informacje



Pokazywanie postów oznaczonych etykietą słodziki. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą słodziki. Pokaż wszystkie posty

środa, 14 lutego 2018

Słodziki cukropochodne

Jakiś czas temu kupiłem w sklepie bezcukrowe cukierki, zaciekawiony co też to za dziwo. Smakowały dziwnie, były raczej słodkawe i można by powiedzieć, że smak był stonowany, bo zarówno słodycz, owocowy posmak jak i mentolowa nuta nie stanowiły wyraźnej dominanty. Ze składu wynikało, że faktycznie nie zawierały cukru, ponad 80% stanowił tajemniczo brzmiący izomalt i syrop izomaltitolowy, co do których domyśleć się mogłem jedynie po nazwie, że zapewne są to alkohole cukrowe pochodne maltozy. Substancje takie, otrzymywane z naturalnych cukrów są stosunkowo często używane jako zamienniki cukru.
A ponieważ jest ich dość dużo, dobrze było poświęcić im osobny wpis.

Cukry to grupa związków organicznych, charakteryzująca się licznymi grupami hydroksylowymi (-OH) połączonymi z atomami węgla tworzącymi łańcuch nasycony, podobnie jak w alkoholach, oraz przynajmniej jedną grupą aldehydową (-CHO) lub ketonową (-C=O), za sprawą której możliwe jest dla nich utworzenie formy pierścieniowej jako hemiacetal. Są też nazywane węglowodanami, bo ich skład pierwiastkowy daje się sprowadzić do wzoru Cx(H2O)y, choć jest trochę wyjątków, jak cukry deoksy.
Na atomach węgla z dołączonymi grupami hydroksylowymi pojawia się szczególna geometria asymetrycznego ułożenia czterech podstawników, przy której możliwe stają się dwie konfiguracje - R i S, różniące się kolejnością przestrzenną dwóch podstawników.

Sytuacja taka dotyczy każdego atomu węgla z grupą hydroksylową, z wyjątkiem końcowego, który ma dwa takie same podstawniki, wodory. Ponieważ cukry zawierają wiele takich atomów, możliwych staje się wiele izomerów, różniących się tylko konfiguracją na poszczególnych węglach ale o takim samym składzie i budowie ogólnej. Dla cukrów sześciowęglowych cztery atomy węgla posiadają asymetrię, a ponieważ dla każdego możliwe są dwie konfiguracje, to istnieje 16 różnych cukrów sześciowęglowych. Jednym z nich jest glukoza.
Najpowszechniej używany do słodzenia cukier stołowy, czyli sacharoza, to związek złożony z dwóch cząsteczek cukrów, glukozy i fruktozy.

Ponieważ formalnie rzecz biorąc cukry są ketonami lub aldehydami, bo posiadają jedną taką grupę, można poddać je utlenieniu, do otrzymania kwasu karboksylowego, lub redukcji. W tym ostatnim przypadku zarówno grupa ketonowa jak i aldehydowa zamienią się w kolejny człon C-OH. Słodziki takie jak ksylitol czy sorbitol są zatem formalnie alkoholami!
Oczywiście nikt się nimi nie upije. Mają one smak słodki podobny do smaku wyjściowych cukrów, jednak zwykle nie są tak łatwo wchłaniane przez organizm, a co za tym idzie, nie mają tak samo dużej kaloryczności. Z tego też powodu zaczęły być używane jako niskokaloryczne słodziki polepszające smak żywności, zwłaszcza tej przeznaczonej dla cukrzyków, muszących dbać o poziom glukozy i insuliny. A ponieważ cukrów wyjściowych jest dużo, to i alkoholi cukrowych znamy i używamy dość wiele. Omówię te faktycznie stosowane w przemyśle spożywczym.

Omówienie alkoholi cukrowych najlepiej zacząć od tych najkrótszych, a więc po kolei:

Glicerol (E 442)
Lepiej znany jako gliceryna, składnik tłuszczów, bardziej kojarzony jako składnik kosmetyków. Łańcuch zawiera tylko trzy węgle. Jeszcze prostszy glikol etylenowy też bywa uznawany za alkohol cukrowy choć jego aldehyd nie jest cukrem, ale tego w żywności nie spotkamy.
Gliceryna to higroskopijna, gęsta, syropowata ciecz o lekko słodkawym smaku stanowiącym około 50-60% słodkości sacharozy. Raczej nie jest używana jako jedyny słodzik, bardziej służy za rozpuszczalnik wzmacniający smak innych środków słodzących, ponadto służy do zagęszczania i zapobiegania wysychaniu. Jest też składnikiem lukrów do ozdabiania ciastek, zapewnia bowiem półpłynną konsystencję bez krystalizacji w opakowaniu. Mieszając się z wodą nieco się ogrzewa, stąd może być mieszana ze słodzikami które ochładzają się przy rozpuszczaniu jeśli akurat nie jest to pożądane

Jako dodatek do żywności jest bezpieczna, organizm metabolizuje ją tylko częściowo, włączając do szlaku przetwarzania węglowodanów ale z minimalnym użyciem insuliny, stąd też jej bardzo niski indeks glikemiczny. Nie stanowi pożywki dla bakterii wywołujących próchnicę ani dla jelitowych, może jednak wykazywać efekt przeczyszczający, znany zresztą wszystkim używającym glicerynowych czopków. Bywa używana jako dodatkowy słodzik w żywności dla diabetyków oraz jako zamiennik alkoholu w preparatach farmaceutycznych i wyciągach ziołowych (gliceryty) jeśli akurat sam alkohol nie jest wskazany.

