informacje



Pokazywanie postów oznaczonych etykietą siarka. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą siarka. Pokaż wszystkie posty

poniedziałek, 28 grudnia 2020

Kiedyś w laboratorium (80.) - Bielenie kwiatów siarką

 Jednym ze stosunkowo częstych doświadczeń na pokazach chemii jest bielenie kwiatów i materiałów dwutlenkiem siarki, będące zresztą zwykle kontynuacją eksperymentów z siarką. Po pokazaniu jak siarka wygląda i jak się stapia, następuje podpalenie w pojemniku z tlenem. Potem do pojemnika wkłada się różę i voila, mamy pokaz właściwości siarki. 

Kolba z tlenkiem siarki. Płatek róży zwykły i wybielony

A gdyby pod ręką nie było siarki? 

W takiej sytuacji znalazłem się w zeszłym roku, gdy przygotowywałem pokaz na imprezę firmową. Byłoby fajnie to pokazać, ale pod ręką nie było głównego składnika. I myślę, że w podobnej sytuacji może być wiele szkolnych pracowni chemicznych. Ale od czego jestem chemikiem. Przecież zarówno siarkę do pokazania jak i jej tlenek można wytworzyć z odczynników dostępnych na każdej pracowni analitycznej. 

Jednym z często stosowanych odczynników przy miareczkowaniu jodometrycznym jest tiosiarczan sodu. Związek zawierający dwa atomy siarki na bardzo różnych stopniach utlenienia. Jeden to centralny atom anionu siarczanowego, do którego normalnie podłączone są cztery tleny, o stopniu utlenienia +6. Drugi zastępuje jeden tlen i ma stopień utleniania -2. W zasadzie pełni tutaj rolę siarczku. Siarczku siarki, żeby było ciekawiej. 

Połączenie takie można otrzymać gotując siarkę z siarczynem sodu, jest to jednak reakcja w pełni odwracalna i to właśnie wykorzystamy w tym przypadku. Właściwości związku można przedstawić na dwa sposoby, oba mogą być użyte na pokazach.  W pierwszym robimy niezbyt mocny około 1% roztwór tiosiarczanu, wlewamy do większej zlewki i mieszając dodajemy kilka kropli kwasu solnego. Początkowo nic się nie dzieje, ale z czasem roztwór zaczyna opalizować. Wydaje się niebieskawy, światło przechodzące staje się żółte. Stopniowo mętność narasta aż roztwór wygląda jak chude mleko. Przechodzące światło staje się czerwone o ile jeszcze prześwieca.

Drugi sposób wykorzystałem na pokazach. Do kolby zamykanej korkiem wsypałem łyżeczkę tiosiarczanu i polałem rozcieńczonym kwasem solnym. W kwaśnych warunkach następuje proces nie będący prostym odszczepieniem jonu siarczkowego. Część z nich utlenia się do siarki pierwiastkowej, zaś część jonów tiosiarczanowych redukuje do siarczynowych. Te zaś na kwaśno zmieniają się w nietrwały kwas, który odszczepia wodę i daje dwutlenek siarki. 

Do naczynia z dwutlenkiem wkładamy zawieszony na nitce płatek róży lub mały kwiat. Wybielenie następuje w ciągu minuty, zaczynając od brzegów. Dłużej zabarwione zostają grubsze żyłki. Jeśli płatek jest mocno woskowy, można go wcześniej zwilżyć.

Dwutlenek siarki zamienia naturalne barwniki, głównie antocyjany, w formy sulfonowane. Powoduje to przerwanie struktur elektronowych odpowiedzialnych za wyraźne zabarwienie. [1] Dawniej tłumaczono reakcję redukcją do form leuko, ale tych nie wykryto w odbarwionych roztworach (nie wiem jak to teraz wygląda w podręcznikach). Powstałe produkty nie są trwałe. Ulegają stopniowemu rozpadowi, toteż odbarwione w ten sposób kwiaty stopniowo wracają do poprzedniego koloru, choć zwykle nie jest to powrót do takiej samej intensywności.

Gdy już kończymy pokaz warto zwrócić uwagę na żółtawy, kłaczkowaty osad. To elementarna siarka. Jakby ktoś bardzo potrzebował konkretnie siarki może to być jedna z dróg wytworzenia, choć chyba niezbyt tania.

----------

[1] https://link.springer.com/chapter/10.1007/978-1-4615-4139-4_43

sobota, 26 września 2020

Życie na Wenus?

Ostatnie doniesienie astronomów na temat odkryć dotyczących planety Wenus ma w sobie tyle chemicznych wątków, że warto się w nie zagłębić.

Wprawdzie szczegóły procesu powstania życia nie są dla nas jeszcze jasne, ale wydaje się mało prawdopodobne, aby zaszedł on tylko raz, na jednej skalistej planecie. Toteż nie jest wcale naukowym dziwactwem szukanie śladów życia w kosmosie. Tu jednak pojawia się problem - jak, poza bardzo oczywistymi sytuacjami, w rodzaju sfery Dysona, kierowanych związek radiowych czy modulowanego strumienia neutrin, mielibyśmy wykryć, że na planecie, na jaką nie możemy osobiście polecieć, dzieje się coś poza geologią? Że istnieje tam jakieś życie? 


 

Z większych odległości możemy sobie na planetę tylko popatrzeć bez szczegółów, więc póki jej mieszkańcy nie osiągną takiego stanu zaawansowania, że cywilizację będzie widać, to jedyne co nam pozostaje, to wykrywanie subtelnych sygnałów modyfikacji stanu planety. Organizmy żywe muszą w jakiś sposób generować energię aby produkować złożone molekuły budulcowe. Muszą więc gromadzić związki poddające się reakcjom redukcji lub utlenienia, do ich przemian z pewnością będą wymagały pewnych katalizatorów, a tymi najczęściej są związki rzadkich pierwiastków. Metabolizm tych organizmów spowoduje zmniejszenie ilości substratu energetycznego, oraz wyprodukowanie substancji odpadowych. Są ziemskie bakterie, które "oddychają" utlenionymi związkami żelaza, zamieniając je w zredukowane. Inne redukują azotany do amoniaku, siarczany do siarki, utleniają metan, redukują arszenik... A pewna szeroka grupa organizmów przetwarza energię świetlną i przy jej pomocy zamienia dwutlenek węgla i wodę w związki organiczne i odpadowy tlen.

Wszystko to powoduje, że organizmy zasiedlające globalnie całą planetę zaczną z czasem zauważalnie zmieniać jej stan. Stąd powstał pomysł poszukiwania na planetach związków sygnałowych - trudnych do wytworzenia przez procesy geologiczne, mogących być końcowymi produktami metabolizmu organizmów, niezależnie od tego na jakiej chemii są oparte. Zwłaszcza takich, jakie powstają przy udziale jedynego życia, jakie na razie znamy - tego ziemskiego. Jeśli zbadamy planetę wykazującą pewne podobieństwa do naszej, to mamy spore szanse, że występujące tam życie będzie miało dużo wspólnych elementów. Może nie taki sam nośnik genetyczny, może nie alfa-aminokwasy, ale raczej metabolizm obracający głównie związkami węgla, azotu, tlenu, siarki i fosforu. 

Wśród kilku wytypowanych takich związków sygnałowych, obok metanu, tlenosiarczku węgla i innych, pojawiła się także fosfina, czyli fosforowodór. A to ze względu na kilka właściwości utrudniających spontaniczne powstawanie na planetach typu ziemskiego. No i teraz właśnie tę fosfinę wykryto na Wenus - gorętszej "siostrze" Ziemi. Co w świetle powyższych rozważań ma bardzo ciekawe implikacje.

Fosfina 

Właściwie jest to fosforowodór, będący analogiem bardziej pospolitego amoniaku. Czysty związek PH3 to bezbarwny gaz, nie posiadający wyczuwalnego zapachu. Łatwo łączy się sam ze sobą w dimer P2H6, który już ma brunatny kolor i nieprzyjemny zapach stęchlizny lub czosnku, w mniejszych ilościach pachnie jak karbid. Jeśli ktoś używał karbidu do odstraszania kretów lub do strzelania z puszek, musi kojarzyć charakterystyczny smrodek. Karbid przemysłowo otrzymywany jest przez prażenie wapienia z węglem, powstały węglik reaguje z wodą dając bezwonny acetylen. Ślady fosforanów w wapieniu powodują powstanie domieszki fosforku wapnia, która w reakcji z wodą daje fosfinę i jej dimer. Ponieważ tak powstały gaz jest potem zużywany do spawania, acetylen techniczny także nabiera tego specyficznego zapachu, zaś linie widmowe fosfiny są zauważalne w widmie światła palnika.  

