekularną kapsułką lub też niezupełnie poprawnie, mikrokapsułką.


Wykazano powstawanie kompleksów z bardzo dużą ilością cząsteczek organicznych i nieorganicznych, nieraz całkiem sporych, na przykład fullereny, i szybko zaczęto ten fakt wykorzystywać. Zamknięte w molekularnej kapsułce związki przechodzą do roztworu w wodzie oraz są w pewnym stopniu chronione przed zewnętrznymi wpływami, stąd chętne użycie cyklodekstryn jako nośnika substancji zapachowych i smakowych dodawanych do żywności. Sama cyklodekstryna ma na liście dodatków oznaczenie E459. Może być też używana do stabilizacji składników odżywczych i witamin, chroniąc je przed utlenieniem w żywności suchej. Udało się w ten sposób stworzyć rozpuszczalną formę kurkuminy, która w normalnych warunkach jest słabo rozpuszczalna.

Zastosowania medyczne
Jednym z ciekawszych przypadków takiego kompleksowania, który znalazł zastosowanie w medycynie, jest tworzenie połączeń z cholesterolem. Cząsteczka cholesterolu jest generalnie hydrofobowa i słabo rozpuszczalna w wodzie natomiast dobrze w tłuszczach. Jej rozmiar i kształt idealnie pasuje do alfa-cyklodekstryny. Po dodaniu cyklodekstryn do żywności duża część cholesterolu zostaje związana co utrudnia jego wchłanianie. W taki sposób produkuje się jedzenie niskocholesterolowe.
Obecnie testuje się pochodne cyklodekstryn jako lek na chorobę Niemanna-Picka typu C. Choroba ta, wywołana pewnymi mutacjami, powoduje zaburzenia w transporcie substancji do komórek, wywołując gromadzenie się cholesterolu w lizosomach i sfingolipidów w neuronach. Prowadzi to do zaburzeń czynności wątroby i trzustki, oraz objawów neurologicznych, w przypadku dzieci wywołujących niepełnosprawność i opóźnienie umysłowe, a w przypadku osób starszych szybko postępującą demencję, głuchotę, zaburzenia psychiczne, padaczki. Podobieństwo objawów powoduje, że czasem nazywa się ją "dziecięcym Alzheimerem".
W 2009 roku zezwolono na eksperymentalne użycie hydroksypropylowej pochodnej beta-cyklodekstryny do łagodzenia przebiegu choroby u sióstr bliźniaczek[1], gdyż usuwa cholesterol z lizosomów, co powinno ograniczyć postęp choroby. Potem zastosowano ją jeszcze u kilkunastu pacjentów ale nie ma jeszcze ostatecznych wniosków na ile jest to sposób skuteczny. Pewne niedawne badanie na kilku pacjentach sugeruje spowolnienie rozwoju choroby. [2] Substancja jest w takich zastosowaniu podawana w formie roztworu do płynu mózgowo-rdzeniowego.

Inny przykład to Sugammadeks, lek odwracający blokadę mięśniowo-nerwową u osób którym podano leki zwiotczające  na przykład przy znieczuleniu ogólnym. Jest to cząsteczka gamma-cyklodekstryny zmodyfikowana przez dodanie grup sulfanylopropionowych. Rodzaj grup i ich długość dobrano tak, aby cząsteczka idealnie pasowała do środka zwiotczającego rokuronium. Początkowo miał to być nośnik leku ułatwiający rozpuszczanie w wodzie, ale po stwierdzeniu wyjątkowo dużej siły kompleksowania, zaczęto stosować zmodyfikowaną cyklodekstrynę do usuwania środka z ustroju. Po wstrzyknięciu do krwioobiegu, sugammadeks kompleksuje rokuronium, w związku z tym związek ten zaczyna być oddawany przez tkanki co znosi działanie zwiotczające.

A co z alkoholem?
Etanol jest małą cząsteczką organiczną z jednym końcem o pewnych właściwościach lipofilowych, i już dawno stwierdzono, że w odpowiednich warunkach możliwe jest stworzenie połączenia inkluzyjnego z cyklodeksytryną, które jednak rozpadało się pod wpływem wody. Pierwsze próby zastosowań spożywczych miały miejsce w latach 70. ale najwyraźniej nie były zbyt udane, dlatego dla przeciętnego konsumenta wynalazek zaistniał dopiero w ostatnich latach. Najczęściej spotykane użycie, to napoje typu "grzaniec" - te dostępne na polskim rynku zawierają enkapsulowany alkohol w ilości odpowiadającej stężeniu 0,5% w gotowym napoju (w zasadzie więc są to ilości dla aromatu).
W Europie dostępne są napoje w proszku o smaku szampana czy wina z dodatkiem alkoholu w ilości wystarczającej, aby się upić.

Proszek taki składa się z drobnych cząstek zawierających wewnątrz masę kompleksu cyklodekstryna-alkohol, otoczoną warstewką ochronną liniowych dekstryn, chroniących wnętrze przed parowaniem. Pył może zawierać do 30% alkoholu.

