informacje



Pokazywanie postów oznaczonych etykietą mity. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą mity. Pokaż wszystkie posty

piątek, 4 marca 2022

Opinia chemika czemu łykanie płynu Lugola nie ma sensu

 Ponieważ od kilku dni widzę zwiększony ruch we wpisach na temat jodu a ludzie donoszą mi o panice w aptekach i wykupowaniu płynu Lugola, krótkie wyjaśnienie w kilku logicznych punktach czemu to może nie być taki dobry pomysł, aby się nim teraz "zabezpieczać". 

1. Płyn Lugola to roztwór pierwiastka jodu w wodnym roztworze jodku potasu; jodyna to roztwór jodu w alkoholu. Stąd ich brązowo-pomarańczowy kolor.

2. Pierwiastkowy jod, podobnie jak pokrewny mu chlor, jest silnym utleniaczem, ma działanie drażniące i parzące, kiedyś był używany do dezynfekcji ran gdy nie było lepszych środków, bo jest tani w produkcji. Stężone roztwory wywołują poparzenie przełyku.

3. Ze względu na silnie utleniające i drażniące działanie, po łyknięciu roztworu następuje atak na tkanki żołądka i jelit, ich podrażnienie i pogorszenie ogólnego stanu. To nie jest zbyt dobre dla żołądka i przełyku. 

4. Organizm i tak nie jest w stanie wykorzystywać jodu w formie pierwiastkowej, bo wchłania i przetwarza jodki, czyli formę jonową, która nie ma działania utleniającego i podrażniającego. Nie ma więc potrzeby łykania roztworu pierwiastkowego jodu, bo ta forma wcale nie jest jakaś lepsza od innych form.

5. Jod nie ma cudownego działania chroniącego przed wszelkim promieniowaniem. Ekspozycja na izotopy uranu nie zostaje przez niego powstrzymana. Jod chroni tylko i wyłącznie przed wchłonięciem do organizmu radioaktywnego izotopu jodu-128, produktu rozszczepienia uranu w reaktorach lub bombie, który może potem zaszkodzić tarczycy. Podanie bardzo wysokiej dawki jodu lub jodków jonowych wywołuje efekt blokujący - na kilka dni tarczyca zatrzymuje wytwarzanie hormonów, bo jest przeładowana nadmiarem jodu. Jod nie powstrzymuje wchłaniania radioaktywnego cezu, strontu czy radu, bo to zupełnie inne pierwiastki.

6. Czemu więc po Czarnobylu podawano płyn Lugola dzieciom? W latach 80. sól nie była w Polsce w ogóle jodowana i przeważająca większość Polaków miała niedobór. Było więc jasne, że organizmy zaczną wchłaniać każdą ilość z jaką mają kontakt. Z drugiej strony tabletki z jodkiem potasu nie były popularne i mało aptek je miało. Natomiast płyn Lugola, zawierający i jod i jonowe jodki, był w każdej aptece jako środek dezynfekujący i nie było problemu aby z magazynów farmaceutycznych dostarczyć dostateczną ilość. Wybrano więc ten środek do masowej akcji nie dlatego, bo posiada wyjątkową zdolność uodparniania na wszelkie promieniowanie, tylko dlatego, bo nic lepszego nie było tak szeroko dostępne. 

7. Od roku 1997 obligatoryjnie joduje się w Polsce sól kuchenną i niedobór tego pierwiastka jest marginalny. Nie ma już przypadków wola z niedoboru, nie rodzą się dzieci z kretynizmem. Sytuacja jest więc zupełnie inna niż w 1986 roku i nasze tarczyce nie łakną jodu tak bardzo, że zassą każdą porcję z jaką się zetkną.

8. Efekt blokowania pracy tarczycy dużymi dawkami jodu działa tylko kilka dni a kolejne dawki tego czasu nie przedłużają. 

9. U niektórych osób organizm reaguje nieprawidłowo - nie następuje zablokowanie tarczycy i pojawia się indukowana nadczynność (Jod-Basedov). https://pubmed.ncbi.nlm.nih.gov/31334997/

10. U innych osób powtarzające się narażenie na wysokie dawki jodu wywołuje indukowaną niedoczynność tarczycy: https://pubmed.ncbi.nlm.nih.gov/34674109/

11. Narażenie na wysoką ilość jodu w pożywieniu, zwłaszcza połączone z niedoborem selenu, sprzyja rozwinięciu się choroby Hashimoto https://pubmed.ncbi.nlm.nih.gov/25050783/ 

12. Nie ma informacji aby miało właśnie miejsce jakieś skażenie, a sieć stacji monitorujących jest w tej części Europy gęsta i łatwo dostępna

13. Jeśli myślisz o łyknięciu Lugola na wszelki wypadek, bo doniesienia z internetu wywołały w tobie wewnętrzny niepokój, obudziły demony, i musisz się uspokoić - myślę że krople walerianowe będą skuteczniejsze. Poszukaj też informacji o technikach relaksacji, przy ostrym napadzie paniki możesz też zawsze zadzwonić na telefon porad dla osób w kryzysie psychologicznym 116 113 (czynny od 14 do 21)

14. Szacun walczącym Ukraińcom i jebać Putina.




piątek, 17 grudnia 2021

Tajemnica zdjęcia 51 - kto odkrył budowę DNA?

Rozwój nauki z czasem obrasta w swoje popularne mity. Kultura operująca na gustach niespecjalistów siłą rzeczy musi upraszczać pewne procesy i pomijać szczegóły. Czasem popularny odbiór zmienia się, czy to za sprawą dobrego popularyzatora, czy zmiany świadomości odbiorców. O ile dawne filmy i książki na temat Marii Curie-Skłodowskiej koncentrowały się na aspekcie naukowym, a obyczajowy poruszały w kontekście jej problemów z tym, aby być jako kobieta uznawana za samodzielną odkrywczynię, to teraz zauważalne staje się przesunięcie uwagi na wątki obyczajowe, zwłaszcza na sensacyjny romans.
Wraz ze zmianą publiczności może się więc zdarzyć, że jeden mit o nauce, wynikły z uproszczenia i pominięcia szczegółów, zostanie zastąpiony innym, powstałym z tych samych przyczyn. Mam wrażenie, że w ostatnich latach coś podobnego następuje wokół historii odkrycia struktury DNA, a zwłaszcza udziału w nim Rosalind Franklin, utalentowanej krystalografki, która jako pierwsza miała wykonać dokładne zdjęcie, pozwalające na potwierdzenie struktury tego związku. A wrażenie to wynika stąd, że w szczegółach historia ta jest nieco bardziej skomplikowana...

 Rzeźba DNA w Cambridge

Jakkolwiek cenię youtubowy kanał Uwaga Naukowy Bełkot i ogółem różne rzeczy jakie robi Dawid Myśliwiec, to nie wszystkie filmy mi się w stu procentach podobają. Mamy chyba trochę różne podejście do myślenia o popularyzacji i dlatego z mojego punktu widzenia czasem trafiają się tam momenty upraszczania nie tylko tak bardzo jak się da, ale też i za bardzo. Nikt nie jest idealny, a ponadto jeszcze się taki nie narodził, co każdemu by dogodził. Prosta sprawa.

Tknął mnie jednak jego niedawny materiał "...a zaszczyty zebrali mężczyźni - efekt Matyldy". 

Zgłębianie historii nauki i odsłanianie jej mało znanych elementów to rzecz generalnie chwalebna. Tyczy się to też ujawniania roli pomniejszych współtwórców sukcesu, którym nie zdarzyło się trafić do podręczników z wielu różnych powodów. Popularne rozumienie historii cierpi bowiem na bardzo ciężką odmianę Syndromu Bohatera, w ramach którego uwaga skupiana jest na jednej osobie, znanej z nazwiska, której to przypisuje się decydującą rolę w zdarzeniu historycznym. W ramach tego gumkuje się inne osoby dookoła, aby nie było kolejnych pretendentów do tytułu Bohatera Który Zmienił Historię. W związku z czym potem trudno jest zrozumieć jak on tego dokonał, jak zaczął, jak wpadł, i dorabia mu się pocieszne legendy o dziwnym zbiegu okoliczności, lub jakimś pasującym szczególe z dzieciństwa. I potem w popularnym rozumieniu języczek u wagi historii przeskakuje z rąk jednego herosa do drugiego i tak zmieniają się dzieje.

Przyczyn skupienia na jakiejś osobie może być dużo - ktoś był szybszy z pochwaleniem się prasie; ktoś był starszy stopniem, ktoś umarł później, ktoś miał już wcześniej więcej tytułów i godności, kogoś zdecydowano się wystawić na świecznik dla propagandy. A czasem ktoś wyróżniał zestawem  cech płciowych bardziej w owym czasie pochwalanym i docenianym per se. I o takich przypadkach mówi Dawid w materiale. Odkrywczyni, która miała pecha i jej odkrycia przypisano facetom dookoła. Jak chociażby Bell Burnell, doktorantka astrofizyki, która pierwsza zauważyła sygnały od pulsarów, za co nagrodę Nobla otrzymał jej promotor. A ona nie, bo była tylko studentką. Było w zwyczaju uznawać, że za odkrycie odpowiadał zlecający badania szef zespołu, który potem opublikował zebrane dane a nie prowadzący je student. Jest to jednak ostatecznie no fair, dlatego Burnell otrzymała po latach nagrody honorujące jej odkrycia, bo nic tak dobrze nie ściąga brakującej kiedyś uwagi, jak jakaś wysoka nagroda. 

Kolejnym takim przypadkiem była Rosalind Franklin, która prowadziła badania nad strukturą DNA. Wedle narracji Dawida, Franklin przybyła do King's College aby zacząć badania nad DNA. W tym samym czasie (?) badaniami zajął się Wilkins, co było dla obojga zaskoczeniem i stało się przyczyną sporów. Gdy zaś w innym uniwersytecie Watson i Crick zaczęli wymyślać możliwe struktury tego związku, popełniali głupie błędy, które Franklin wyśmiała (przy jakiej okazji?). Następnie w czasie prac wykonała własnoręcznie słynne później zdjęcie 51, przedstawiające obraz dyfrakcyjny DNA. Zostało ono wzięte (jak?) przez Wilkinsa, który bez zgody pokazał je Wilsonowi i Crickowi, a ci na jego podstawie domyślili się prawidłowej struktury związku. Potem cała ta trójka spiskowców dostała Nagrodę Nobla, a Franklin zmarła i do końca życia nie dowiedziała się, że jej zdjęcie i praca przyczyniły się do tego odkrycia...

Tylko że nie.

To która wersja jest prawdziwa?

 Franklin nie była autorką spornego zdjęcia tylko jej doktorant Raymond Gosling. A właściwie to nawet nie do końca jej, bo został on oddelegowany do pracy z nią przez szefa instytutu Wilkinsa. Który zajmował się tym tematem dużo wcześniej niż wszyscy pozostali. I miał jeszcze innych współpracowników. A dane krążyły po laboratoriach i nie było zaskoczeniem, że trafiły w takie ręce. Sprowadzenie tej historii do sporu "Franklin vs. Watson i Crick" powoduje, że nie wiadomo kto się czym zajmował i jak krążyły dane.

Czemu DNA?

Pomysł, że jednostki dziedziczności muszą być zawarte w jądrze komórkowym był dosyć wczesny, pojawił się już pod koniec XIX wieku. Wiadomo było, że proces podziału komórki zaczyna się od zmian jądra i zestalenia jego zawartości w pary skrzyżowanych pałeczek, stąd wynikał wniosek, że informacja o cechach komórki jest zawarta tam a nie gdzieś w cytoplazmie. Kwestią sporną było w jakiej właściwie substancji się ta informacja zawiera. Ponieważ większość masy organizmów stanowią białka, uznawano bardzo powszechnie, że informacja jest zapisana w szeregu aminokwasów w jądrze. Dlatego wykryta już 1869 roku niebiałkowa nukleina była uważana za dodatkową substancję stabilizującą, klej wokół właściwej substancji dziedzicznej. 

W latach 20. Griffith wykazał, że w preparacie z rozbitych na kawałki komórek bakterii złośliwych, zawarty jest "czynnik transformujący", który nadaje dodanym do mieszaniny bakteriom łagodnym cechy złośliwości. Wyglądało to tak, jakby przez roztwór zawierający wszystko co jest w komórce, ulegała przeniesieniu informacja dziedziczności. Kolejni badacze skupili się więc na szukaniu tych dziedzicznych białek, sprawdzając czy występują a to w cytoplazmie, a to w błonie, a to w poszczególnych organellach. Nie był też odosobniony pogląd, że komórki po prostu posiadają mechanizm powielenia wszystkiego co w nich jest, więc informacja o budowie ciałka Golgiego jest zawarta w tym ciałku, a przekazywanie cech podczas podziału komórki polega na przelewaniu się cytoplazmy z organellami.

W 1944 zespół Averty, MacLeod i McCarty opublikował szczegółowe prace, w ramach których sprawdzali która substancja z komórki jest w stanie odtworzyć efekt przekazania cechy, zauważony przez Griffitha. Po miesiącach oddzielania białek, zatężania i wypróbowywania na bakteriach doszli do wniosku, że poszukiwanym czynnikiem jest trochę zapomniany kwas nukleinowy, transformację bakterii można było bowiem przeprowadzić roztworem z jądra pozbawionym białek. Publikacja nie została jednak potraktowana bardzo poważnie i nadal biolodzy szukali białka dziedziczności.

