informacje



Pokazywanie postów oznaczonych etykietą tlen. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą tlen. Pokaż wszystkie posty

piątek, 18 listopada 2022

Chemiczne wieści (26.)

 Sharpless dostał Nobla drugi raz!

Tegoroczny laureat nagrody Nobla z chemii jest bez wątpienia godny ale jednak był trochę zaskakującym wyborem. Dostał nagrodę już drugi raz, poprzednio też za osiągnięcia chemiczne.  



Wcześniej nagrodzono jego prace nad  reakcjami utleniania związków organicznych. Asymetryczna epoksydacja Sharplessa to już klasyka reakcji prowadzących do produktów o kontrolowanej stereochemii. Z pewnością kiedyś ją szerzej opiszę. Nowsze dokonania są trochę mniej znaną dziedziną nazywaną "click chemistry" co jest ciężko sensownie przełożyć. Chodzi o podejście do syntezy oparte o łączenie cząsteczek, zawierających charakterystyczne grupy, które łatwo i wydajnie łączą się ze sobą z duża selektywnością. Po opracowaniu pewnej ilości par "selektywny zatrzask - selektywne wpięcie" stwierdzono, że można w ten sposób łączyć ze sobą niemal dowolne cząsteczki; jedynym warunkiem jest dodanie do nich grup łączących. 

Podejście to miało naśladować procesy zachodzące podczas syntezy związków w organizmach, oraz być przydatne do badania organizmów. Odpowiednio dobierając substraty można tym sposobem wprowadzić do żyjącego organizmu sondę molekularną z odpowiednio dobranym "zastrzaskiem" który będzie się łączył z konkretnym ugrupowaniem występującym w jednym rodzaju tkanek.

Ftalany jednak wywołują mięśniaki
Badacze z amerykańskiego Northwestern Univerity znaleźli bezpośredni związek przyczynowy między obecnością flatanów w otoczeniu a ryzykiem mięśniaków macicy. Dotychczas znane były jedynie statystyczne korelacje zmian narażenia na plastyfikatory takie jak ftalany i zmiany częstości mięśniaków, ale korelacja to jeszcze nie przyczynowość i brakło dowodów, że nie jest to przypadkowe nałożenie się dwóch trendów o tym samym kierunku czasowym. Ftalany, a zwłaszcza badany w tym eksperymencie DEHP, okazują się aktywować  receptor ARH, który reaguje na cząsteczki będące pochodnymi węglowodorów aromatycznych. Służy do szybkiego reagowania  na wzrost stężenia ksenobiotyków. Reguluje on aktywnosć enzymów służących do metabolizmu, jak cytochrom P450.
Wpływa też na eksprecję genów jako czynnik transkrypcyjny. Aktywują go wielopierścieniowe węglowodory aromatyczne jak słynny benzo-a-piren. Może być też aktywowany przez metabolity tryptofanu w szlaku metabolicznym kinureninowym.
I tutaj właśnie działa ftalan. Aktywuje on ten szlak, zwiększając produkcję kinureniny, a ta pobudza receptor ARH.  To zaś zwiększa przeżywalność komórek mięśniaka macicy, jeśli już w tkance pojawią się spontanicznie zalążki guza.  A to promuje ostatecznie wyższą częstość pojawiania się wykrywalnych mięśniaków.

* https://www.pnas.org/doi/10.1073/pnas.2208886119

Rozwikłano szczegóły wpływu jodu na chmury i ozon

Jod z jodków wody morskiej w jakiś sposób dociera do wysokiej stratosfery, gdzie reaguje z ozonem warstwy ozonowej, zmniejszając jego ilość. Przez lata był to drobny, pomijalny efekt, część naturalnej samoregulacji układów chemicznych. Jednak w ostatnich dekadach ilość atmosferycznego jodu wzrosła i obecnie jest trzykrotnie wyższa niż 70 lat temu.
 Dodatkowo, co wykazano stosunkowo niedawno, jod w formie kwasu jodowego może utworzyć jądra nukleacji dla kropelek wody, a więc sprzyja powstawaniu chmur. Nie było jednak pewne  jak właściwie w atmosferze powstaje kwas jodowy, który jest związkiem dość nietrwałym. Zatem poznanie szczegółów jego chemii ma znaczenie, bo odgrywa on dwie ważne role w zjawiskach naturalnych. 