Sam w sobie fosforowodór jest związkiem silnie trującym, co najmniej tak bardzo jak cyjanowodór. Z tego powodu fosforek glinu używany jest czasem jako środek do trucia szczurów i insektów. Spożyty przez zwierzę hydrolizuje w żołądku z wydzieleniem fosfiny; jest stosowany zwłaszcza wtedy, gdy w okolicy żyją gryzonie odporne na standardowe trutki. Może być też fumigantem do zagazowania szkodników w pomieszczeniach, zwłaszcza w przestrzeniach o trudnym dostępie, w magazynach ziarna. W Indiach szeroko stosowany jako bardzo tani środek co roku doprowadza do wielu przypadkowych lub celowych zgonów.

 

Wenus

Wenus to najbliższa nam inna planeta w układzie słonecznym, przy tym wykazująca dużo podobieństw. Ma podobną średnicę i masę co Ziemia, jest okryta atmosferą. Czasem bywa nazywana "gorącą siostrą Ziemi". Ostatecznie jednak jej ewolucja przebiegła inaczej. Kiedyś, gdy słońce świeciło z mniejszą siłą, znajdowała się w ekosferze, prawdopodobnie występowały na niej powierzchniowe oceany. W miarę upływu czasu rosła jednak intensywność promieniowania Słońca, co wraz z mniejszą niż Ziemia odległością spowodowało, że na Wenus zaczęło się robić gorąco. Woda powierzchniowa wyparowała. Z powodu słabego pola magnetycznego górne warstwy atmosfery nie były chronione przed wiatrem słonecznym i naładowanymi cząstkami z kosmosu.

 Docierająca tutaj woda była rozbijana na składowe a bardzo leciutki wodór łatwo wyparowywał w przestrzeń kosmiczną. W efekcie Wenus stała się bardzo sucha. Brak ruchu płyt kontynentalnych i bardzo słabego, z powodu braku oceanów, wiązania w minerałach związków węgla, ten uwolniony przez wulkany gromadził się stopniowo i dziś stanowi główny składnik atmosfery (95%). Jego masa molowa jest większa niż średnia masa ziemskiej atmosfery. Przy dość podobnej grawitacji atmosfera złożona głownie z wyraźnie cięższego gazu wywołuje na powierzchni ciśnienie 90 razy większe niż standardowe na Ziemi. 

Ponieważ dwutlenek węgla jest gazem cieplarnianym, to przy tak dużym stężeniu i przy mniejszej odległości od Śłońca wywołał on nagromadzenie dużych ilości ciepła. Z czasem temperatura na powierzchni zaczęła powodować rozkład niektórych minerałów i uwolnienie bardziej lotnych związków, w tym tlenków siarki. Obecnie na wysokości 40-60 km nad powierzchnią rozciąga się warstwa chmur złożonych z kwasu siarkowego i innych kwasów, która zasłania grunt, przez co w świetle widzialnym nie widać żadnych szczegółów. 

Chmury na Wenus, zdjęcie z sondy Pioneer 1

 

Mniej znaczące składniki to kwas solny, kwas fluorowodorowy, tlenek węgla, ślady pary wodnej, siarkowodoru. Nie jest to więc za bardzo przyjazne środowisko. Powyżej warstwy chmur fotoliza powoduje pojawienie się tlenu. Im bliżej powierzchni, tym goręcej. Na średniej wysokości temperatura wynosi około 460 stopni C, wystarczającej do stopienia ołowiu. Przy ciśnieniu około 92 atmosfer dwutlenek węgla znajduje się blisko stanu nadkrytycznego, przypomina więc bardziej lekką, nielepką ciecz, która dobrze przewodzi ciepło. 

Ciężko w takich warunkach o życie podobne do naszego. Spekuluje się jednak o możliwości przetrwania ekstremofilnych organizmów głębiej w skorupie lądowej. Inna interesująca możliwość, to przetrwanie organizmów na dużych wysokościach. Na wysokości wierzchołków chmur ciśnienie atmosferyczne jest zbliżone do ziemskiego a temperatura bliska 20-30 stopni. Ze względu na rozkład dwutlenku węgla pod wpływem ultrafioletu w atmosferze pojawia się tlen. Potencjalnie więc drobne, lekkie organizmy mogłyby utrzymywać się w tej cienkiej warstwie, gromadząc w centrach komórek konwekcyjnych. Strefa ta byłaby zresztą możliwym miejscem osadzenia latającej jak sterowiec stacji badawczej, ale to na razie pieśń przyszłości.

Artykuł

Ostatni artykuł [1] z Nature Astronomy opisuje prace, których założeniem od początku było wykrycie, że fosfina jest obecna w atmosferze Wenus. Obserwacje prowadzono naziemnie, za pomocą teleskopu Clerka-Maxwella, potem jeszcze raz przez teleskopy ALMA, mierząc widmo światła odbitego przez atmosferę Wenus w zakresie mikrofalowym. Poszukiwano tutaj charakterystycznej linii absorpcyjnej - jeśli gaz jest obecny w atmosferze, to powinien on pochłaniać ze światła pewien wycinek przy długości fali 1,123 mm. Zatem na wykresie intensywności światła przy różnej długości fali powinien pojawić się dołeczek. I tutaj pojawia się pierwszy problem - ten dołeczek nie będzie za bardzo głęboki, czyli mało będzie się różnił od szumu tła.  Po drugie zaś powierzchnia odbijająca to nie ładna, równiutka skała, tylko pofalowana, zachmurzona atmosfera obracającej się planety. Efekt Dopplera powoduje, że chmury poruszające się trochę do nas lub trochę od nas będą dawały sygnał nieco przesunięty; dodatkowo sama temperatura atmosfery poszerza sygnały. Dodajmy do tego niejednorodny skład chmur i zakres fal, w którym pochłaniają różne związki, a otrzymamy sygnał nieprawdopodobnie zaszumiony. To jak poszukiwanie odcisku palca na czymś przypominającym rzeszoto. 

Autorzy zastosowali odszumienie oparte o modelowanie rozkładu prędkości radialnych chmur. Otrzymali z grubsza wygładzony sygnał, w którym we właściwym miejscu pojawiał się wyraźny dołeczek. Wyglądało na to, że mają poszukiwany związek. Aby jednak skalibrować swoją metodę i z czymś ją porównać, w ten sam sposób przetworzono sygnał dla nieodległej w widmie linii absorpcyjnej półciężkiej wody HDO2. Z badań wcześniejszych sond wiemy, że na Wenus sporo wodoru zawiera cięższy izotop deuter i ile go jest, a cząsteczka zawierająca jeden prot i jeden deuter wywołuje pewne charakterystyczne dołeczki w świetle przechodzącym. Ponieważ z użyciem tego samego modelowania znaleziono sygnał związku, który na pewno jest obecny w atmosferze, wszystko wskazywało na to, że dobrze dobrano parametry i otrzymany wynik dla fosfiny to sygnał rzeczywisty a nie artefakt przetwarzania szumu.

Jane S. Greaves et al.

 

Należało jednak wykluczyć możliwość, że przypadkiem w tym miejscu pojawiło się pochłanianie światła przez coś innego. Z wyliczeń wynikało, że obecność dwutlenku siarki (SO2) w chmurach poruszających się w naszą stronę z prędkością +2,5 km/s mogłaby wskutek przesunięcia dopplerowskiego dać sygnał w tym samym miejscu. Ponieważ jednak znamy zawartość tlenków siarki w atmosferze planety, oraz znamy intensywność pochłaniania, to wyliczono, że ten hipotetyczny dołeczek byłby zbyt mały aby wyjaśnić cały sygnał. Skoro więc tak, to pozostawała tylko jedna możliwość - to jest na prawdę sygnał fosfiny. 

Ta cześć badań wygląda porządnie. Brak mi znajomości aparatu matematycznego na takim poziomie, aby coś tu ocenić. Górnicy danych może by coś na ten temat powiedzieli, ale ja nie mam kompetencji.

 Fosfina to dość mocno zredukowana forma fosforu. Występuje on w tym związku na stopniu utlenienia -3. Aby sprowadzić go do takiej formy trzeba więc zwykle mocno redukujących warunków. Wykryto go już na Jowiszu i Saturnie, gdzie może powstawać w obecności wolnego wodoru, na dużej głębokości w atmosferze, gdzie panuje wysokie ciśnienie i temperatura. Sam proces redukcji i syntezy właściwego związku zużywa dużo ciepła. Wielkie planety gazowe posiadają takie warunki a ich atmosfera jest mocno redukująca.