Erytrytol
Produkt redukcji erytrozy, czterowęglowego cukru prostego zawartego między innymi w ogonkach liści rabarbaru, od  którego wziął nazwę (greckie "erythros" czyli "zaczerwieniony"). Wyjściowy cukier nie występuje w naturze zbyt często, dlatego substratem jest glukoza. Poddaje się ją fermentacji z użyciem kolonii grzybów z rodzaju Moniliella lub Aureobasidium, które zwykle odpowiadają za psucie się wysokosłodzonej żywności. Rozbijają one sześciowęglową cząsteczkę glukozy i w warunkach beztlenowych końcowym produktem jest gotowy erytrytol obok innych polioli.

Związek ten ma smak bardzo podobny co sacharozy i niewiele mniejszą słodkość, rzędu 70-80%. Wykazuje synergizm z innymi słodzikami, częściowo maskując gorzki posmak, stąd chętne użycie wraz ze stewią. Co jednak najbardziej interesujące, nie jest prawie w ogóle metabolizowany. Większość zażytej dawki wchłania się jeszcze w jelicie cienkim, po czym w formie niezmienionej zostaje wydalona z moczem. Około 10% dostaje się do jelita grubego, tam jednak bakterie nie za bardzo się nim interesują. Powoduje to, że w odróżnieniu od ksylitolu czy sorbitolu, które w większości przedostają się do okrężnicy i działają osmotycznie, erytrytol nie wywołuje rozwolnienia czy wzdęć.
Ostatecznie tylko niewielka ilość zostaje zmetabolizowana, bez wykorzystania insuliny, stąd przypisuje się mu indeks glikemiczny bliski zeru i kaloryczność ok. 0,2 Kcal.
[1]

Jego diastereoizomerem, różniącym się konfiguracją, jest treitol. Nie jest jednak używany jako słodzik.

Ksylitol
Pięciowęglowy poliol otrzymywany przez redukcję ksylozy, składnika zdrewniałych części roślin. W naturze w wolnej postaci występuje rzadko, głownie w soku niektórych owoców. Jego słodkość jest zbliżona do sacharozy, natomiast indeks glikemiczny wielokrotnie niższy. Wynika to stąd, że jest słabo wchłaniany, duża część pozostaje w treści jelit, część wchłoniętego jest wydalana z moczem. Pewna ilość ksylitolu może być trawiona przez bakterie jelitowe do krótkołańcuchowych kwasów tłuszczowych i w takiej formie wykorzystana; ponadto pewna ilość wchłoniętego związku może być zamieniana w glikogen w wątrobie, ale jest to proces powolny. Łącznie efekty te dają kaloryczność możliwą do wykorzystania przez organizm około 2,4 Kcal, o 40% mniejszą od cukru stołowego.

Przechodzenie dużej ilości ksylitolu do treści jelita grubego skutkuje działaniem osmotycznym, zauważalnym zwłaszcza u osób, których dieta nie zawierała dotychczas takiego składnika. Zanim organizm się przyzwyczai i zacznie inaczej reagować, odpowiednio duża jednorazowa dawka działa rozwalniająco. Ponadto pewien stopień trawienia przez bakterie jelitowe może u niektórych skutkować wzdęciami. Poza tymi drobnymi przypadłościami nie zaobserwowano szkodliwego działania nawet bardzo dużych dawek.

Ksylitol jest natomiast toksyczny dla psów i niektórych ptaków, ze względu na zbyt silne pobudzenie wydzielania insuliny. Dawanie zwierzętom diabetycznych smakołyków raczej nie jest dobrym pomysłem. Napisałem o nim osobny artykuł, tam więcej informacji (Link).

Sorbitol
Alkohol sześciowęglowy otrzymywany przez redukcję glukozy, w naturze występujący w niewielkich ilościach w soku jabłkowym i śliwkowym, po raz pierwszy wyizolowano go z owoców jarzębiny, skąd wzięła się nazwa. Jest chętnie używany w żywności dietetycznej czy gumach do żucia "bez cukru". Jest w małym stopniu wchłaniany i przechodzi do treści jelita grubego, gdzie w zbyt dużej ilości może działać przeczyszczająco. Prawdopodobnie obok samego tylko błonnika przyczynia się do przeczyszczającego działania suszonych śliwek, w których występuje obficie. Bywa używany w medycynie jako diuretyk do obniżania ciśnienia wewnątrz oka

Mannitol 
Drugi alkohol sześciowęglowy, od sorbitolu różniący się konfiguracją na asymetrycznych atomach węgla, formalnie będący produktem redukcji mannozy. Zwykle otrzymywany przez uwodornianie fruktozy, ale także stosunkowo duża część zapotrzebowania jest uzupełniana ze źródeł naturalnych, obficie występuje w niektórych krasnorostach i owocach, oraz w soku jesionu mannowego od którego wziął nazwę. Słodkość podobna do cukru stołowego i niski indeks glikemiczny powodują, że także jest chętnie używany jako słodzik.

Stopiony tworzy masę podobną do szkła, która jest praktycznie niehigroskopijna, stąd użycie w cukierkach, gumach do żucia, w polewach pokrywających draże oraz jako składnik ozdób cukierniczych.

Mannitol ma ważne zastosowania medyczne. W formie zastrzyku dożylnego jest używany do szybkiego obniżania ciśnienia wewnątrz gałki ocznej, co wykorzystuje się w leczeniu jaskry, oraz obniża nadmierne ciśnienie wewnątrzczaszkowe. Dodatkowo może zmniejszać obrzęki regulując wydalanie wody. Dożylnie zwiększa też wydzielanie wody przez nerki, co wykorzystuje się przy leczeniu skąpomoczu i przy eliminacji toksyn.

