informacje



Pokazywanie postów oznaczonych etykietą toksykologia. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą toksykologia. Pokaż wszystkie posty

piątek, 18 listopada 2022

Chemiczne wieści (26.)

 Sharpless dostał Nobla drugi raz!

Tegoroczny laureat nagrody Nobla z chemii jest bez wątpienia godny ale jednak był trochę zaskakującym wyborem. Dostał nagrodę już drugi raz, poprzednio też za osiągnięcia chemiczne.  



Wcześniej nagrodzono jego prace nad  reakcjami utleniania związków organicznych. Asymetryczna epoksydacja Sharplessa to już klasyka reakcji prowadzących do produktów o kontrolowanej stereochemii. Z pewnością kiedyś ją szerzej opiszę. Nowsze dokonania są trochę mniej znaną dziedziną nazywaną "click chemistry" co jest ciężko sensownie przełożyć. Chodzi o podejście do syntezy oparte o łączenie cząsteczek, zawierających charakterystyczne grupy, które łatwo i wydajnie łączą się ze sobą z duża selektywnością. Po opracowaniu pewnej ilości par "selektywny zatrzask - selektywne wpięcie" stwierdzono, że można w ten sposób łączyć ze sobą niemal dowolne cząsteczki; jedynym warunkiem jest dodanie do nich grup łączących. 

Podejście to miało naśladować procesy zachodzące podczas syntezy związków w organizmach, oraz być przydatne do badania organizmów. Odpowiednio dobierając substraty można tym sposobem wprowadzić do żyjącego organizmu sondę molekularną z odpowiednio dobranym "zastrzaskiem" który będzie się łączył z konkretnym ugrupowaniem występującym w jednym rodzaju tkanek.

Ftalany jednak wywołują mięśniaki
Badacze z amerykańskiego Northwestern Univerity znaleźli bezpośredni związek przyczynowy między obecnością flatanów w otoczeniu a ryzykiem mięśniaków macicy. Dotychczas znane były jedynie statystyczne korelacje zmian narażenia na plastyfikatory takie jak ftalany i zmiany częstości mięśniaków, ale korelacja to jeszcze nie przyczynowość i brakło dowodów, że nie jest to przypadkowe nałożenie się dwóch trendów o tym samym kierunku czasowym. Ftalany, a zwłaszcza badany w tym eksperymencie DEHP, okazują się aktywować  receptor ARH, który reaguje na cząsteczki będące pochodnymi węglowodorów aromatycznych. Służy do szybkiego reagowania  na wzrost stężenia ksenobiotyków. Reguluje on aktywnosć enzymów służących do metabolizmu, jak cytochrom P450.
Wpływa też na eksprecję genów jako czynnik transkrypcyjny. Aktywują go wielopierścieniowe węglowodory aromatyczne jak słynny benzo-a-piren. Może być też aktywowany przez metabolity tryptofanu w szlaku metabolicznym kinureninowym.
I tutaj właśnie działa ftalan. Aktywuje on ten szlak, zwiększając produkcję kinureniny, a ta pobudza receptor ARH.  To zaś zwiększa przeżywalność komórek mięśniaka macicy, jeśli już w tkance pojawią się spontanicznie zalążki guza.  A to promuje ostatecznie wyższą częstość pojawiania się wykrywalnych mięśniaków.

* https://www.pnas.org/doi/10.1073/pnas.2208886119

Rozwikłano szczegóły wpływu jodu na chmury i ozon

Jod z jodków wody morskiej w jakiś sposób dociera do wysokiej stratosfery, gdzie reaguje z ozonem warstwy ozonowej, zmniejszając jego ilość. Przez lata był to drobny, pomijalny efekt, część naturalnej samoregulacji układów chemicznych. Jednak w ostatnich dekadach ilość atmosferycznego jodu wzrosła i obecnie jest trzykrotnie wyższa niż 70 lat temu.
 Dodatkowo, co wykazano stosunkowo niedawno, jod w formie kwasu jodowego może utworzyć jądra nukleacji dla kropelek wody, a więc sprzyja powstawaniu chmur. Nie było jednak pewne  jak właściwie w atmosferze powstaje kwas jodowy, który jest związkiem dość nietrwałym. Zatem poznanie szczegółów jego chemii ma znaczenie, bo odgrywa on dwie ważne role w zjawiskach naturalnych. 

Eksperymenty praktyczne i obliczeniowe przeprowadzono w komorze naśladującej warunki w stratosferze, w ramach prowadzonego przy CERN w Genewie projektu badawczego CLOUD testującego różne hipotezy na temat wpływu różnych czynników na powstawanie chmur i tym samym na klimat. Pierwotnie eksperyment miał testować hipotezę Henrika Svensmarka, że zmiany natężenia promieniowania kosmicznego wpływają na ilość chmur powstających dzięki promieniowaniu niczym w komorze Wilsona, co miałoby w wyraźnym stopniu wpływać na zmiany klimatyczne i dokładać się do procesów zaburzonych już przez człowieka lub je hamować.

Cykl odkryty przez badaczy z University of Colorado zaczyna się od aerozolu jodków unoszącego się znad morza. Tutaj jodek zostaje utleniony w reakcji z przyziemnym ozonem. Na ilość tego ozonu wpływa w ostatnich dekadach smog fotochemiczny, powstający w reakcji utleniania składników spalin - i to jest ten ludzki czynnik wpływu. Powstający pierwiastkowy jod łatwo rozdziela się na rodniki i reaguje z tlenem tworząc najpierw gazowy tlenek IO, potem jego dimer IOIO i w takiej postaci
jako gaz rozchodzi się po atmosferze. W dalszej kolejności reaguje znów z ozonem tworząc ozonek IOI(O)4. Ten jest bardzo nietrwały i reaguje z wodą tworząc kwas jodowy HIO3, kwas podjodowy HIO i tlen singletowy. Kwas jodowy generuje aerozol atmosferyczny i spada później jako śladowa domieszka w deszczu.

Potencjalnie ten efekt może wpłynąć ochładzająco na klimat z powodu promowania powstawania chmur i może się to okazać dotychczas nie uwzględniany w modelowaniach klimatu czynnik. Reagując z ozonem troposferycznym jod powinien zmniejszać jego stężenie, łagodząc szkodliwy wpływ smogu, ale z drugiej strony część uwolnionego gazowego jodu wędruje do stratosfery i niszczy warstwę ozonową, więc ostateczny efekt jest niejednoznaczny.

* https://www.nature.com/articles/s41557-022-01067-z



sobota, 21 sierpnia 2021

Co z tym tlenkiem etylenu?

   Media donoszą ostatnio często o wycofaniu żywności z powodu zanieczyszczenia tlenkiem etylenu - wypada więc coś o nim napisać, bo to pod względem chemicznym bardzo ciekawy związek.



  Zacznijmy może od etylenu. To najprostszy węglowodór nienasycony. Zawiera tylko dwa węgle połączone wiązaniem podwójnym. 

Przy pomocy odpowiednich warunków można jedno z tych wiązań rozerwać a wolne końcówki podstawić wodorem. Powstanie wtedy etan, który ze względu na maksymalne uwodorowanie (bez odrywania węgli całkiem) jest wtedy nazywany związkiem nasyconym. Podobna reakcja może zajść z innymi czynnikami, dlatego węglowodory z przynajmniej jednym wiązaniem podwójnym, alkeny, są bardziej reaktywne od tych z samymi pojedynczymi. Mogą uleć chlorowaniu z chlorem, polimeryzacji do polietylenu czy przyłączyć wodę i zamienić się w alkohole. 