 Na Wenus jest to trochę kłopotliwe, bo atmosfera zawiera związki tlenowe - głównie dwutlenek węgla, do tego sporo tlenków siarki, kwas siarkowy; natomiast bardzo niewiele jest związków wodoru, który mógłby jakoś pośredniczyć w reakcjach redukcji. Dodatkowo związek ten jest dość reaktywny może reagować ze związkami tlenowymi i zamieniać się w utlenione formy fosforu. Skoro więc jest obecny w atmosferze, to jakiś proces musi go stale uzupełniać.
Autorzy przeliczają wiele możliwych dróg tworzenia fosfiny i stwierdzają, że nie są one wystarczające aby powstawało jej stale aż tyle. Sprawdzono takie ewentualności jak powstawanie w wyniku działania piorunów w burzach w atmosferze planety (wynik - aktywność burzowa jest zbyt niska), powstawanie z rozkładu kwasu fosfonowego produkowanego z fosforowego V pod wpływem rodników wodorkowych powstających przez fotolityczny rozkład śladów wody. Także ewentualność, że fosfina jest wyrzucana przez wenusjańskie wulkany nie bardzo pasuje do informacji o niezbyt wyraźnej aktywności geologicznej planety. 

Z drugiej strony autorzy stwierdzają otwarcie, że policzenie wszystkich reakcji dla ustalenia jaka jest równowaga między formami fosforu jest trudne, bo nie wszystkie możliwe warianty zostały dobrze opisane. "Brak jest danych kinetycznych form fosforu". W części obliczeń posłużono się więc szacunkami na podstawie dużo lepiej przebadanych reakcji związków azotu. Może się więc okazać, że obfitość fosfiny w atmosferze Wenus ma źródło w jakiejś słabo znanej reakcji.

Alternatywy

Tutaj jednak ja mogę dorzucić nieco wątpliwości i alternatyw.

 Najważniejszym punktem wartym zbadania są szacunki zawartości kwasu fosfonowego w atmosferze. Jest to nieco niżej utleniony kwas fosforowy, znany z tego, że w temperaturze około 200 stopni rozkłada się i dysproporcjonuje z wydzieleniem między innymi fosfiny.

 4 H3PO3 → 3 H3PO4 + PH3

 Autorzy przeprowadzają następujący ciąg rozważań - kwas fosfonowy nie jest stabilny w fazie gazowej. Musi być więc składnikiem kropelek zawierających kwas fosforowy i w takiej formie trwać w obiegu form fosforu. Założono, że związek powstaje wskutek reakcji rodników wodorkowych, powstałych w wyniku fotolizy śladowej ilości wody, z kwasem fosforowym. Stężenie rodników w górnych warstwach atmosfery jest niewielkie, szybko są zużywane na konkurencyjne reakcje. Na podstawie warunków w atmosferze i szybkości reakcji redukcji wyliczono, że może współistnieć w kropelce z kwasem fosforowym w ilości 6,1^-17 mol, co przy pewnej wyliczanej objętości materiału aerozolu daje 44 mg kwasu w atmosferze. Bieżący rozkład tej ilości nie daje takiego stężenia produktów jak zmierzone. [2]


Pojawia się więc pytanie, czy są inne niż tutaj założone źródła kwasu fosfonowego? W pracy z 1989 roku[3] na podstawie danych z sondy Vega2 stwierdzono, że w niższych, gorętszych warstwach atmosfery fosfor występuje między innymi w formie gazowego trójtlenku P4O6, mającego stanowić główny nośnik fosforu między innymi formami. Istnienie takiej formy fosforu ma być wytłumaczeniem powstawania mgły w dolnych warstwach atmosfery, gdzie temperatury stają się już bardzo wysokie i mgła kwasu siarkowego powinna wyparować. Jest to o tyle istotne, że tlenek ten reaguje z wodą tworząc kwas fosfonowy. Wody w atmosferze Wenus jest niewiele, ale może to już wystarczać. Krasnopolski szacował, że na wysokości 25 km trójtlenek fosforu stanowi 2 ppm objętości, jest go więc tam sporo. Można więc przedstawić alternatywną drogę powstawania kwasu fosfonowego, co uzasadnia wyższe stężenia w kropelkach kwasu fosforowego i być może umożliwiałoby to powstawanie fosfiny w dostatecznie dużym stężeniu. 

Autorzy artykułu, który jest tematem niniejszego wpisu, znają hipotezy Krasnopolskiego, bo nawet cytują tę właśnie pracę (przypis 32), ale w kontekście słabo poznanego chemizmu fosforu na Wenus, hipotetyzowanego z danych o aerozolach i ilości pierwiastka. Potem przy omówieniu potencjalnych mechanizmów powstawania fosfonianów nie odnoszą się do tego i w sumie nie wiadomo czemu - wykluczają transport tlenku, jego uwodnienie i przeniesienie do wysokości, w której panują warunki odpowiednie do reakcji? Ktoś inny w późniejszych latach obalił przypuszczenia co do istnienia tam trójtlenku? Nie znam literatury na temat chemizmu Wenus na tyle aby to ocenić, ale zupełny brak odniesienia do tej alternatywy jest zastanawiający.

A może jednak zachodzi tu całkiem zwyczajna redukcja fosforanów? Bez rodników, wyładowań i promieniowania. W atmosferze Wenus występuje pewna ilość pośredników redoks, nie zawierających wodoru i dlatego chyba nie branych tu pod uwagę. Najpospolitszy wydaje się chlorek żelaza zarówno II jak i III, który był wykrywany w chmurach na wysokości 60 km. Mechanizm powstawania mniej utlenionej formy i transportu na takie wysokości jest niejasny, możliwe jest powstawanie chlorku żelaza II w wyniku reakcji cząstek magnetytu z kwasem solnym i tlenkiem węgla.[4] Ponieważ sygnały spektroskopowe w chmurach wskazują na obecność pokaźnych ilości chlorku żelaza III [5] można rozważyć też takie drogi redukcji, jak reakcja z siarkowodorem czy dwutlenkiem siarki.

Jest to ciekawe bo nie tak dawno podczas badań, które sprawdzały, w jaki sposób mogło dojść do uwolnienia fosforu z osadów w okresie Archeanu stwierdzono, że fosforan może w stosunkowo niskich temperaturach i atmosferze beztlenowej reagować ze związkami żelaza II i redukować się do jonu fosfonowego.[6] A ten rozkłada się do fosfiny w zbliżonej temperaturze. 

Ogólny schemat powstawania fosfiny w hipotezie żelazowej

 Na stronie 13 suplementów wspomniane są związki żelaza II jako brane pod uwagę wśród reduktorów, ale nie mogę się dokopać do informacji jaką konkretnie reakcję brano pod uwagę.

Czy te dwie alternatywy wystarczą do wyjaśnienia tej ilości fosfiny w sposób niebiologiczny? Przypuszczać można sobie do woli, ale może ktoś to kiedyś wysymuluje i przeliczy. Ponieważ doniesienie jest bardzo ciekawe, to zapewne inni chemicy ryją teraz po literaturze i szukają czegoś podobnego, więc za kilka miesięcy będą już jakieś analizy.

Gdyby jednak okazało się, że obecności fosfiny w tak dużych ilościach nie da się wyjaśnić reakcjami samorzutnymi, to byłby to impuls do dogłębnego zbadania tej planety. Bo odkrycie jakiegoś życia poza Ziemią, choćby mikroskopijnego, byłoby czymś wielkim, co zmieni nasze postrzeganie Wszechświata.

Errata

Dopiero po wrzuceniu artykułu udało mi się znaleźć pełne opracowanie na temat wszystkich analizowanych w publikacji reakcji. Okazało się, że postanowili wydać je osobno i na razie czeka na publikację w repozytorium. [7] Wśród rozważanych reakcji jest też redukcja żelazem II. Przy czym ewentualność bezpośredniej redukcji kwasu fosforowego żelazem została wykluczona, bowiem w dotychczasowych opisach taką redukcję przeprowadzano w wodzie, a wody jest na Wenus bardzo mało. Wciąż jednak jak na mój gust możliwa jest wersja redukcji w roztworze w kropelkach kwasu siarkowego, a więc w środowisku o wysokiej aktywności protonów. Czy zaś reakcje te są w stanie zajść w takich warunkach, chyba nie wiadomo. Znów wychodzi na jaw, że pewnych reakcji jeszcze nie zbadaliśmy dostatecznie.