Laktitol
Zredukowana forma laktozy, dwucukru występującego w mleku. Laktoza składa się z cząsteczki glukozy i cząsteczki galaktozy. Laktitol jest otrzymywany poprzez selektywne zredukowanie tylko składowej cząsteczki glukozy, w związku z czym formalnie jest połączeniem galaktozy z mannitolem. Słodycz stanowi około 40% słodkości białego cukru. Ponieważ związek jest dość stabilny w wysokich temperaturach oraz mikrobiologicznie, jest chętnie używanym dodatkiem do dietetycznych wypieków, ciasteczek, czekolady i kremów.

W większych ilościach może działać przeczyszczająco, bywa składnikiem leków przeciw zaparciom. Nie jest polecany osobom nie trawiącym galaktozy.

Maltitol
Produkt częściowej redukcji maltozy, dwucukru złożonego z dwóch cząsteczek glukozy, naturalnie obecnego w dekstrynach i słodzie. Redukcji ulega tylko jedna cząsteczka składowa, toteż formalnie jest to połączenie glukozy i sorbitolu. Produkuje się go w wyniku uwodornienia syropu kukurydzianego, produktu częściowej hydrolizy skrobi. Powstaje wówczas mieszanina maltitolu, sorbitolu i częściowo uwodornionych wielocukrów.
Właściwości fizyczne ma bardzo podobne do sacharozy - podobny smak, gęstość, temperaturę topnienia, skłonność do karmelizacji, dlatego może zastępować ją we wszystkich zastosowaniach spożywczych.
W bardzo dużych ilościach na raz, działa przeczyszczająco, choć ryzyko jest w tym przypadku małe.

Izomalt
Mieszanina częściowo zredukowanych dwucukrów. Wytwarzana w dwuetapowym procesie - najpierw sacharoza jest poddawana reakcji z enzymem otrzymywanym z pewnych bakterii, który zamienia ją w izomaltulozę. Jest to dwucukier w którym glukoza i fruktoza są połączone w inny sposób. W sacharozie jest to wiązanie łączące atom nr.1 jednej cząsteczki z atomem nr.2 drugiej. W izomaltulozie wiązanie przeskakuje w pozycję 1-6. Skutkuje to tym, że jest to cukier o właściwościach redukujących.
Uwodornienie izomaltulozy daje mieszaninę dwóch związków, w związku z tym, że w części przypadków uwodorniła się tylko składowa cząsteczka glukozy a w innym tylko fruktozy, powstaje więc glukozo-sorbitol czyli maltitol, oraz glukozo-mannitol.

Izomalt jest używany głównie do bezcukrowych cukierków, łatwo bowiem tworzy przezroczystą, niehigroskopijną masę i nie ma skłonności do zlepiania się z innymi cukierkami. Jest odporny na krystalizację, stąd użycie do ozdób cukierniczych i rzeźb z topionego cukru

Uwodorniony hydrolizat skrobiowy (HSH)
Mieszanina różnych związków, otrzymywana przez uwodornienie dekstryn wytwarzanych przez częściową hydrolizę skrobi. Może zawierać wyraźną przewagę jednego alkoholu cukrowego, na przykład sorbitolu czy mannitolu, jeśli jednak ponad 50% stanowią częściowo zredukowane wielocukry, używa się właśnie takiej nazwy. Słodkość zależy od stopnia uwodornienia, dochodzi do 50% słodkości białego cukru. Stanowi dodatkowy składnik obok innych słodzików, oraz środek zwiększający lepkość i gęstość

-------
[1] http://ncl.csircentral.net/920/1/th1868.pdf


piątek, 28 listopada 2014

Dwie anegdoty o chemikach

Aby przełamać totalny blog-blok, wrzucam na szybko dwie historyjki z cyklu anegdot o chemikach. Już tu pisałem o serendipity - przypadkach doprowadzających do odkryć. Jak się okazuje takich przypadków było w historii znacznie więcej.

Na skutek złej znajomości języka
Język jest w badaniach chemicznych bardzo ważny. Większość publikacji z jakich się korzysta jest w języku angielskim, pewne znaczenie ma może jeszcze niemiecki, i dlatego powinno się te języki znać. Nieporozumienie językowe może bowiem przynieść zaskakujące skutki.

W 1979 roku w Londyńskim Queen Elizabeth College trwały badania nad uzyskiwaniem halogenopochodnych cukrów, mogących mieć właściwości biologiczne. Podejrzewano że pochodne z dużą ilością takich podstawników mogą być przydatne jako środki owadobójcze podobne do DDT. Jednym z takich cukrów była sacharoza czyli cukier stołowy. Posiada ona osiem grup wodorotlenowych które mogą być bez niszczenia cząsteczki zastąpione atomem chloru, dlatego po standardowym chlorowaniu otrzymano mieszaninę podobnych związków z jedną, dwoma, trzema i więcej podstawionych grup w różnym układzie. Po oczyszczeniu poszczególnych związków, prowadzący badania oddał je swojemu magistrantowi, pochodzącemu z Indii Shashikantowi Phadnisowi, polecając ustnie, aby je przetestował.
Doszło tu jednak do nieporozumienia - student zrozumiał nie że związki należy przetestować (testing) tylko posmakować (tasting). Wziął więc łopatką odrobinę na język i wkrótce doniósł osłupiałemu kierownikowi, że jeden z tych związków smakuje niesamowicie słodko. Tak odkryto słodzik sukralozę, ok. 600 razy słodszy od wyjściowej sacharozy i trzy razy od aspartamu. W porównaniu z innymi słodzikami jest bardzo słabo wchłaniany i trwały termicznie, zarazem jednak jako związek chloroorganiczny budzi kontrowersje.[1]

Słodziki mają jakąś specjalną predylekcję do zbiegów okoliczności...