No i oczywiście mogą łączyć się z tlenem. Etylem jest gazem palnym  i zależnie od dostępu tlenu spala się bądź całkowicie do dwutlenku węgla i pary wodnej, lub kopcąc z ubocznym węglem. Ale nie o taki rodzaj reakcji z tlenem chodzi przy powstawaniu tlenku etylenu. W bardzo specyficznych warunkach etylen przyjmuje jeden atom tlenu bez niszczenia struktury i bez oddawania wodorów. Służy do tego katalizator z metalicznego srebra. Wiązanie podwójne pęka, a brakujące końcówki łączą się z tlenem tak, że jest połączony z obydwoma. Powstaje bardzo ciekawa trójkątna cząsteczka. 


Już ta narysowana struktura powinna coś podpowiadać co do właściwości związku. Wiązania między atomami nie przebiegają zupełnie dowolnie, lecz są rozłożone w przestrzeni w pewnym układzie zależnym od struktury elektronowej atomu. Tlen nie ma zbyt wielu możliwości i zwykle przyjmuje układ, w którym jego dwa wiązania są zagięte pod kątem 105 stopni. Tak to wygląda w wodzie. Znamy związki, w których tlen jest połączony po obu stronach z jakąś częścią węglowodorową, to tak zwane etery, gdzie kąt zwykle jest nieco większy, w znanym ze zdolności usypiania eterze dietylowym jest to kąt 111 stopni.

A tutaj mamy 60. Trochę mało. W zasadzie w cząsteczce o formie trójkąta z bokami o podobnej długości nie ma za wielu możliwości, kąty powinny być zbliżone do tej wartości. Ale z drugiej strony wiemy, że gdyby grupy na końcu wiązań nie były tak blisko połączone, to tlen wolałby mieć je nieco szerzej. Tutaj więc wiązania są nagięte do innego kąta nieco na siłę, z pewną dodatkową energią potrzebną do ich utrzymania. A skoro tak, to cząsteczka jest trochę mniej stabilna i chętnie by z czymś zareagowała otwierając pierścień. 

Związki o takiej budowie, z mostkiem tlenu zamiast wiązania podwójnego, będące najkrótszymi możliwymi eterami pierścieniowymi, nabierają przez to szczególnej reaktywności i zaczęły być wyróżniane jako osobna grupa związków. Oficjalna polska nazwa chemiczna to epitlenki, ale dużo lepiej znane są pod nazwą epoksydów, będącą kalką z angielskiego epoxide. 

  O tym jak bardzo reaktywne są epoksydy przekonał się każdy, kto używał szybkoschnących klejów i przezroczystych żywic epoksydowych, gdzie pewne liniowe cząsteczki zawierające na końcach aktywne trójkąty epoksydowe reagują z innymi liniowymi cząsteczkami, mającymi na końcu grupy z którymi epoksydy chętnie reagują, tworząc ostatecznie usieciowaną, twardą masę plastyczną.

Tlenek etylenu jest tu o tyle wyjątkowy, że będąc bardzo prostą i małą cząsteczką, w normalnych warunkach jest gazem łatwo rozpuszczalnym w wodzie i bardzo łatwo wchodzi w różnorodne reakcje. Podczas takiej reakcji najczęściej jedna grupa chemiczna przyłącza się do tlenu. Powstaje trójwiązalny tlen, będący kationem, tak zwany związek oksoniowy. Ładunek dodatni na tlenie indukuje cząstkowe ładunki ujemne na węglach, do których jest przyłączony. Stają się one łatwymi miejscami ataku nukleofilów, a tymi przy takim dużym energetycznym potencjale cząsteczki może zostać cokolwiek w otoczeniu.

 W wodnych roztworach po zakwaszeniu reakcja najpierw z protonem a potem cząsteczką wody daje z  glikol etylenowy i jest to jedna z głównych reakcji do jakich się go wykorzystuje. Spośród produkowanych co roku milionów ton tego tlenku 75% zużywa się od razu na wytworzenie glikolu, triglikolu, poliglikolu i związków z grupami PEG


W reakcji z alkoholami, które są słabymi nukleofilami, powstają estry glikolu etylenowego, będące często plastyfikatorami. Z amoniakiem powstaje aminoetanol, zużywany potem do produkcji środków czyszczących. Reaguje też z dwutlenkiem węgla tworząc węglan etylenu, rozpuszczalnik o wysokiej polarności używany w akumulatorach litowo-jonowych. Takie reakcje są badane jako jedna z metod usuwania dwutlenku węgla z gazów poprocesowych. 

  Skoro tlenek etylenu tak chętnie i łatwo z wszystkim reaguje, to powinno być jasne, że jest związkiem toksycznym dla organizmów żywych. W każdym organizmie jest bowiem pod dostatkiem amin, alkoholi i innych substancji, z którymi może wejść w reakcje, zmieniając białka, enzymy, metabolity wtórne i ostatecznie też podstawiając i unieczynniając składowe DNA i RNA. Dlatego już dawno temu znalazł zastosowanie w chemicznej, niskotemperaturowej dezynfekcji. Wciąż jest jednym z najczęściej używanych związków do sterylizacji sprzętu medycznego, który nie może być autoklawowany - głównie przedmiotów i pojemników z tworzyw sztucznych, które w wysokiej temperaturze by się stopiły lub skurczyły. Dezaktywuje bakterie, pierwotniaki, drobne pasożyty a nawet wirusy.

Dzięki gazowej postaci w normalnych warunkach może być stosowany w komorach, w których przedmiot jest owiewany tym środkiem, co pozwala mu wniknąć do drobnych porów i szczelin bez żadnych rozpuszczalników. Ponieważ jest też bardzo silnie toksyczny dla owadów może być stosowany do niszczenia korników, moli i drobnych roztoczy w na przykład zabytkowych meblach, książkach, tkaninach i różnych obiektach muzealnych. 

Niestety szkodzi też większym organizmom. U ludzi narażonych na jego opary działa toksycznie na drogi oddechowe. Już stężenie 200 ppm powoduje podrażnienie błoń śluzowych nosa i gardła. Zapach związku staje się wyczuwalny dopiero w wyższych stężeniach, od 250-300 ppm, jest słodkawy, podobny do eteru. Wraz ze wzrostem ilości w powietrzu narasta działanie drażniące. Następuje uszkodzenie tchawicy i oskrzeli; dochodzi do zwężenia i zatkania drobnych oskrzelików czy uszkodzenia pęcherzyków płucnych. Stężenia przekraczające 800 ppm są już uważane za bezpośrednio groźne dla życia. Wydaje się, że szczury i myszy są bardziej wrażliwe od człowieka. Efekty uszkodzenia płuc nie są widoczne od razu, rozwijają się w ciągu kilkudziesięciu godzin od narażenia.

Część związku ulega wchłonięciu do organizmu dając niespecyficzne objawy nawet przy niskich dawkach. Narażeni zgłaszają bóle głowy, nudności i wymioty. Substancja wydaje się mieć powinowactwo do układu nerwowego. Osoby przewlekle narażone na niskie dawki (już 3 ppm w czasie pracy) doświadczały neuropatii odwodowych, gorszej koordynacji ruchowej i pogorszenia pamięci. 

Skutkiem narażenia jakie jest najbardziej interesujące i wywołuje najczęściej alarm, jest jednak rakotwórczość. Każdy związek, który jest na tyle reaktywny, że jest w stanie utlenić, halogenować a zwłaszcza alkilować struktury biologiczne, w tym DNA, będzie doprowadzać do mutacji i zagrożenia nowotworami. A tlenek etylenu jest akurat na tyle silnym środkiem alkilującym, równocześnie jednak nie rozkładającym się natychmiast po rozpuszczeniu w wodzie i przez to mogącym działać na organizm także poza płucami. U szczurów przewlekła, ciągła ekspozycja na dawki poniżej wywołujących podrażnienia zwiększa częstość takich nowotworów jak międzybłoniak, białaczka czy guzy mózgu. U ludzi narażonych zawodowo na ten związek efekty są bardziej subtelnie i nie takie bardzo silne. W analizie podgrup widać nieco większą częstość nowotworów piersi u kobiet, guzów limfoidalnych u mężczyzn i nowotworów kości ogółem. Zarazem jednak wiele analiz nie wykazuje aby generalnie zwiększało to śmiertelność z powodu nowotworów. 