------

*  https://pl.wikipedia.org/wiki/Atmosfera_Wenus

[1] https://www.nature.com/articles/s41550-020-1174-4

[2] https://static-content.springer.com/esm/art%3A10.1038%2Fs41550-020-1174-4/MediaObjects/41550_2020_1174_MOESM1_ESM.pdf

[3]  https://www.sciencedirect.com/science/article/abs/pii/0019103589901681

[4] Godfrey T. Sill, "Geochemical problems in the production of the Venus clouds", rozdział w: zbiorze International Astromonical Union, Symposium 40 "Planetary Atmospheres" 1969

[5] https://www.sciencedirect.com/science/article/abs/pii/S0019103516306509

[6] https://www.nature.com/articles/s41467-018-03835-3

[7] https://arxiv.org/ftp/arxiv/papers/2009/2009.06499.pdf

piątek, 22 kwietnia 2016

Reakcja nie całkiem charakterystyczna

Czyli dłuższa anegdota o odkryciu pewnego związku.

Wraz z rozwojem przemysłu w XIX wiecznej Europie, w tym maszyn parowych i pieców hutniczych, duże znaczenie jako paliwo zaczął odgrywać węgiel kamienny. Dla pewnych zastosowań korzystniejszym niż surowe paliwem był koks, otrzymany przez ogrzewanie węgla bez dostępu powietrza tak, że ulatywała zeń woda i lotnie związki. Koks, o wyższej wartości opałowej, zużywano głównie do wytopu stali; gazy palne zużywano do oświetlania ulic w latarniach i jako gaz do kuchenek; wykraplana woda pogazowa zawierająca amoniak była zużywana do produkcji nawozów sztucznych.

 Jedynym produktem ubocznym jaki nie dawał się wprost zastosować była smoła pogazowa, często po prostu wylewana albo po oddzieleniu najbardziej lotnych składników używana do impregnacji drewna. Szybko zainteresowali się nią chemicy świadomi, że jest mieszanką wielu interesujących substancji. Stwierdzili oni na przykład, że przez destylację surowej smoły można otrzymać frakcje o rozmaitych właściwościach. Z jednych odzyskiwano naftalen, z innych dawało się wyprodukować fenol, zaś najlżejsza i niskowrząca frakcja dawała się zastosować jako rozpuszczalnik i olej oświetleniowy. Frakcja ta stanowiła też zresztą uciążliwe zanieczyszczenie gazu koksowniczego używanego do oświetlenia, zauważalne zwłaszcza gdy doprowadzany gaz był jeszcze ciepły. Wykraplała się na chłodnych kloszach latarń i przemieszana z sadzą zbierała na dnie.
Tam też na lepkie zanieczyszczenie zwrócił uwagę w 1825 roku Michael Faraday, który będąc bardzo praktycznym człowiekiem podjął się jej destylacji, chcąc otrzymać palny olej. Przydatnym produktem okazała się jedna z frakcji, o temperaturze wrzenia 80°C. Była to rzadka, lekko żółtawa ciecz spalająca się bardzo kopcącym płomieniem i będąca dobrym rozpuszczalnikiem. W następnych dekadach nauczono się wyodrębniać ją na duża skalę ze smoły pogazowej, a ze względu na obfite występowanie w benzolu, cieczy absorbowanej z gazu koksowniczego na stałych pochłaniaczach, nazwano ją benzenem.

Benzen odegrał dużą rolę w rozwoju chemii organicznej. To od niego pewną grupę niereaktywnych związków, często posiadających charakterystyczny zapach, nazwano związkami aromatycznymi. W tym wczesnym okresie duży problem sprawiało chemikom określenie jego struktury cząsteczkowej. Całkiem niedawno przyjęło się uważać, że pierwiastki składają się z atomów, a związki ze złożeń tych atomów w drobne całostki, nazwane cząsteczkami, o określonej budowie i układzie połączonych atomów. Jedyną informację o przypuszczalnym składzie cząsteczki stanowiły stosunki ilościowe pierwiastków składowych. Wiedząc w jakich ilościach łączą się ze sobą atomy, należało domyśleć się jaką prawdopodobnie tworzyły ze sobą strukturę.
Chemikiem który włożył w tą dziedzinę najwięcej, był opisywany już tutaj August Friedrich Kekule. On to po raz pierwszy na podstawie swych badań ustalił, że węgiel w związkach organicznych łączy się z maksymalnie czterema innymi atomami. W późniejszym okresie zastanawiając się jak połączyć ze sobą budulcowe atomy, doszedł do wniosku, że atomy węgla w bardziej skomplikowanych związkach muszą łączyć się tworząc łańcuchy. Wedle opowiadanej przezeń po latach anegdoty, myśl tą podsunął mu sen w którym dostrzegł tańczące atomy, które w pewnym momencie zaczęły się bawić w lokomotywę.
Pomysł ten nie dawał się jednak zastosować do niektórych związków, czego przykładem był benzen, złożony z węgla i wodoru w stosunku 1:1, i zawierający najwyraźniej sześć węgli. Rozwiązanie podsunął mu kolejny sen, w którym tańczące atomy utworzyły węża, a ten w pewnym momencie uchwycił swój ogon i w takiej formie wirował mu przed oczami. No tak - załóżmy że atomy są połączone w pierścień i mają wolną możliwość przyłączenia jeszcze tylko po jednym, a skład będzie się zgadzał.

Po upływie kolejnych lat chemicy coraz śmielej poczynali sobie z tworzeniem nowych pochodnych tego związku, aż w roku 1879 słynny chemik Bayer, założyciel zakładu produkującego między innymi Aspirynę, zauważył bardzo specyficzną reakcję - gdy wytrząsnął benzen ze stężonym kwasem siarkowym i dodał izatyny, żółtopomarańczowej substancji otrzymywanej z indygo, powstawało wyraźne niebieskie zabarwienie, zauważalne nawet przy niewielkich ilościach substancji. Wyglądało zatem na to, że odkryto prostą i szybką reakcję charakterystyczną, pozwalającą wykrywać benzen.

Odkrycie szybko zostało uznane i niektórzy postępowi profesorowie chemii zaczęli uczyć o tej reakcji na uniwersytetach. Jednym z nich był profesor Wiliam Weith wykładający chemię na uniwersytecie w Zurychu. Miał on specjalny lektorat poświęcony związkom aromatycznym, podczas którego pokazywał najbardziej charakterystyczne reakcje. Niestety na początku 1882 roku zmarł, toteż zajęciami podczas wiosennego semestru zajął się jego bliski przyjaciel Viktor Meyer.
Gdy przygotowywał się do zajęć polecił swojemu asystentowi aby przygotował mu próbkę benzenu. Tylko miał być czysty, tak aby pokaz poszedł bez problemów.
W dniu wykładu asystent dostarczył odpowiednią ilość związku. Meyer omówił historię i strukturę benzenu, po czym przeszedł do omawiania reakcji. Można wyobrazić sobie jak mówi studentom, że gdy teraz wytrząsie benzen ze stężonym kwasem i doda izatyny, to zobaczymy piękny niebieski kolor. Następnie tak jak mówił wytrząsa w próbówce benzen i stężony kwas, dodaje izatynę i... nic się nie dzieje. Powtarza reakcję, bo może coś akurat źle zrobił, ale nic nie pomaga. No cóż, tak się czasem zdarza, powtórzymy na następnych zajęciach.

Po skończonym wykładzie zwrócił się zatem do asystenta z delikatnym zapytaniem, co on u licha mu na te zajęcia przygotował. Bo jeśli nie szyny i nie izatyna, to benzen był zły. Asystent, znany później Traugott Sandmeyer bronił się że ależ skąd, przygotował benzen czysty, jak profesor chciał, wszystko wedle przepisu z dekarboksylacji kwasu benzoesowego bo tylko wtedy dawało się otrzymać zupełnie czysty. To już było zastanawiające. Jeszcze tego samego dnia Meyer wziął komercyjnie dostępny benzen otrzymywany z powęglowego benzolu, wytrząsnął z kwasem, dodał izatyny i otrzymał zgodnie z opisem Bayera piękny niebieski barwnik, znany jako indofenina.
Nie wiedząc co z tym faktem począć, wziął większą ilość komercyjnego benzenu, wytrząsnął z kwasem, oddzieloną warstwę kwasową zobojętnił stwierdzając, że wydzieliła mu się rzadka, lekko żółtawa ciecz o charakterystycznym zapachu, która wydawała się identyczna z benzenem. Meyer sądził zatem, że benzen występuje w dwóch formach, jednej mało aktywnej i drugiej "zaktywizowanej" i wchodzącej w reakcję barwną. Powtórzenie reakcji z otrzymaną cieczą pozwoliło mu na wytworzenie większej ilości niebieskiego barwnika, który wysłał do zbadania Bayerowi. Ten orzekł, że faktycznie jest to indofenina, ale zarazem w analizie elementarnej wyszło mu, że związek zawiera siarkę, której nie było w izatynie. Dalsze testy "aktywizowanego benzenu" pokazały, że musi być to substancja różna od benzenu. W odróżnieniu od niego nie krystalizowała w lodzie, i wrzała w temperaturze 84 stopni, w porównaniu z 80 stopni dla benzenu zupełnie czystego. Wreszcie analiza chemiczna wykazała, że jest to związek zawierający jeden atom siarki, cztery atomy węgla i cztery wodoru.
I tak Meyer odkrył Tiofen.