Cyklodekstryny spożyte doustnie nie wywołują szkodliwych skutków, są częściowo trawione tak samo jak zwykła skrobia. Ze względu na rozmiar cząsteczek nie są wchłaniane do organizmu. Testuje się je jako środek obniżający poziom cholesterolu, zażywany w dawkach kilkugramowych.[3]

---------
* https://en.wikipedia.org/wiki/Alcohol_powder
* https://en.wikipedia.org/wiki/Cyclodextrin

[1] http://addiandcassi.com/walgreens-support-twins-niemann-pick-type-receive-cyclodextrin-treatments-home/
[2] https://www.sciencedaily.com/releases/2017/08/170810192740.htm
[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941029/

sobota, 31 grudnia 2016

Kac okiem chemika

Każda przyjemność użyta w nadmiarze, ma swoje skutki, o czym z pewnością przekona się wielu sylwestrowiczów gdy już minie szampańska zabawa. I być może niektórych zastanowi wówczas - skąd bierze się kac? I czy można to jakoś, na przykład chemicznie, uśmierzyć?

Większość połkniętego alkoholu jest wchłaniana w żołądku, choć część już w jamie ustnej. Wchłaniany jest dosyć szybko - już 5-10 minut po wypiciu daje się go wykryć we krwi, oddziałując na układ nerwowy i wpływając na nastrój. Gdy alkohol trafi do wątroby, ta stara się go jakoś przerobić przede wszystkim utleniając do łatwych do wydalenia związków, z których część może być wykorzystana do produkcji energii. Proces ten przeprowadza przy pomocy dwóch enzymów w dwóch etapach, których przebieg i szybkość mają wpływ na późniejsze dolegliwości. A zatem etapami:

Enzym I - z alkoholu w aldehyd
Pierwszym etapem metabolizmu alkoholu jest utlenienie do aldehydu octowego, przy pomocy specjalnego enzymu - dehydrogenazy alkoholowej - i cząsteczki NAD jako dostarczyciela energii:
CH3CH2OH + NAD+CH3CHO + NADH + H+

Dehydrogenaza alkoholowa to prosty enzym białkowy z atomem cynku w roli kofaktora do którego kompleksuje się alkohol. To właśnie szybkość zachodzenia tej reakcji decyduje o tym, czy ktoś ma "mocną głowę", jeśli bowiem enzym ma u danej osoby dużą aktywność to alkohol jest szybko przerabiany. Taka osoba może więc wypić więcej zanim nie osiągnie zupełnego upojenia, choć zarazem działanie alkoholu będzie u takiej osoby krótsze.
Niestety, powstający w reakcji aldehyd octowy jest związkiem bardziej toksycznym niż sam alkohol. Ma działanie drażniące na układ nerwowy i tkanki, źle wpływa na błonę śluzową przewodu pokarmowego. To właśnie on wywołuje ból głowy, mdłości i nadwrażliwość, będące objawami kaca. Jest też podejrzewany o działanie rakotwórcze.

Organizm nie jest jednak taki głupi, aby metabolizm alkoholu kończyć na tym etapie - aldehyd jest przetwarzany dalej.

Enzym II - z aldehydu w kwas
Drugi etap powoduje przetworzenie tak szkodliwego związku w nietoksyczny kwas octowy. Odbywa się to przy udziale drugiego enzymu, dehydrogenazy aldehydowej. Powstający kwas powoduje przejściowe zakwaszenie krwi, co także ma pewien wpływ na późne objawy kaca.
Jonu octanowe mogą być dalej wykorzystane w cyklu Krebsa.

Mocna głowa - mocny enzym
Aktywność dwóch enzymów odpowiedzialnych za przemiany alkoholu, w dużym stopniu zależy od czynników genetycznych. To zaś jak sprawnie i szybko będą działały, ma wpływ na to jakich efektów dozna spożywający. Wolne działanie pierwszego enzymu to wolny przerób alkoholu, w efekcie szybko osiąga on we krwi duże stężenie i człowiek łatwo się upija. O takich osobach mówi się, że mają słabą głowę i mało im trzeba aby je zamroczyło. Zarazem jednak słaby przerób i spożycie mniejszej całkowitej ilości alkoholu, to także słabszy kac, pojawiający się później.

Inna sytuacja dotyczy osób u których pierwszy enzym ma dużą aktywność - alkohol jest przerabiany na bieżąco, w efekcie zanim osiągnie odpowiednie stężenie, użytkownik może wypić więcej. Właśnie tacy mocno-enzymowcy to ludzie o "mocnej głowie". Jest jednak pewien minus - szybki przerób alkoholu to także szybciej pojawiający się kac, a ponieważ ludzie tacy zazwyczaj jeśli już piją, to więcej, toteż i objawy są bardziej nasilone.