Wyniki te doprowadziły do ostrego wyśrubowania norm narażenia na związek. Na przykład w Unii Europejskiej tlenek nie może być używany do odkażania żywności ani do zabijania owadów we wnętrzach budynków. Ostatnie przypadki wycofania żywności, takiej jak nasiona sezamu czy mleko w proszku to zapewne wynik fumigacji tlenkiem magazynów w Indiach, w których przechowywano te produkty. Jeden z ostatnich takich przypadków to wycofanie lodów, zawierających jako zagęstnik mączkę chleba świętojańskiego, w której wykryto tlenek etylenu na niskich poziomach. Stało się to zresztą powodem sporu między różnymi instytucjami regulującymi. Proponowano dopuszczenie do obrotu produktów zawierających tlenek w ilościach wykrywalnych ale niemożliwych do oznaczenia ilościowego (ilość tak mała, że z powodu ograniczonej czułości metody nie da się powiedzieć dokładnie ile, a jedynie, że jest). Ostatecznie po alarmach organizacji konsumenckich przyjęto zasadę, że każda wykrywalna ilość dyskwalifikuje żywność, bo nie da się ustalić bezpiecznej dawki.[f] Kwestią sporną jest, czy można to stosować do żywności, w której surowiec z przekroczoną normą został już przetworzony i w ostatecznym produkcie zanieczyszczenie przestaje być wykrywalne bo być może się rozłożyło.[b]
-------------------------------------
Źródła

[b] https://www.brusselstimes.com/news/belgium-all-news/181057/not-all-recalls-for-ethylene-oxide-are-necessary-warns-belgiums-food-safety-agency/

[f] https://www.foodwatch.org/en/news/2021/toxic-ethylene-oxide-in-foods/?cookieLevel=not-set

https://www.epa.gov/sites/default/files/2016-09/documents/ethylene-oxide.pdf

https://www.ciop.pl/CIOPPortalWAR/file/89150/2019121311453&Tlenek-etylenu.pdf

https://en.wikipedia.org/wiki/Ethylene_oxide



piątek, 9 lipca 2021

Zioła to też chemia

W tematyce ziół, medycyny alternatywnej i żywienia funkcjonuje wiele mitów, które przemawiają do wyobraźni, chętnie zresztą wykorzystywanych w reklamach. Jednym z takich charakterystycznych przypadków jest przekonanie, że to co naturalne jest po prostu zdrowe, a jego przeciwieństwem jest "chemiczne". A skoro tak, to nieodmiennie musi być szkodliwe.

Oczywiście, gdy zapytać wprost, każdy się żachnie, że to tylko taki skrót myślowy. Ale niektórzy powtarzają go całkiem serio i na jego podstawie dokonują wyborów. Nakręcanie kontrastu między "naturalnym dobrym" a "sztucznym szkodliwym" doprowadza w końcu do takich absurdów, jak producenci zapewniający klientów, że ich krem czy suplement nie zawiera dosłownie żadnych związków chemicznych. Czyli nie zawiera niczego, bo wszystko, czego możemy dotknąć czy posmakować, to jakaś substancja chemiczna. Innym przejawem jest ukrywanie w składach dodatków pod różnymi formami, które brzmią dużo lepiej, bo się nie kojarzą. I tak na przykład zupki instant zapewniające nas o braku glutaminianu wymieniają w składzie ekstrakt drożdżowy, zawierający tego związku pod dostatkiem. Natomiast nazwanie witaminy B12 jej chemiczną nazwą cyjanokobalamina to marketingowa śmierć i wszyscy tego unikają.




Sytuację taką nazywa się czasem chemofobią, bo jest to w wielu przypadkach obawa nieracjonalna, oparta nie o wiedzę, lecz o szybkie skojarzenia zakodowane w głowach przez media. Jak coś ma chemiczną nazwę, to musi być złe. Jak nazwa jest długa i zawiera cyfry, to musi być złe bardzo.

Takie uproszczone metody pojmowania same w sobie nie są złe, bo nie każdy chce być od razu specjalistą. Natomiast czasem mogą się okazać zbyt proste, prowadzić do błędów i ostatecznie szkodzić. Przypomina mi to trochę wszystkie te mity na temat zbierania grzybów, pokutujące u osób, które zbierają, choć się w ogóle nie znają. Taki grzybiarz znajdując nieznany grzyb decyduje więc, że wygląda mu on na jadalny, bo nie jest gorzki, nie czernieje z nim cebula i nadgryzły go ślimaki. I za którymś razem zjada w domu sromotnika, który przechodzi te testy bez problemu.

Chemofobicznym przypadkiem takiej sytuacji jest najczęściej przepłacanie za dodatki, zawierające związki wyciągnięte z jakiegoś naturalnego źródła, aby zastąpić nimi dokładnie te same związki pochodzenia przemysłowego, które nie różnią się budową, ani nawet skrętnością. Przykładem kwas cytrynowy "naturalny" bo z cytryn, poszukiwany w zastępstwie sklepowego, któremu rozsyłany między ludźmi mailowy łańcuszek przypisuje rzekomą rakotwórczość.

Ma to jednak swoją ciemniejszą stronę - wywyższanie na piedestał wszystkiego co naturalne skutkuje tym, że ludzie tracą ostrożność. A nie wszystko co znajdziemy w naturze jest zawsze dobre i pasuje do naszego organizmu. Wspomniany sromotnik bez wątpienia jest produktem bardzo naturalnym. Pojmując wszystko w taki uproszczony sposób ludzie mogą czasem sobie zaszkodzić. Jeśli chcesz zadziałać na swój organizm naturalną substancją, która rzeczywiście jest aktywna i przynosi skutki, lepiej abyś wiedział co takiego właściwie zażywasz, jakie to wywołuje efekty i jaka ilość jest właściwa. Bo zioła to też bardzo wiele związków chemicznych. A związek chemiczny leczniczy od trującego różni tylko dawka.

Próbowanie bez wiedzy co to właściwie nam robi, i bez pilnowania ilości, bo "to zioła, więc nie mogą zaszkodzić" przynosi różnorodne problemy. Cierpiący na ból żołądka z powodu nadkwasoty piją używaną przy niestrawności miętę, a ta pobudza żołądek do wydzielania większej ilości kwasu i tak kółko się zamyka. Kobiety doświadczające osłabienia z powodu zbyt obfitej miesiączki piją dla rozgrzania herbatę z imbirem, który rozrzedza krew i zwiększa obfitość miesiączek.

Jednym z takich niewinnie wyglądających przypadków jest dość często spotykana lukrecja. Roślina o bardzo słodkich korzeniach, która znalazła zastosowanie jako przyprawa, ale ma też ciekawe właściwości lecznicze. Jeśli ktoś cierpi na podrażnienia i łatwo się pojawiające wrzody żołądka czy jelit, bądź też ma problem z przewlekłym, suchym kaszlem, a nie chce się faszerować kodeiną, można by mu polecić wyciąg z lukrecji tradycyjnie stosowany w takich przypadkach. Ale jeśli równocześnie osoba taka ma nadciśnienie, choroby serca wymagające podawania leków, czy nadmierne wydalanie potasu, to może sobie wtedy poważnie zaszkodzić.