Odkrycie tiofenu zelektryzowało ówczesnych chemików. Okazało się że przez kilka dekad nie zauważyli, że benzen ze smoły węglowej jest mieszanką dwóch związków, przy czym ten drugi, tiofen, stanowił w niektórych partiach do 10%

Tiofen należy do grupy pięciokątnych związków aromatycznych, w których aromatyczność nadaje im zdelokalizowany układ sześciu elektronów - dwóch pochodzących z wiązań podwójnych na części węglowej i jednej wolnej pary pożyczonej z heteroatomu. Pełnowęglowy odpowiednik czyli cyklopentadien nie jest aromatyczny, a dodatkowo efekty antyaromatyczne tylko zmniejszają jego trwałość. Dążąc do utrwalenia chętnie odszczepia jeden wodór tworząc karboanion cyklopentadienylowy który już jest aromatyczny.
Podstawienie jednego węgla w tym układzie heteroatomem posiadającym wolną parę elektronową tworzy aromatyczną cząsteczkę obojętną. Gdy tym atomem jest tlen, otrzymujemy furan, gdy azot jest to pirol. Udało się także otrzymać analogiczne cząsteczki z niektórymi metalami i półmetalami, takie jak silol z krzemem, arsol z arsenem, stannol z cyną a nawet tytanol z tytanem. Zachowują one częściową aromatyczność, ale znacznie osłabioną.

Dziś możemy już odpowiedzieć na pytanie co takiego zachodziło w próbówce Meyera i co właściwie wykrywała reakcja. Tiofen w odróżnieniu od benzenu jest bardziej reaktywny. Tyle samo bo sześć elektronów stłoczonych jest jednak na mniejszym bo pięcioatomowym pierścieniu. Większe zagęszczenie ładunku (oraz karboanionowe struktury mezomeryczne) powoduje, że chętniej reaguje z czynnikami elektrofilowymi. Takim czynnikiem może być też proton uwalniany przez odpowiednio silny kwas.
Podczas wytrząsania benzolu ze stężonym kwasem, tiofen ulegał protonowaniu i w formie jonowej przechodził do warstwy kwasowej. Dalsza reakcja z izatyną jest dość skomplikowana i nie zupełnie rozgryziona, zaczyna się prawdopodobnie od sprotonowania izatyny i wytworzenia formy z ładunkiem dodatnim, która jako elektrofil atakuje cząsteczkę tiofenu. Powstające połączenie dimeryzuje i ulega przegrupowaniu tworząc niebieski barwnik:
Indofenina występuje w kilku izomerach różniących się konformacją trans/cis na wiązaniach podwójnych, w zasadzie więc powstaje mieszanina izomerów. Reakcja ma dziś jeszcze zastosowanie do oznaczania niektórych mało podstawionych pochodnych tiofenu.

Jakie zastosowania ma tiofen?
Jednym które samo się narzuca jest produkcja barwników. Chętnie jest też używany w syntezach nowych leków. Może zastępować pierścień benzenowy bez utraty właściwości leku, a dzięki łatwiejszemu podstawieniu łatwiej jest wytworzyć różnorodne pochodne.
Najciekawszym zastosowaniem jest jednak wytwarzanie politiofenu, polimeru mogącego przewodzić prąd elektryczny.




Spolimeryzowany tiofen po utlenieniu staje się przewodnikiem typu metalicznego. Utleniony tylko częściowo stanowi natomiast organiczny półprzewodnik. Możliwe jest więc wytworzenie na przykład przezroczystej folii przewodzącej prąd, co powinno znaleźć zastosowanie w ogniwach słonecznych. Szersze zastosowanie znalazła dobrze rozpuszczalna pochodna poli(etylenodioksytiofenu) (PEDOT-PSS), która dzięki przewodnictwu jest używana w powłokach antystatycznych, nie pozwalających na elektryzowanie się powierzchni.
Sam poli(etylenodioksytiofen) jest słabo rozpuszczalny w rozpuszczalnikach organicznych. Folie i przewody wytworzone z tego materiału są używane w elastycznych wyświetlaczach OLED.

------------
H. D. Hartough, The Chemistry of Heterocyclic Compounds, Thiophene and Its Derivatives,


* https://en.wikipedia.org/wiki/Thiophene
* https://en.wikipedia.org/wiki/Polythiophene

czwartek, 14 sierpnia 2014

Kiedyś w laboratorium (42.)

Dawno, dawno temu za wieloma latami, uczyłem się bioanalizy i jednym z ćwiczeń było identyfikowanie szczepów bakterii przy pomocy szeregu podłóż różnicujących. Szereg w całości omówię kiedy indziej, natomiast teraz na szybko opowiem o jednym podłożu - agarze TSI czyli trójcukrowy żelazowy.

Jest to podłoże produkowane w formie słupkoskosu - próbówka w części napełniona w całym przekroju, jest to tzw. "słupek", a w części napełniona ukośnie:
Podłoże zawiera barwnik czerwień fenolową, siarczan żelaza, tiosiarczan sodu oraz cukry: laktozę, glukozę i sacharozę. Rozróżnianie bakterii opiera się na strasznie prostej zasadzie - czy bakteria metabolizuje cukry i które i czy przerabia tiosiarczany na siarczki.
Metabolizowanie cukrów powoduje powstanie kwaśnych metabolitów, pod wpływem których czerwień fenolowa robi się żółta. jeśli bakteria fermentuje glukozę, podłoże początkowo będzie żółte, lecz ulatnianie kwaśnych produktów ze skosu spowoduje, że będzie on czerwony a słupek zółty. Metabolizowanie laktozy daje żółte zabarwienie obu części
Jeśli bakteria metabolizuje tiosiarczan do siarkowodoru, zareaguje on z żelazem, dając czarny osad siarczku żelaza. W przypadku badanego szczepu wynik był następujący:
Zmieniona barwa słupka - zatem bakteria metabolizująca glukozę, zapewne enterobakteria. Czarny pierścień - zatem metabolizuje tiosiarczany. W tym przypadku była to salmonella, być może serotypu Typhi, już nie pamiętam.

A teraz na parę dni wyjeżdżam na zlot astronomiczny. Życzcie mi dobrej pogody.

niedziela, 22 września 2013

Cebulowe łzy

O tym dlaczego czosnek śmierdzi a cebula skłania nas do płaczu.

Cebula jadalna to gatunek wieloletniej rośliny, należący formalnie do rodzaju czosnek w ramach szerszej rodziny amarylkowatych, wobec czego jej krewniakiem jest też narcyz. Stanowi składnik ludzkiej diety od kilku tysięcy lat - cebulowe łuski i ślady zwęglonych w ognisku cebulek znane są aż z 5 tysiąclecia przed naszą erą. Były też powszechnie spożywane w starożytnym Egipcie, o czym często wspominają zachowane inskrypcje, stanowiąc obok chleba i piwo podstawę diety klas niższych. Była czczona prawdopodobnie jako jeden z symboli odrodzenia, na co wskazują jej znaleziska w grobowcach i obecność na malowidłach grobowych. Ślady cebulowych łusek znaleziono w oczodołach mumii Ramzesa IV.
W kontekście Egiptu wspomina o niej także Biblia: w Księdze Liczb w rozdziale 11 Izraelici wędrujący przez pustynię zaczynają narzekać na brak dobrego jedzenia, wspominając że w Egipcie mieli pod dostatkiem ryb, ogórków, melonów, cebuli, czosnku i porów, co wskazywałoby na całkiem przyzwoitą dietę jak na przymusowych robotników.
Uprawa cebuli na rysunkach z "ptasiego grobowca" z nekropolii w Sakkarze
Warzywa te znane były też w starożytnej Grecji i Rzymie. W języku łacińskim zwano ją cepa lub zdrobniale cepula, co wpłynęło zarówno na nazwę polską jak i niemiecką (Zwiebel od staroniemieckiego Zwibolle). Cebula uważana była za środek wzmacniający, stąd też zjadali ją gladiatorzy dbający o formę, czosnek miał chronić przed chorobami i złymi duchami, przy czym zwykle był dla tych zastosowań nie jedzony tylko noszony jak amulet; z kolei por był uważany za afrodyzjak. Cesarz Neron zajadał się porem w ogromnych ilościach, uważając go za środek poprawiający jakość głosu, stąd też popularny przydomek "porrophagos" - porożerca.
Czosnek zdobył sobie dużą popularność wśród ludów semickich, najbardziej znani byli z tego Żydzi, regularnie jedzący czosnek w szabat. W późniejszych czasach doprowadziło to do wykształcenia stereotypu Żyda-śmierdziela* Co ciekawe dokładnie przeciwny stosunek mieli do niego Arabowie - w kilku miejscach Koranu wspomniane jest, że osoby jedzące czosnek nie powinny zbliżać się do meczetu lub grup modlących się, i czekać w domu aż przestaną pachnieć. Ostatecznie jednak w Islamie nie jest to warzywo zakazane.