Eksperymenty praktyczne i obliczeniowe przeprowadzono w komorze naśladującej warunki w stratosferze, w ramach prowadzonego przy CERN w Genewie projektu badawczego CLOUD testującego różne hipotezy na temat wpływu różnych czynników na powstawanie chmur i tym samym na klimat. Pierwotnie eksperyment miał testować hipotezę Henrika Svensmarka, że zmiany natężenia promieniowania kosmicznego wpływają na ilość chmur powstających dzięki promieniowaniu niczym w komorze Wilsona, co miałoby w wyraźnym stopniu wpływać na zmiany klimatyczne i dokładać się do procesów zaburzonych już przez człowieka lub je hamować.

Cykl odkryty przez badaczy z University of Colorado zaczyna się od aerozolu jodków unoszącego się znad morza. Tutaj jodek zostaje utleniony w reakcji z przyziemnym ozonem. Na ilość tego ozonu wpływa w ostatnich dekadach smog fotochemiczny, powstający w reakcji utleniania składników spalin - i to jest ten ludzki czynnik wpływu. Powstający pierwiastkowy jod łatwo rozdziela się na rodniki i reaguje z tlenem tworząc najpierw gazowy tlenek IO, potem jego dimer IOIO i w takiej postaci
jako gaz rozchodzi się po atmosferze. W dalszej kolejności reaguje znów z ozonem tworząc ozonek IOI(O)4. Ten jest bardzo nietrwały i reaguje z wodą tworząc kwas jodowy HIO3, kwas podjodowy HIO i tlen singletowy. Kwas jodowy generuje aerozol atmosferyczny i spada później jako śladowa domieszka w deszczu.

Potencjalnie ten efekt może wpłynąć ochładzająco na klimat z powodu promowania powstawania chmur i może się to okazać dotychczas nie uwzględniany w modelowaniach klimatu czynnik. Reagując z ozonem troposferycznym jod powinien zmniejszać jego stężenie, łagodząc szkodliwy wpływ smogu, ale z drugiej strony część uwolnionego gazowego jodu wędruje do stratosfery i niszczy warstwę ozonową, więc ostateczny efekt jest niejednoznaczny.

* https://www.nature.com/articles/s41557-022-01067-z



poniedziałek, 17 czerwca 2019

Ostatnio w laboratorium (68.)

Do laboratorium analitycznego mogą czasem przychodzić dziwne próbki. Jak choćby ostatnio - przyniesiono nam próbkę osadu z bojlera, o uderzającym zielonym kolorze, z zapytaniem czy możemy zbadać jakie pierwiastki w tym są, bo coś takiego się wytrąca. Już pierwszy rzut oka sugerował miedź:

Ale oko nie spektroskop, należało to jakoś potwierdzić. Pierwsze badanie - reakcja z kwasem solnym. Osad powoli rozpuszczał się, wydzielając bąbelki gazu. Czyli w skład osadu raczej wchodził zwykły węglanowy kamień. Roztwór po rozpuszczeniu miał słaby, zielonkawo-niebieski kolor. Co jeszcze mogło tam siedzieć? Wprawdzie mamy na wyposażeniu ICP-OES, ale włączanie aparatu na jedną próbkę było bezsensowne, najwyżej dołożymy próbkę roztworzonego osadu do innych, gdy będzie więcej zamówień. Na szybko to ja mogłem zrobić tylko klasyczne analizy próbówkowe.