Jednym z efektów wyciągu z lukrecji jest zwiększenie wydalania potasu i zatrzymywanie sodu. Większość leków na nadciśnienie działa natomiast dokładnie odwrotnie. Dlatego zażywanie dostatecznie dużych dawek, i dostatecznie długo, powoduje wzrost ciśnienia tętniczego, co u osób już i tak mających z tym problemy, może być niebezpieczne. Właściwa ilość potasu jest też potrzebna do odpowiedniego kurczenia się mięśni i pracy serca. Zbyt duży spadek stężenia powoduje osłabienie nóg i tętna. Jeśli sytuacja taka przytrafi się lubiącej słodkie rzeczy osobie w podeszłym wieku, która musi dbać o poziom cukru i w zastępstwo wybiera produkty z naturalnymi słodzikami, lekarz zwali winę na starość, w której ma się często wysokie ciśnienie, słabe nogi i problemy z sercem.

Do przedawkowania trzeba oczywiście dość wysokiego spożycia, rzędu kilku gramów korzenia lub ekstraktu z takiej ilości każdego dnia, ale o to wcale nie tak mocno trudno. Ponieważ lukrecja jest ziołem, i jest naturalna, wiele osób nie zastanawia się specjalnie nad dawkowaniem. Gdy dostaną płynny ekstrakt do słodzenia czy leczenia, mniej się przejmują tym, że wlało im się do szklanki trochę więcej, niż obawialiby się wtedy, gdy na rękę z buteleczki wysypią się dwie kapsułki suchego wyciągu za dużo. Jako przyprawa pojawia się w wielu herbatkach smakowych. Poprawia smak gorzkich mieszanek ziołowych, jest dodawana do cukierków i innych słodyczy, jak na przykład skandynawskie Salmiakki. Jeśli ktoś nie ma zwyczaju czytać uważniej napisów z tyłu opakowań, może się nie zorientować, że zbiegiem okoliczności spożywa lukrecję z kilku różnych źródeł. A powinien to wiedzieć, jeśli ma jeden z opisanych tu problemów zdrowotnych.

W krajach arabskich opisywano występowanie parestezji kończyn wywołanych piciem mocnego naparu z lukrecji podczas Ramadanu, ma ona bowiem ponoć hamować uczycie głodu. [1]

Na podstawie badań ze zdrowymi ochotnikami ustalono prawdopodobną maksymalną bezpieczną ilość na 200 mg dziennie glicyrrhyzyny, głównej substancji czynnej.[2] W handlu dostępne są ekstrakty z korzenia lukrecji o zawartości tego składnika do 20%, więc ryzyko objawów ubocznych pojawia się już przy przekroczeniu dawki 2-3 ml dziennie. Osoby z wyraźnym nadciśnieniem czy szybką utratą potasu z organizmu zaczną odczuwać skutki wcześniej.

Dlatego dla nieznających się na ziołolecznictwie dobre są właściwie skonstruowane ulotki, mówiące o wskazaniach, przeciwwskazaniach i dawkowaniu. Opakowania herbatek z domieszką lukrecji zwykle zawierają ostrzeżenie dla nadciśnieniowców, aby nie zażywali ich dłużej niż miesiąc. Podobnie powinno być więc też w innych przypadkach. Opakowanie dziurawca niech mówi o zwiększaniu wrażliwości skóry na słońce. A opakowanie wrotyczu lub piołunu niech ostrzega osoby w ciąży, że spożycie może się skończyć zbyt wczesnym i niebezpiecznym jej zakończeniem.
I wymaganie takich ostrzeżeń to nie jest żadna próba zakazania ziół - o co nie tak dawno się w Polsce pieklono.
------------------
[1] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498851/

[2] https://pubmed.ncbi.nlm.nih.gov/8072387/

piątek, 5 stycznia 2018

Paramedycy kochają In Vitro

Wydawałoby się, że głównym problemem z medycyną alternatywną, naturalną czy niekonwencjonalną, jest ignorowanie osiągnięć nauki. Jednak przeglądając tego typu portale odnoszę często odmienne wrażenie. Ich problemem jest także powoływanie się na osiągnięcia naukowe. Tylko że źle zrozumiane.

  Jedną z takich charakterystycznych sytuacji daje się zauważyć na portalach i blogach dietetycznych, zdrowotnych czy zielarskich, które co i rusz donoszą, że oto właśnie odkryto, że "x leczy raka/odchudza/odmładza/zwiększa inteligencję" i przypadkiem właśnie to x można kupić jako suplement.
  I jeżeli artykuły takie powołują się na jakieś prawdziwe badania (powoływanie się na zasadzie: rosyjscy naukowcy, nie podamy jacy, odkryli, nie podamy jak, że x leczy y, ale nie powiemy skąd to wiemy - się nie liczy) to zazwyczaj są to bardzo podstawowe badania, w których nie badano rzeczywistego wpływu na chorego pacjenta, tylko na jego kawałek. A konkretnie na preparat wyizolowanych komórek, umieszczonych w szklanym naczyniu i potraktowanych jakimś roztworem. Jako że zaś szkło zwie się po łacinie "vitrum", a naukowcy chętnie wszystko latynizują, badanie takie nazywa się eksperymentem in vitro*.

  Badania na izolowanych komórkach stanowią jedną z najbardziej podstawowych technik biomedycznych, służących do zbadania wpływu biologicznego interesującej nas substancji. Jeśli działa ona poprzez wpływ na enzym, receptor czy jakąś część komórki, to efekty powinny być możliwe do zauważenia i zmierzenia już w tak bardzo uproszczonym modelu. W ten sposób testuje się na przykład efekty toksyczne czy mutagenne, sprawdza się aktywność substancji przeciwwirusowych czy selektywnych blokerów receptorów.
  Ostatnio coraz częściej testami na komórkach, ich wyhodowanych warstwach czy fragmentach skóry pobranych od dawców, zastępuje się testy kosmetyków na zwierzętach.  Są więc w nauce ważne, ale przy interpretacji wyników trzeba pamiętać, że jednak mimo wszystko dotyczą dość specyficznej sytuacji. Opierają się o uproszczony model działania na organizm, a modele takie zazwyczaj mają swoje ograniczenia.

  Bierze więc nasz badacz preparat komórek chorobowo zmienionych, dzieli na wiele małych próbek i traktuje różnymi stężeniami badanej substancji, powiedzmy wyciągu z czosnku albo może pochodnej dinitrofluorenometoksybenzochinonu. Po inkubowaniu w kontrolowanych warunkach dodaje do próbek wskaźnik żywotności, aktywności metabolicznej czy innych parametrów komórkowych, po czym sprawdza ile komórek wykazuje sygnał, w jakim stopniu wskaźnik uległ przemianie czy wchłonięciu.[1],[2] I otrzymuje wynik, że w próbce umieszczonej w próbówce, w roztworze takim a takim, po potraktowaniu badaną substancją, N % komórek wykazało zmiany. I wszystko ładnie, tylko co z tego?
Droga do kandydata na lek - 1 Wybór technik pozwalających w uproszczonym modelu sprawdzić na jaki parametr biologiczny substancja ma działać; 2. Przesiewowe testy na płytce sprawdzające jakie substancje z danej grupy wykazują jakieś działanie na badany preparat; 3. Testy in vitro konkretnych substancji, sprawdzające mechanizm i siłę działania; 4. Testy in vivo na modelu zwierzęcym; 5 Mamy kandydata do testów klinicznych. 90% badanych substancji nie dochodzi do ostatniego etapu.