Wszystkie rośliny z tego rodzaju charakteryzuje silny, ostry zapach i smak, spowodowany obecnością wtkankach aktywnego związku siarkoorganicznego Alliiny ulegającego dalszym przemianom podczas krojenia. A przemiany te są nieco bardziej skomplikowane, niż to się nam dotychczas wydawało.
Alliina formalnie rzecz biorąc jest pochodną aminokwasu Cysteiny, w której końcowa siarka została utleniona do sulfotlenku i zalkilowana grupą allilową:

W sulfotlenkach siarka jest na czwartym stopniu utlenienia i formalnie tworzy z tlenem wiązanie podwójne będąc analogiem ketonów, jest ono jednak tak silnie spolaryzowane, że często używa się zapisu jonowego z ładunkiem dodatnim na siarce i ujemnym na tlenie. Przy takiej strukturze jedna z par elektronowych zostaje wolna a jej odpychanie nadaje pozostałym wiązaniom formę piramidy trygonalnej. W efekcie pojawia się asymetria umożliwiająca powstanie dwóch form chiralnych, tak jak to jest w przypadku tetraedrycznym węglem. Alliina ma w związku z tym dwa centra stereogeniczne - na siarce (S) i na węglu (R) w części pochodzącej od aminokwasu.
W chwili wyodrębnienia był to pierwszy znany naturalny związek z takim układem centrów. W Cebuli ponadto występuje izoalliina, z podwójnym wiązaniem przesuniętym o jedno miejsce. Oba związki są bezwonne. Gdy zaczynami kroić, żuć czy rozgniatać cebulki, sytuacja ulega zmianie - ze zniszczonych komórek uwolnione zostają enzymy, głównie allinaza.

Od tego momentu zaczyna się kaskada reakcji: alliinaza hydrolizuje alliinę, dzieląc wiązanie między siarką a węglem części aminokwasowej. Z części siarkowej powstaje kwas 2-propenosulfonowy, a z aminokwasowej dehydroalaniny. Ta ostatnia spontanicznie rozkłada się do amoniaku i kwasu pirogronowego.

Kwas sulfonowy jest cząsteczką nietrwałą, stąd też bardo chętnie reaguje sam ze sobą. Dwie cząsteczki kondensują, tworząc allicynę, będącą głównym składnikiem zapachowym czosnku.

Cebula zawiera zarówno alliinę jak i izoalliinę, z których po reakcji z alliinazą powstaje kwas 2-propenosulfonowy i 1-propenosulfonowy, z ich kondensacji powstaje allicyna, choć raczej w ilościach śladowych, i związki polisiarkowe. A skąd łzy?
Jak dawniej sądzono, przyczyną są kwasy sulfonowe uwalniane do powietrza przed kondensacją, które rozpuszczając się w łzach zakwaszały je wywołując łzawienie. Jednak w 2002 roku odkryto inny mechanizm[1]. Powstający specyficznie w cebuli kwas 1-propenosulfonowy zostaje przekształcony przez kolejny enzym, nazwany syntazą czynnika łzawiącego, czyli w skrócie LFS. Powoduje on przesunięcie jednego wodoru i wiązania podwójnego, tworząc związek z wiązaniem podwójnym między siarką a węglem - propanotial-S-tlenek. Formalnie nadal jest on S-tlenkiem ale bez właściwości kwasowych. Możliwe są dwa położenia tlenu, stąd dwa izomery syn i anti, z przewagą tej pierwszej.
Związek ten jest bardzo łatwo lotny i szybko przedostaje się do powietrza, rozpuszcza w łzach i tutaj podrażnia oko, ale nie poprzez zakwaszanie lecz działanie na receptory bólu. Jest zatem silnym lakrymatorem, którego wydzielanie przez roślinę jest strategią mającą odstraszyć roślinożercę. Właśnie za to odkrycie, ostatecznie tłumaczące sprawę, przyznano tegorocznego Ig-Nobla choć samo w sobie nie jest specjalnie zabawne.

Tak rozpoczęty łańcuch reakcji nie kończy się.  Łzawiący S-tlenek jest cząsteczką aktywną, chętnie więc, zwłaszcza podczas smażenia i gotowania, łączy się sam ze sobą tworząc dipropylodisulfid z mostkiem siarczkowym. Formalnie rzecz biorąc jest to uwodorniona allicyna. Wyjściowy związek ulega też hydrolizie do aldehydu propionowego o ostrym ale raczej owocowym zapachu, ale też kondensacji do związków wielosiarczkowych, nawet cyklicznych, o zapachach ostrych i nieprzyjemnych.
W przypadku czosnku końcowa allicyna jest głównym związkiem o specyficznym zapachu, ale nie jedynym. W wyniku jej rozkładu czy to w organizmie czy podczas gotowania, poprzez redukcję S-tlenek zamienia się w beztlenowy dwusiarczek dwuallilu (DADS), o zapachu jeszcze bardziej nieprzyjemnym. Jest to związek łatwo lotny. Powstając w organizmie podczas trawienia przedostaje się do krwioobiegu, stamtąd w płucach a wreszcie w naszym oddechu wpływając na zapach z ust. Inną pochodną jest dwusiarczek alliowo propylowy, decydujący z kolei o ostrym smaku cebuli. Oba związki są łatwo lotne i odparowują podczas gotowania, stąd słodkawy smak przyrządzonego warzywa. Są też alergenami, stąd możliwość uczulenia na czosnek.
 Możliwe są też pochodne z większą ilością atomów siarki. Gdy czosnek jest macerowany w tłuszczu, czynnik łzawiący łączy się z allicyną tworząc ajoen. Tak więc z jednej czy dwóch cząsteczek może powstać kilkadziesiąt podobnych związków, w tym kilka o działaniu łzawiącym. Ponieważ czosnek nie zawiera enzymu LFS przy jego krojeniu już tak nie płaczemy.

A co zrobić, aby nie płakać przy cebuli? Zbyt dobrych rad nie ma, enzymy przestają działać przy podgrzaniu do 60 stopni, więc być może blanszowanie w wodzie o temperaturze 70-80 stopni i ochłodzenie, powinno spowodować że krojona cebula nie będzie tak działać, zachowując smak. Allinaza praktycznie nie działa w niskich temperaturach, więc można też kroić cebulki ochłodzone wcześniej na górnej półce lodówki do kilku stopni albo krótko w zamrażalniku prawie do zera - taka cebula zacznie działać dopiero po ogrzaniu w sałatce. Oba enzymy przestają też być aktywne przy zakwaszeniu, więc można spróbować zakwaszać cytryną, ale nie do każdych zastosowań się to przyda.
Swój sposób przeprowadzili biotechnolodzy, za pomocą różnych technik hybrydyzacji wyciszając gen produkujący LFS i tworząc "niepłaczliwą" odmianę.[2]

Wszystkie opisane związki mają różnorodne działanie na organizm. Często są bakteriobójcze, mogą obniżać poziom cholesterolu albo zmniejszać krzepliwość; są przeciwutleniaczami, związkami przeciwzapalnymi czy pobudzającymi odpowiedź immunologiczną. Oczywiście roślina nie po to je wytwarza. Ich ostry zapach i drażniące działanie ma odstraszać, zniechęcać roślinożercę do zjadania cebulek. Tego jednak, że znajdzie się zwierzę, które będzie je zjadało właśnie dla tego smaku i zapach, matka natura nie przewidziała.
--------
* Stereotyp ten wykazuje duże podobieństwo do różnych rasistowskich mitów. Jednym z elementów dehumanizacji nienawidzonej grupy, jest zawsze twierdzenie, że jej członkowie są brudni i śmierdzą. Jeszcze na początku XX wieku powszechne było w Ameryce przekonanie, że murzyna można poznać po smrodzie. Identycznie postrzegano w Chinach pierwszych europejczyków. "Zapach Żyda" był też w dawnej Europie uważany za cechę wrodzoną, wywołaną grzechem przodków, którzy nie uznali Jezusa. W jednej z wersji mitu o morderstwach rytualnych, spożywanie macy z krwią miało likwidować ten wrodzony odór. A wszystko przez czosnek...