Było wiadomo, że zasadniczo DNA składa się z prostego cukru deoksyrybozy, reszty fosforanowej i czterech amin aromatycznych, dwóch pochodnych puryny i dwóch pochodnych kasantyny. Pozostawało tylko stwierdzić jak to jest ułożone. DNA w warunkach zasadowych tworzyło sól, w której powstawaniu musiały brać udział reszty fosforanowe, więc najwyraźniej spośród trzech miejsc wiązania przynajmniej jedno zostawało wolne. Z badań Levina wynikało, że fosforan jest połączony z cukrem, cukier z aminą a amina nie ma połączenia z fosforanem.   Najprostsza wersja, jaka przychodziła badaczom do głowy, to jednoniciowa przeplatanka: fosforan-cukier-amina1-cukier-fosforan-cukier-amina2 itd. być może w różnej kolejności i być może z informacją zapisaną w tym które składniki, w jakiej kolejności i ile razy z rzędu się powtarzają w tym łańcuchu. 

A może jednak cząsteczka jest rozgałęziona i informacja zapisana była w tym jakiej długości i budowy są poszczególne odgałęzienia, niczym liczby w inkaskim kipu? A może wreszcie cukry i fosforany tworzą jedną, dwie, trzy lub więcej nici, a aminy sterczą na boki? Poszczególne cząsteczki amin miały różne rozmiary więc wydawało się logiczne umieszczenie ich w takim miejscu, że nie będą zaburzały symetrii łańcucha. Nie odpowiadało to jednak na pytanie jak ten schemat jest powielany i co właściwie zachodzi podczas podziału komórki.

1948 -Wilkins podejmuje temat

Na King's College w Londynie powstała w tym czasie nowa jednostka badawcza, mająca łączyć najnowsze techniki badań fizycznych z biologią. Będący szefem tej jednostki John Randall był w tym czasie przekonany, że to DNA jest nośnikiem informacji. Należało to tylko wykazać. Nie mając doświadczenia z pracami na układach biologicznych Randall, który dopiero co oderwał się od badań nad magnetronami do wytwarzania mikrofal, musiał zebrać badaczy, którzy będą w stanie poprowadzić temat. Zespół badawczy mający się zajmować tylko badaniem DNA poprowadził jego zastępca, Maurice Wilkins, w tym czasie ekspert od krystalografii rentgenowskiej. Początkowe eksperymenty z naświetlaniem surowej spermy baraniej, zawierającej dużo chromatyny, pokazały że materiał musi posiadać regularną strukturę, ale jaką, to powinny pokazać dalsze badania. 

Do dobrej jakości wyników trzeba było posiadać dobrej jakości materiał. Dlatego Wilkins skontaktował się w szwajcarskim chemikiem Rudolfem Signerem, który w tym czasie próbował zainteresować tematem badaczy. Przy pomocy bardzo precyzyjnych technik odzyskał on 15 gramów bardzo czystego DNA z grasicy cielęcej, próbkę podzielił na kilka części i wysłał do badaczy. Nowe próbki pozwalały na postawienie dodatkowych hipotez. Roztwór DNA polaryzował światło przechodzące. Badając go Wilkins doszedł do wniosku, że substancja jest zbudowana z włókien, być może odzwierciedlając budowę pojedynczych cząsteczek. 

W tym czasie do zespołu wysłany dostaje świeżo przyjęty doktorant, Raymond Gosling, który okaże się potem ważną postacią tej historii. Przedzielony do Wilkinsa, który zostaje jego promotorem, rozpoczyna wspólne eksperymenty. Stworzenie ładnych, równych kryształków z roztworu DNA nie powodziło się. Krystalizacja dużych i długich cząsteczek jest ogółem dość trudna i wymaga czasem specyficznych warunków. Notowano już przypadki, gdy badana substancja nie chciała tworzyć kryształów w żadnych warunkach; po czym nagle zaczęła w jednym laboratorium tworzyć pewną formę krystaliczną, a następnie z nieznanych przyczyn znów przestała krystalizować, jakby się rozmyśliła. 

Wilkins zauważa jednak, że gdy zagęszcza roztwór, zaczyna on robić się ciągliwy i śluzowaty. W końcu po wielu próbach udaje im się wyciągnąć w gęstego roztworu włókno, zawierające prawdopodobnie wiele równoległych włókienek, zbudowanych zapewne z równoległych cząsteczek substancji. Nie był to ładny, i uporządkowany we wszystkich kierunkach kryształ, ale do zbadania pewnych elementów struktury powinien się już nadać. Cząsteczki były uporządkowane w jednym wymiarze przestrzennym, należało tylko mieć nadzieję, że mają one w tym kierunku jakąś powtarzalną strukturę własną, która rozprasza promienie rentgenowskie w zdefiniowany sposób.

Pierwsze testy prowadziły do otrzymania bardzo niewyraźnych i zaszumionych obrazów. Badana substancja nie zawierała ciężkich atomów a tylko węgiel, tlen, azot i fosfor, więc rozpraszanie promieniowania na składającym się z podobnych pierwiastków powietrzu dawało za duże zanieczyszczenia. Wyssanie powietrza nie było rozwiązaniem, bo w próżni woda w strukturze włókna zacznie wrzeć. Pierwiastkiem o najniższym rozpraszaniu promieni rentgenowskich jest wodór, toteż komorę dyfraktometru wypełniono tym gazem. Teraz należało jedynie uważać, aby aparatura pomiarowa nie wybuchła, bo wodór jest gazem palnym.

1950 - Eksperymenty

Po tylu przeciwnościach w maju 1950 roku Wilkins i Gosling otrzymują pierwsze w miarę wyraźne obrazy, które pokazały  oddzielone plamki refleksów, wskazujących na istnienie powtarzalnych elementów budowy DNA, dzięki którym wiązka włókien nabierała niektórych cech krystalicznych. Czyli wbrew obawom DNA nie był strukturą płaskiej lub trójwymiarowej sieci, lecz raczej nicią złożoną z podobnych wielkością układów podstawowych cząsteczek budulcowych. Zachęcony tym wynikiem Wilkins zaczął zbierać większy zespół. 

Dyfrakcja promieni X na włóknach była jeszcze nie do końca opisana matematycznie, potrzebował więc kogoś, kto pomoże w analizie danych. Kimś takim był Alexander Stokes, który wykonał dodatkowy model matematyczny, mający przewidywać właściwości dyfraktogramów zależnie od symetrii cząstek włókna. To on potwierdził przypuszczenie, nad jakim Wilkins już się zastanawiał, że włókno DNA jest skręcone helikalnie. Wynikało to z symetrii obrazów rentgenowskich. 

Trochę przeoczona została w tym zamieszaniu skromna publikacja Erwina Chargraffa, który badając skład chromatyny z jąder bakterii i zwierząt zmierzył, że w kilku badanych organizmach zawartość amin adeniny i tyminy były podobne lub identyczne, i podobną parzystość daje się zauważyć z guaniną i cytozyną. 


Wiosna 1951 - Konferencja w Neapolu 

Dyfraktogram Goslinga  i Wilkinsa

Wiosną Wilkins zaprezentował na konferencji w Neapolu wyniki wstępnych eksperymentów, prezentując zdjęcie dyfraktogamu na podstawie pierwszych eksperymentów.  Spekulował o helikalnej strukturze i symetrii wskazującej na dwuniciowość. Miał wielu słuchaczy. Wśród nich znajdował się James Watson, biochemik i przez pewien czas badacz ptaków morskich pracujący nad krystalografią białek w Cavendish Laboratory. Temat go zainteresował. Poczynił trochę notatek, ale jak się wydaje nie wsłuchiwał się z należytą uwagą i nie dosłyszał wszystkich danych, w tym sugestii, że cząsteczka składa się z dwóch nici powtarzających kombinację, które musiały być połączone przez słabe oddziaływania. 

Po powrocie do Cavendish Laboratory Watson zainteresował tym Francisa Cricka, fizyka, prywatnie zresztą przyjaciela Wilkinsa. Zapalił się on do pomysłu, że być może uda się określić w jaki sposób organizmy zapisują informacje. Postanowili pójść trochę na skróty i wymyślić w jaki sposób musi być zbudowana cząsteczka. Poprosili szefa o zwolnienie z dotychczasowych prac aby mogli szukać informacji i prowadzić obliczenia. Ich szef, klasyk krystalografii Bragg, też był zainteresowany biomolekułami.



Lato 1951 - Rosalind przejmuje pałeczkę

 W tym momencie szef jednostki Randall postanawia ściągnąć do prac utalentowaną badaczkę Rosalind Franklin, która dopiero co do nich przybyła i początkowo miała zajmować się analizą struktury kolagenu. Pod jej pieczą miał się znaleźć nowy dyfraktometr, który miał osiągać lepszą rozdzielczość. Zamówiono taki sprzęt a potem długo na niego czekano. Rosalind miała formalnie zakończyć poprzednią pracę w Paryżu, ale kończenie spraw się jej przeciągało. Ponieważ to do niej przydzielono nowy sprzęt, to gdy ten w końcu przyszedł, Wilkins nie mógł z niego korzystać. Przez kolejne miesiące 1951 stał w kącie i się kurzył, co ogromnie irytowało badacza. W czerwcu wyjechał o na wakacje, licząc że po nich sprawa się wyjaśni, a w tym czasie przybyła Franklin i szef jednostki badawczej rozdał karty - chemiczka miała przejąć główne prace, nowy sprzęt, doktoranta Goslinga i całą posiadaną próbkę czystego DNA, tak jakby nie za bardzo pytając o to Wilkinsa. Przez to po jego powrocie z wakacji zapanowało zamieszanie informacyjne, doktorant nie wiedział do którego ostatecznie laboratorium należy, a Wilkins był z początku przekonany, że to badaczka podebrała mu temat. Wtedy zaczęły się między nimi kwasy, które trwały przez kolejne miesiące.

Wilkins w tym czasie zajął się badaniami na nowych próbkach DNA ze spermy kałamarnicy, stwierdzając, że obrazy są bardzo wyraźne. Stokes potwierdził, że z danych wynika, że ta forma DNA też powinna mieć strukturę helikalną. Franklin była jednak co do tego sceptyczna. Uważała, że ich odmiana DNA, nazwana strukturą B, jest spiralna w stanie dużego nawodnienia. Natomiast badane przez nią dużo bardziej suche włókno formy A może być proste i zapewne taka forma występowała w żywych komórkach. W charakterystycznym dla siebie pewnym i kpiarskim stylu rozwiesiła nawet na korytarzach nekrolog opisujący śmierć hipotezy helikalnej. 

Jesień 1952 - Wykład Franklin

Jesienią grupa miała już pewne wyniki, które zostały zaprezentowane podczas wykładu omawiającego dotychczasowe efekty badań zespołu biofizyki. Swoją część miała tam też Franklin, która zebrała podstawowe fakty, dodając też trochę swoich interpretacji i podając niektóre dane z początkowych eksperymentów. Historycy nauki wskazują, że bardzo wielu słuchaczy nie doceniło znaczenia ujawnionych wtedy informacji. Gdyby kilka osób poczyniło sobie podczas tego wykładu bardziej szczegółowe notatki, to historia ta mogłaby potoczyć się trochę inaczej. 

Obecny na sali Watson opisywał potem typy i zachowania wykładających, oraz to, że był to kolejny etap pobudzający go własnych prac, natomiast nic nie wskazuje aby zapamiętał, że DNA jest w stanie bez hydrolizy i rozpadu struktury pochłaniać ogromne ilości wody. Zdaniem chemiczki wskazywało to na to, że grupy fosforanowe lub cukier muszą znajdować się na powierzchni cząsteczki i być dostępne dla wody aby zachodziła hydratacja. Zama cząsteczka musiała składać się z dwóch, trzech lub czterech nici. Obok innych podanych wówczas informacji były też już niektóre parametry dyfrakcyjne, pozwalające obliczyć wielkość komórki krystalicznej i odległości między atomami. Tego słuchacze też sobie nie zapisali, a były to krytyczne dane, pozwalające weryfikować różne pomysły.

Watson i Crick proponują pierwszą strukturę

Tymczasem dwaj badacze, którzy zainteresowali się tym tematem, postanowili pójść metodą stosowaną wcześniej przez Paulinga przy pracach nad badaniem struktury białek. Potrzebowali na początek czegoś, co utworzy główny rdzeń cząsteczki i zapewni jej trwałość. Wymyślili więc strukturę w formie nici cukier-fosforan-cukier-fosforan, połączonych ze sobą w stosach i tworzących podwójną prostą wstęgę, z cząsteczkami amin wychodzącymi na boki. Dwie nici były połączone jonowo poprzez reszty fosforanowe oddziałujące z dwóch stron z jakimś kationem. Wybrali tu akurat jon magnezowy, nie wiedzieć czemu. Podekscytowani, że może udało się im wpaść na właściwy pomysł przedstawili model na seminarium doktoranckim, na które zaproszono innych badaczy zajmujących się tematem. Obecna tam też Franklin skrytykowała model. Właściwie to dzisiaj byśmy powiedzieli, że ich zaorała. 

Cząsteczka nie mogła być zgodna z tą w żywych organizmach, bo z badań nad otrzymywaniem włókien wynikało, że DNA było w stanie dość mocno się uwodnić, wiążąc znaczne ilości wody bez rozpadu. Zdolność do wiązania wody miały tam cukry i reszty fosforanowe, natomiast aminy aromatyczne słabo wiązały wodę. Musiało być zatem tak, że aminy w jakiś sposób budują rdzeń, mimo różnych rozmiarów cząsteczek, a cukry i fosforany są na zewnątrz i dzięki temu są dostępne dla cząsteczek wody. W ich modelu fosforany są wewnątrz nici, zajęte oddziaływaniem z magnezem, którego dotychczas w DNA nie stwierdzono. Takie połączenie jonowe powinno hydrolizować podczas nawodnienia, przez co DNA w obecności dużej ilości wody samo by się rozpadało.

Po tym wydarzeniu szef Cavendish Laboratory, Bragg, dostał negatywne opinie z King's Cross o błędnej i pospiesznej pracy Watsona i Cricka, którzy ścigali się z pracującym równolegle nad tym samym pomysłem Linusem Paulingiem i powielali badania innych, zamiast przysiąść nad eksperymentami. Zirytowany cofnął im pozwolenie na zajmowanie się tematem i odesłał do badania hemoglobiny. Dalsze rozważania nad strukturą DNA prowadzili więc na własną rękę.