Kwestia tego jak długo trwa kac zależy znów od aktywności drugiego enzymu, i tutaj w różnych populacjach panuje duże zróżnicowanie. Jeśli u danej osoby drugi enzym, utleniający aldehyd do kwasu, jest bardzo aktywny, to objawy kaca będą utrzymywać się krócej, jeśli aktywność będzie niska, kac będzie się utrzymywał.
Z tej zmienności wyniknąć mogą cztery różne sytuacje. Najgorsza to oczywiście duża aktywność enzymu pierwszego i niska drugiego. Taka osoba ma "mocną głowę" i może więcej wypić, zarazem jednak alkohol szybko jest przerabiany na aldehyd, który znowu bardzo wolno utleniany jest do kwasu. W efekcie kac osiąga natężenie zatrucia klinicznego.
Przeciwna sytuacja to niska aktywność enzymu pierwszego i duża drugiego. Taka osoba szybko się upija i nie może pić dużo. Zarazem jednak kac pojawia się słaby i krótkotrwały.
Dla dużej aktywności obu enzymów mamy połączenie "mocnej głowy" i krótkotrwałego kaca.  Dla niskiej aktywności obu enzymów zachodzi szybkie upijanie się i słaby ale długotrwały kac.

Większość mieszkańców Europy posiada dość dobrą aktywność obu enzymów, przy czym dla dehydrogenazy alkoholowej zachodzi duża zmienność, związana z tym, że tak na prawdę jest to sześc podobnych enzymów, których wytwarzanie zmienia się zależnie od pochodzenia, wieku i płci. Na terenach środkowej Azji i w Korei rozpowszechnione są natomiast geny produkujące wariant enzymu o dużej aktywności. W przypadku drugiego enzymu - u większości europejczyków ma dobrą aktywność, u dużej części Azjatów występuje mutacja powodująca produkcję enzymu o bardzo małej aktywności.
Podwójnie poszkodowani Chińczycy i Japończycy nie upijają się zatem zbyt chętnie, ale też zarazem rzadziej popadają w alkoholizm, bo każde spożycie okupują przeciągłym kacem, toteż przyjemności nie przeważają nad skutkami. Skutkiem negatywnym jest u takich osób większe ryzyko raka przełyku i żołądka, związane zapewne ze szkodliwym działaniem aldehydu.[1], [2]

Ponieważ rozmieszczenie i czas upowszechnienia tych genów dobrze zgadza się z rozkładem upraw ryżu sądzi się, że jest to wynik specyficznego rodzaju doboru naturalnego. Rolnicy uprawiający ryż, chętnie z jego fermentacji otrzymywali wino ryżowe. Osoby o dużej aktywności drugiego enzymu mogły upijać się bez negatywnych skutków, łatwiej więc wpadały w alkoholizm i mogły mieć problem z dochowaniem potomstwa. Jeśli wytwarzanie i picie wina ryżowego było powszechne, ta sytuacja kulturowa faworyzowała ludzi o genach wariantowych.
W efekcie około połowy Chińczyków i Japończyków źle znosi alkohol. Na dodatek u pozostałych Azjatów rozpowszechniona jest mutacja zmniejszająca aktywność pierwszego enzymu, w efekcie jeśli ktoś nawet nie ma po spożyciu kaca-giganta, to i tak nie może wypić wiele.
W Europie to najwyraźniej nie działało, za pewne z powodu późniejszego zasiedlenia tego terenu po epokach lodowcowych i późniejszego przejścia na kulturę rolniczą.


Wpłynąć na enzymy
Skoro zasadniczo sytuacja z enzymami jest wyjaśniona, powstaje pytanie, czy da się jakoś na to wpłynąć? Poprawić słabo działających enzymów raczej się nie da, ale można któryś z tych dwóch zablokować. Zależnie od tego za który się zabierzemy, będzie to miało różne skutki.

Zablokowanie działania dehydrogenazy aldehydowej, czyli enzymu drugiego, będzie powodowało, że niezależnie od aktywności tego pierwszego, aldehyd octowy będzie się gromadził we krwi. Tym samym efekty toksyczne, a wiec kac, będą osiągały duże natężenie, wręcz niebezpieczne. Ponieważ zaś taka sytuacja raczej zniechęca do picia, inhibitory tego enzymu znalazły zastosowanie w leczeniu alkoholizmu.
Znanym takim środkiem jest Disulfiram, będący zasadniczo lekiem przeciwpasożytniczym. Stosowany w terapii awersyjnej znany jest tez pod nazwą Esperal. Podobne działanie mają niektóre cefalosporyny, pewne antybiotyki i leki antygrzybiczne, oraz wyciągi pewnych roślin. Blokowanie drugiego enzymu jest wywoływane także przez kopryny, zawarte w czernidlaku, dobrym grzybie jadalnym z wyglądu podobnym do nierozwiniętej kani. Efekt utrzymuje się do trzech dni od spożycia, dlatego mówi się o czernidlaku, że jest "jadalny warunkowo" - czyli dobry ale bez popitki.