[1]  Imai S, Akita K, Tomotake M, Sawada H (2006. a) Identification of two novel pigment precursors and a reddish-purple pigment involved in the blue-green discoloration of onion and garlic. J Agric Food Chem 54 843–847.
[2]  Colin C. Eady, Takahiro Kamoi, [...], and Shinsuke Imai, Silencing Onion Lachrymatory Factor Synthase Causes a Significant Change in the Sulfur Secondary Metabolite Profile, Plant. Physiol. August 2008 147(4) 2096-2106

*http://en.wikipedia.org/wiki/Garlic
*http://en.wikipedia.org/wiki/Onion
*http://pl.wikipedia.org/wiki/Alliina
*http://de.wikipedia.org/wiki/Alliin
*http://en.wikipedia.org/wiki/Alliin
*http://en.wikipedia.org/wiki/Allicin
*http://en.wikipedia.org/wiki/Alliinase
* http://en.wikipedia.org/wiki/Syn-propanethial-S-oxide
*http://en.wikipedia.org/wiki/Diallyl_disulfide
*http://antaryamin.wordpress.com/2012/07/08/what-islam-says-about-eating-onion-and-garlic/
*http://www.touregypt.net/featurestories/neferherenptaht.htm
*http://onions-usa.org/all-about-onions/history-of-onions

sobota, 18 sierpnia 2012

Smocza krew

Nie miałem ostatnio zbyt dużo okazji aby pisać, stąd trochę zaległości na blogu. Aby się rozruszać skrobnę dziś notkę na temat ciekawego związku chemicznego - kompleksu, z powodu intensywnie czerwonej barwy nazywanego smoczą krwią. A przy okazji będzie też coś niecoś o tym dlaczego musztarda jest ostra, z czego robi się sztuczną krew i jaki ma to związek z chorobami płuc.

Chodzi tu po prostu o tiocyjanian żelaza III. Cyjanki i ich związki już omawiałem, żelazocyjanki też, więc będzie to w sumie trzeci wpis krążący wokół prostych nieorganicznych pseudohalogenów.
W anionie cyjankowym, jak wiadomo, mamy do czynienia z  węglem i azotem połączonymi silnym wiązaniem potrójnym. Na węglu pozostaje możliwość wytworzenia jednego wiązania chemicznego, zaś na azocie wolna para elektronowa umożliwia tworzenie związków kompleksowych.
Natomiast w tiocyjanianach do jonu dołączona została siarka, co skutkuje dwiema możliwymi strukturami elektronowymi:
Podobny związek może tworzyć tlen, są to cyjaniany i izocyjaniany.
Najprostszy sposób otrzymania tiocyjanianów to stapianie cyjanków z siarką, lub reakcja ich roztworów z tiosiarczanem sodu. Tak też postąpił Buchholz w 1798 roku. Wkrótce też stwierdzono że ten nowy związek w połączeniu z solami żelaza daje połączenie o intensywnie czerwonym kolorze, toteż przez analogię do cyjanków, nazwanych od koloru błękitu pruskiego, nowy związek nazwano rodankiem (od greckiego rhodon - czyli róża). W warunkach kwaśnych tworzy łatwo lotny tiocyjan, zaliczany do grupy pseudohalogenów - ma bowiem właściwości podobne do fluorowców: tworzy aniony jednoujemne, tworzy dimery jak Cl2 [tiocyjanogen (SCN)2] , jest lotny, po rozpuszczeniu w wodzie daje kwas, z metalami ciężkimi i srebrem daje nierozpuszczalne osady, roztwarzające się w nadmiarze odczynnika, w solach tworzy strukturę krystaliczną regularną. W zasadzie najbardziej jest podobny do jodu.

A jak rzecz się ma z tytułowym związkiem? Oczywiście jony żelaza tworzą z jonami tiocyjanianowymi sole, rzecz jest jednak bardziej skomplikowana jeśli zauważyć, że reakcję przeprowadza się w wodzie. Sposób rozpisywania dysocjacji soli, jakiego uczą w szkołach, jest bowiem dosyć mocno uproszczony - sole w takim zapisie rozpadają się na wolne jony tak, jakby rzecz zachodziła w próżni.
FeCl3 + → Fe3+  + 3 Cl
W rzeczywistości czynnikiem wywołującym dysocjację jest woda, która oddziałując na sieć krystaliczną związku prowokuje jej pękanie. Cząsteczki wody, choć elektrycznie obojętne, mają jednak ładunek rozłożony nierównomiernie stając się dipolem z nieco bardziej ujemnym tlenem i nieco bardziej dodatnimi wodorami. Skoro tak, to mogą być przyciągane jednym lub drugim końcem przez posiadające ładunek kationy lub aniony, w efekcie jon zostaje szczelnie otoczony przez 4-8 cząsteczek wody

Ponieważ ładunek kationu nadal występuje, a tylko rozłożył się na większą powierzchnię, do tej warstewki mogą przyłączać się kolejne, coraz bardziej nietrwałe i ruchliwe, aż do 4-5 warstw nazywanych łącznie otoczką solwatacyjną. W przypadku kationów żelaza połączenie z najbliższymi cząsteczkami wody przybiera formę kompleksu, zaś przenoszenie ładunku między cząsteczkami rozpuszczalnika i kationu skutkuje pomarańczową barwą roztworu *. Co to zaś ma do rodanku żelaza?
Gdy zmieszamy związek żelaza III z solą tiocyjanianową, kolejne aniony zastępują cząsteczki zsolwatowanej wody, tworząc  skomplikowane kompleksy o barwie znacznie bardziej intensywnej, głównie Fe[(SCN)(H2O)5] 2+ i Fe[(SCN)3(H2O)3 ] grupujące się w wielocząsteczkowe agregaty.
Już dla niedużych stężeń roztwór przybiera kolor świeżej krwi:
Stąd zwyczajowa nazwa. Zresztą używa się takich roztworów (po dodaniu zagęstników) do produkcji sztucznej krwi o dużej trwałości. Barwa jest zauważalna jeszcze przy stężeniu 0,00001 % stąd jej wykorzystanie do bardzo czułego oznaczania obecności żelaza

Tiocyjaniany występują w naturze stosunkowo pospolicie. Jak to już opisywałem przy cyjankach, powstają w organizmie jako produkt naturalnej detoksykacji cyjanków, będąc od nich blisko 100 razy mniej toksyczne. Już w 1824 roku stwierdzono jego obecność w ślinie, zauważając że zmieszana z solami żelaza daje w kwaśnym środowisku różowe zabarwienie. Dosyć duże ilości tiocyjanianów zawierają rośliny z rodziny kapustowatych (dawniej Krzyżowe), a więc kapusta, gorczyca, rzeżucha, rzodkiewnik, rzodkiew, chrzan, wasabi i wiele innych, stanowiąc składnik olejków nadających im ostry, piekący smak. Produkowane przez nie glikozydy tiocyjanogenne głównie synigryna i sinalbina pod wpływem enzymów rozkładają się z wydzieleniem izotiocyjanianu allilu (CH2CHCH2NCS), nazywanego olejkiem gorczycowym, o bardziej intensywnym smaku. Rozkład zachodzi po uszkodzeniu rośliny co wraz z właściwościami drażniącymi wskazuje, że związki te są obroną przed roślinożercami. Powstają też podczas przetwarzania roślin, podpowiadając za smak musztardy, tartego chrzanu i kaparów. Mają też wyraźne właściwości przeciwbakteryjne i owadobójcze - olejek gorczycowy może być używane jako insektycyd.