Natomiast Rosalind i Gosling kontynuowali eksperymenty dyfrakcyjne. Przy okazji wykonali niezwykłe wyraźne zdjęcie mocno uwodnionej formy B DNA. Było to trochę niezamierzone; włókno nawodniło się bardziej niż planowali. Franklin skupiła się nad formą A o niższym uwodnieniu, dlatego zdjęcie nr. 51 zostało odłożone do analiz na później. Z analizy zdjęcia dało się wyczytać, że cząsteczka ma formę helisy, jak wąski jest skręt i w jakiej odległości są oddalone powtarzalne jednostki strukturalne.

Zdjęcie 51


1953 - Rosalind odchodzi a dane krążą

W 1953 roku Rosalind  decyduje się odejść Birkeback College, gdzie oferowano jej wysokie stypendium. Przed ostatecznym zakończeniem współpracy w lutym napisała trzy artykuły na temat badań, oraz pozostawiła po sobie raport opisujący wyniki oraz różne jej przypuszczenia, oddany szefowi Randallowi. Gosling ma w tym momencie tylko trzy lata pracy nad doktoratem, trochę za mało. W związku z tym powraca do swojego pierwotnego promotora Wilkinsa. Prace nad krystalografią DNA były częścią jego badań w ramach przewodu doktorskiego, w związku z tym posiadał u siebie wszystkie dane, potrzebne przecież do napisania pracy doktorskiej, i pokazał je Wilkinsowi, bo ten był jego promotorem. Był to owoc jego prac a słynne zdjęcie 51 wykonał osobiście. Franklin wydała mu zezwolenie na przekazanie danych promotorowi na początku 1953 roku, dość późno, bo w tym czasie zajmowała się obliczeniami struktury, próbując dojść do geometrii samodzielnie. Nie przywiązywała do tego zdjęcia dużej wagi, bo przedstawiało ono formę B, o której sądziła, że nie jest właściwą.  Nic nie odbyło się na tym etapie niezgodnie z procedurami. Bez informacji o współpracy tych trzech osób powstaje wrażenie, które zdaje się podzielać wielu popularyzatorów, że Wilkins te zdjęcia ukradł, zabrał z szuflady czy coś w tym rodzaju.

Watson opisuje później w swojej książce, jak to pod koniec stycznia poszedł do King's Colledge, mając nadzieję na nawiązanie jeszcze jakiejś współpracy. Dopiero co ukazała się propozycja struktury opublikowana przez Linusa Paulinga, z którym badacze się właściwie ścigali. Propozycja bez wątpienia błędna, co Watson i Crick mogli poznać mając w pamięci własny nieudany model. Zaszedł do laboratorium Franklin, proponując złączenie sił, zanim Pauling zauważy jaki duży popełnił błąd. W tym momencie dużo rzeczy mogło potoczyć się inaczej, ale wyszło jak wyszło. Zirytowana badaczka wyrzuciła go na korytarz. Wrócił więc do gabinetu Wilkinsa, aby pokazać mu artykuł Paulinga i zachęcić do współpracy.

  Podczas towarzyskiego spotkania Wilkins pokazał dotychczasowe materiały Watsonowi. Jest to ten najbardziej sporny punkt historii, bo nikogo nie pytał o pozwolenie, a Watson w tym czasie owszem, zajmował się tym tematem, ale pracował gdzie indziej. Z drugiej strony z opisów pracy w laboratorium wynika, że Wilkins nie zwykł mocno się kryć z wynikami prowadzonych badań i często pokazywał gościom zdjęcia, rysunki i tabele.

Dalsze wydarzenia potoczyły się szybko. Gdy Watson zobaczył doskonałej jakości zdjęcia, od razu zrozumiał, że jest to dowód na helikalną budowę cząsteczki. Sposobu interpretacji zdjęć wcześniej nauczył go Crick. Ponadto z badań powinny już wynikać dostatecznie szczegółowe dane, aby móc rozstrzygnąć choćby tą niepewność z ilu właściwie nici składa się cząsteczka. Oboje badacze zgodzili się też z argumentacją, którą przedstawiała wcześniej Frankin, że zasady purynowe powinny być umieszczone w środku a nie na zewnątrz nici. Dalsza zabawa z modelami cząsteczek pokazała, że jest możliwy chemicznie sposób połączenia dla jednej nici, tworzący układ: fosforan-ryboza-puryna. Kwestią zagadkowa było jednak jak biegły obie nici i co je łączyło ze sobą. 

Watson i Crick otrzymali ponownie zgodę od szefa na prowadzenie prac nad DNA i w tym momencie nastąpił kolejny przepływ informacji. King's Colledge przygotowało wcześniej dla British Medical Council, sponsora laboratorium, raport opisujący ostatnio prowadzone badania. W tym podsumowanie ogólnych danych dyfrakcyjnych napisane przez Franklin. Kopia raportu została wysłana do Cavendish. Wśród osób uprawnionych do posiadania tego raportu był Max Perutz, promotor Cricka. Pokazał więc raport badaczowi. Crick zauważył wtedy zadziwiające podobieństwo wyliczonego kształtu i symetrii komórki elementarnej DNA do danych, które sam wcześniej otrzymał podczas pracy nad swoim doktoratem. Bardzo podobną symetrię otrzymał w kryształach fragmentu końskiej hemoglobiny. Było już wtedy wiadomo, że fragment ten składa się z dwóch komplementarnych części, więc tak samo musiało być z DNA. Z ogólnej symetrii tej komórki wynikało też, że nici są ułożone antyrównolegle - jedna biegnie odwrotnie niż druga, zatem cukry i fosforany tworzące jedną zewnętrzną nić są do góry nogami wobec drugiej. Frankin najwyraźniej nie zwróciła na to wcześniej uwagi i w rozważaniach nad ułożeniem cząsteczki brała modele z niciami równoległymi. A to utrudniało wpadnięcie na poprawne ustawienie. 

Patrząc na to bardziej krytycznie, konkretne dane wyliczone z wielu eksperymentów okazały się dla dalszych wydarzeń ważniejsze niż sam fakt pokazania Watsonowi zdjęcia. Nadano tej fotografii trochę za duże znaczenie, stąd rozważania o etyczności badaczy skupiają się na momencie pokazania, a nie innych sytuacjach przed i po. W dodatku część danych z tego raportu Rosalind upubliczniła już podczas wykładu w 1952 roku. Tego, na którym Watson niczego nie zanotował.

Watson wcześniej rozmawiał z Chargraffem, który mówił mu o swoich badaniach względnych proporcji amin. O tym, że zawsze w chromatynie jest tyle samo adeniny i tyminy oraz tyle samo guaniny i cytozyny i to musi mieć jakiś związek z budową cząsteczki. Mówił o tym już zresztą Paulingowi a pracę czytał kiedyś Wilkins, ale nikt z nich nie przywiązywał do tego należytego znaczenia. Z tego parzystego podobieństwa amin wynikało, że być może w strukturze adenina i tymina są w jakiś sposób powiązane, podobnie jak guanina z cytyzyną. I musiało to być połączenie specyficzne, to jest z pary jedna amina wiązała się tylko z drugą a nie którąś z pozostałej pary. Pozostawało tylko odpowiedzieć jak były połączone i jak do siebie pasowały. Badacze wykonywali różne spiralne modele z kawałków drutu i kartonu, ale gdy składali ze sobą aminy w parach, to nie pasowały do siebie. Nic nie wskazywało na połączenie wiązaniem kowalencyjnym - rozpad nici wymagałby wtedy znacznie wyższej energii. Ze znacznie słabszym wiązaniem wodorowym istniał nie mniejszy problem. 

Wiązanie takie potrzebuje do pary: atomu niemetalu z wolną parą elektronowa, która jest akceptorem, to jest azotu lub tlenu, i atomu wodoru połączonego z niemetalem, który jest donorem. Jeśli pomiędzy tymi dwoma końcami nie ma wodoru, to nie ma wiązania wodorowego. To oczywiste. No i gdy Watson i Crick rysowali wzory guaniny i cytozyny takie, jakie podano w podręcznikach, to nie było tam miejsca na tworzenie jakichkolwiek wiązań wodorowych. Na tym punkcie utknęli wszyscy inni badacze, którzy próbowali tworzyć model z aminami w środku spirali.


Luty 1953 - Ostatnia prosta

W ostatnim etapie pomógł przypadek. W tym samym pokoju co Watson pracował Jerry Donohue, który wcześniej zajmował się krystalografią biomolekuł. Gdy Watson kolejny i kolejny raz pokazywał mu modele pokazując, że cząsteczki amin nie mają jak się ze sobą łączyć, ten zwrócił mu uwagę, że może od początku używał złej formy. Aminy te mają blisko położone atomy z wolnymi parami elektronowymi i strukturę aromatyczną, więc mogą tworzyć różne formy, z różnym położeniem wodoru. Watson pracował na podawanych w podręcznikach strukturach enolowych. W takich formach nie dało się sensownie połączyć cząsteczek Guaniny i Cytyzyny wiązaniami wodorowymi, bo miały na obu końcach tylko dwa miejsca mogące być donorem wodoru, a miejsca akceptujące wiązanie były zlokalizowane pośrodku i nie miały wodoru do utworzenia wiązania.

Donohue stwierdził jednak, że bardziej prawdopodobne wydaje się, że najtrwalszą strukturą tych zasad jest forma ketonowa, na co wskazywali już niektórzy badacze i co wydawały się potwierdzać obliczenia. Po przerysowaniu cząsteczek do form ketonowych wszystko stało się jasne - obie zasady posiadały położone naprzeciwko miejsca donorowe i miejsca akceptorowe, tworząc trzy wiązania wodorowe. Podobnie to wyglądało z Tyminą i Adeniną - dla formy enolowej cząsteczki mogły utworzyć najwyżej jedno wiązanie, w formie ketonowej tworzyły dwa wiązania, dobrze stabilizujące układ. Pary tych amin różniły się ilością tworzonych wiązań wodorowych - jedna para tworzyła trzy a druga dwa. Można więc powiedzieć, że podczas oddziaływania jedna amina z pary rozpoznawała drugą i nie myliła się z inną. Tłumaczyło to parzystość akurat tych cząsteczek.


 

Kolejnym kamyczkiem do konstrukcji była długość wiązań wodorowych. Po zestawieniu ze sobą par amin ze właściwych formach z wyliczeń wynikało, że całkowite długości T-wodór-A i C-wodór-G są takie same. Nie ma więc żadnej asymetrii o jaką to drżeli od początku wszyscy badacze, którzy z tego powodu umieszczali aminy na zewnątrz.

Trzy publikacje

Wbrew temu, co powiedział w swoim odcinku Myśliwiec,  Franklin nie mogła nie wiedzieć, że jej prace pomogły Watsonowi i Crickowi. W pierwszym doniesieniu w Nature na temat odkrycia struktury DNA piszą oni wprost, że opierali się na wówczas jeszcze nieopublikowanych danych Franklin. Wymieniali ją w podziękowaniach, pisząc że oparli się na jej nie publikowanych sugestiach, oraz oznaczyli ją jako autorkę zdjęcia rentgenowskiego. Cytowali jeden z jej wcześniejszych artykułów na temat techniki badań rentgenowskich DNA. Nie dało się nie zauważyć, że odnoszą się do jej prac i mają jej zdjęcia. 

Ona sama miała zresztą okazję opublikować swoje dane w tym samym numerze The Nature, odnosząc się przy tym do artykułu Watsona i Cricka, więc nie było tak, że nie pozwolono jej zaprezentować swojego udziału. Był on znany od początku, nie do końca poznane były jedynie kulisy przekazania danych eksperymentalnych, co zaowocowało z czasem mitami. Być może bardziej sprawiedliwe byłoby, gdyby dopisali ją jako trzecią autorkę, ale to by mocno nie zmieniło późniejszych wydarzeń.

Publikacja obok siebie artykułów różnych zespołów była wynikiem porozumienia między laboratoriami. Szef Cavendish Laboratory porozumiał się z Randallem z King's Colledge wiedząc, że do odkrycia Watsona i Cricka doprowadziły dane z ich laboratorium. I były one na dobrą sprawę jedynym dowodem wspierającym hipotezę, bo cała struktura została wyłącznie wykoncypowana. W tej sytuacji zdecydowano za zgodą redaktorów Nature na publikację trzech wzajemnie się cytujących artykułów, na kolejnych stronach i w ciągłej numeracji. Najpierw artykuł Watsona i Cricka o propozycji struktury DNA, opartej o wnioski wynikające z jeszcze niepublikowanych danych rentgenowskich Rosalind, zinterpretowanych przy pomocy nowego aparatu matematycznego dyfrakcji na włóknie, stworzonego przez Stokesa. Następnie artykuł Wilkinsa i Stokesa o wykonywaniu eksperymentów dyfrakcyjnych na włóknie DNA i metodzie matematycznej interpretacji dowodzącej helikalności. Na koniec artykuł Rosalind i Goslinga o sposobach otrzymywania włókien DNA, badania ich dyfrakcyjnie i o otrzymywanych obrazach, z sugestiami co do symetrii substancji. 

Artykuły były przygotowywane wspólnie, a Rosalind przyszła w czasie prac redakcyjnych do laboratorium Watsona i Cricka i sceptycznie przyglądała się ich modelowi cząsteczki. Uważała, że za dużo jest tu zgadywania i trzeba po prostu siąść jeszcze kilka miesięcy nad mozolną pracą obliczania map Patternsona, aby rozwikłać położenie atomów i wtedy prawdziwy kształt cząsteczki będzie oczywisty. Ale na publikację swoich danych wraz z ich hipotezą się zgodziła.