Przegrzebałem odczynniki, szukając czegoś specyficznego. Dimetyloglioksymu nie było, podobnie jak benzoinooksymu, rodanek amonu jeszcze nie doszedł, wreszcie zdecydowałem się na dwie reakcje. Do części roztworu dodałem wodorotlenku sodu - powstał jasnoniebieski osad, jaki raczej daje miedź. Do drugiej dodałem roztwór żelazocyjanku potasu (ściślej: odczynnik Carreza I), powstał brunatno-czerwony osad, charakterystyczny dla miedzi. Aha, czyli w sumie potwierdzone.

Zastanawiałem się jednak czy da się w tym jeszcze wykryć żelazo, które zdecydowanie częściej występuje w wodzie, podbarwiając kamień kotłowy na brązowo. Nie było widać aby osad wodorotlenku podbarwiał rdzawy wodorotlenek żelaza III. Obstawiałem, że żelazo może być ewentualnie związane w formie związków żelaza II o słabym, zielonkawym zabarwieniu, maskowanym przez miedź. Postanowiłem dodać do zlewki kilka kropel wody utlenionej. Żelazo się dzięki temu utleni, osad pociemnieje. Myślałem przy tym, że wodorotlenek miedzi nie zareaguje, bo aby utlenić miedź do jeszcze wyższych stopni utlenienia, to trzeba bardziej agresywnych warunków. A jednak zostałem zaskoczony - zawartość zlewki stała się intensywnie zielona:

No dobra, może to żelazo daje taki efekt. Żółty i niebieski dają zielony, widocznie żelaza jest w tym osadzie dużo. Zrobiłem ślepą próbę z siarczanem miedzi, ale wynik był podobny - wodorotlenek miedzi w reakcji z wodą utlenioną robił się zielony.
Wyjaśnienie wiąże się z powstawaniem związku, o jakim wcześniej nie czytałem - powstaje nadtlenek miedzi - CuO2. Jest to związek nietrwały, szybko zresztą zaobserwowałem stopniowe ciemnienie i brunatnienie osadu, zachodzące z wydzielaniem bąbelków tlenu; po upływie 30 minut w zlewce był już tylko drobny, czarny osad tlenku miedzi II CuO.
Charakter i struktura tego tlenku są dyskutowane - w pewnym warunkach daje się uzyskać związek o podobnej stechiometrii, mający charakter dwutlenku, z czterowartościową miedzią.[1] W tym przypadku przypuszczalnie jest to cykliczny nadtlenek jonowy, zawierający dwuanion O2−
2
  .
W strukturze wewnętrznej wysokotemperaturowych nadprzewodników z grupy miedzianów, daje się wyróżnić płaszczyzny tlenku o stosunku 1:2, w których następuje nadprzewodnictwo elektronowe.

Tymczasem następnego dnia zauważyłem, że w próbówce w której badałem reakcję na żelazocyjanki, roztwór nad osadem związków miedzi zabarwił się na niebiesko. Błękit pruski jest lepiej rozpuszczalny w wodzie od żelazocyjanku miedzi, zwłaszcza przy mocno niestechiometrycznym stosunku jonów, co świadczyło o tym, że kamień kotłowy jednak zawierał też trochę żelaza.

ps. Tak się złożyło, że to 300 wpis na tym blogu.
--------
[1]  https://pubs.acs.org/doi/10.1021/j150655a014

wtorek, 9 lipca 2013

Ostatnio w domu - otrzymywanie i wykrywanie tlenu

Nudząc się dziś w domu i przegrzebując rzeczy, znalazłem w jakiejś fiolce tabletkę nadmanganianu potasu, co przywiodło mi na myśl pewne bardzo proste doświadczenie, jakie każdy może przeprowadzić. Więc oczywiście je zrealizowałem.

Wbrew temu co się często mówi w szkołach, próba z żarzącym się łuczywkiem nie jest właściwie metodą wykrywania tlenu, lecz raczej pokazowym doświadczeniem obrazującym najważniejszą z jego właściwości - zdolność do utleniania a tym samym podtrzymywania spalania. Doświadczenie to jest tak stare i klasyczne, że w jego opisach zachowało się rzadko już dziś stosowane słowo łuczywko, oznaczające drewnianą drzazgę czy cienkie drewienko, do przenoszenia ognia na przykład do odpalania papierosa od pieca. Ciasno skręcony pasek papieru służący do tego samego celu, to fidybus - też rzadkie słowo. W moim przypadku zamiast łuczywka zastosowanie znalazł patyczek szaszłykowy.