Dlaczego czasem warto zbadać odpady
Charles J. Pedersen pracując w koncernie chemicznym DuPont zajmował się poszukiwaniem nowych związków kompleksujących metale. Zanieczyszczenia jonami metali ciężkich w ropie i paliwach przyspieszały ich utlenianie, a co za tym idzie, pogorszenie jakości. Wymyślił więc związki które tworzyły z jonami żelaza i miedzi dosyć trwałe kompleksy, przerywając utlenianie. W pewnej chwili zainteresował się problemem selektywnego kompleksowania wanadu. Chcąc sprawdzić jaki związek będzie najefektywniej wiązał jego kationy, postanowił zsyntetyzować pochodną katecholu, łącząc ze sobą dwie cząsteczki przez łańcuch diglikolu etylenowego, i pozostawiając wolne dwie grupy hydroksylowe. Rozumował, że powstający mostek eterowy powinien zwiększyć rozstaw między cząsteczkami powstającego fenolu, co jego zdaniem powinno wyraźnie wpłynąć na kompleksowanie wanadu.
Katechol

Aby połączyć dwie cząsteczki katecholu  jednym mostkiem i nie uzyskać polimeru, zabezpieczył jedną z dwóch grup wodorotlenowych tego związku grupą etylową. Następnie przeprowadził reakcję zabezpieczonego związku z chloropochodną diglikolu, spodziewając się uzyskać poszukiwany związek.

Wstawiając reakcję wiedział zarazem, że substrat jest nadal nieco zanieczyszczony wolnym katecholem, uznał jednak że nie przeszkodzi on w reakcji.
Mieszanina poreakcyjna miała postać szarawej, gęstej mazi, którą należało teraz rozdzielić. Gdy rozpuścił ją w metanolu zauważył, że na dnie zebrało się odrobinę białawego osadu. Było to na prawdę niewiele - związek powstał z wydajnością 0,4%, a ponieważ był mało rozpuszczalny, to na pewno nie był to związek poszukiwany. Pedersen zajmował się produkcją określonego związku do określonego celu i nie miał potrzeby wdawać się w szersze analizy. Niemniej zastanowiła go delikatna, włóknista struktura osadu.

Mając na podorędziu spektroskop UV postanowił zbadać czy ma do czynienia z jakimś fenolem - widmo pokazało że musi to być jakaś podstawiona pochodna katecholu. Postanowił dodać nieco wodorotlenku sodu aby zalkalizować roztwór, oczekując że widmo absorpcji albo nie zmieni się, dla związku bez wolnych grup, albo maksimum absorpcji pogłębi się i przesunie się w stronę mniejszych długości fal. Tymczasem jednak zaobserwował dwie zaskakujące rzeczy - widmo nie przesunęło się lecz podzieliło na mniejsze pasma, zaś związek przedtem bardzo słabo rozpuszczający się w metanolu, po zalkalizowaniu rozpuszczał się bardzo chętnie.
Gdyby był to związek fenolowy, zwiększenie rozpuszczalności tłumaczyłoby się tworzeniem soli, fenole są bowiem dosyć kwaśne, jednak widma NMR i w podczerwieni wykluczały taką możliwość. W dodatku jak wykazał, aby zwiększyć rozpuszczalność związku, wystarczała dowolna sól sodu bądź potasu.
Był to zatem związek łączący się z kationami tych metali, choć nie bardzo miał w jaki sposób. Po analizie elementarnej Pedersenowi wyszedł wzór C10H12O3, z czego wynikałaby struktura:
Potem inne badania wykazały jednak że rzeczywista masa cząsteczkowa jest dwa razy większa. A skoro tak musiała to był taka oto piękna struktura:
Tym samym odkrył pierwszy znany eter koronowy.[2]

Nazwa tej grupy związków makrocyklicznych bierze się od struktury, w której możliwa jest konformacja z atomami tlenu skierowanymi w jedną stronę płaszczyzny, niczym szpice w koronie. Mają niesamowite zdolności do kompleksowania - wynaleziony przez Pedersena związek dibenzo-18-korona-6 bardzo selektywnie kompleksuje potas, robiąc to z taką siłą, iż można za jego pomocą oddzielić kationy potasu od innych metali. Inne etery kompleksują sód, wapń czy magnez, każdy z inną siłą, wszystko zależy od wielkości "oczka" które lepiej pasuje do jednych jonów a gorzej do innych. Skompleksowany jon przestaje być reaktywny, dlatego dodatek odpowiedniego związku do badanej mieszaniny, może zamaskować przeszkadzające metale.
Etery takie mogą zmieniać konformację i rozpuszczalność, możliwe jest więc przeprowadzenie normalnie nierozpuszczalnych kationów metali do fazy organicznej. Mogą też przydać się jako katalizatory.

Za badania nad eterami koronowymi, zapoczątkowanymi dokładniejszą analizą odpadowego produktu, Pedersen został w 1987 roku uhonorowany Nagrodą Nobla z Chemii.