Pytany o to wszystko w roku 2013 roku Gosling potwierdził, że Rosalind ostatecznie dowiedziała się, że model zbudowano na podstawie danych z jej raportu. W późniejszych latach zajęła się badaniami budowy wirusów, zwłaszcza Polio i mozaiki tytoniowej. Nie ukończyła tych prac i zmarła w 1958 roku z powodu raka jajnika, w wieku 37 lat.

Lata 50.

No więc prestiżowy magazyn naukowy opublikował trzy artykuły o strukturze DNA. I w tym momencie w świecie naukowym zapanowała euforia, wszystkich autorów noszono na rękach po czym zaczęto się zastanawiać jak wypchnąć z tego grona kobietę... Tylko że nie.  Reakcja świata naukowego była bardzo skromna. Ot, kolejna w ostatnich latach propozycja możliwego wyglądu cząsteczki.  Szefowie King's College byli tym trochę rozczarowani. Temat nie chwycił w mediach, a specjaliści podchodzili do propozycji sceptycznie. Nie była to pierwsza propozycja struktury wykoncypowana z danych o składzie.

Tuż przed nimi swoją propozycję struktury przedstawił Linus Pauling, światowej sławy badacz, który dopiero co rozwikłał strukturę białek. Przyspieszenie prac nad badaniami struktury w Cambridge wynikało stąd, że było powszechnie wiadomo, że zajął się on tym tematem, zaś Bragg miał nadzieję, że jego naukowcy będą szybsi. No i ściganie się między zespołami doprowadziło do publikacji pospiesznej, źle obmyślanej hipotezy. W jego wersji DNA było potrójną helisą, utworzoną przez rdzeń cukrowo-fosforanowy, z zasadami organicznymi na zewnątrz.  Struktura trzymała się w całości dzięki wiązaniem wodorowym między grupami fosforanowymi. Było to dziwaczne rozwiązanie, bo grupy te łatwo jonizują, a po oderwaniu od nich wodoru w lekko alkalicznych warunkach wewnątrzkomórkowych nie ma jak powstać wiązanie wodorowe. W tej wersji cząsteczka nie miała się jak trzymać w całości w formie soli, a przecież takie sole otrzymywano. 

Jeszcze wcześniej, w 1951, swoją propozycję struktury przedstawił Edward Ronwin . Podwójna nić zawierała rdzeń z fosforanów, które łączyły wszystkie elementy na zewnątrz przez wiązania kowalencyjne. Co od razu zwracało uwagę - struktura wymagała pięciowiązalnego fosforu, a takich związków, które byłyby trwałe w warunkach biologicznych, jeszcze wtedy nie znano.

Struktura Watsona i Cricka była hipotetyczna i opierała się o kilka założeń. Wspierano ją danymi obrobionymi nowym modelem matematycznym rozpraszania na włóknie. Zakładała dwuniciowość jako najbardziej prawdopodobną, ale bez ukończonych obliczeń struktury krystalicznej (co było strasznie żmudne i dane przeliczano jeszcze przez dłuższy czas po publikacji). Zakładała zasady purynowe w formie ketonowej, gdy tymczasem w podręcznikach podawano formę enolową, Nie wyjaśniała nic na temat działania cząsteczki. Dla biochemików wyglądało to na dużą dozę chciejstwa i dopasowywania danych pod tezę. 

Prawie trzy tygodnie po publikacji, 14 maja, Lawrence Bragg, który był szefem Cavendish Laboratory, wygłosił na ten temat odczyt w szkole medycznej. Sprawozdanie z tego wykładu, zawierające informacje o odkryciu, miał kolejnego dnia zamieścić New York Times, znana gazeta. Artykuł miał sześć krótkich akapitów i pojawił się gdzieś w środku porannego wydania. Po czym w głównym wydaniu został usunięty, aby zrobić miejsce dla czegoś ważniejszego. Dopiero po dłuższym napraszaniu się i wysyłaniu gotowych notek prasa popularna zaczęła się z wolna interesować pomysłem na początku czerwca, ale nadal to nie była sensacja.  

Swoje propozycje publikowali kolejni badacze. Były to modele jednoniciowe; dwuniciowe z fosforanami w środku, takie z większą ilością nici itd. Cały czas pojawiały się też artykuły o tym, że pozostali się mylą i tajemnicy dziedziczności trzeba szukać w białkach albo sacharydach. Przyznawanie, że model przedstawiony w 1953 roku był poprawny zaczęło przeważać dopiero pod koniec lat 50. gdy pojawiały się nowe, dokładniejsze wyniki badań rentgenowskich, potwierdzających helikalność i dwuniciowość. Wreszcie w 1958 roku badania Meselsona i Stahla nad replikacją potwierdziły przypuszczenia Watsona I Cricka, że DNA podczas podziału komórki jest dzielone na poszczególne nici, na których nadbudowywana jest druga połówka, układająca drugie aminy z pary na podstawie rozpoznania ilości wiązań wodorowych. W tym momencie dopiero można było poskładać do kupy wszystkie publikacje i dojść do wniosku, że DNA jest rzeczywistym czynnikiem dziedzicznym, a  w pełni poprawny model Watsona i Cricka rozwiązuje pewne problemy związane z podziałem informacji podczas replikacji. I wypadałoby ich za to nagrodzić.

Czemu jako trzecia osoba Nobla dostał Wilkins? Zgłosił go w swojej nominacji Bragg, który chciał tym samym uhonorować  prace badaczy z laboratorium King's College. W tym Rosalind Franklin, która w tym momencie już nie żyła, więc jej się zgłosić nie dało. Znów więc ciężko mówić o jakimś pomijaniu i próbie ukrycia jej wkładu. To co się stało potem, po przyznaniu nagrody, to już niestety efekt wspomnianego zjawiska Syndromu Pojedynczego Zmieniacza, wzmocnionego tym, że nagrodę przyznaje się nielicznym osobom, toteż media i podręczniki przypisały całość odkrycia tylko tym nagrodzonym, bo to ich nazwiska wymieniono. Plus działania Watsona, któremu sława uderzyła do głowy i w wywiadach oraz autobiograficznych książkach robił z siebie gwiazdę, która sama to wszystko odkryła, w izolacji od innych badaczy. 

"Podwójna helisa"

Książka autobiograficzna Watsona na temat badań "Podwójne helisa", opublikowana w 1968 roku zmieszała jego kolegów. Serio zastanawiali się nad pozwem o zniesławienie. Za sprawą ich protestów publikacji odmówiło wydawnictwo uniwersyteckie Harward University Press. Watson dużo skupia się tam na swojej osobie i na myśli, że należy mu się bycie pierwszym, który odkryje budowę DNA, a wkłady innych osób umniejsza, poświęcając dużo miejsca na opis tarć interpersonalnych. W tym pojawiają się opisy Franklin jako kłótliwej, zadufanej, stroniącej od współpracy. Cała ta historia z nekrologiem, a potem jeszcze chłodne traktowanie kolegów, rozmowy w tonie "to wy tego nie wiecie?" i publiczne krytykowanie pomysłów. To jej nie przysporzyło zbyt dużo sympatii.

Z drugiej jednak strony właśnie on ujawnił jak dużo jej danych wykorzystał w badaniach; podkreślił jej sumienność i analityczne myślenie, dzięki któremu doszła bardzo wcześnie do wniosków, jakie okazały się mieć znaczenie w przyszłości. Paradoksalnie gdyby nie jego relacja bardzo późno wyszłoby jak daleko sięgał jej wkład. Watson chcąc nie chcąc rozsławił udział Franklin w badaniach nad DNA. I uruchomił niektóre do dziś pokutujące mity.

"Rosalind Franklin and DNA"

W 1975 roku wydana zostaje książka biograficzna Anne Sayre na temat Franklin i jej roli w odkryciu DNA. I to ona niestety pozostaje głównym źródłem mitów w temacie. Jest to reinterpretacja faktów biograficznych w nurcie herstory, która kreowała Franklin na feministyczną bohaterkę, która musiała się zmagać z mizogonią od pierwszych swoich dni. Autorka, będąca przyjaciółką Franklin, przyznawała że w zasadzie nie jest to stricte biografia tylko odpowiedź na książkę Watsona. 

Publikacja ta stała się obiektem krytyki współpracowników i krewnych Franklin. Przykładowo w kreowanym w książce obrazie Franklin musiała od samego początku walczyć ze sprzeciwem otoczenia i rodziców aby zajmować się naukami ścisłymi. Prowadziło to wprost do oskarżenia jej rodziców o seksizm. Glenn Franklin, siostra badaczki, zaprotestowała przeciwko temu. W rzeczywistości ojciec wspierał obie córki w ich marzeniach o wyższym wykształceniu i finansował im studia. Nie było więc żadnego przełamywania oporu.  

Dowodem na powszechny seksizm w instytucie miało być równocześnie to, że w zespole badawczym biofizyki pracowała poza Franklin tylko jedna naukowczyni, jak i to, że pracowniczki naukowe King's Colledge miały jeść obiad w oddzielnej sali lub poza budynkiem. Badaczki, które w tym czasie tam pracowały były tymi tezami zaskoczone, bo razem z Franklin w zespole pracowało jeszcze co najmniej siedem kobiet i wszyscy jedli obiad we wspólnej jadalni, jednej dla wszystkich pracowników. 

Innym krytykowanym obrazem jest przedstawianie Franklin jako aktywnej feministki, tymczasem jej współpracownicy twierdzą, że raczej nie miała takich poglądów i nie udzielała się w aktywizmie równouprawnienia.

***

Patrząc na to z perspektywy lat to Gosling był w tej historii bardziej poszkodowany, bo żył w roku przyznania Nobla ale nie został uwzględniony, a teraz nie opowiada się o nim w otoczce ujawniania ukrywanych tajemnic (chyba że dostrzegacie taką w niniejszym opracowaniu :).

***

Wszystkie te fakty nie są jakieś mocno trudne do znalezienia. Szczerze mówiąc większość tych informacji wziąłem po prostu z angielskiej Wikipedii z haseł na temat wszystkich tu wymienionych osób i książek. Nie ma problemu aby znaleźć linie czasu i chronologiczne podsumowania, pokazujące kto pierwszy i kiedy zajął się tematem, jak pozostałe osoby się dołączały i którędy krążyły informacje. Dlatego narracja Dawida, która powtórzyła najważniejsze mity na temat Rosalind Franklin wprawiła mnie w konfuzję. Rosalind nie mogła nie wiedzieć, że jej zdjęcie posłużyło Watsonowi i Crickowi, a oni nie kryli się z tym, że oparli się na jej sugestiach niepublikowanych jeszcze pomysłach. Miała okazję zaprezentować swoje dane w tym samym numerze The Nature. Oglądała ich model przed publikacją i nie znalazła tym razem zastrzeżeń. A nieuwzględnienie jej w nagrodzie Nobla w 1962 roku wynikało głównie stąd, że tego roku nie dożyła. Gdyby Watson i Crick wzięli ją na trzecią autorkę publikacji (na co prawdopodobnie by się nie zgodziła, bo nie ufała hipotezom bez dobrych podstaw eksperymentalnych) to historia z nagrodą pewnie potoczyłaby się tak samo.  

Cały ten mit "zapomnianej badaczki której ukradziono zdjęcie" powoduje, że dziś pisze się o niej częściej niż o takim Wilkinsie.

 Jak można mówić o nauce i nie zweryfikować takich rzeczy? Tym bardziej, że ma to być skrócona wersja opisu odkrycia struktury DNA zawarta w książce Myśliwca. Jeśli tak wygląda ta historia w książce, to nie wiem czy chcę ją kupić. 

------------------------

 https://www.theguardian.com/science/2015/jun/23/sexism-in-science-did-watson-and-crick-really-steal-rosalind-franklins-data

 https://royalsocietypublishing.org/doi/pdf/10.1098/rsbm.2006.0031

piątek, 9 lipca 2021

Zioła to też chemia

W tematyce ziół, medycyny alternatywnej i żywienia funkcjonuje wiele mitów, które przemawiają do wyobraźni, chętnie zresztą wykorzystywanych w reklamach. Jednym z takich charakterystycznych przypadków jest przekonanie, że to co naturalne jest po prostu zdrowe, a jego przeciwieństwem jest "chemiczne". A skoro tak, to nieodmiennie musi być szkodliwe.

Oczywiście, gdy zapytać wprost, każdy się żachnie, że to tylko taki skrót myślowy. Ale niektórzy powtarzają go całkiem serio i na jego podstawie dokonują wyborów. Nakręcanie kontrastu między "naturalnym dobrym" a "sztucznym szkodliwym" doprowadza w końcu do takich absurdów, jak producenci zapewniający klientów, że ich krem czy suplement nie zawiera dosłownie żadnych związków chemicznych. Czyli nie zawiera niczego, bo wszystko, czego możemy dotknąć czy posmakować, to jakaś substancja chemiczna. Innym przejawem jest ukrywanie w składach dodatków pod różnymi formami, które brzmią dużo lepiej, bo się nie kojarzą. I tak na przykład zupki instant zapewniające nas o braku glutaminianu wymieniają w składzie ekstrakt drożdżowy, zawierający tego związku pod dostatkiem. Natomiast nazwanie witaminy B12 jej chemiczną nazwą cyjanokobalamina to marketingowa śmierć i wszyscy tego unikają.




Sytuację taką nazywa się czasem chemofobią, bo jest to w wielu przypadkach obawa nieracjonalna, oparta nie o wiedzę, lecz o szybkie skojarzenia zakodowane w głowach przez media. Jak coś ma chemiczną nazwę, to musi być złe. Jak nazwa jest długa i zawiera cyfry, to musi być złe bardzo.

Takie uproszczone metody pojmowania same w sobie nie są złe, bo nie każdy chce być od razu specjalistą. Natomiast czasem mogą się okazać zbyt proste, prowadzić do błędów i ostatecznie szkodzić. Przypomina mi to trochę wszystkie te mity na temat zbierania grzybów, pokutujące u osób, które zbierają, choć się w ogóle nie znają. Taki grzybiarz znajdując nieznany grzyb decyduje więc, że wygląda mu on na jadalny, bo nie jest gorzki, nie czernieje z nim cebula i nadgryzły go ślimaki. I za którymś razem zjada w domu sromotnika, który przechodzi te testy bez problemu.