A odwrotna sytuacja?
Gdyby udało się zablokować pierwszy enzym, ten utleniający alkohol do aldehydu, to kac by się tak szybko nie pojawiał. Taką substancją jest na przykład Fomepizol, stosowany jako lek na zatrucia metanolem i glikolem, który nie jest polecany do zażycia wraz z alkoholem. Powoduje znaczne zmniejszenie objawów kaca, ale też zarazem wzmacnia stan upojenia; w efekcie człowiek robi się mocno pijany  już po niewielkiej ilości alkoholu. Nie słyszałem aby był składnikiem jakiegoś preparatu, dla którego zwalczanie kaca jest głównym celem. Jest stosowany w medycynie ratunkowej w formie zastrzyków.
Ma też wyraźne skutki uboczne, takie jak uszkodzenia wątroby czy bóle głowy, dlatego nie ma tak dobrze.

Czy tylko aldehyd?
Wprawdzie jak się rzekło za większość objawów kaca odpowiada aldehyd octowy, ale wszystko wskazuje na to, że problem jest daleko bardziej złożony. Wszakże nie zawsze taka sama dawka, wywołuje taki sam skutek. Alkohole rafinowane zwykle dają objawy mniej uciążliwe, z kolei tanie alkohole robione z byle czego mogą być bardzo ciężkie do przetrawienia. Dlatego wskazuje się na rolę innych dodatków.
Podczas fermentacji i destylacji oprócz alkoholu etylowego powstaje też pewna ilość alkoholi wyższych, a więc butanolu, pentanolu, heksanolu, alkoholu izoamylowego i ich estry. Te tak zwane fuzle, oddzielane w ostatniej fazie pogonu, odpowiadają za niemiły posmak samogonu. Nie są też oddzielane od niektórych trunków szlachetnych, jak Brandy czy Whiskey.
Ogółem alkohole wyższe są znacznie bardziej toksyczne od alkoholu etylowego. Wprawdzie ten hamuje ich metabolizm, ale gdy już większość zostaje przerobiona, ich utlenianie nabiera znaczenia dla ciężkości objawów późnej fazy kaca. Dlatego

Innym produktem ubocznym fermentacji jest metanol, powstający głównie z moszczu owocowego jako produkt rozkładu pektyny. Powstający po utlenieniu metanolu przez dehydrogenazę alkoholową aldehyd mrówkowy, będący głównym składnikiem formaliny, jest znacznie bardziej toksyczny od aldehydu octowego. Tym samym niewielkie domieszki w napojach mogą pogorszyć objawy.
Ogółem badania sugerują że im "ciemniejszy" i mniej oczyszczony napój, tym gorsze efekty końcowe. [3]

Jak się często wskazuje za niektóre efekty może odpowiadać odwodnienie związane ze zwiększonym wytwarzaniem moczu, oraz wydzielanie czynników zapalnych związane z powstawaniem wolnych rodników, mają one jednak pomniejsze znaczenie.

Sposoby na kaca
Generalnie sposoby leczenia nieprzyjemnych skutków po spożyciu, są metodami objawowymi. Nie ma w pełni skutecznych metod zapobiegania - z wyjątkiem oczywiście unikania nadmiaru alkoholu. Często proponowana metoda popijania alkoholu wodą dla zmniejszenia odwodnienia nie ma jednoznacznych skutków - może zmniejszyć takie objawy jak suchość w ustach czy podrażnienie żołądka, ale jak wynika z ostatniego badania na ten temat, nie zapobiega pojawianiu się kaca. Podobnie nie zadziałała też obfita kolacja i zjedzenie czegoś tłustego przez piciem.[4]

Gdy ból głowy już się pojawi, można zwalczać go środkami przeciwbólowymi, z tym zastrzeżeniem, że aspiryna może dodatkowo podrażniać żołądek, a paracetamol obciążać wątrobę. Łączenie tabletek przeciwbólowych z alkoholem lub spożywanie ich gdy alkohol z nas jeszcze nie wywietrzał, może dawać cięższe skutki.
Pewne badania wskazują na zmniejszenie objawów przy użyciu leku przeciwmigrenowego Clotamu, który hamuje wydzielanie czynników zapalnych, ale nie można łączyć go z alkoholem.

W suplementach na kaca pojawia się niekiedy cysteina lub jej pochodna N-acetylowa. Mają one działanie przeciwrodnikowe i prawdopodobnie zmniejszają toksyczne działanie aldehydu, w badaniu na zwierzętach okazały się zapobiegać ciężkiemu zatruciu alkoholowemu. Trudno jednak przełożyć to na działanie przy przeciętnym spożyciu u ludzi.[5]
Ze środków naturalnych często w suplementach spotykany jest wyciąg z opuncji. Tutaj badania wskazują, że wprawdzie samym objawom wyciąg nie zapobiegał, ale zmniejszał nasilenie tych ciężkich[6].
Kawa i kofeina nie wpływają na pojawianie się kaca.
Pozostałe tradycyjne środki jak zsiadłe mleko, wapno czy sok pomidorowy mogą zmniejszać niektóre objawy, ale nie ma na ich temat zbyt wiele danych. Generalnie każdy powinien znaleźć sobie taki środek, który działa na niego.