------------
[1] http://www.laleva.org/eng/2006/12/the_history_of_splenda_the_bestselling_artificial_sweetener_in_america.html
[2] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1987/pedersen-lecture.pdf

niedziela, 10 marca 2013

Anegdoty o chemikach i ich odkryciach

Sukces wpisu o wypadkach dawnych chemików sprawił, że postanowiłem zebrać jeszcze trochę podobnych przypadków. Tym razem jednak nie o wybuchach lecz o odkryciach, i sposobach w jakie do nich dochodzono. A te bywały osobliwe.

Sprzątając
Odkryć można też dokonywać po doświadczeniach, w trakcie mycia sprzętu i zlewania pozostałości. Przydarzyło się to w roku 1933 Ralphowi Willeyowi, który będąc studentem pracował na pół etatu w Dow Chemical Laboratory, na podrzędnym stanowisku chłopca do mycia próbówek. Za którymś razem przytrafiła mu się kolba której za nic nie mógł domyć, gdyż była od wewnątrz pokryta cienką warstwą półprzezroczystej, twardej substancji. Przekonawszy się wreszcie, że jest to materiał bardzo wytrzymały, zgłosił innemu pracownikowi, że ktoś przypadkiem uzyskał substancję o obiecujących właściwościach. Imię tego pracownika nie jest chyba znane, zaś uważny Willey stał się znany jako odkrywa polichlorku winylidenu (PVDC).

Niemniej spektakularne było odkrycie Williama Perkina.
Już jako mały chłopiec po tym jak starszy kolega pokazał mu jakąś sztuczkę z kryształkami, zainteresował się chemią. Ucząc się w dobrej szkole i wykazując nadzwyczajny talent już jako piętnastolatek rozpoczął studia pod przewodnictwem Wilhelma Hoffmana, zostając wreszcie jego asystentem. W roku 1856 zajmował się on próbami syntezy chininy. Wiedziano z grubsza z badań stosunków pierwiastków że zawiera ona części aromatyczne i azot, toteż sprawdzano różne kombinacje, mając nadzieję że za którymś razem wyjdzie. Osiemnastoletni wówczas Perkin zajmował się utlenianiem aniliny przy pomocy chromianu potasu, niestety otrzymywana ze smoły węglowej anilina była mocno zanieczyszczona i po przeprowadzeniu reakcji otrzymał w naczyniu ciemnobrązową smołę, którą nie w sposób było usunąć.
W zasadzie produkt był do wyrzucenia, jednak gdy płukał naczynie alkoholem zauważył, że zabarwił się on na intensywnie fioletowo-różowy kolor, a zanurzona w nim szmatka zafarbowała się bardzo mocno. W tym momencie domyślił się zastosowań praktycznych i gdy tylko opanował metodę produkcji, ustaliwszy że substratem jest zanieczyszczająca anilinę toluidyna, nie czekając na opinię profesora opatentował drugi znany syntetyczny barwnik, nazwany przezeń moweiną - dowodząc przy tym, że oprócz zapału posiadał też żyłkę do interesów. Przekonał krewnych do założenia pierwszej fabryki i farbiarni i już wkrótce zarobił na niej tyle że w wieku 36 lat mógł odejść od pracy zarobkowej i zajmować się chemią wyłącznie dla własnej satysfakcji - czego mu bardzo zazdroszczę.
W późniejszych latach odkrył kilkanaście innych barwników anilinowych.
Wiktoriańska suknia barwiona moweiną

Pierwszym sztucznym barwnikiem była purpurowa fuksyna odkryta przypadkiem przez jego mentora, Wilhelma Hoffmana rok wcześniej. Nie miał on jednak takich zdolności jak jego student, i zanim opatentował ten związek, ubiegł go pewien francuz.

Bawiąc się
Zawsze po skończeniu ćwiczeń z analityki, gdy pozostawało już tylko wylać poreakcyjne mieszanki i umyć próbówki, zwykłem byłem mieszać ze sobą różne wylewane ciecze, aby zobaczyć co się stanie. Zwykle otrzymywałem różnobarwne warstwy, czasem doprowadzałem do jakiejś barwnej reakcji, ale często też nie działo się nic szczególnego. Bawić się w laboratorium, zasadniczo, nie powinno, ale czasem zabawa może być twórcza.
Gdy w 1930 roku Carrots odkrył nowy polimer, będący produktem kondensacji kwasu dikarboksylowego i diaminy, początkowo wydawało się, że nie znajdzie zastosowania, miał bowiem dosyć niską temperaturę topnienia. Jeden z asystentów, Julian Hill, mieszając w kolbie ze świeżym, jeszcze nie skrzepłym materiałem zauważył, że gdy wyciągnął mieszadełko, na jego końcu powstało równe włókienko. Wydawało się jednak że tym sposobem nie da się otrzymać dłuższych włókiem, jednak gdy szef laboratorium był nieobecny, Hill postanowił się pobawić - na jednym końcu korytarza postawił zlewkę ze stopioną masą, zanurzył w niej bagietkę i odbiegł wyciągając kilkunastometrowe włókno cienkie jak włos. W dodatku gdy już ostygło, można było rozciągnąć je jeszcze bardziej zwiększając jego twardość i wytrzymałość.
Później okazało się, że podczas wyciągania długie cząsteczki polimeru porządkują się wzdłuż, a po rozciągnięciu powstałej nici dodatkowo splatają, dając materiał o bardzo pożądanych właściwościach. Pierwsze tego typu włókna roztapiały się w gorącej wodzie, więc trzeba było poczekać kilka lat, aż znaleziono trudnotopliwy polimer kwasu adypinowego i heksanodiaminy, nazwany Nylonem.[1]