Chemofobicznym przypadkiem takiej sytuacji jest najczęściej przepłacanie za dodatki, zawierające związki wyciągnięte z jakiegoś naturalnego źródła, aby zastąpić nimi dokładnie te same związki pochodzenia przemysłowego, które nie różnią się budową, ani nawet skrętnością. Przykładem kwas cytrynowy "naturalny" bo z cytryn, poszukiwany w zastępstwie sklepowego, któremu rozsyłany między ludźmi mailowy łańcuszek przypisuje rzekomą rakotwórczość.

Ma to jednak swoją ciemniejszą stronę - wywyższanie na piedestał wszystkiego co naturalne skutkuje tym, że ludzie tracą ostrożność. A nie wszystko co znajdziemy w naturze jest zawsze dobre i pasuje do naszego organizmu. Wspomniany sromotnik bez wątpienia jest produktem bardzo naturalnym. Pojmując wszystko w taki uproszczony sposób ludzie mogą czasem sobie zaszkodzić. Jeśli chcesz zadziałać na swój organizm naturalną substancją, która rzeczywiście jest aktywna i przynosi skutki, lepiej abyś wiedział co takiego właściwie zażywasz, jakie to wywołuje efekty i jaka ilość jest właściwa. Bo zioła to też bardzo wiele związków chemicznych. A związek chemiczny leczniczy od trującego różni tylko dawka.

Próbowanie bez wiedzy co to właściwie nam robi, i bez pilnowania ilości, bo "to zioła, więc nie mogą zaszkodzić" przynosi różnorodne problemy. Cierpiący na ból żołądka z powodu nadkwasoty piją używaną przy niestrawności miętę, a ta pobudza żołądek do wydzielania większej ilości kwasu i tak kółko się zamyka. Kobiety doświadczające osłabienia z powodu zbyt obfitej miesiączki piją dla rozgrzania herbatę z imbirem, który rozrzedza krew i zwiększa obfitość miesiączek.

Jednym z takich niewinnie wyglądających przypadków jest dość często spotykana lukrecja. Roślina o bardzo słodkich korzeniach, która znalazła zastosowanie jako przyprawa, ale ma też ciekawe właściwości lecznicze. Jeśli ktoś cierpi na podrażnienia i łatwo się pojawiające wrzody żołądka czy jelit, bądź też ma problem z przewlekłym, suchym kaszlem, a nie chce się faszerować kodeiną, można by mu polecić wyciąg z lukrecji tradycyjnie stosowany w takich przypadkach. Ale jeśli równocześnie osoba taka ma nadciśnienie, choroby serca wymagające podawania leków, czy nadmierne wydalanie potasu, to może sobie wtedy poważnie zaszkodzić.





Jednym z efektów wyciągu z lukrecji jest zwiększenie wydalania potasu i zatrzymywanie sodu. Większość leków na nadciśnienie działa natomiast dokładnie odwrotnie. Dlatego zażywanie dostatecznie dużych dawek, i dostatecznie długo, powoduje wzrost ciśnienia tętniczego, co u osób już i tak mających z tym problemy, może być niebezpieczne. Właściwa ilość potasu jest też potrzebna do odpowiedniego kurczenia się mięśni i pracy serca. Zbyt duży spadek stężenia powoduje osłabienie nóg i tętna. Jeśli sytuacja taka przytrafi się lubiącej słodkie rzeczy osobie w podeszłym wieku, która musi dbać o poziom cukru i w zastępstwo wybiera produkty z naturalnymi słodzikami, lekarz zwali winę na starość, w której ma się często wysokie ciśnienie, słabe nogi i problemy z sercem.

Do przedawkowania trzeba oczywiście dość wysokiego spożycia, rzędu kilku gramów korzenia lub ekstraktu z takiej ilości każdego dnia, ale o to wcale nie tak mocno trudno. Ponieważ lukrecja jest ziołem, i jest naturalna, wiele osób nie zastanawia się specjalnie nad dawkowaniem. Gdy dostaną płynny ekstrakt do słodzenia czy leczenia, mniej się przejmują tym, że wlało im się do szklanki trochę więcej, niż obawialiby się wtedy, gdy na rękę z buteleczki wysypią się dwie kapsułki suchego wyciągu za dużo. Jako przyprawa pojawia się w wielu herbatkach smakowych. Poprawia smak gorzkich mieszanek ziołowych, jest dodawana do cukierków i innych słodyczy, jak na przykład skandynawskie Salmiakki. Jeśli ktoś nie ma zwyczaju czytać uważniej napisów z tyłu opakowań, może się nie zorientować, że zbiegiem okoliczności spożywa lukrecję z kilku różnych źródeł. A powinien to wiedzieć, jeśli ma jeden z opisanych tu problemów zdrowotnych.

W krajach arabskich opisywano występowanie parestezji kończyn wywołanych piciem mocnego naparu z lukrecji podczas Ramadanu, ma ona bowiem ponoć hamować uczycie głodu. [1]

Na podstawie badań ze zdrowymi ochotnikami ustalono prawdopodobną maksymalną bezpieczną ilość na 200 mg dziennie glicyrrhyzyny, głównej substancji czynnej.[2] W handlu dostępne są ekstrakty z korzenia lukrecji o zawartości tego składnika do 20%, więc ryzyko objawów ubocznych pojawia się już przy przekroczeniu dawki 2-3 ml dziennie. Osoby z wyraźnym nadciśnieniem czy szybką utratą potasu z organizmu zaczną odczuwać skutki wcześniej.

Dlatego dla nieznających się na ziołolecznictwie dobre są właściwie skonstruowane ulotki, mówiące o wskazaniach, przeciwwskazaniach i dawkowaniu. Opakowania herbatek z domieszką lukrecji zwykle zawierają ostrzeżenie dla nadciśnieniowców, aby nie zażywali ich dłużej niż miesiąc. Podobnie powinno być więc też w innych przypadkach. Opakowanie dziurawca niech mówi o zwiększaniu wrażliwości skóry na słońce. A opakowanie wrotyczu lub piołunu niech ostrzega osoby w ciąży, że spożycie może się skończyć zbyt wczesnym i niebezpiecznym jej zakończeniem.
I wymaganie takich ostrzeżeń to nie jest żadna próba zakazania ziół - o co nie tak dawno się w Polsce pieklono.
------------------
[1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498851/

[2] https://pubmed.ncbi.nlm.nih.gov/8072387/

poniedziałek, 14 maja 2018

Czym właściwie pachnie skoszona trawa?

Wiele osób lubi zapach skoszonej trawy, niektórzy nawet chcieliby mieć takie perfumy. Ale jakie właściwie związki chemiczne za niego odpowiadają?

Pomysł tego wpisu krążył mi po głowie już od pewnego czasu, ale bezpośrednią inspiracją był zauważony w internecie osobliwy mit. Otóż przy okazji dyskusji o chemicznych środkach bojowych, sprowokowanych najnowszymi wydarzeniami na świecie, po raz drugi spotkałem się z twierdzeniem, że świeżo skoszona trawa wydziela fosgen, gaz o działaniu duszącym. Z krótkiego przeglądu internetu wynika, że pogląd taki czasem pojawia się jako zasłyszany, niekiedy rozszerzany na inne rośliny na przykład geranium.[1],[2].
Skąd taki osobliwy pomysł? Fosgen przypadkiem pachnie podobnie do skoszonej trawy (wedle innych źródeł jak zepsute owoce), a ponieważ pachnący migdałowo cyjanowodór faktycznie jest w pewnych ilościach zawarty w migdałach, komuś musiało się skojarzyć jedno z drugim. Tyle że nie. To, że jakiś związek pachnie jak coś konkretnego, nie oznacza, że jest w tym zawarty.

Jeśli nie fosgen to co?
Większość gatunków traw nie wytwarza specjalnych substancji zapachowych, jedynie te z rodzaju palczatka posiadają własne zapachy, wyczuwalne bez naruszenia rośliny. Jednak sytuacja koszenia, jest dla rośliny sytuacją szczególną. Źdźbła zostają poszatkowane i uszkodzone, co jest dla rośliny czynnikiem stresowym. A na takie akcje biologia przewidziała rozmaite reakcje.
W dawnych czasach, przed pojawieniem się ludzkiego gatunku, liściom roślin zagrażały właściwie tylko dwa czynniki - roślinożerne ssaki i takież owady. Przed zwierzętami krzak czy kępka życicy nie za bardzo mają się jak bronić, jeśli oczywiście nie liczyć kolców, ostrego brzegu liścia czy zachowań podobnych do mimozy. Natomiast na wypadek ataków owadów wykształciły specyficzny mechanizm obronny - po uszkodzeniu liścia wydzielają lotne substancje, które ostrzegają inne rośliny dookoła oraz ściągają na odsiecz owady drapieżne.

Są to najczęściej związki oparte o sześciowęglowy łańcuch, wytwarzane w szybkiej reakcji enzymatycznej rozszczepiania nienasyconych kwasów tłuszczowych omega-6. Zazwyczaj substratem jest kwas linolowy lub kwas alfa-linolenowy. Po uszkodzeniu tkanek z komórki wylewa się jej zawartość. Lipooksygenaza powoduje utlenienie kwasu tłuszczowego dodając grupę nadtlenkową przy wiązaniu podwójnym. Kolejny enzym, liaza, powoduje rozszczepienie wiązania podwójnego. Całość jest biologicznym odpowiednikiem ozonolizy. Zależnie od tego który z kwasów ulegnie rozszczepieniu,  powstająca krótka cząsteczka albo jest związkiem nasyconym albo zawiera wiązanie podwójne.

Najczęściej więc produktami rozpadu są heksanol i cis-3-heksenol, który izomeryzuje do formy trans. Alkohole te następnie są utleniane do odpowiednich aldehydów i kwasów karboksylowych, a ponadto estyfikowane grupą acetylową. Wszystkie te związki mają przyjemne zapachy, od słodkawych, przez owocowe do kwiatowych. Najsilniejszy i najlepiej wyczuwalny jest zwykle cis-3-heksenal, stąd niekiedy zbiorczo mówi się o tych związkach "aldehydy liściowe".

Równocześnie z tej samej utlenionej formy kwasu tłuszczowego poprzez szereg innych reakcji powstaje kwas jasmonowy, który akurat specjalnie nie przyczynia się do zapachu, stanowi roślinny hormon regulujący wzrost.

W jakim celu wytwarzane są wszystkie te związki? Aby ściągnąć naturalnych wrogów owadów.
Zapachy wytwarzane podczas uszkadzania liści przez gąsienice czy chrząszcze są bardzo atrakcyjne dla drapieżnych i pasożytniczych owadów, na przykład gatunków os składających jajeczka wewnątrz sparaliżowanego jadem owada.
Kwas jasmonowy wytwarzany w pobocznej reakcji stymuluje w roślinie wytwarzanie inhibitorów proteaz, mających za zadanie blokować u owadów trawienie białek a tym samym sprawić, że w mniejszym stopniu posilą się na roślinie.
Roznoszące się wokół aromaty mogą ponadto ostrzegać inne rośliny przed atakiem roślinożerców, w związku z czym na wszelki wypadek przygotowują one nieco więcej substratów reakcji lub wydzielają więcej kwasu jasmonowego. Jak więc widać, zwykłe skoszenie trawnika wprowadza w te naturalne zależności niemało zamieszania.

Pewne znaczenie dla zapachu mogą mieć też inne związki występujące w trawach i drobnych roślinach przerastających trawnik. Jednym z najpospolitszych związków, który występuje w każdej roślinie zielonej, jest fitol, długołańcuchowy alkohol stanowiący podstawnik w cząsteczce chlorofilu i będący prekursorem witaminy K.  Ma lekko słodkawy zapach, bywa dodawany do perfum jako utrwalacz.
Niektóre gatunki traw zawierają też kumarynę o słodkim, lekko waniliowym zapachu. Najzasobniejsze są tomka wonna oraz żubrówka, używane do aromatyzowania alkoholi, a z roślin zielnych nostrzyk żółty i koniczyna. Podczas suszenia roślin zawartość kumaryny wzrasta, w związku z rozpadem glikozydów, zaś alkohole liściowe ulatniają się, dlatego kumaryna jest głównym związkiem decydującym o zapachu suszonego siana.
-----
[1] http://pl.sci.chemia.narkive.com/xEHjupyL/fosgen-w-trawie-cyjanowodor-w-pestkach
[2] http://skibicki.pl/forum/viewtopic.php?p=17504

* Paul W. Paré, James H. Tumlinson, Plant Volatiles as a Defense against Insect Herbivores, Plant Physiology October 1999, Vol. 121, pp. 325–331
*  https://en.wikipedia.org/wiki/Jasmonic_acid
* Alessandra Scala, Silke Allmann, Rossana Mirabella, Michel A. Haring, and Robert C. Schuurink, Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens,
Int J Mol Sci. 2013 Sep; 14(9): 17781–17811.

piątek, 5 stycznia 2018

Paramedycy kochają In Vitro

Wydawałoby się, że głównym problemem z medycyną alternatywną, naturalną czy niekonwencjonalną, jest ignorowanie osiągnięć nauki. Jednak przeglądając tego typu portale odnoszę często odmienne wrażenie. Ich problemem jest także powoływanie się na osiągnięcia naukowe. Tylko że źle zrozumiane.