Kwestia właściwości bakteriobójczych izotiocyjanianu jest ciekawa, gdyż mechanizm ten jest wykorzystywany przez zwierzęta. Aniony SCN- wydzielane przez błony śluzowe dróg oddechowych, pod wpływem enzymu laktoperoksydazy, łączą się z nadtlenkami powstającymi jako uboczny skutek oddychania, tworząc hypotiocyjanian (OSCN) który atakuje bakterie prowadząc do ich śmierci. Równocześnie nie atakuje własnych komórek organizmu zwierzęcego, w przeciwieństwie do nadtlenków mających podobne właściwości. Hypotiocyjanian, wraz z lizozymem stanowi podstawowy czynnik broniący błony śluzowe przez zakażeniami, toteż występuje także w łzach, ślinie, wydzielinie z nosa i mleku. Największe poziomy tego związku stwierdzono w tzw. "siarze" - pierwszych porcjach mleka matki, pojawiających się niedługo po porodzie, której składniki mają zastępować niedojrzałą obronę układu pokarmowego dziecka. Z tego powodu mleko matki i mleko krowie dosłownie prosto z sutka, jest w zasadzie sterylne.
Jeśli u kogoś system ten szwankuje, staje się podatny na zakażenia płuc - takimi osobami są na przykład chorzy na mukowiscydozę. Genetyczne zmiany powodujące wydzielanie nadmiernej ilości gęstego śluzu, wywołują także zaburzenie mechanizmu izotiocyjanianowego, stąd częste zakażenia gronkowcem złocistym i innymi chorobami. Te zaburzenia może łagodzić suplementacja izotiocyjanianu i laktoperoksydazy. Nie znalazłem natomiast nic o tym, czy podobne złagodzenie braku odporności może dawać dieta bogata w rodanki.

Oprócz tych pozytywnych skutków, powodujących że rośliny zawierające rodanki powinny być spożywane, istnieje też pewien skutek negatywny. Tiocyjanian jest na tyle podobny do jodu, że organizm może pomylić obie te substancje. Gdy w diecie pojawia się zbyt dużo rodanków, są one wychwytywane przez tarczycę. Gdy tarczyca uzna że jest odpowiednio nasycona, przestaje wchłaniać jod. Jednak z rodanków nie da się wytworzyć hormonów tarczycowych więc w organizmie pojawia się niedobór, rekompensowany przez powiększenie organu. Jeśli więc u jakiejś osoby już zachodziła niedoczynność tarczycy, albo też jej dieta była uboga w jod, to zjadanie dużej ilości kapusty, gorczycy czy rzodkiewki może u niej spowodować powstanie wola. O produktach mających takie działanie mówi się, że są wolotwórcze.

Na koniec powrócę jeszcze do głównego tematu posta - do smoczej krwi. Reakcja powstawania kompleksu jest na tyle czuła, że używa się jej w analityce. Jedną z metod analizy strąceniowej jest oznaczanie chlorków metodą Volharda - do roztworu o nieznanym stężeniu chlorków dodaje się nadmiar soli srebra. Pozostała nie strącona ilość srebra jest odmiareczkowana przy pomocy rodanku amonu wobec dodatku soli żelaza. Dopóki w roztworze jest jeszcze srebro, tworzy z rodankiem biały osad. Gdy wytrąci się całe, kolejne porcje odczynnika reagują z żelazem dając nasz kompleks o wyraźnym zabarwieniu. Odejmując odmiareczkowany nadmiar od całkowitej ilości srebra w dodanym na początku roztworze, otrzymujemy ilość chlorków w roztworze badanym.

Podczas pierwszych lekcji analityki, gdzie omawialiśmy między innymi tą reakcję, dokonałem przypadkowego odkrycia - kropla roztworu barwnika, kapnięta na kartkę papieru zeszytowego, odbarwiła się całkowicie w ciągu kilku sekund. Zaciekawiony wydarłem z zeszytu pasek papieru i wrzuciłem do próbówki pełnej roztworu (nie tej ze zdjęcia) stwierdzając że kilka centymetrów kwadratowych kartki wystarczy aby odbarwić ok 10 ml roztworu. Nie bardzo wiedziałem jednak na czym polega reakcja. Albo zachodziła adsorpcja barwnika przez włókna papieru lub drobinki wypełniacza - co mogłem odrzucić, bo papier się nie barwił. Mogło być też, że wspomniane agregaty cząstek kompleksu ulegały rozbiciu po adsorpcji na papierze i na tyle osłabła ich barwa, że przestała być widoczna - co jednak odrzuciłem, bo reakcja zachodziła też w wodzie w której moczył się papier. Musiała być to zatem reakcja z czymś rozpuszczalnym. Początkowo obstawiałem, że może być to klej użyty do wzmocnienia masy papierowej, zważywszy że używa się w tym celu głównie dekstryn podobnych co skrobii, a skrobia może kompleksować jod, do którego rodanki są bardzo podobne. Inną możliwością było natomiast, że żelazo zawarte w kompleksie zostało przez coś zredukowane, dając nietrwały i bezbarwny kompleks rodanku żelaza II. Aby to sprawdzić na kolejnych zajęciach kapnąłem kroplę wody chlorowej na to miejsce zeszytu, gdzie wcześniej robiłem próby z kompleksem, i na powrót pojawiło się słabe, różowe zabarwienie - co mogłoby potwierdzać teorię, choć woda chlorowa jako agresywny odczynnik mogla oddziaływać też na kompleks rodanko-dekstrynowy. Niestety nie miałem jak dotąd okazji aby tę kwestię dokładniej przebadać, choć jak teraz sądzę czynnikiem sprawczym jest tutaj ditionian, dodawany jako reduktor do masy papierowej aby wolniej żółkła.
-------
* żeby nie wdawać się w poboczne wątki - pomarańczowy kolor to wynik kompleksów częściowo zhydrolizowanych, zamiast jednej-trzech cząsteczek wody zawierających aniony OH-, pełny akwajon jest słabo liliowy lub bezbarwny co można zauważyć w roztworach silnie kwaśnych gdzie hydroliza zostaje odwrócona - więcej na tej stronie.
Nieco informacji o związku:
http://www.md-institute.com/cms/ressorts/hygiene-antiseptik/Anorganische-Thiocyanate.pdf

sobota, 16 kwietnia 2011

Brązowienie słoneczników i ultramaryna

Informację o tym, że "Słoneczniki" Van Gogha brązowieją, i że jest to wynik specyficznych reakcji chemicznych, znalazłem dopiero w kwietniowym numerze National Geographic, choć jak widzę, w lutym rozpisywały się o niej media. Nie wiem jak mogłem to przeoczyć. Skoro jednak dowiedziałem się, i pogrzebałem dokładniej w temacie, uznałem że może w nowej notce nie opowiem o świeżej informacji, ale może zrobię to lepiej i dokładniej. I po chemicznemu.


Słoneczniki
"Słoneczniki" to chyba jeden z najbardziej znanych obrazów Van Gogha. Mi osobiście bardziej podobają się jego obrazy krajobrazowe, jak na przykład "Gwiaździsta noc" czy "Droga z cyprysami", ale de gustibus est not disputandum więc nie w sposób się spierać o to, który jest znańszy a który ładniejszy.
Ów impresjonista z wyraźnymi odchyłami psychicznymi, uwielbiał rozedrgane, pulsujące, jaskrawe obrazy. Bardziej liczyło się u niego wrażenie - impresja - i emocje wywołane widokiem, aniżeli dokładność odwzorowania. Słoneczniki należały chyba do jego ulubionych kwiatów, łącznie bowiem namalował siedem wersji słoneczników w wazonie, różniących się efektami kolorystycznymi i fakturą farby. Dla osiągnięcia odpowiednich efektów chętnie używał żółci chromowej - jaskrawego pigmentu, który w owym czasie był jeszcze stosunkowo nowym odkryciem. I to właśnie stało się zalążkiem problemów. Oto bowiem Słoneczniki, i inne obrazy z przewagą żółci, brązowieją, ciemnieją, i przez długi czas nie było wiadomo dlaczego tak się dzieje.

Żółć chromowa to Chromian (VI) ołowiu - PbCrO4 - nieorganiczna sól zawierająca chrom na najwyższym stopniu utleniania +6. Związek, zależnie od sposobu otrzymania i rozdrobnienia, przyjmuje barwy od intensywnej żółci do jasnej czerwieni. W naturze występuje jako minerał Krokoit. Choć jest w zasadzie nierozpuszczalny w wodzie, uważa się go za silną truciznę, która - jak wszystkie chromiany na tym stopniu utlenienia - ma własności rakotwórcze. Najczęściej otrzymuje się go sztucznie, mieszając roztwory chromianu VI potasu i azotanu V ołowiu
K2CrO4 + Pb(NO3)2 → PbCrO4↓ + 2KNO3
Vincent van Gogh chętnie używał tego barwnika i, jak to już było powiedziane, obrazy ciemniały. Ta specyfika żółcieni chromowej była zresztą znana o dawna, i już w czasach malarza mogła by zauważalna. Znalazłem informację, że w farbach olejowych, pigment ten, podobnie jak również oparta na chromianach żółć barytowa, potrafi wręcz zzielenieć na słońcu [1]. Zauważono jednak, że nie wszystkie obrazy ciemniały w takim samym stopniu. Proces przebiegał znacznie szybciej na obrazach rozjaśnianych białymi barwnikami. Media ironizowały, że wybielenie wywołało pociemnienie. Co takiego jednak zachodziło?