Raczej nie pomoże
Do ziół często polecanych na kaca należy kudzu, roślina podobna do dzikiej fasoli. Wyciągi z kudzu zawierają składniki o działaniu przeciwzapalnym, dlatego mogą dobrze wpływać na niektóre późne objawy jak uczucie rozbicia czy ból głowy. Z drugiej strony inne składniki hamują działanie drugiego enzymu metabolizującego alkohol, dehydrogenazy ALDH2 eliminującej szkodliwy aldehyd. Zażycie "ziołowych tabletek" z kudzu przed lub tuż po wypiciu alkoholu da więc skutek odwrotny, objawy będą cięższe. [7]
----------
* Przegląd badań na temat kaca:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827719/

[1]  http://en.wikipedia.org/wiki/Alcohol_flush_reaction
[2]  https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=217
[3] Rohsenow D.J. et al.  Intoxication with bourbon versus vodka: effects on hangover, sleep, and next-day neurocognitive performance in young adults. Alcohol Clin Exp Res. 2010 Mar 1;34(3):509-18
 [4]  Verster, J.C. et al.. The impact of consuming food or drinking water on alcohol hangover. European Neuropsychopharmacology, 25, (pp. 604) (1 p.)
 [5] Wang A. et al.  A dual effect of N-acetylcysteine on acute ethanol-induced liver damage in mice., Hepatology Research, 2006 Mar; 34 (3): 199-206.
[6] Wiese L. et al. Effect of Opuntia ficus indica on symptoms of the alcohol hangover. Arch Intern Med. 2004; (164): 1334/40.
[7] Neil R. McGregor  Pueraria lobata (Kudzu root) hangover remedies and acetaldehyde-associated neoplasm riskAlcohol. 41 (7): 469–478.

czwartek, 2 czerwca 2016

Co to jest ksylitol?

Czyli parę tajemnic, o jakich nie powiedzą wam w sklepikach ze zdrową i naturalną żywnością...

Na pomysł tego wpisu naprowadziły mnie pastylki na kaszel. Gdy przeglądałem dostępne w aptece znalazłem też takie, które chwaliły się że nie zawierają cukru. Zajrzałem więc na skład gdzie jako główny środek słodzący wymieniono ksylitol. To, samo w sobie, nie było jeszcze zaskakujące, jednak producent uznał za potrzebne uspokojenie klienta, tak aby nie zaniepokoił się tą trudną nazwą i w nawiasie wyjaśnił "ekstrakt z kory brzozy". I w tym problem, że składnik ten jest akurat takim ekstraktem, jak wódka sokiem...

Zacznijmy może od najbardziej podstawowej rzeczy - ksylitol nie jest cukrem. Więc pisanie wszędzie, we wszystkich reklamach, że to "cukier brzozowy" jest błędem. Na właściwy trop powinna naprowadzać nas już nazwa - końcówka -ol jest właściwa dla alkoholi, i faktycznie, ksylitol należy do grupy alkoholi cukrowych.
Typowy cukier to cząsteczka nasycona będąca łańcuchem węglowodorowym w którym każdy (lub prawie dla cukrów deoksy) węgiel jest przyłączony z grupą -OH, stąd wzór ogólny Cx(H2O)y i nazwa węglowodany, wydaje się bowiem sądząc po tym wzorze, jakby składały się z węgla i wody. Tym co odróżnia je od alkoholi wielohydroksylowych jest obecność grupy aldehydowej lub ketonowej, a więc z podwójnym wiązaniem węgiel-tlen C=O. Grupa ta wpływa na ich reaktywność oraz umożliwia im występowanie w formie pierścieniowej po utworzeniu hemiacetalu.




Jeśli teraz zredukujemy cukier tak, aby także tą grupę aldehydową lub ketonową zamienić w kolejną grupę -OH otrzymamy alkohol polihydroksylowy. Ze zredukowania glukozy powstaje sorbitol, także znany jako środek słodzący, ze zredukowanej mannozy mannitol. Możliwe jest też selektywne redukowanie wielocukrów. Ogółem różnym alkoholom cukrowym poświęcę jakiś osobny wpis, ale teraz zajmę się tym jednym. Natomiast ksylitol to produkt zredukowania ksylozy.