  Jedną z takich charakterystycznych sytuacji daje się zauważyć na portalach i blogach dietetycznych, zdrowotnych czy zielarskich, które co i rusz donoszą, że oto właśnie odkryto, że "x leczy raka/odchudza/odmładza/zwiększa inteligencję" i przypadkiem właśnie to x można kupić jako suplement.
  I jeżeli artykuły takie powołują się na jakieś prawdziwe badania (powoływanie się na zasadzie: rosyjscy naukowcy, nie podamy jacy, odkryli, nie podamy jak, że x leczy y, ale nie powiemy skąd to wiemy - się nie liczy) to zazwyczaj są to bardzo podstawowe badania, w których nie badano rzeczywistego wpływu na chorego pacjenta, tylko na jego kawałek. A konkretnie na preparat wyizolowanych komórek, umieszczonych w szklanym naczyniu i potraktowanych jakimś roztworem. Jako że zaś szkło zwie się po łacinie "vitrum", a naukowcy chętnie wszystko latynizują, badanie takie nazywa się eksperymentem in vitro*.

  Badania na izolowanych komórkach stanowią jedną z najbardziej podstawowych technik biomedycznych, służących do zbadania wpływu biologicznego interesującej nas substancji. Jeśli działa ona poprzez wpływ na enzym, receptor czy jakąś część komórki, to efekty powinny być możliwe do zauważenia i zmierzenia już w tak bardzo uproszczonym modelu. W ten sposób testuje się na przykład efekty toksyczne czy mutagenne, sprawdza się aktywność substancji przeciwwirusowych czy selektywnych blokerów receptorów.
  Ostatnio coraz częściej testami na komórkach, ich wyhodowanych warstwach czy fragmentach skóry pobranych od dawców, zastępuje się testy kosmetyków na zwierzętach.  Są więc w nauce ważne, ale przy interpretacji wyników trzeba pamiętać, że jednak mimo wszystko dotyczą dość specyficznej sytuacji. Opierają się o uproszczony model działania na organizm, a modele takie zazwyczaj mają swoje ograniczenia.

  Bierze więc nasz badacz preparat komórek chorobowo zmienionych, dzieli na wiele małych próbek i traktuje różnymi stężeniami badanej substancji, powiedzmy wyciągu z czosnku albo może pochodnej dinitrofluorenometoksybenzochinonu. Po inkubowaniu w kontrolowanych warunkach dodaje do próbek wskaźnik żywotności, aktywności metabolicznej czy innych parametrów komórkowych, po czym sprawdza ile komórek wykazuje sygnał, w jakim stopniu wskaźnik uległ przemianie czy wchłonięciu.[1],[2] I otrzymuje wynik, że w próbce umieszczonej w próbówce, w roztworze takim a takim, po potraktowaniu badaną substancją, N % komórek wykazało zmiany. I wszystko ładnie, tylko co z tego?
Droga do kandydata na lek - 1 Wybór technik pozwalających w uproszczonym modelu sprawdzić na jaki parametr biologiczny substancja ma działać; 2. Przesiewowe testy na płytce sprawdzające jakie substancje z danej grupy wykazują jakieś działanie na badany preparat; 3. Testy in vitro konkretnych substancji, sprawdzające mechanizm i siłę działania; 4. Testy in vivo na modelu zwierzęcym; 5 Mamy kandydata do testów klinicznych. 90% badanych substancji nie dochodzi do ostatniego etapu.

  Z tego typu doniesieniami z badań in vitro jest ten problem, że trudno je wprost przełożyć na działanie na żywy organizm. Zwykle polegają one na tym, że traktuje się wyciągami próbkę komórek i sprawdza różnice w pewnych subtelnych parametrach. Tylko że nie można na takiej podstawie wyciągać zbyt szybkich wniosków. Jest to raczej wskazówka, że skoro w danym procesie w organizmie znaczenie ma pewien enzym, receptor czy szlak sygnałowy, a nasza substancja wpływa na ów enzym/receptor/szlak, to zadziała też na proces w organizmie, ale aby móc to z całą pewnością powiedzieć, należałoby przetestować to na tymże organizmie całym i żywym. Wynik testu in vitro jest więc wskazówką co do tego, co można dalej testować a co nie ma potrzeby, odsiewając preparaty nieczynne od najbardziej obiecujących.
  W ten sposób szybko sprawdza się setki substancji o potencjale czynności biologicznej i ich drobne chemiczne pochodne. Testuje się jeden po drugim różne modyfikacje znanych antybiotyków czy setki naturalnych alkaloidów, izolowanych z egzotycznych roślin. Jest to jednak dopiero początek drogi, przed nami jeszcze wiele innych testów, mających upewniać, że nie wypuszczamy na rynek bubla o wartości placebo. Jeśli dla jakiejś substancji mamy tylko i wyłącznie testy na preparatach komórkowych a nie kliniczne, wówczas nie jest to żaden dowód działania, tylko jak wspomniałem, wskazówka. W takiej sytuacji mówienie, że dana substancja już teraz, na pewno wykazuje działanie na człowieka, stanowi nadużycie. A w najlepszym razie nadmiar entuzjazmu.

  W dodatku warto pamiętać, że istnieje na prawdę bardzo dużo substancji, które stuprocentowo zabijają w próbówce komórki nawet najzłośliwszego nowotworu. Myślę, że domowy wybielacz wystarczałby w zupełności, ewentualnie stężony roztwór soli, kwas siarkowy czy podgrzanie całej próbówki do wrzenia. Informacja sprowadzona wyłącznie do "x niszczy w próbówce komórki raka", jest poznawczo bezwartościowa, bez wiedzy czy przypadkiem równie źle nie działa na komórki zdrowe. Czy przypadkiem nie jest po prostu tak szkodliwa, że zabiłaby pacjenta lepiej niż choroba

  Niestety wielu miłośników medycyny alternatywnej (oraz dziennikarzy popularnych gazet) uprawia takie właśnie zbyt szybkie wnioskowanie, połączone z pompowaniem efektownych haseł. Eksperymenty mają mieć znaczenie już teraz, bez wdawania się w niuanse i prawdopodobieństwa. Wyniki badań należy od razu zamienić w gotową praktyczną poradę dla czytelnika. Odbywa się to na zasadzie: "Jak stwierdzili amerykańscy naukowcy, wyciąg z korzenia berberysu zmniejszał proliferancję komórek nowotworowych prostaty o 10% bardziej niż u zdrowych... A zatem herbatka z bererysu leczy raka i to na pewno lepiej niż chemioterapia! Musicie ją pić!".


Bo komórki to nie organizm
  Głównym problemem w przenoszeniu badań na pojedynczych komórkach na działanie substancji na organizm, jest kwestia zmieniającej się ze skalą złożoności układu. Co innego komórki nowotworowe i może obok zdrowe w odpowiedniej zalewie, a co innego podanie równoważnej ilości do organizmu złożonego z dziesiątków typów komórek i tkanek prowadzących różne przemiany metaboliczne. To, że substancja na szalce nie wpływała istotnie na powiedzmy hepatocyty nie oznacza, że podobnie mało wrażliwe będą na nią neurony czy nefrocyty. Tymczasem często okazuje się, że to co ma leczyć chorobę w jednej części organizmu, wywołuje ją w innej. Jeśli zaś bilans zysków i strat pokaże, że korzyści zdrowotne nie są w stanie przeważyć skutków ubocznych, to taka substancja nie może stać się lekiem.

  Jeśli wyniki badań in vitro i na modelu zwierzęcym są obiecujące, przeprowadza się badania kliniczne I fazy, polegające na podawaniu różnych dawek zdrowym osobom i sprawdzaniu reakcji, zależności między dawką a stężeniem, szybkości eliminacji itp. I zwykle wychodzą na jaw efekty które wcześniej były trudno uchwytne, na przykład substancja wpływa na psychikę lub uczulająco albo po prostu na człowieka w całości działa inaczej niż się wydawało.
Właśnie na tym etapie wykłada się większość badanych substancji.

  To co sprawdzało się w wyidealizowanym modelu komórkowym, okazuje się nieprzydatne lub niebezpieczne dla żywego organizmu. Co z tego, że na szalce kwas dichlorooctowy zabijał komórki raka, skoro podany pacjentom powodował paraliż uszkadzając nerwy? [3] Co z tego, że abryna wydawała się selektywnym środkiem wywołującym apoptozę, skoro podczas testów klinicznych od zatrucia nią zmarł uczestnik?

  Podana substancja może też ulegać po drodze różnym przemianom metabolicznym i w ogóle nie docierać do miejsca, w którym ma działać. Woda utleniona reaguje z katalazami obecnymi w osoczu i tkankach i nie rozchodzi się po organizmie. Chondroityna czy kolagen w kapsułkach nie polepszają stanu stawów bo ulegają strawieniu. Lecytyna hydrolizuje w jelitach i nie dociera do mózgu gdzie rzekomo ma poprawiać pamięć. DMT i inne halucynogeny z tej grupy, zażyte samodzielnie nie wywołają żadnej ciekawej reakcji, z powodu rozkładania przez enzym monoaminooksygenazę.
Przykładowy test - żywe komórki zamieniają dodany wskaźnik w związek o barwie różowej. Stosując w kolejnych dołkach płytki coraz mniejsze stężenia badanych substancji, łatwo określić przy jakim najmniejszym stężeniu dana konkretna hamuje rozwój komórek. Stąd

Problem ilości
  Odmienne działanie na organizm niż na pojedyncze komórki, częściowo  jest pochodną bardziej ogólnego zjawiska - mianowicie warunki po podaniu substancji pacjentowi, są też pod tym względem inne niż test in vitro, że problematyczne jest osiągnięcie w organizmie stężenia takiego jak w testach.

  Zobaczmy na przykład jak wygląda doniesienie [4] reklamowane na alternatywnomedycznych portalach w formie "herbatka z mniszka zabija raka w 48 godzin". W badaniu porównywano wpływ wyciągu z korzeni na komórki czerniaka i komórki skóry zdrowe. Stwierdzono wystąpienie efektu (spadek wskaźnika żywotności komórki) o wielkości ponad 50% po czasie 48 godzin na komórkach rakowych linii A375 w stosunku do linii komórek zdrowych. Sukces? Być może, ale w badaniu na komórkach czerniaka z linii G361 (odporna na leczenie) wyciąg o tym samym stężeniu wykazywał działanie odwrotne - w porównaniu z komórkami zdrowymi przeżywały o 20-50% lepiej.
Dopiero użycie jeszcze większego stężenia pozwoliło na otrzymanie pozytywnych skutków.

Mogłoby to oznaczać, że na niektóre typy czerniaka (czerniak może być wywołany wieloma różnymi mutacjami) wyciąg wodny z mniszka działa kancerobójczo, a na inne w zbyt małym stężeniu wręcz ochronnie. I weź tu zgadnij jaki typ spośród setek możliwych mutacji ma osoba której poleca się herbatkę.

  Drugi problem to użyte stężenia. Efekt apoptyczny pojawiał się dla stężeń 2,5 mg/ml dla jednej linii komórek i 10 mg/ml dla drugiej linii, utrzymywanych w otoczeniu komórki przez 48 godzin. Stężenia dotyczą przy tym ilości użytego liofilizowanego ekstraktu wodnego, czyli ekstraktu, który odparowano otrzymując suchy proszek, z którego sporządzano potem roztwory.
  Stężenia 2,5 mg/ml i 10 mg/ml to 2,5g/l i 10 g/l. Takie stężenie powinny osiągnąć substancje z ekstraktu w płynie otaczającym komórki aby warunki były podobne jak w badaniu in vitro; w przypadku pacjenta będzie to krew. Ponieważ człowiek ma w organizmie około 5 litrów krwi, powinien wchłonąć od 12 do 50 g suchej substancji ekstraktu. Ale, ale - wyciąg wodny z mniszka zawiera małą ilość substancji rozpuszczonych. Aby wchłonąć takie ilości suchych substancji ekstraktu, pacjent musiałby wypić kilkanaście litrów naparu otrzymanego z powiedzmy kilku kilogramów mniszka. I utrzymywać takie stężenie przez 48 godzin... O ile oczywiście substancje aktywne (nie wiadomo nawet jakie) wchłoną się dostatecznie dobrze, bo mogą mieć niską, kilkuprocentową wchłanialność. O ile nie rozłożą się w organizmie pod wpływem enzymów. O ile nie okaże się, że w tak dużym stężeniu wywołują groźne skutki uboczne, których nigdy dotąd nie obserwowano, bo nikomu nie udało się uzyskać ich 1% stężenia we krwi.

  Jednak portale, powołujące się na te doniesienia, nie przejmują się szczegółami. Dla nich ważne jest tylko stwierdzenie, że herbatka ze znanego zioła "leczy raka w ciągu 48 godzin", mogą dzięki temu polecać czytelnikom aby sobie czasem popijali po szklance i mieli złudne przekonanie, że to ich przed czymś chroni. To tak jakby polecać na ból głowy 1/80 tabletki aspiryny.

  Jeśli jednak już uda się nam podać odpowiednio dużą dawkę związku, to może się okazać, że jest on w takiej ilości generalnie toksyczny. Przykładem mogą być ekstrakty z zielonej herbaty - wiele jest badań wskazujących na prozdrowotne właściwości zawartych w niej polifenoli, są także badania in vitro pokazujące wpływ hamujący na wzrost komórek rakowych. Jednak efekt stawał się wyraźny przy stosunkowo dużych stężeniach, będących odpowiednikiem wypijania dziennie 2-3 litrów naparu. Na szczęście z pomocą przyszli nam farmaceuci, oferujący suchy ekstrakt z zielonej herbaty w kapsułkach, pozwalający dostarczyć organizmowi trudne do uzyskania w normalny sposób dawki.
I niestety okazuje się, że w tych dużych ilościach ekstrakt z zielonej herbaty uszkadza wątrobę. Te same polifenole, które w mniejszych dawkach likwidują wolne rodniki, w większych zaburzają działanie mitochondriów, w których działaniu rodniki powstawać muszą.[5]


Przyprawione komórki fałszują wyniki
  Innym aspektem jest niedoskonałość samych metod badawczych. Prawdzie zmiany na wyizolowanych komórkach są łatwiejsze do opracowania, bo zbadać możemy od razu ich większą ilość i opisać wyniki ilościowo i statystycznie, ale w pewnych przypadkach charakter testowanej substancji może powodować błąd.
  Jednym z najczęściej stosowanych sposobów określenia żywotności komórek, jest podanie wskaźnika, który zostaje w żywych komórkach zmetabolizowany do formy, która świeci w ultrafiolecie. Im słabiej więc będzie świecić zawiesina komórek, tym gorsza jest ich żywotność. Wystarczy potraktować szereg próbówek badaną substancją, zmierzyć stosunek intensywności świecenia do stężenia i mamy wynik.