  Z tego typu doniesieniami z badań in vitro jest ten problem, że trudno je wprost przełożyć na działanie na żywy organizm. Zwykle polegają one na tym, że traktuje się wyciągami próbkę komórek i sprawdza różnice w pewnych subtelnych parametrach. Tylko że nie można na takiej podstawie wyciągać zbyt szybkich wniosków. Jest to raczej wskazówka, że skoro w danym procesie w organizmie znaczenie ma pewien enzym, receptor czy szlak sygnałowy, a nasza substancja wpływa na ów enzym/receptor/szlak, to zadziała też na proces w organizmie, ale aby móc to z całą pewnością powiedzieć, należałoby przetestować to na tymże organizmie całym i żywym. Wynik testu in vitro jest więc wskazówką co do tego, co można dalej testować a co nie ma potrzeby, odsiewając preparaty nieczynne od najbardziej obiecujących.
  W ten sposób szybko sprawdza się setki substancji o potencjale czynności biologicznej i ich drobne chemiczne pochodne. Testuje się jeden po drugim różne modyfikacje znanych antybiotyków czy setki naturalnych alkaloidów, izolowanych z egzotycznych roślin. Jest to jednak dopiero początek drogi, przed nami jeszcze wiele innych testów, mających upewniać, że nie wypuszczamy na rynek bubla o wartości placebo. Jeśli dla jakiejś substancji mamy tylko i wyłącznie testy na preparatach komórkowych a nie kliniczne, wówczas nie jest to żaden dowód działania, tylko jak wspomniałem, wskazówka. W takiej sytuacji mówienie, że dana substancja już teraz, na pewno wykazuje działanie na człowieka, stanowi nadużycie. A w najlepszym razie nadmiar entuzjazmu.

  W dodatku warto pamiętać, że istnieje na prawdę bardzo dużo substancji, które stuprocentowo zabijają w próbówce komórki nawet najzłośliwszego nowotworu. Myślę, że domowy wybielacz wystarczałby w zupełności, ewentualnie stężony roztwór soli, kwas siarkowy czy podgrzanie całej próbówki do wrzenia. Informacja sprowadzona wyłącznie do "x niszczy w próbówce komórki raka", jest poznawczo bezwartościowa, bez wiedzy czy przypadkiem równie źle nie działa na komórki zdrowe. Czy przypadkiem nie jest po prostu tak szkodliwa, że zabiłaby pacjenta lepiej niż choroba

  Niestety wielu miłośników medycyny alternatywnej (oraz dziennikarzy popularnych gazet) uprawia takie właśnie zbyt szybkie wnioskowanie, połączone z pompowaniem efektownych haseł. Eksperymenty mają mieć znaczenie już teraz, bez wdawania się w niuanse i prawdopodobieństwa. Wyniki badań należy od razu zamienić w gotową praktyczną poradę dla czytelnika. Odbywa się to na zasadzie: "Jak stwierdzili amerykańscy naukowcy, wyciąg z korzenia berberysu zmniejszał proliferancję komórek nowotworowych prostaty o 10% bardziej niż u zdrowych... A zatem herbatka z bererysu leczy raka i to na pewno lepiej niż chemioterapia! Musicie ją pić!".


Bo komórki to nie organizm
  Głównym problemem w przenoszeniu badań na pojedynczych komórkach na działanie substancji na organizm, jest kwestia zmieniającej się ze skalą złożoności układu. Co innego komórki nowotworowe i może obok zdrowe w odpowiedniej zalewie, a co innego podanie równoważnej ilości do organizmu złożonego z dziesiątków typów komórek i tkanek prowadzących różne przemiany metaboliczne. To, że substancja na szalce nie wpływała istotnie na powiedzmy hepatocyty nie oznacza, że podobnie mało wrażliwe będą na nią neurony czy nefrocyty. Tymczasem często okazuje się, że to co ma leczyć chorobę w jednej części organizmu, wywołuje ją w innej. Jeśli zaś bilans zysków i strat pokaże, że korzyści zdrowotne nie są w stanie przeważyć skutków ubocznych, to taka substancja nie może stać się lekiem.

  Jeśli wyniki badań in vitro i na modelu zwierzęcym są obiecujące, przeprowadza się badania kliniczne I fazy, polegające na podawaniu różnych dawek zdrowym osobom i sprawdzaniu reakcji, zależności między dawką a stężeniem, szybkości eliminacji itp. I zwykle wychodzą na jaw efekty które wcześniej były trudno uchwytne, na przykład substancja wpływa na psychikę lub uczulająco albo po prostu na człowieka w całości działa inaczej niż się wydawało.
Właśnie na tym etapie wykłada się większość badanych substancji.

  To co sprawdzało się w wyidealizowanym modelu komórkowym, okazuje się nieprzydatne lub niebezpieczne dla żywego organizmu. Co z tego, że na szalce kwas dichlorooctowy zabijał komórki raka, skoro podany pacjentom powodował paraliż uszkadzając nerwy? [3] Co z tego, że abryna wydawała się selektywnym środkiem wywołującym apoptozę, skoro podczas testów klinicznych od zatrucia nią zmarł uczestnik?

  Podana substancja może też ulegać po drodze różnym przemianom metabolicznym i w ogóle nie docierać do miejsca, w którym ma działać. Woda utleniona reaguje z katalazami obecnymi w osoczu i tkankach i nie rozchodzi się po organizmie. Chondroityna czy kolagen w kapsułkach nie polepszają stanu stawów bo ulegają strawieniu. Lecytyna hydrolizuje w jelitach i nie dociera do mózgu gdzie rzekomo ma poprawiać pamięć. DMT i inne halucynogeny z tej grupy, zażyte samodzielnie nie wywołają żadnej ciekawej reakcji, z powodu rozkładania przez enzym monoaminooksygenazę.
Przykładowy test - żywe komórki zamieniają dodany wskaźnik w związek o barwie różowej. Stosując w kolejnych dołkach płytki coraz mniejsze stężenia badanych substancji, łatwo określić przy jakim najmniejszym stężeniu dana konkretna hamuje rozwój komórek. Stąd

Problem ilości
  Odmienne działanie na organizm niż na pojedyncze komórki, częściowo  jest pochodną bardziej ogólnego zjawiska - mianowicie warunki po podaniu substancji pacjentowi, są też pod tym względem inne niż test in vitro, że problematyczne jest osiągnięcie w organizmie stężenia takiego jak w testach.

  Zobaczmy na przykład jak wygląda doniesienie [4] reklamowane na alternatywnomedycznych portalach w formie "herbatka z mniszka zabija raka w 48 godzin". W badaniu porównywano wpływ wyciągu z korzeni na komórki czerniaka i komórki skóry zdrowe. Stwierdzono wystąpienie efektu (spadek wskaźnika żywotności komórki) o wielkości ponad 50% po czasie 48 godzin na komórkach rakowych linii A375 w stosunku do linii komórek zdrowych. Sukces? Być może, ale w badaniu na komórkach czerniaka z linii G361 (odporna na leczenie) wyciąg o tym samym stężeniu wykazywał działanie odwrotne - w porównaniu z komórkami zdrowymi przeżywały o 20-50% lepiej.
Dopiero użycie jeszcze większego stężenia pozwoliło na otrzymanie pozytywnych skutków.

Mogłoby to oznaczać, że na niektóre typy czerniaka (czerniak może być wywołany wieloma różnymi mutacjami) wyciąg wodny z mniszka działa kancerobójczo, a na inne w zbyt małym stężeniu wręcz ochronnie. I weź tu zgadnij jaki typ spośród setek możliwych mutacji ma osoba której poleca się herbatkę.