Niechcący i błędnie
Odkryć można dokonać wykonując błędnie znany proces i niechcący prowadząc do niebezpiecznych skutków. Przykładem Karl Neumann, który pracując w laboratoriach BASF zajmował się pewnego razu sulfonowaniem naftalenu. W kolbie reakcyjnej znalazł się więc naftalen i dymiący kwas siarkowy. Zawartość kolby należało co pewien czas mieszać, a że akurat na podorędziu nie było bagietki szklanej, wbrew przepisom zaczął mieszać termometrem. Robił to na tyle intensywnie, że stłukł go a metaliczna rtęć wlała się do środka. Powstający siarczan rtęci stał się katalizatorem wywołującym przemianę części naftalenu do bezwodnika ftalowego, co wykazały analizy "zepsutej" zawartości kolby. Poprzednio stosowany proces polegał na utlenieniu naftalenu tlenem i miał niską wydajność. Teraz można było produkować bezwodnik ftalowy na tyle tanio, że można go było wykorzystać jako substrat w produkcji Indygo. Synteza Neumanna została wprowadzona przez BASF w 1897 roku.

Przez nieumyte ręce
Jedną z podstawowych zasad wpajanych początkującym adeptom pracy laboratoryjnej jest to, aby nie próbować żadnej substancji, nawet wody destylowanej, nie wdychać oparów i i niczego nie jeść, oraz dokładnie myć ręce po pracy. Ma to dość oczywiste uzasadnienie, jako że wiele substancji z którymi można się zetknąć na pracowni jest trujących lub szkodliwych, a i trudno wykluczyć zanieczyszczenie nimi miejsc i naczyń wydawałoby się bezpiecznych. Przekonałem się o tym gdy pewnego razu polizałem lejek z sączkiem szklanym, aby przekonać się o fakturze. Niestety wcześniej lejek był czyszczony stężonym kwasem a poprzedni uczeń go nie przemył, dlatego szybko poczułem pieczenie a przez kilka następnych dni nie czułem smaku na koniuszku języka.. Tak czy siak zdarzało się że chemicy o tych regułach bezpieczeństwa zapominali, a zdarzało się że przy okazji odkrywali ciekawe właściwości badanych substancji.

W roku 1878 dwaj chemicy Ira Remsen i Constantin Fahlberg pracowali nad wyodrębnianiem substancji ze smoły węglowej. Po skończonej pracy zaczęli jeść bułki przyniesione z domu jako drugie śniadanie,  zauważyli wtedy, że bułki smakowały bardzo słodko, ale z gorzkawym posmakiem. Remsen myślał nawet, że żona przez pomyłkę posypała masło cukrem, ale potem zauważył ten sam posmak na palcach. Poprzedniego dnia pracowali nad toluenosulfonamidem i nie umyli rąk. Wspólnie opisali syntezę i właściwości związku, nazywając go Sacharyną. Był to pierwszy sztuczny słodzik używany przez cukrzyków, a w czasie wojny również jako zamiennik cukru przy braku dostaw.
Po kilku latach od odkrycia obaj panowie się pokłócili, bo Fahlberg po cichu opatentował metodę syntezy w kilku krajach, nie dając nic wspólnikowi.
Bardzo podobna historia zdarzyła się w 1937 roku, gdy amerykański student chemii  Michael Sveda pracował przy produkcji leków przeciwgorączkowych opartych na sulfonamidach. Paląc papierosa przy laboratoryjnym stole na chwilkę odłożył go w miejsce, gdzie wcześniej kapnął mu jeden z roztworów. Gdy znów wziął go o ust zauważył, że ustnik stał się bardzo słodki. Wkrótce odkryty przezeń słodzik, nazwany cyklaminianem, wprowadzono jako dodatek do gorzkich leków, a potem dosładzano nim napoje.
Kolejnym słodzikiem odkrytym w ten sposób był aspartam. Jego odkrywca Schlatter, szukając leku na wrzody w roku 1965 pobrudził nim dłoń, a potem poślinił palec aby rozdzielić sklejone strony książki. Dwa lata później w identyczny sposób Karl Klaus odkrył acesulfam K.
Poczet oblizujących się chemików zamyka szwajcarski chemik Albert Hofmann, który zajmował się poszukiwaniem silnie działających leków w trujących grzybach. Pochodna kwasu lizergowego, którą stworzył w 1938 roku miała być lekiem na astmę, ale nie została wówczas zbadana. Dopiero w 1943 roku postanowił ponownie przyjrzeć się temu związkowi. Niewielka ilość zanieczyściła mu palce i podczas jedzenia dostała się na usta. Po powrocie do domu doznał uczucia niepokoju, więc położył się do łóżka i przeżył dwugodzinną wizję podobną do fantastycznego snu. Trzy dni potem świadomie zażył większą dawkę, i wracając do domu na rowerze doznał tak silnych halucynacji, że ledwie trafił. Na pamiątkę tego zdarzenia miłośnicy LSD obchodzą 19 kwietnia Dzień Roweru. Ale to już inna historia.
Karteczki nasączone LSD

Te przypadki dotyczyły dobrych stron odkrywanych związków. Jak łatwo się domyśleć o chemikach odkrywających silne trucizny nie mogliśmy usłyszeć, bo nie było by komu ogłosić tego odkrycia.

Bo za długo leżało
Bywa że nowe substancje odkrywane są podczas porządkowania stołu laboratoryjnego, w trakcie sprawdzania starych próbówek i kolb z czymś zapomnianym. Bo przecież niektóre reakcje zachodzą bardzo powoli, i tylko zapominalskość chemika może sprawić, że da on substancjom odpowiednio dużo czasu.