  Zastanówmy się jednak co takiego się stanie, gdy badana substancja przypadkiem dobrze pochłania ultrafiolet. Wciąż żyjące i dobrze się mające komórki, które ją wchłoną, będą świeciły słabiej, tak jakby brakło im trzy ćwierci do śmierci. Idźmy dalej - porównujemy wpływ tej substancji na komórki zdrowe i na chore, i te chore z pewnych powodów wchłaniają tej substancji więcej. Będą zatem świeciły wyraźnie słabiej od zdrowych, a nasze wyniki zostaną zafałszowane. Można temu przeciwdziałać uzupełniając badanie o drugą serię z innym wskaźnikiem, na przykład działającym odwrotnie (świecenie oznaką śmierci komórki). Bardzo duża różnica między wynikami z tych dwóch serii będzie wskazówką, że w eksperymencie tkwi błąd. Można też tak zaprojektować doświadczenie, aby ten efekt zminimalizować, na przykład stosując dalszą obróbkę zawiesin komórkowych, podczas której usuwamy badaną substancję a nie wpływamy na zmetabolizowaną formę wskaźnika, czy stosując taki zakres UV który nie jest pochłaniany.
  Wszystko to mogłoby bardzo pomóc uzyskać poprawne wyniki, ale wymagałoby dodatkowych nakładów, oraz mogłoby sprawić, że bardzo obiecujące wyniki nie będą już tak zachwycające.

  Przykładem takiej sytuacji, są omawiane w zeszłorocznej analizie z Nature badania aktywności biologicznej kurkumy [6]. Jest to żółtopomarańczowy pigment, dobrze rozpuszczalny w tłuszczach, będący składnikiem przyprawy kurkumy oraz mieszanki curry. Od lat bardzo intensywnie bada się kurkuminę, która okazała się posiadać bardzo obiecujące właściwości przeciwnowotworowe, przeciwzapalne, neuroprotekcyjne czy przeciwwirusowe. Spora część z tych właściwości została stwierdzona w badaniach in vitro. Problem w tym, że lipofilna kurkuma osadza się w błonach komórek i zasłania ich wnętrze, oraz jest przypadkiem... substancją pochłaniającą ultrafiolet.

  W przeglądzie badań kurkuminy autorzy stwierdzili, że duża część eksperymentów w ogóle nie brała tego czynnika przeszkadzającego pod uwagę; wykonano je tak, jakby barwna substancja o charakterze pigmentu była przezroczysta. Drugim problemem badań nad tą substancją, było użycie zanieczyszczonych preparatów. Jeśli jako "kurkuminę" użyto wyciągu z kłącza ostryżu, to w rzeczywistości badana substancja była mieszaniną dziesiątków związków. Kurkumina mogła fałszować wyniki także za sprawą własności chelatowania metali (np. nie odwracała skutków toksyczności metali ciężkich na komórki, tylko zmniejszała ich ilość w roztworze), aktywności redoks (utlenianie lub redukowanie wskaźników poza komórką), tworzenie agregatów a w pewnych warunkach rozkład na zupełnie inne substancje.
  Wiadomo na przykład, że w warunkach lekko zasadowych, podobnych do odczynu krwi, kurkumina staje się niestabilna, co przyspiesza w temperaturach wyższych niż pokojowa; obserwowane efekty mogą więc wynikać z działania produktów rozkładu (a skoro tak, lepiej jako leki testować je właśnie) o trudnym do określenia stężeniu w czasie doświadczenia.
  W stężeniach zbliżonych do używanych w doświadczeniach, wykazuje skłonność do tworzenia agregatów z białkami i lipidami, które mogą naśladować selektywną inhibicję. Związek po prostu oblepiał komórkę, zamiast wybiórczo wiązać się z wybranymi białkami, biorącymi udział w procesie chorobowym. Gdy w testach badających siłę wiązania z enzymami, do kurkumy dodano nieaktywny biologicznie detergent zapobiegający tworzeniu agregatów, zmierzona aktywność związku spadała wyraźnie. Bez niego cząsteczki enzymu w roztworze zlepiały się przy udziale kurkuminy w białkowe kłębki.

  W cytowanym badaniu przeciwdziałania formowania się włókien białek Tau, które odpowiadają za rozwój choroby Alzheimera, pierwszy test wydawał się bardzo obiecujący. Eksperyment oparty o badanie intensywności fluorescencji tioflawiny, gromadzącej się w złogach białkowych, wydawał się pokazywać, że kurkumina hamuje powstawanie włókien w bardzo małych stężeniach. Eksperyment używający techniki fluorescencji polaryzacyjnej pokazał jednak wynik odwrotny, kurkumina działała bardzo słabo. Później okazało się, że kurkumina pochłaniała światło w zakresie w którym świeciła tioflawina, czyli zasłaniała ją fizycznie, udając aktywność biologiczną.

  Konkluzją autorów było stwierdzenie, że duża część badań mających wykazywać wysoką siłę leczniczą kurkuminy, została przeprowadzona w warunkach w których większą rolę zaczynają odgrywać czysto fizyczne właściwości związku, które fałszowały wyniki. Natomiast w badaniach dobrze przeprowadzonych, w których unikano tych niepożądanych efektów ubocznych, kurkumina okazywała się działać dość słabo. Nie skreśla to całkiem tego związku, są bowiem badania wskazujące, że w pewnych przypadkach ma on faktycznie pewne zastosowanie, pokazuje jednak, że ostatnia moda na polecanie tej przyprawy w charakterze panaceum na wszystko, ma w rzeczywistości bardzo kruche podstawy.

   Zbliżone efekty zakłócające może wywoływać reserwatrol, polifenol występujący między innymi w czerwonym winie, o bardzo obiecujących właściwościach biologicznych. Jedną z technik badania intensywności metabolizmu w komórkach, jest oznaczanie ilości wytwarzanego ATP. Do preparatu z rozbitych na kawałki komórek dodaje się lucyferynę i enzym lucyferazę. Substratem reakcji jest ATP z cytoplazmy.
  Jak wykazały badania, reserwatrol jest inhibitorem lucyferazy. Może więc sprawiać wrażenie, że zmniejszył ilość ATP w traktowanych nim komórkach, gdy tak na prawdę jedynie zahamował reakcję odczynnika.[7]

Samo in vitro nie wystarczy
  Jak to już wspominałem, jeśli ktoś reklamujący gotowy preparat oferuje go chorym jako działający lek, a na poparcie ma tylko i wyłącznie wyniki testów in vitro, to oszukuje potrzebujących. Albo jest świadomym oszustem albo nie rozumie badań na które się powołuje.
 Na takich właśnie dowodach opiera się duża część reklam cudownych leków, witamin czy używek, w ostatnim czasie widziałem dużo artykułów o medycznej marihuanie, w których dowodami były tylko takie badania. Weźmy choćby taki popularny w internecie artykuł [8] twierdzący, że przeciwnowotworowe działanie marihuany potwierdza aż 100 badań naukowych. Wśród zaprezentowanych linków znalazło się kilkanaście prac przeglądowych (czyli podsumowania innych, w tym cytowanych w artykule, prac, nie będące kolejnym badaniem), kilka prac w których nie badano wpływu zdrowotnego tylko farmakokinetykę (szybkość wydalania i metabolizmu) oraz prawie 80 prac w których badano wpływ różnych kannaboidów na linie komórkowe w próbówkach (tak, przejrzałem wszystkie linki).
   W sekcji na temat chłoniaka nie zacytowano żadnego badania dotyczącego marihuany, wszystkie cztery dotyczyły wpływu syntetycznego związku anandamidu, który jest agonistą receptorów kannaboidowych; znalazły się w tym zestawieniu  tylko z powodu nazwy receptora. W sekcji "nowotwory szyi i głowy" zacytowano badanie, które... w ogóle nie dotyczyło leczenia nowotworów; stwierdza się w nim jedynie, że z ankiet u pacjentów z nowymi diagnozami wynika większe ryzyko nowotworów u palących tytoń i pijących alkohol i brak zmiany ryzyka u palących trawkę. Między stwierdzeniem "x nie wpływa na nowotwory" a twierdzeniem "to badanie potwierdza, że x leczy nowotwory" jest potężna różnica.

I właśnie dlatego marni dziennikarze, sprzedawcy tabletek i paramedycy, tak gorąco kochają in vitro.
--------
* Natomiast  eksperymentach na żywych organizmach to "in vivo". Dla porządku wymyślono też określenie dla "eksperymentów" symulacyjnych na komputerach, czyli "in silica" jako że jak na razie mikroprocesory są oparte o półprzewodnikowy krzem. Zastanawia mnie jak w tej sytuacji określić eksperymenty myślowe - In mentis?

[1] Metody badania aktywności leków in vitro
[2] Techniki stosowane w badaniach toksyczności in vitro.

[3] https://www.ncbi.nlm.nih.gov/pubmed/16476929
[4]  https://www.hindawi.com/journals/ecam/2011/129045/

[5] http://onlinelibrary.wiley.com/doi/10.1111/j.1742-7843.2004.pto_950407.x/full
[6]  http://pubs.acs.org/doi/10.1021/acs.jmedchem.6b00975

[7]  https://www.ncbi.nlm.nih.gov/pubmed/17064666/

[8] https://motywatordietetyczny.pl/2016/05/ponad-100-badan-naukowych-potwierdza-marihuana-niszczy-raka/

środa, 29 marca 2017

Żywność z mikrofalówki

W ciągu ostatnich kilkunastu lat kuchenki mikrofalowe stały się takim powszechnym sprzętem domowym, jak zmywarki czy roboty kuchenne. Ze względu na swój nieoczywisty sposób działania obrosły jednak wieloma mitami. W tym też takimi, jakie mogą zainteresować chemika.

Jak działa mikrofalówka?
Mikrofale są falami promieniowania elektromagnetycznego, podobnie jak fale radiowe czy światło widzialne. Oznacza to, że w punkcie przestrzeni przez który przechodzą, pojawia się pole elektryczne i magnetyczne, których wektor natężenia (kierunek w którym następuje zmiana) zmienia zwrot co pewien okres, zależny od częstotliwości.
Dość arbitralnie uznaje się za mikrofale, falę o długości (odległość w przestrzeni między dwoma punktami o takim samym wektorze pola) od 1 mm do 30 cm. Niosą więcej energii niż dłuższe fale radiowe, ale mniej niż krótsza podczerwień.

Ogrzewanie przez nie ciał następuje wskutek oddziaływania z dipolami. Jeśli cząsteczka związku chemicznego ma nierównomiernie i niesymetrycznie rozłożony ładunek elektryczny, to nabiera momentu dipolowego, to jest zachowuje się jak układ leżących blisko ładunku dodatniego i ujemnego. Następuje to wtedy, gdy tworzą ją atomy różniące się elektroujemnością, to jest zdolnością do przyciągania elektronów, i nie są ułożone tak, że posiadają środek symetrii. W przeciwnym przypadku części cząsteczki powtarzające się po obu stronach tegoż środka ściągałyby ładunek w przeciwne strony i nie było by żadnego wyróżnionego kierunku.
Zerowy moment dipolowy ma liniowa cząsteczka dwutlenku węgla, a wyraźny niezerowy na przykład cząsteczka wody.

Dipole, które zachowują się jak układ przeciwnych ładunków, reagują na pola elektryczne lub magnetyczne. W stałym, dostatecznie silnym polu, będą się obracać równolegle do wektora jego siły, tak aby do źródła mającego ładunek dodatni lub ujemny obrócony był fragment cząsteczki o przeciwnym ładunku.
Podobnie rzecz się ma gdy na dipol oddziałuje fala elektromagnetyczna - cząsteczka wpada w zmienne pole, którego wektor co chwila zmienia się, wskazując raz to w jedną raz to w przeciwną stronę. W przypadku fal krótkich, jak dla światła widzialnego, gdzie długość fali jest liczona w nanometrach, czas przez jaki cząsteczka omiatana falą znajduje się w polu o jednym kierunku jest tak krótki, że nie nadąża zareagować. W przypadku długich, jak fale radiowe, wprawdzie pozostaje ona w polu danego kierunku długo, ale sama fala niesie ze sobą niską energię. Pośrodku znalazły się mikrofale - na tyle długie, aby cząsteczka zdążała zareagować, i zarazem niosące dostatecznie dużo energii aby po jej otrzymaniu cząsteczka pokonała swoją bezwładność.

W skrócie - cząsteczki będące dipolami w polu elektrycznym będącym składową mikrofal, zaczynają drgać. A drgania całych cząsteczek to właśnie to, co fizycy nazywają temperaturą. Energia kinetyczna rozedrganych mikrofalami cząsteczek dipola rozchodzi się przez oddziaływanie z innymi cząsteczkami. Mikrofalówki domowe posiadają źródła mikrofal o częstotliwości 2,45 GHz, co odpowiada długości fali 12,2 cm. Fala tej długości działa przede wszystkim na cząsteczki wody, posiadające wyraźny moment dipolowy. To od wody rozgrzewa się całe danie. Fale wnikają wgłąb porcji na 2-3 cm, co w zasadzie oznacza, że przenikają ją całą od momentu włączenia.