  Drugi problem to użyte stężenia. Efekt apoptyczny pojawiał się dla stężeń 2,5 mg/ml dla jednej linii komórek i 10 mg/ml dla drugiej linii, utrzymywanych w otoczeniu komórki przez 48 godzin. Stężenia dotyczą przy tym ilości użytego liofilizowanego ekstraktu wodnego, czyli ekstraktu, który odparowano otrzymując suchy proszek, z którego sporządzano potem roztwory.
  Stężenia 2,5 mg/ml i 10 mg/ml to 2,5g/l i 10 g/l. Takie stężenie powinny osiągnąć substancje z ekstraktu w płynie otaczającym komórki aby warunki były podobne jak w badaniu in vitro; w przypadku pacjenta będzie to krew. Ponieważ człowiek ma w organizmie około 5 litrów krwi, powinien wchłonąć od 12 do 50 g suchej substancji ekstraktu. Ale, ale - wyciąg wodny z mniszka zawiera małą ilość substancji rozpuszczonych. Aby wchłonąć takie ilości suchych substancji ekstraktu, pacjent musiałby wypić kilkanaście litrów naparu otrzymanego z powiedzmy kilku kilogramów mniszka. I utrzymywać takie stężenie przez 48 godzin... O ile oczywiście substancje aktywne (nie wiadomo nawet jakie) wchłoną się dostatecznie dobrze, bo mogą mieć niską, kilkuprocentową wchłanialność. O ile nie rozłożą się w organizmie pod wpływem enzymów. O ile nie okaże się, że w tak dużym stężeniu wywołują groźne skutki uboczne, których nigdy dotąd nie obserwowano, bo nikomu nie udało się uzyskać ich 1% stężenia we krwi.

  Jednak portale, powołujące się na te doniesienia, nie przejmują się szczegółami. Dla nich ważne jest tylko stwierdzenie, że herbatka ze znanego zioła "leczy raka w ciągu 48 godzin", mogą dzięki temu polecać czytelnikom aby sobie czasem popijali po szklance i mieli złudne przekonanie, że to ich przed czymś chroni. To tak jakby polecać na ból głowy 1/80 tabletki aspiryny.

  Jeśli jednak już uda się nam podać odpowiednio dużą dawkę związku, to może się okazać, że jest on w takiej ilości generalnie toksyczny. Przykładem mogą być ekstrakty z zielonej herbaty - wiele jest badań wskazujących na prozdrowotne właściwości zawartych w niej polifenoli, są także badania in vitro pokazujące wpływ hamujący na wzrost komórek rakowych. Jednak efekt stawał się wyraźny przy stosunkowo dużych stężeniach, będących odpowiednikiem wypijania dziennie 2-3 litrów naparu. Na szczęście z pomocą przyszli nam farmaceuci, oferujący suchy ekstrakt z zielonej herbaty w kapsułkach, pozwalający dostarczyć organizmowi trudne do uzyskania w normalny sposób dawki.
I niestety okazuje się, że w tych dużych ilościach ekstrakt z zielonej herbaty uszkadza wątrobę. Te same polifenole, które w mniejszych dawkach likwidują wolne rodniki, w większych zaburzają działanie mitochondriów, w których działaniu rodniki powstawać muszą.[5]


Przyprawione komórki fałszują wyniki
  Innym aspektem jest niedoskonałość samych metod badawczych. Prawdzie zmiany na wyizolowanych komórkach są łatwiejsze do opracowania, bo zbadać możemy od razu ich większą ilość i opisać wyniki ilościowo i statystycznie, ale w pewnych przypadkach charakter testowanej substancji może powodować błąd.
  Jednym z najczęściej stosowanych sposobów określenia żywotności komórek, jest podanie wskaźnika, który zostaje w żywych komórkach zmetabolizowany do formy, która świeci w ultrafiolecie. Im słabiej więc będzie świecić zawiesina komórek, tym gorsza jest ich żywotność. Wystarczy potraktować szereg próbówek badaną substancją, zmierzyć stosunek intensywności świecenia do stężenia i mamy wynik.

  Zastanówmy się jednak co takiego się stanie, gdy badana substancja przypadkiem dobrze pochłania ultrafiolet. Wciąż żyjące i dobrze się mające komórki, które ją wchłoną, będą świeciły słabiej, tak jakby brakło im trzy ćwierci do śmierci. Idźmy dalej - porównujemy wpływ tej substancji na komórki zdrowe i na chore, i te chore z pewnych powodów wchłaniają tej substancji więcej. Będą zatem świeciły wyraźnie słabiej od zdrowych, a nasze wyniki zostaną zafałszowane. Można temu przeciwdziałać uzupełniając badanie o drugą serię z innym wskaźnikiem, na przykład działającym odwrotnie (świecenie oznaką śmierci komórki). Bardzo duża różnica między wynikami z tych dwóch serii będzie wskazówką, że w eksperymencie tkwi błąd. Można też tak zaprojektować doświadczenie, aby ten efekt zminimalizować, na przykład stosując dalszą obróbkę zawiesin komórkowych, podczas której usuwamy badaną substancję a nie wpływamy na zmetabolizowaną formę wskaźnika, czy stosując taki zakres UV który nie jest pochłaniany.
  Wszystko to mogłoby bardzo pomóc uzyskać poprawne wyniki, ale wymagałoby dodatkowych nakładów, oraz mogłoby sprawić, że bardzo obiecujące wyniki nie będą już tak zachwycające.

  Przykładem takiej sytuacji, są omawiane w zeszłorocznej analizie z Nature badania aktywności biologicznej kurkumy [6]. Jest to żółtopomarańczowy pigment, dobrze rozpuszczalny w tłuszczach, będący składnikiem przyprawy kurkumy oraz mieszanki curry. Od lat bardzo intensywnie bada się kurkuminę, która okazała się posiadać bardzo obiecujące właściwości przeciwnowotworowe, przeciwzapalne, neuroprotekcyjne czy przeciwwirusowe. Spora część z tych właściwości została stwierdzona w badaniach in vitro. Problem w tym, że lipofilna kurkuma osadza się w błonach komórek i zasłania ich wnętrze, oraz jest przypadkiem... substancją pochłaniającą ultrafiolet.

  W przeglądzie badań kurkuminy autorzy stwierdzili, że duża część eksperymentów w ogóle nie brała tego czynnika przeszkadzającego pod uwagę; wykonano je tak, jakby barwna substancja o charakterze pigmentu była przezroczysta. Drugim problemem badań nad tą substancją, było użycie zanieczyszczonych preparatów. Jeśli jako "kurkuminę" użyto wyciągu z kłącza ostryżu, to w rzeczywistości badana substancja była mieszaniną dziesiątków związków. Kurkumina mogła fałszować wyniki także za sprawą własności chelatowania metali (np. nie odwracała skutków toksyczności metali ciężkich na komórki, tylko zmniejszała ich ilość w roztworze), aktywności redoks (utlenianie lub redukowanie wskaźników poza komórką), tworzenie agregatów a w pewnych warunkach rozkład na zupełnie inne substancje.
  Wiadomo na przykład, że w warunkach lekko zasadowych, podobnych do odczynu krwi, kurkumina staje się niestabilna, co przyspiesza w temperaturach wyższych niż pokojowa; obserwowane efekty mogą więc wynikać z działania produktów rozkładu (a skoro tak, lepiej jako leki testować je właśnie) o trudnym do określenia stężeniu w czasie doświadczenia.
  W stężeniach zbliżonych do używanych w doświadczeniach, wykazuje skłonność do tworzenia agregatów z białkami i lipidami, które mogą naśladować selektywną inhibicję. Związek po prostu oblepiał komórkę, zamiast wybiórczo wiązać się z wybranymi białkami, biorącymi udział w procesie chorobowym. Gdy w testach badających siłę wiązania z enzymami, do kurkumy dodano nieaktywny biologicznie detergent zapobiegający tworzeniu agregatów, zmierzona aktywność związku spadała wyraźnie. Bez niego cząsteczki enzymu w roztworze zlepiały się przy udziale kurkuminy w białkowe kłębki.

  W cytowanym badaniu przeciwdziałania formowania się włókien białek Tau, które odpowiadają za rozwój choroby Alzheimera, pierwszy test wydawał się bardzo obiecujący. Eksperyment oparty o badanie intensywności fluorescencji tioflawiny, gromadzącej się w złogach białkowych, wydawał się pokazywać, że kurkumina hamuje powstawanie włókien w bardzo małych stężeniach. Eksperyment używający techniki fluorescencji polaryzacyjnej pokazał jednak wynik odwrotny, kurkumina działała bardzo słabo. Później okazało się, że kurkumina pochłaniała światło w zakresie w którym świeciła tioflawina, czyli zasłaniała ją fizycznie, udając aktywność biologiczną.