Ksyloza to cukier prosty zawierający pięć atomów węgla; glukoza i fruktoza zawierają ich sześć. W przyrodzie rzadko występuje swobodnie, najczęściej jest składnikiem hemiceluloz, będących budulcem ścian komórkowych roślin. Wiele połączonych cząsteczek ksylozy, czasem też arabinozy, tworzy łańcuchy nie tak długie i silnie połączone jak celuloza, stanowiące raczej spoiwo. Głównym wyróżnikiem jest łatwa rozpuszczalność w rozcieńczonych zasadach, dzięki czemu można je oddzielić od celulozy.
Hemicelulozy są w świecie roślinnym wszechobecne, spotykamy je w tkankach, szczególnie dużo w tych łykowatych i drewniejących. Są też obecne w drewnie zwłaszcza młodych drzew, przy czym im ich więcej tym bardziej jest miękkie i skłonne do pęcznienia, najwięcej bo do 30% zawiera ich drewno brzozy i buka. Aby otrzymać z tkanek ksylozę, najpierw trzeba oddzielić od nich hemicelulozy.
Rozdrobione tkanki roślinne traktuje się rozcieńczonymi zasadami, w których dobrze się rozpuszczają. Następnie zakwasza i poddaje hydrolizie bądź w warunkach silnie kwaśnych, bądź enzymatycznej. Po oczyszczeniu i wykrystalizowaniu otrzymujemy ksylozę. W czasie wojny Finowie pozbawieni dobrych źródeł cukru stosowali jako zamiennik właśnie ksylozę, która wprawdzie nie jest tak bardzo słodka jak cukier stołowy, ale w kraju gdzie burak cukrowy nie urośnie było to zawsze coś.
W Europie zwykle produkuje się ksylozę z drewna, mamy bowiem dość dobre źródła, natomiast na świecie są to łykowate części roślin, zwłaszcza łodygi kukurydzy, ale także wytłoki trzciny cukrowej, słoma z owsa lub ryżu a nawet łuski nasion bawełny. Często ksyloza jest spotykana pod nazwą cukru drzewnego, ale niekoniecznie brzozowego.

No dobra. Mamy już ksylozę. Co zrobić aby otrzymać z niej ksylitol? A no zredukować.
W przemyśle stosuje się głównie uwodornianie na katalizatorze niklowym [1] Robi się też próby z redukcją mikrobiologiczną przy pomocy pewnych gatunków drożdży lub pleśni, ale te nie mają takiego znaczenia.

Jako zamiennik cukru ksylitol ma zbliżoną słodkość do sacharozy i nie ma nieprzyjemnego posmaku, co zaś najważniejsze ma bardzo niski indeks glikemiczny a więc w bardzo małym stopniu przyczynia się do uwalniania insuliny i może być użyty w żywności dla diabetyków.
U niektórych zwierząt wykazuje wręcz przeciwne działanie - podany psom wywołuje na tyle silne wydzielenie insuliny, że może im grozić śmierć z powodu hipoglikemii; wystarczy już dawka rzędu 100 mg/kg psa. Było to dawniej przyczyną problemów z wprowadzeniem na rynek, ale dopiero potem badania pokazały że u ludzi ma zupełnie odmienny metabolizm i nie jest dla nich szkodliwy.

Jest dość wolno wchłaniany z jelita i większość jest przetwarzana przez bakterie jelitowe do krótkołańcuchowych kwasów tłuszczowych. W takiej formie metabolity ksylitolu mogą być wchłaniane i zużywane, w związku z czym wbrew temu co piszą niektóre strony nie jest to związek "bez kalorii"; wartość energetyczna to około 70% kaloryczności glukozy. Słabe wchłanianie w jelitach ma też swoje złe strony, może bowiem w zbyt dużych ilościach wywołać biegunkę osmotyczną, związaną z wydalaniem wody do treści jelit dla wyrównania stężenia, jednak organizm stopniowo adaptuje się do wchłaniania dzięki czemu po pewnym czasie można spożyć nawet kilkadziesiąt gramów bez złych skutków. Ponadto bakterie jelitowe mogą przetwarzać go nazbyt ochoczo doprowadzając do wzdęć.
Jak wykazują badania ze względu na to że nie jest metabolizowany przez bakterie w jamie ustnej nie przyczynia się do rozwoju próchnicy a nawet w pewnym stopniu ją hamuje wpływając na mineralizację szkliwa.

Czym więc nie jest ksylitol? Na pewno nie jest "ekstraktem z kory brzozy" - w tym przypadku producent pojechał po bandzie. Problematyczne są też reklamy opisujące, że jest otrzymywany z brzozy bez uściślenia w jaki sposób. W efekcie wielu ludzi wyobraża sobie, że występuje w drewnie, liściach lub soku i stamtąd jest po prostu wymywany, parę razy widziałem domysły, że krystalizuje się go z soku brzozowego w związku z czym sok taki propaguje się przypisując mu jego właściwości, a nawet domysły, że to po prostu wysuszony sok z brzozy (w rzeczywistości sok brzozy zawiera głownie sacharozę i glukozę[2]). W dodatku producenci skrzętnie omijają w reklamach inne źródła, jak wspomniane łodygi kukurydzy czy słoma owsiana, bo brzoza budzi lepsze skojarzenia, brzmi bardziej dziko i naturalnie.
Inny problem to reklamy opisujące że ksylitol jest składnikiem "występującym w naturze" czy wręcz "naturalnym" - faktycznie, występuje w naturze, szczególnie dużo (ok. 1%) jest go w owocach jagodowych i niektórych warzywach, ale nie stamtąd się go otrzymuje. A akurat ten sprzedawany z sklepach jest otrzymywany z drewna które go nie zawiera po dwuetapowym procesie, więc w najlepszym razie jest produktem półsyntetycznym. Niestety kult naturalności i przekonanie że wszystko co sztuczne musi być złe powodują, że dla większych zysków producenci starają się mniej lub bardziej oszukać klientów.