W 1839 roku berliński aptekarz Eduard Simon zajmował się badaniem storaksu - aromatycznej żywicy Ambrowca balsamicznego, o właściwościach odkażających, stanowiącej składnik kadzideł. Próbując uzyskać bardziej aromatyczne składniki przeprowadził destylację z parą wodną i otrzymał oleistą ciecz, którą nazwał styrolem. Zebrał ją do buteleczki, odłożył na półkę i zajął się innymi sprawami. Po kilku dniach okazało się że zawartość butelki zgęstniała do formy twardej galarety, którą nazwał styroloksydem. Kilka lat później podobną substancję uzyskano bez dostępu powietrza. Wreszcie Berthelod stwierdził że w obu przypadkach powstaje ta sama substancja, zaś procesem nie jest utlenianie lecz łączenie cząsteczek w długie łańcuchy. Tak powstające tworzywo sztuczne nazwano polistyrenem. Najpospolitszym jego zastosowaniem jest produkcja styropianu.
Podobna jest historia polichlorku winylu. Chlorek winylu, czyli chlorek etenu, jako pierwszy otrzymał Regnault w 1835 roku. Powstałą lotną ciecz zamknął w buteleczce i położył na parapecie. Gdy po kilku dniach sobie o niej przypomniał znalazł tam brązową, elastyczną masę. Minęło jednak kilka dekad i odkrycia popadło w zapomnienie aż w 1872 roku powtórzyła się w laboratorium Eugena Baumana. Otrzymawszy większą ilość stwierdził, że masa jest podobna do galalitu i gdyby można ją było otrzymywać w dużych ilościach, byłaby dobrą masą plastyczną. Pierwszy zakład produkcji PCW wyglądał osobliwie - na dużym placu ustawiano obszerne butle wypełnione chlorkiem winylu i zostawiano na kilka dni aby świeciło na nie słońce. Potem butle rozbijano a bryły tworzywa przetapiano. Nie był to za bardzo ekonomiczny sposób, więc dopiero wynalezienie katalizatorów polimeryzacji pozwoliło wprowadzić nowy materiał na szeroki rynek.

We śnie
Och, jakże bym tak chciał. Zdrzemnąć się gdzieś a pomysły same przychodzą do głowy. Próbuję zatem drzemek w różnych porach, ale jak na razie bez skutku.
Najbardziej znanym chemikiem, którego sny do czegoś się przydały, był August Kekule - ale nie zrodziły się one z próżni.

W XIX wieku chemia organiczna dopiero raczkowała. Pierwsze syntezy związków organicznych z tych nieorganicznych to lata 20. Pierwsze reakcje na takich związkach zaczęto stosować niedługo później. Jedną z rzeczy jakie nurtowały chemików, była budowa materii - coś co odróżniało jedną substancję od drugiej. W zasadzie jedynym po czym, oprócz ich właściwości fizycznych, rozróżniano między substancjami, był stosunek wagowy składowych pierwiastków. Metan składał się z węgla i wodoru w stosunku 1:4, etan z tego samego, ale w stosunku 1:3 a butan w stosunku 2:5.
Teoria atomowa Daltona pchnęła sprawę do przodu - jeśli pierwiastki składają się z jednakowych cząstek, to związki są różnego rodzaju mieszaninami, w których atomy pierwiastków łączą się ze sobą w różnych kombinacjach. Odkrycie, że różne substancje mogą posiadać ten sam stosunek ilościowy pierwiastków zaciemniło obraz. Wyglądało na to, że różnicą jest nie ilość a sposób łączenia atomów, co siłą rzeczy nasuwało myśl o jakiejś strukturze - tylko jakiej? W powyższych przykładach ze stosunków ilościowych wynikałoby, ze w jednym związku atom węgla łączy się z wodorem przez cztery wiązania, w drugim przez trzy a w kolejnym w bardziej skomplikowany sposób.
Kekule 1857 roku ogłosił, że jego zdaniem liczba możliwych wiązań dla danego pierwiastka jest stała i dla węgla wynosi 4. Rodziło to oczywiste problemy z przypisaniem wszystkim połączeniom odpowiednich atomów i sprawiło że miał się nad czym zastanawiać. Zastanawiał się aż do znużenia. I tak oto, znużony, wracał do domu omnibusem i zdrzemnął się na jednym z siedzeń, gdy przyśniły mu się atomy:
Zatonąłem w marzeniach i przed moimi oczami zaczęły krążyć atomy. Zawsze widziałem te małe twory w ruchu. Teraz widziałem, jak dwa mniejsze łączą się ze sobą w pary, jak większe otaczają dwa mniejsze, a jeszcze większe utrzymywały to wszystko w zawrotnym tańcu. Widziałem, jak większe atomy tworzyły łańcuch, wciągając mniejsze, ale tylko na końcach łańcucha[2]
Obudzony przez konduktora miał gotowe rozwiązanie - ilości wiązań i stosunki będą zachowane, jeśli uznamy, że węgle łączą się same ze sobą tworząc łańcuchy. Tłumaczyło to też stosunki ilościowe w kolejnych, coraz cięższych alkanach, mogąc wywieść je z reguły 2N+2 wskazującej że atomów wodoru jest o dwa więcej niż dwukrotność liczby atomów węgla. Teoria była rozwijana i stosowana do coraz większej ilości związków. Uzupełniono ją, uznając możliwość tworzenia podwójnych wiązań. Aż nasz chemik zajął się próbą ustalenia, wedle tych zasad, struktury benzenu. I poległ.
W przypadku benzenu stosunek ilościowy wynosił 1:1, czyli tyle samo węgla co wodoru. Z badań reakcji podstawienia było wiadomo że zawiera sześć węgli i nijak nie dało się ich połączyć zgodnie z zasadami. Cztery wiązania podwójne się nie mieściły a próby izomerów z bocznymi łańcuchami też nie dawały efektów. I byłby się być może Kekule załamał, gdyby nie drugi sen, jaki naszedł go przed płonącym kominkiem:

Znowu atomy harcowały przed moimi oczami. Tym razem mniejsze grupy trzymały się skromnie z tyłu. Moje duchowe oko, wyostrzone przez powtarzające się podobne wizje, rozróżniło teraz większe twory o różnorodnym kształcie. Długie szeregi, kilkakrotnie ściśle ze sobą złączone, wszystko w ruchu, wijące się wężowato i skręcające się. Patrzę, co się stało? Jeden z węży chwycił swój własny ogon i szyderczo kręcił się przed moimi oczami. Obudziłem się jak rażony piorunem i resztę nocy spędziłem na rozpracowywaniu wniosków z tej hipotezy.[b]
No tak. Jeśli założyć trzy wiązania podwójne i pierścieniową budowę, to wszystko się zgadza.

Czy zatem Kekule miał proroczy sen? Cóż, co do samej opowieści wysnuwane są wątpliwości - chemik opisał je w luźnym przemówieniu z okazji 25 rocznicy swych odkryć, przed tą datą brak poświadczeń. Niewykluczone, że przypisanie snom rozwiązania mogło zasłaniać fakt, że założenia obu teorii zostały dobrane arbitralnie, na zasadzie "tak musi być bo pasuje" i dopiero do nich dołączono poświadczenia doświadczalne. Inni wskazują, że sugestie pierścieniowej budowy tego związku wysnuwano już wcześniej, nie ogłaszając ich jednak jako oficjalnej teorii.
Sen Kekulego bywał zresztą w rozmaity sposób interpretowany - w okresie popularności analizy sennej psycholog Mitserlich uznał że nagłe przebudzenie było wywołane zaniepokojeniem, to z kolei poczuciem utraty władzy; że zaś wedle klasycznej psychoanalizy marzenia senne mają związek ze strefą seksualną, długi wąż gryzący swój ogon został więc przezeń uznany za penisa, nie mogącego podążać, a sen za wyraz frustracji i pożądania, niezaspokojonego po śmierci żony.[3] W taki sposób każdą rzecz można sprowadzić do seksu.
Alternatywne struktury C6H6

Mozołem i pracą
Ale nie zawsze proces odkrywczy wygląda tak ładnie jak to przedstawiałem. Niestety z reguły odkrycie jest końcem długiego procesu, i nawet olśnienie stanowi jedynie początek pracy. Dobitnie przekonał się o tym Paul Ehrlich, twórca chemioterapii. Zgodnie z opracowaną przez siebie teorią "magicznej kuli" wedle której lekiem na określoną chorobę bakteryjną ma być substancja, zatrzymująca ważne procesy w organizmach bakterii i tylko ich, zaczął poszukiwać leku na syfilis.
Wiedział że Atoksyl, lek na śpiączkowe zapalenie mózgu, może też poprawiać stan chorych na syfilis, jednak dopiero w niebezpiecznych dawkach. Uznał zatem że należy znaleźć taką organiczną pochodną arsenu, jaka będzie silnie toksyczna dla prątków kiły, a słabo dla człowieka. Zaczął więc po kolei syntezować - pochodne aminokwasów, kwasów karboksylowych, fenoli, aldehydów itd. Trudno sobie wyobrazić nakład pracy, podczas której tworzył po kilka nowych związków na miesiąc i sprawdzał właściwości. I po kolei stwierdzał, że związki te się nie nadają. Pewną nadzieję dawała arsenofenyloglicyna, zsyntetyzowana jako substancja nr. 418, nawet była testowana w Afryce, ale nie dawała pełnego wyleczenia. Aż wreszcie po czterech latach pracy, w roku 1909 stwierdził, że tym idealnym związkiem jest substancja nr. 606, znana później jako Salwarsan. Paradoksalnie rok wcześniej Erhlich dostał nagrodę Nobla za całkiem inne odkrycia dotyczące surowic odpornościowych.

Serendipity
Skąd biorą się takie szczęśliwe przypadki, nazywane przez anglików "serendipity"? A no stąd, że wszędzie dzieje się wszytko. Jeśli jakieś zdarzenie, proces chemiczny, jest możliwe, to kiedyś musi zaistnieć. Rzecz jednak nie w tym, że pewne zdarzenia mają miejsce, lecz w tym, aby zauważyć je i zrozumieć znaczenie.
W końcu niezamierzona synteza ciekawego związku nie mogła przydarzyć się każdej osobie, a tylko tej, które zajmuje się określonymi procesami - a ta ma większe szanse dostrzec coś ciekawego w tym, co ktoś inny uznałby za nieudany wynik. Jak zauważył trafnie Pauster, któremu podobne przypadki się przydarzały: "Szczęście sprzyja przygotowanym umysłom". Jules H. Comroe opisał przypadkowe odkrycia znacznie dosadniej: "To szukanie igły w stogu siana i odnalezienie córki rolnika". Czego też życzę czytelnikom...
-------
[1]  http://articles.chicagotribune.com/1996-02-04/news/9602040105_1_nylon-du-pont-mr-hill
[2]  http://pl.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz
[3]  http://www.sgipt.org/th_schul/pa/kek/pak_kek0.htm