  Konkluzją autorów było stwierdzenie, że duża część badań mających wykazywać wysoką siłę leczniczą kurkuminy, została przeprowadzona w warunkach w których większą rolę zaczynają odgrywać czysto fizyczne właściwości związku, które fałszowały wyniki. Natomiast w badaniach dobrze przeprowadzonych, w których unikano tych niepożądanych efektów ubocznych, kurkumina okazywała się działać dość słabo. Nie skreśla to całkiem tego związku, są bowiem badania wskazujące, że w pewnych przypadkach ma on faktycznie pewne zastosowanie, pokazuje jednak, że ostatnia moda na polecanie tej przyprawy w charakterze panaceum na wszystko, ma w rzeczywistości bardzo kruche podstawy.

   Zbliżone efekty zakłócające może wywoływać reserwatrol, polifenol występujący między innymi w czerwonym winie, o bardzo obiecujących właściwościach biologicznych. Jedną z technik badania intensywności metabolizmu w komórkach, jest oznaczanie ilości wytwarzanego ATP. Do preparatu z rozbitych na kawałki komórek dodaje się lucyferynę i enzym lucyferazę. Substratem reakcji jest ATP z cytoplazmy.
  Jak wykazały badania, reserwatrol jest inhibitorem lucyferazy. Może więc sprawiać wrażenie, że zmniejszył ilość ATP w traktowanych nim komórkach, gdy tak na prawdę jedynie zahamował reakcję odczynnika.[7]

Samo in vitro nie wystarczy
  Jak to już wspominałem, jeśli ktoś reklamujący gotowy preparat oferuje go chorym jako działający lek, a na poparcie ma tylko i wyłącznie wyniki testów in vitro, to oszukuje potrzebujących. Albo jest świadomym oszustem albo nie rozumie badań na które się powołuje.
 Na takich właśnie dowodach opiera się duża część reklam cudownych leków, witamin czy używek, w ostatnim czasie widziałem dużo artykułów o medycznej marihuanie, w których dowodami były tylko takie badania. Weźmy choćby taki popularny w internecie artykuł [8] twierdzący, że przeciwnowotworowe działanie marihuany potwierdza aż 100 badań naukowych. Wśród zaprezentowanych linków znalazło się kilkanaście prac przeglądowych (czyli podsumowania innych, w tym cytowanych w artykule, prac, nie będące kolejnym badaniem), kilka prac w których nie badano wpływu zdrowotnego tylko farmakokinetykę (szybkość wydalania i metabolizmu) oraz prawie 80 prac w których badano wpływ różnych kannaboidów na linie komórkowe w próbówkach (tak, przejrzałem wszystkie linki).
   W sekcji na temat chłoniaka nie zacytowano żadnego badania dotyczącego marihuany, wszystkie cztery dotyczyły wpływu syntetycznego związku anandamidu, który jest agonistą receptorów kannaboidowych; znalazły się w tym zestawieniu  tylko z powodu nazwy receptora. W sekcji "nowotwory szyi i głowy" zacytowano badanie, które... w ogóle nie dotyczyło leczenia nowotworów; stwierdza się w nim jedynie, że z ankiet u pacjentów z nowymi diagnozami wynika większe ryzyko nowotworów u palących tytoń i pijących alkohol i brak zmiany ryzyka u palących trawkę. Między stwierdzeniem "x nie wpływa na nowotwory" a twierdzeniem "to badanie potwierdza, że x leczy nowotwory" jest potężna różnica.

I właśnie dlatego marni dziennikarze, sprzedawcy tabletek i paramedycy, tak gorąco kochają in vitro.
--------
* Natomiast  eksperymentach na żywych organizmach to "in vivo". Dla porządku wymyślono też określenie dla "eksperymentów" symulacyjnych na komputerach, czyli "in silica" jako że jak na razie mikroprocesory są oparte o półprzewodnikowy krzem. Zastanawia mnie jak w tej sytuacji określić eksperymenty myślowe - In mentis?

[1] Metody badania aktywności leków in vitro
[2] Techniki stosowane w badaniach toksyczności in vitro.

[3] https://www.ncbi.nlm.nih.gov/pubmed/16476929
[4]  https://www.hindawi.com/journals/ecam/2011/129045/

[5] http://onlinelibrary.wiley.com/doi/10.1111/j.1742-7843.2004.pto_950407.x/full
[6]  http://pubs.acs.org/doi/10.1021/acs.jmedchem.6b00975

[7]  https://www.ncbi.nlm.nih.gov/pubmed/17064666/

[8] https://motywatordietetyczny.pl/2016/05/ponad-100-badan-naukowych-potwierdza-marihuana-niszczy-raka/

piątek, 6 października 2017

Skąd ten akrylamid?

Co jakiś czas media donoszą o wykryciu tego związku chemicznego w różnych produktach, a to w chipsach, a to w prażonych orzeszkach a to znów w ciasteczkach czy solonych paluszkach. To silna trucizna o działaniu rakotwórczym. I wówczas może was zastanowić, skąd się właściwie w jedzeniu ten akrylamid wziął. Specjalnie go dodają? Czy może sam powstaje?

Chemicznie rzecz ujmując, akrylamid to amid kwasu akrylowego, związek nienasycony zawierający wiązanie podwójne, grupę karbonylową i aminową. Każda z tych grup składowych może wchodzić w różnorodne reakcje, toteż cząsteczka będąca najściślejszym z możliwych ich połączeniem musi być bardzo reaktywna. Na tyle, że po dostaniu się do organizmu reaguje z białkami, lipidami i DNA wywołując różnorodne rozproszone uszkodzenia. Podczas metabolizmu jest utleniany przez komórkowy cytochrom 450 do formy epoksydowej czyli glicydamidu, który jest cząsteczką jeszcze bardziej reaktywną.

Glicydamid
Jako silny środek alkilujący działa mutagennie mogąc wywoływać nowotwory. W modelach zwierzęcych przewlekła ekspozycja na akrylamid w wysokich stężeniach, wywoływała nowotwory nadnerczy, tarczycy, płuc i jąder, oraz działała toksycznie na układ nerwowy.

Związek ten odkryto już bardzo dawno. Ze względu na skłonność do polimeryzacji zaczął być używany do produkcji tworzyw sztucznych o specjalnym przeznaczeniu. Polimeryzacja w roztworze wodnym tworzy twardy hydrożel o dużej przepuszczalności, będący jednym ze standardowych materiałów w elektroforezie białek i DNA. Ponadto używano go jako składnika różnych polimerów, substratu do produkcji pestycydów czy barwników. Przez długi czas wydawało się więc, że jedynym problemem toksykologicznym jest zanieczyszczenie środowiska przez zakłady które go używały, przenikał bowiem do ścieków a stamtąd do wody. Dlatego zaskoczeniem było odkrycie w 2002 roku, że w wyniku specyficznej reakcji może powstawać także w żywności.