Ten typ ogrzewania różni się od konwencjonalnego przede wszystkim szybkością - w przypadku gotowanej kiełbaski rozchodzenie się ciepła następuje od zewnątrz do środka. Najpierw zużywamy ciepło na zagotowanie wody. Potem woda przekazuje energię zewnętrznym warstwom kiełbaski, te poprzez oddziaływania cząsteczek przekazują energię warstwom głębszym i tak dalej aż całość ogrzeje się na tyle, aby dało się to zjeść. Bywa że większe kawały mięsa zostają niedogotowane w środku. To rozchodzenie się ciepła nie jest zbyt szybkie, praktycznie żadnej roli nie pełni tu konwekcja wody wewnątrz jedzenia, mięso czy tkanki roślinne zwykle nie są zbyt dobrymi przewodnikami ciepła. Trzeba więc utrzymywać w stanie wrzenia wodę z naszą kiełbaską odpowiednio długo.
Ogrzewanie cieczy w próbówce, po lewej przy pomocy mikrofal a po prawej przy pomocy łaźni olejowej. Po 60 sekundach ogrzewania w mikrofali zawartość próbówki jest ciepła, bardziej wewnątrz, a w łaźni ogrzało się szkło próbówki i przylegająca warstwa cieczy

Mikrofale przenikają porcję jedzenia od razu od momentu włączenia, a ciepło jest wytwarzane w środku, przez co uzyskanie tej samej temperatury następuje krócej. Jedzenie jest wręcz cieplejsze w środku niż na zewnątrz, ze względu na wypromieniowanie ciepła przez powierzchnię, mającą kontakt z wcale nie gorącym powietrzem. Ma to pewien paradoksalny skutek, możliwy do zaobserwowania w doświadczeniu z kostkami sera - na talerz mikrofalówki kładziemy kostki żółtego sera, jedną dużą drugą mniejszą. Po włączeniu na średnią moc możemy zauważyć, że większa kostka stopi się szybciej.

Fale używane w kuchence mikrofalowej mają długość 12,2 cm. Są zatrzymywane przez metalową siatkę widoczną w szkle drzwiczek, ale obecną też w ściankach, której oczka są dużo mniejsze.


Utrata witamin
Teksty temat tego jak bardzo złe jest ogrzewanie jedzenia w mikrofalówce najczęściej powtarzają twierdzenie, że mikrofala "wyjaławia żywność" lub "niszczy wszystkie składniki odżywcze". W tym wyjaławianiu coś jest na rzeczy, bo podgrzanie jedzenia zwykle zabija bakterie, a w tym przypadku równomierne rozgrzanie od środka rozwiązuje problem niedosmażenia mięsiwa. Jak jednak wygląda sprawa składników odżywczych? W końcu takie na przykład witaminy są często wrażliwe na obróbkę cieplną.

Podczas ogrzewania część witamin bądź rozkłada się, bądź utlenia. Na to jak dużo substancji przereaguje, oprócz temperatury wpływ ma też czas trwania procesu. Jeśli w mikrofali osiągnięcie tego samego podgrzania następuje szybciej, można spodziewać się mniejszych strat witamin. I to pokazały badania. Znalazłem obszerny polskojęzyczny przegląd prac na ten temat.
 Dla witaminy C stwierdzono, że ogrzewanie w mikrofali brokułów wywołuje mniejsze straty niż podczas zwykłego gotowania, porównywalnie małe dawało gotowanie pod ciśnieniem. Gotowanie tak ziemniaków, kalafiora, brukselki i fasolki szparagowej dawało straty znacząco mniejsze niż dla gotowania zwykłego. [1]
 Dla witaminy B1 obserwowane straty przy gotowaniu mikrofalowym były bądź porównywalne (dla ciecierzycy) lub nieco mniejsze (dla boćwiny i zielonej fasolki) niż w zwykłym gotowaniu. Dla witaminy B2 straty w mikrofali były porównywalne lub mniejsze, z wyjątkiem zielonego groszku gdzie były większe. Dla witaminy PP  straty w gotowanej ciecierzycy były mniejsze. [2]

Polifenole
Do najczęściej powtarzanych argumentów należy niszczenie polifenoli i flawonoidów podczas ogrzewania w mikrofali. Niekiedy artykuły powołują się na konkretne badanie, w którym stwierdzono, że w gotowanych tak brokułach zawartość tych związków spada aż o 97%. Faktycznie, takie dane pojawiają się w cytowanym badaniu. Artykuły jednak nie są chętne wejść w szczegóły - brokuły były w tym badaniu gotowane w wodzie przy pomocy mikrofal, większość strat polifenoli wynikała nie z rozkładu tylko z rozpuszczenia się ich w wodzie, którą wylewano. W czasie tego samego badania stwierdzono też stratę 66% polifenoli podczas gotowania tradycyjnego.[3]
Sami autorzy przyznają zresztą, że te wyniki znacząco odbiegają od uzyskanych w innych badaniach, przykładowo japońscy badacze badający gotowanie cebuli stwierdzili, że między gotowaniem tradycyjnym a mikrofalowym nie ma różnicy dla strat polifenoli [4] a indyjski zespól badający w ten sposób 14 warzyw stwierdził, że straty podczas gotowania na parze i w mikrofali były mniejsze niż podczas gotowania zwykłego.[5]
Tak, że no owszem, bardzo dużą stratę zawartości polifenoli stwierdzono, ale tylko w jednym badaniu. Ponieważ główną przyczyną strat było rozpuszczanie polifenoli w wodzie którą potem odlewano, można się domyśleć, że w przypadku potraw których część stanowią warzywa, i z których nie odlewa się wody, straty będą bardzo małe.

Zmiana kształtu białek
Kolejnym częstym argumentem, jest zmienianie kształtu białek i powodowanie, że stają się nienaturalne. A jeśli coś jest nienaturalne to organizm tego nie poznaje i nie trawi.
Jest to kolejna wieść z kategorii "coś dzwoni ale nie wiadomo w którym uniwersytecie". Owszem, ogrzewanie żywności w mikrofalówce zmienia struktury białek, i to na takie których w naturze nie ma. Tylko że nie jest to nic nadzwyczajnego, zachodzi też podczas smażenia i gotowania. Proces ten nazywa się denaturacją. Przykładowo podczas smażenia jajecznicy rozpuszczalne w wodzie albuminy, będące białkami o cząsteczkach w kształcie kłębków sznurka, rozwijają się i prostują, po czym tworzą siatkę wielu przeplecionych łańcuchów. Taka struktura nie występuje w naturze. Jednak organizm nie ma z nią żadnego problemu. Nasz żołądek nie trudni się rozpoznawaniem struktury białka i testowaniem naturalności konformacji, tylko wytwarza enzymy które tą strukturę naturalną czy nie, niszczą i trawią.

Izomeryzacja aminokwasów
W paru miejscach widziałem, że dla udowodnienia szkodliwego wpływu powoływano się na badania na temat izomeryzacji aminokwasów.[6] Jak to już było tłumaczone we wpisie o witaminie C, w pewnych przypadkach asymetria cząsteczki powoduje, że związki chemiczne mogą posiadać dwie formy, podobne jak lustrzane odbicia ale nie nakładające się.
Takimi związkami są na przykład alfa-aminokwasy budujące białka, ale też często występujące w organizmach swobodnie. Spośród dwóch podobnych form - L i D, w organizmach żywych występują praktycznie tylko aminokwasy L.
No i otóż, jak wykazano podczas ogrzewania mleka w mikrofali, część wolnych aminokwasów ulega izomeryzacji w nienaturalną formę D. Co to powoduje? Wedle artykułów szkodzi i ma uzasadniać szkodliwość mikrofalówek.

Czy D-aminokwasy, które normalnie nie wchodzą w skład białek żywych organizmów, nie występują w przyrodzie i pojawiają się dopiero po nienaturalnym ogrzaniu mikrofalami? Nie.
Nie są zbyt częste, ale pojawiają się w organizmach i żywności wskutek spontanicznej izomeryzacji. Reakcja taka, jak wiele innych, ma pewną określoną szybkość, która zwiększa się po ogrzaniu. I to zupełnie niezależnie od sposobu ogrzewania.
W pewnym badaniu ogrzewano mleko bądź w mikrofalówce lub konwencjonalnie i zbadano zawartość izomerów D kwasu asparaginowego i glutaminowego. Przed ogrzaniem mleko zawierało około 0,4-0,45% tych izomerów, po ogrzaniu zarówno mikrofalowym jak i zwykłym ich zawartość zwiększyła się o 0,25%. Między próbkami ogrzewanymi na różne sposoby przez ten sam czas nie było różnic w zawartości D-izomerów.[7]
W zasadzie z uwagi na to, że mikrofalami można ogrzać mleko szybciej, można by się spodziewać mniejszych poziomów tych izomerów.

Wspomniane izomery D nie są tak znów nienaturalne, skoro dokładne badania wykazują ich niewielkie ilości w różnych produktach naturalnych. W obszernym przeglądzie badań stwierdzono na przykład, że izomery aminokwasów białkowych występują zarówno w mleku surowym jak i pasteryzowanym. Większe ilości pojawiają się w produktach fermentowanych, a więc kefirze, jogurcie i serach, zwłaszcza w serze długo dojrzewającym, wskutek metabolizmu bakterii. Śladowe ilości pojawiają się w mięsie kurczaka i bekonie, i zwiększają po smażeniu, a nawet w chlebie gdzie podpieczenie tosta zwiększa poziom D-aminokwasów prawie dwa razy.[8]
Wykrywa się je także w ludzkim organizmie i podejrzewa, że mogą pełnić pewne funkcje biologiczne, być na przykład neuroprzekaźnikami, trudno więc straszyć ich obecnością.

Enzymy
W paru artykułach wspomniano o niszczeniu przez mikrofale enzymów z jedzenia. To prawda, ale przyczyną jest samo podgrzanie. Enzymy są białkami a wysoka temperatura zmienia ich strukturę i je unieczynnia. Nie ma znaczenia w jaki sposób odbywa się ogrzanie.

Nitrozoaminy
Nitrozoaminy to rakotwórcze produkty reakcji zachodzących w wysokiej temperaturze między aminami i azotynami. Pojawiają się w przetworzonym mięsie podczas pieczenia i smażenia. Artykuły o mikrofalówkach często twierdzą, że podczas ogrzewania w nich tworzy się konkretnie d-nitrozodietanoloamina (NDMA), trudno powiedzieć czemu akurat ta. Są badania na temat powstawania nitrozoamin w ogóle. Na przykład porównując boczek pieczony w mikrofali ze smażonym na patelni, stwierdzono powstawanie nitrozoamin w obu, w tym smażonym w większej ilości.[9]
W badaniu zawartości NDMA w koreańskich owocach morza ogrzewanych na sześć różnych sposobów, stwierdzono że najwyższe poziomy tej substancji powstawały podczas ogrzewania na grillu na węgiel drzewny, a najmniejsze przy ogrzaniu w mikrofalówce i gotowaniu w ciśnieniowej kuchence parowej.[10]

Inne dziwaczne argumenty
Artykuły o mikrofalówkach często są doprawione dziwacznymi wieściami, które w zasadzie nie stanowią żadnych argumentów, ale mają robić atmosferę. Do najczęściej powtarzanych należy wiadomość że ZSRR zakazało domowych mikrofalówek ze względu na dbanie o zdrowie obywateli, tylko nie wiadomo kiedy - daty wahają się od lat 50 do lat 80. Czasem pojawia się twierdzenie, że wynaleźli ją Naziści.

Inną często przytaczaną opowieścią jest śmierć pacjenta któremu przetoczono krew, wcześniej podgrzaną w mikrofalówce, oczywiście wskutek szkodliwego wpływu mikrofal na krew. Taka historia faktycznie miała miejsce w 1989 roku w stanie Oklahoma w USA. Ale przyczyna śmierci była inna - pielęgniarka miała ogrzać krew przechowywaną w lodówce do temperatury ciała pacjenta. Zamiast użyć standardowej łaźni z ciepłą wodą, użyła mikrofali, określając potrzebny czas na wyczucie. W efekcie krew zamiast ogrzać się do tych około 36 stopni, przegrzała się. Wprawdzie ochłodzono ją ale z powodu za wysokiej temperatury doszło do częściowej hemolizy, czyli pęknięcia czerwonych krwinek. Po wprowadzeniu jej do krążenia pojawiły się skrzepy, będąc przyczyną śmierci pacjentki. W 1995 roku rodzina zmarłej dostała odszkodowanie.[11]

Do tego dochodzą takie dziwne twierdzenia jak gromadzenie się mikrofal w jedzeniu, wodzie a nawet meblach kuchennych (!).

Prawdziwy problem
Prawdziwy problem w żywności z mikrofalówki jest taki, że niezbyt dobrą jakość ma żywność do niej wkładania. Gotowe zestawy do podgrzania to często już na wstępie mocno przetworzona żywność z dużą ilością tłuszczy, małą błonnika i witamin. Nie powinny stanowić podstawowej diety w ciągu dnia.

--------
[1]  http://www.ptfarm.pl/pub/File/Bromatologia/2013/3/BR%203-2013%20s.%20241-249.pdf
[2] https://www.ptfarm.pl/pub/File/Bromatologia/2013/3/BR%203-2013%20s.%20250-257.pdf
[3]  http://www.ingentaconnect.com/content/jws/jsfa/2003/00000083/00000014/art00018;jsessionid=1smkxaf0ymund.victoria
[4]  https://www.ncbi.nlm.nih.gov/pubmed/11349895
[5] http://www.ijfans.com/vol2issue3/9.pdf
[6]  https://www.ncbi.nlm.nih.gov/pubmed/1968186
[7] https://www.ncbi.nlm.nih.gov/pubmed/7911811
[8] http://www.acta.sapientia.ro/acta-alim/C2-1/alim2-1.pdf
[9]  https://www.ncbi.nlm.nih.gov/pubmed/2307266
[10] http://www.tandfonline.com/doi/abs/10.1080/0265203021000014770

[11]  http://wyomcases.courts.state.wy.us/applications/oscn/DeliverDocument.asp?citeID=4387