Jako ciekawostkę dodam na koniec, że po znitrowaniu można z ksylitolu zrobić całkiem niezły materiał wybuchowy. To tak a'propos argumentacji "to musi być złe bo ma złe zastosowania".
-------------
Źródła:
* https://en.wikipedia.org/wiki/Xylitol
https://www.dcnutrition.com/miscellaneous/Detail.CFM?RecordNumber=695
* http://www.danisco.com/fileadmin/user_upload/danisco/documents/products/2e_XIVIA_White_Paper.pdf

[1] http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322003000300006
[2] http://luczaj.com/publikacje/2014%20Luczaj%20Bilek%20Stawarczyk.pdf

Polecam obszerny artykuł na temat ksylitolu, nie znalazłem go gdy szukałem informacji do swojego a dużo uzupełnia:
 http://pinkcake.blox.pl/2015/02/Ksylitol-bialy-oczyszczony-nienaturalny.html

piątek, 10 maja 2013

Ostatnio w laboratorium (26.)

Na jednych z ostatnich zajęć analizy żywności, badaliśmy zawartość alkoholu w przeterminowanym soczku owocowym. Rozcieńczyliśmy próbkę, wlaliśmy do zestawu do destylacji i tak długo grzaliśmy, aż oddestylowało nam ok 100 ml. W destylacie powinien być zawarty cały alkohol z badanego produktu. Zawartość tego alkoholu wyznaczaliśmy piknometrycznie, to jest poprzez pomiar masy cieczy mieszczącej się w takim oto naczynku:

o bardzo dokładnie wyskalowanej objętości. Im większe są różnice gęstości destylatu od wody o tej samej temperaturze, tym więcej alkoholu zawiera. Niestety nasz destylat nie zawierał.

poniedziałek, 22 sierpnia 2011

Otrzymywanie cykloheksenu (eliminacja)

Pozostała mi do przedstawienia jeszcze jedna synteza, jaką wykonywałem na zajęciach, przy tym jednak najmniej interesująca pod względem obiektu i najgorsza w wynikach - mianowicie otrzymywanie cykloheksanolu na drodze eliminacji wody z cykloheksenu. Ale zanim omówię jak wyszła (a raczej nie wyszła) mi ta synteza, omówię wyjściowe związki:

Cykloheksanol * jest nasyconym alkoholem cyklicznym. To bezbarwne ciało stałe lub ciecz, o słabym zapachu, podobnym do oleju napędowego. Stanowi pochodną cykloheksanu (C6H11OH) - sześciowęglowego węglowodoru cyklicznego z którego jest otrzymywany na drodze katalitycznego utleniania tlenem z powietrza lub nadtlenkiem wodoru. Można go również otrzymać przez uwodornienie (dearomatyzacja) fenolu.
W przemyśle stosuje się go głównie do produkcji kwasu adypinowego oraz jako półprodukt do otrzymania kaprolaktamu z którego z kolei otrzymuje się Nylon i inne tworzywa sztuczne. Estry cykloheksanolu służą za plastyfikatory.
Przy długotrwałym kontakcie wywołuje zatrucia w tym uszkodzenia narządów rodnych, choć w odróżnieniu od jego pochodnej - cykloheksanonu - nie stwierdzono dlań działania rakotwórczego [1].

Natomiast związek końcowy Cykloheksen (C6H10) , jest bezbarwną, łatwo lotną cieczą o ostrym, bardzo niemiły zapachu. Przemysłowo może być otrzymywany przez uwodornienie benzenu, przez przyłączenie dwóch cząsteczek wodoru, co stanowi 4 atomy i stąd techniczna nazwa angielska tetrahydrobenzene. Jest łatwopalny. Wywołuje podrażnienia skóry. Stosowany jako rozpuszczalnik.

W cykloheksanolu do sąsiednich węgli podczepiona jest grupa OH i atom wodoru. Aby pomiędzy tymi węglami pojawiło się wiązanie podwójne, sąsiadujące podstawniki muszą ulec eliminacji, co wyglądałoby mniej więcej tak:
Jest to zatem właściwie odwodnienie, bo właśnie cząsteczka wody stanowi grupę opuszczającą. Typ zachodzącego procesu określa się jako E1, co oznacza eliminację jednocząsteczkową dwuetapową.
Reakcja zachodzi następująco:
W pierwszym etapie silny kwas mineralny przyłącza wodór do grupy hydroksylowej tworząc grupę HOH, stanowiącą dobrą grupę opuszczającą. Po jej eliminacji na opuszczonym węglu pojawia się ładunek dodatni, co większa kwasowość atomów sąsiadujących. Stanowiąca słabą zasadę cząsteczka wody przyjmuje jeden wodór. Sąsiadujące ze sobą węgle zmieniają hybrydyzację z sp3 na sp2, a pomiędzy nimi pojawia się wiązanie podwójne.
Ponieważ w pierwszym etapie cząsteczka przyjęła a w ostatnim odrzuciła atom wodoru, przyjmuje się że kwas jest w tej reakcji katalizatorem.