Erytryjska badaczka Eden Tareke, zatrudniona na wydziale chemii żywności Uniwersytetu Sztokholmskiego, wprowadzała nową bardziej dokładną metodę badania żywności. Podczas testów z różnymi próbkami zauważyła niepokojący poziom akrylamidu w chipsach ziemniaczanych. Wydawał się zbyt duży aby wytłumaczyć to zanieczyszczeniami przemysłowymi. Wykonała więc prosty eksperyment - przygotowała chipsy z ziemniaków, które wcześniej przebadała pod kątem zawartości akrylamidu. Chipsy smażone w temperaturze przekraczającej 120 stopni nabierały wysokich poziomów akrylamidu, którego nie było w ziemniakach. A więc musiał on w jakiś sposób podczas smażenia powstawać. [1]

Kluczem okazała się znana od dawna reakcja Maillarda. W rzeczywistości jest to zespół reakcji o podobnym przebiegu, podczas których cukry redukujące reagują z aminami w podwyższonej temperaturze. Powstałe produkty ulegają izomeryzacji, dekarboksylacji, dehydratacji, kondensacji itp. w najrozmaitszych możliwych kombinacjach. 20 aminokwasów i jeden cukier redukujący tworzą setki produktów. W żywności zachodzą podczas każdej termicznej obróbki produktów zawierających białka i węglowodany, a więc podczas pieczenia, smażenia, duszenia czy wędzenia; podczas gotowania w mniejszym stopniu.
Powstałe wielkocząsteczkowe produkty kondensacji odpowiadają za brązowy kolor dobrze podpieczonego jedzenia, natomiast te mniejsze wpływają wyraźnie na smak i zapach. Większość składników aromatu pieczonego mięsa, pieczonego chleba czy prażonych ziaren kawy to właśnie produkty reakcji Mailarda, są więc niezbędne aby żywność nabrała pożądanych właściwości smakowych. Jak się jednak okazało, nie każde z możliwych reakcji są dobre.

W jednej z możliwych dróg grupa aminowa aminokwasu reaguje z grupą aldehydową cukru redukującego, a więc na przykład glukozy. Powstaje przejściowy produkt w którym dwie części połączone przez azot zawierają grupę karboksylowa i hydroksylową w pobliżu tego połączenia. W wysokiej temperaturze następuje odszczepienie cząsteczki wody i powstanie iminy w formie zasady Schiffa. Ta z kolei dekarboksyluje odszczepiając cząsteczkę dwutlenku węgla. Powstały nietrwały produkt bądź rozpada się z wytworzeniem podwójnego wiązania, bądź hydrolizuje. Jednym z produktów ostatecznych jest akrylamid. Ze względu na budowę najlepszym substratem do reakcji jest aminokwas asparagina, zaś cukrem redukującym jest najczęściej glukoza występująca w formie wolnej lub powstająca w wyniku rozpadu skrobi.[2]
W odpowiednio wysokich temperaturach możliwa jest też formacja bez cukrów, z gliceryny towarzyszącej tłuszczom. Gliceryna utlenia się do akroleiny, będącej aldehydem; ta reaguje z wolnymi aminami i w podobny sposób jak opisane wcześniej reakcje, zamienia się w akrylamid.
Reakcje te wymagają odpowiedniej temperatury, zaczynają ruszać w temperaturach powyżej 120 stopni i w większości produktów zachodzą najwydajniej około 140-150 stopni.

Największe stężenia wykrywa się w takich produktach jak frytki, chipsy ziemniaczane, mocno palona kawa, kawa rozpuszczalna, przypalone tosty, prażone orzechy. Ogółem są to zatem połączenia typu "skrobia + białko". Ważnym źródłem jest też dym papierosowy i dym ze spalania śmieci w niskich temperaturach.

Toksyczność
Jak już wspominałem, w badaniach na zwierzętach wykazano, że ekspozycja na akrylamid wywołuje różnego rodzaju nowotwory. Tymczasem w przypadku ludzi wpływy są najwyraźniej dużo subtelniejsze i trudne do precyzyjnego wyrażenia. Jak wracają uwagę krytycy, w badaniach na zwierzętach efekty kancerogenne pojawiały się przy stężeniach wielokrotnie większych niż spotykane w jedzeniu i ciężko jest je przełożyć na skutki dla ludzkiego organizmu. Zakładając liniową zależność prawdopodobieństwa dodatkowych nowotworów od stężenia, przy przeciętnej diecie wzrost ryzyka staje się tak mały, że mniejszy niż wpływ narażenia na dym.

Badania populacyjne osób narażonych na tą substancję w jedzeniu są niejednoznaczne. Chętnie spożywający chipsy i frytki mają zwiększoną częstość różnych chorób, ale ciężko przypisać to wyłącznie temu składnikowi a nie spożyciu tłuszczów, nadmiaru soli czy narażeniu na utlenione nienasycone kwasy tłuszczowe. Badania pracowników narażonych w pracy na akrylamid w większych niż w żywności stężeniach dawały różne wyniki, od większej częstości chorób po brak efektu. Ze względu na to, że stykamy się z nim od początków gatunku, gdy tylko zaczęliśmy piec mięso mamutów nad ogniskiem, możliwe że wykształciliśmy sobie jakiś sposób detoksyfikacji. Dlatego też formalnie składnik ten jest klasyfikowany jako substancja podejrzewana o rakotwórczość u ludzi.[3]
Przesadne są więc internetowe artykuły straszące szybkimi skutkami zdrowotnymi i wysoką toksycznością, czy opinie w rodzaju "zjadłem smażeninę, od razu rozbolała mnie głowa, to przez akrylamid". No nie, raczej od okazjonalnego zjadania czegoś mocno podpieczonego wiele się nam nie stanie, niemniej warto pamiętać o tym, że pewne trudne do określenia ryzyko faktycznie jest. I wobec tego może jednak trochę się ograniczyć ze spożywaniem czegoś przypalonego, podpieczonego do ciemnego brązu czy podprażonego. 

Redukcja
Czy da się tak produkować żywność, aby z jednej strony nie utracić wartości smakowych a z drugiej zredukować poziomy akrylamidu do możliwie najniższych wartości? Da się, i to na kilka różnych sposobów. Zauważono na przykład, że reakcji w której powstaje sprzyjają sole amonowe, w związku z czym więcej jest go w ciasteczkach w których jako spulchniacza użyto amoniaczku (węglan amonu) niż proszku do pieczenia (wodorowęglan sodu), można więc zastąpić jeden spulchniacz innym i zauważalnie zmniejszyć zawartość niepożądanego składnika.
Innym czynnikiem hamującym są sole zawierające kationy dwudodatnie, w przypadku pieczywa możliwe jest więc wzbogacenie ciasta w sole wapnia. Kolejny inhibitor to aminokwas glicyna. Ma on najprostszą możliwą budowę, tylko dwa węgle w cząsteczce. Ulega reakcji Maillarda ale nie może zamienić się w akrylamid. Wzbogacenie glicyną pierwotnego produktu przed obróbką termiczną powoduje, że część wolnych cukrów redukujących łączy się z nią zamiast z innymi aminokwasami co zużywa niezbędny substrat. Ma to jednak tą wadę, że produkty reakcji z glicyną powodują dużo mocniejsze zbrązowienie oraz niekiedy niepożądany posmak, więc nie wszędzie da się ją zastosować.

Najbardziej oczywistym sposobem jest obniżenie temperatury tak aby nie przekraczała 120 stopni lub skrócenie czasu ogrzewania. (jeśli macie wrażenie, że w ostatnich latach ciastka kruche i herbatniki są jakby mało wypieczone, to możliwe że to jest tego przyczyną). W przypadku chipsów i frytek pewne znaczenie ma też branie do produkcji bulw krótko przechowywanych. Podczas przechowywania, w ziemniakach zachodzi proces rozpadu skrobi z powstaniem wolnej glukozy, będącej przecież cukrem redukującym. W skrajnych przypadkach długo przechowywane ziemniaki mogą się stać słodkawe w smaku.[4]
-------
*  http://www.efsa.europa.eu/en/topics/topic/acrylamide

[1] Eden Tareke et. al., Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs,
. Agric. Food Chem., 2002, 50 (17), pp 4998–5006

[2] Maria D. Villagran et al. Acrylamide Formation Mechanism in Heated Foods, J. Agric. Food Chem. 2003, 51, 4782−4787
[3]  https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/acrylamide-fact-sheet
[4]  Guidance on reducing acrylamide in food, FDE