Samo przeprowadzanie doświadczenia jest bardzo proste: od tabletki nadmanganianu potasu (manganian VII potasu), łatwo dostępnej w aptekach jako środek odkażający, odłupałem mały okruch i wrzuciłem do próbówki. Równie dobrze może to być fiolka czy tuba, byle długa i nie zbyt szeroka. I dolałem wody aby się rozpuściła.

Otrzymałem więc intensywnie fioletowy roztwór. Z braku stojaka próbówkę włożyłem do butelki. Następnie przyniosłem opakowanie wody utlenionej. Miałem więc zestaw - próbówka z nadmanganianem, woda utleniona, patyczek i zapalona świeca aby odpalić. Mając już wszystko gotowe wlałem wodę utlenioną do próbówki. Fioletowa barwa zanikła, zaś w zamian zawartość zaczęła się burzyć i wydzielać bąbelki czystego tlenu, zgodnie z reakcją:
KMnO
4
+ 3 H
2
O
2
2 MnO
2
+ 2 KOH + 2 H
2
O
+ 3 O
2
Powstający tlenek manganu sam jest katalizatorem rozkładu, dlatego do zapoczątkowania reakcji wystarczy dosłownie okruszek. Teraz zapaliłem patyczek, zdmuchnąłem i jeszcze żarzący wsunąłem do próbówki. Czerwony żar pojaśniał aż do żółci a na drewienku pojawił się płomyczek. Zdmuchnąłem go i jeszcze raz wsunąłem do próbówki ale tym razem skończyło się na rozżarzeniu. Najlepiej pokaże to film:
Gdy zawartość przestała już się burzyć, na dno zaczął opadać kłaczkowaty, ciemnobrunatny osad dwutlenku manganu.

Wysokie stężenia tlenu mogą nie tylko rozpalać już istniejący płomień, ale mogą też doprowadzać do samozapłonu lub wybuchu podatnym na to materiałów. Tragicznym przykładem może być historia programu Apollo 1, zakończonego w trakcie wstępnych testów na ziemi. Astronauci ćwiczyli podstawowe sytuacje w module wypełnionym czystym tlenem pod ciśnieniem. W którejś chwili doszło do pożaru, który rozprzestrzeniał się tak gwałtownie, że po kilkunastu sekundach ciśnienie gazów spaleniowych rozszczelniło kabinę. Wszyscy trzej astronauci zginęli.
Podczas późniejszego dochodzenia okazało się, że w tak wysoce natlenionych warunkach do zapłonu mogły wystarczyć iskry elektryczności statycznej, wywołane ocieraniem kombinezonów o fotele, zaś gumowy rzep użyty w kilku miejscach, staje się wręcz wybuchowy. Podobny przypadek zdarzył się kilkanaście lat temu w jednej z polskich hut szkła. Gwałtowny pożar w części zajmującej się przetłaczaniem sprężonego tlenu zabił kilka osób. Media głupio pisały wówczas że był to pożar tlenu. W rzeczywistości pod wpływem bardzo sprzyjających warunków, zapaliła się uszczelka jednej z pomp. Fala sprężonego tlenu wraz z iskrami zapaliła wszystko w pomieszczeniu - w tym pracowników.

Próba z rozpalaniem żaru jest dla wykrycia tlenu zbyt mało czuła. To właściwie doświadczenie pokazowe. Dla wykrycia tlenu tam, gdzie go być nie powinno, używa się bardziej czułych metod, zwykle są to związki chemiczne wrażliwe na utlenianie, podlegające wyraźnym zmianom, na przykład sole żelaza II.  W wielu urządzeniach przenośnych stosuje się techniki elektrochemiczne - tlen utlenia substancje na małym ogniwie paliwowym, natężenie powstałego prądu jest miarą jego stężenia.