A teraz czas na opis nieszczęsnej syntezy:

Do kolby dwuszyjnej, z podłączonym wkraplaczem i deflegmatorem umieściłem mieszaninę 85% kwasu ortofosforowego V**, mającego postać oleistej cieczy, z częścią potrzebnej ilości cykloheksanolu. I oczywiście wrzuciłem kawałek porcelany aby mi dobrze wrzało. Resztę substratu umieściłem we wkraplaczu. U górnego wylotu deflegmatora umieściłem termometr i połączyłem z chłodnicą wodną. Odbieralnikiem była erlenmajerka ze szlifem zanurzona w krystalizatorze z lodem. Wszystkie szlify musiały być nasmarowane silikonowym smarem dla zmniejszenia strat lotnego produktu. Aparatura wyglądała następująco:

Aparatura

Gdy wszystko było przygotowane włączyłem czaszę grzejną, w którą wsadzona była kolba i ogrzewałem zawartość pilnując przy tym, aby temperatura na szczycie deflegmatora nie przekraczała 90 stopni Celsiusza. Zwróciłem przy okazji na bardzo wygląd deflegmatora, który zamiast być wypełniony kształtkami czy połamanymi rurkami jak to bywa, miał postać rury z wypustkami wchodzącymi do jej środka i niemal całkowicie wypełniającymi jej przekrój.

Deflegmator

Podczas ogrzewania powoli wkraplałem pozostały cykloheksanol, co stanowiło zresztą pewien sposób regulacji temperatury - wkroplenie kolejnej porcji zmniejszało ją szybciej niż zmniejszenie grzania przy pomocy regulacji mocy czy podniesienie luźno tkwiącej w koszyczku kolby. Całość syntezy odbywała się w przymkniętym i włączonym dygestorium, a do odbieralnika co pewien czas należało dodać lodu - to zaś z uwagi na dużą lotność oraz silny, niemiły zapach (wręcz smród) produktu, który łatwo się uciekał. I tak się to grzało:
Grzeje się


Gdy cały surowiec został wkroplony, a z chłodnicy przestał kapać produkt, przerwałem ogrzewanie i wsypałem do odbieralnika szczyptę soli. Destylat, stanowiący mieszaninę wody z cykloheksenem rozdzielił się na dwie nie mieszające się warstwy. Całość przelałem do rozdzielacza i oddzieliłem dolną, wodną warstwę:

W rozdzielaczu

Do górnej warstwy dodałem trochę bezwodnego chlorku wapnia, dla usunięcia śladów wilgoci, następnie przelałem ciecz, już w dosyć niewielkiej ilości, z powrotem do osuszonej kolby dwuszyjnej i destylowałem mając zamiar odebrać frakcję z temperatury 81-83 stopni.
Mając zamiar, bo jakoś tak składając ponownie aparaturę zapomniałem nasmarować smarem szlifów. Już na początku ilość powstałego produktu była niewielka, teraz zaś większość z owej drobiny ulotniła się i nim się zorientowałem, nie wiele zostało.
Ostatecznie pozostało mi 8% oczekiwanej ilości, choć teoretyczna wydajność powinna wynosić do 70% [ :( ]



Cykloheksen


Oby następne zajęcia wychodziły mi lepiej.



Ps. W ramach praktyk zrobiłem dużo ciekawych zdjęć i nawet filmiki, więc we wrześniu powinno pojawić się parę ciekawych notek
-------
[1] http://www.ciop.pl/8666.html#rs1

Przepis na podstawie Vogla

* zwykłem linkować odnośniki na temat związków do polskiej Wikipedii, ale w tym przypadku artykuł jest żenująco krótki i doprawdy nie było do czego.
** można też użyć kwasu siarkowego, ale technika wykonania jest wówczas trochę inna

poniedziałek, 18 kwietnia 2011

Przerabiali alkohol na spirytus...

nie sądziłem, że tak szybko znajdę temat na nową notkę, ale to co zobaczyłem dziś, przeglądając lokalną gazetę, doprawdy powaliło mnie na kolana... ze śmiechu.

Dziennik Wschodni napisał:

Mieszkańcy Białej Podlaskiej przerabiali alkohol etylowy na spirytus. Policjanci z CBŚ znaleźli w garażu służącą do tego celu linię produkcyjną i zakopane w ziemi pojemniki z alkoholem. Policja informuje, że przed kilkoma dniami przeszukała 8 posesji w Białej Podlaskiej.

- Na terenie jednego z gospodarstw w garażu policjanci znaleźli działającą linię technologiczną służącą do przerabiania alkoholu etylowego na pełnowartościowy produkt– mówi Anna Smarzak, z KWP w Lublinie.
Sęk w tym, że alkohol etylowy to spirytus...

Gdyby uściślili, że przerabiali denaturat na spirytus, nie było by problemu.

Informację, oczywiście bez żadnego krytycznego podejścia, przedrukowały też inne portale, a więc według TVN24.pl sprawcy Zamieniali etanol w spirytus
zaskakującą dokładnością wykazał się Supereexpress : Przerabiali rozcieńczalnik na spirytus i wódkę widać te tabloidy nie takie złe.