Chodzi tu po prostu o tiocyjanian żelaza III. Cyjanki i ich związki już omawiałem, żelazocyjanki też, więc będzie to w sumie trzeci wpis krążący wokół prostych nieorganicznych pseudohalogenów.
W anionie cyjankowym, jak wiadomo, mamy do czynienia z węglem i azotem połączonymi silnym wiązaniem potrójnym. Na węglu pozostaje możliwość wytworzenia jednego wiązania chemicznego, zaś na azocie wolna para elektronowa umożliwia tworzenie związków kompleksowych.
Natomiast w tiocyjanianach do jonu dołączona została siarka, co skutkuje dwiema możliwymi strukturami elektronowymi:
Podobny związek może tworzyć tlen, są to cyjaniany i izocyjaniany.
Najprostszy sposób otrzymania tiocyjanianów to stapianie cyjanków z siarką, lub reakcja ich roztworów z tiosiarczanem sodu. Tak też postąpił Buchholz w 1798 roku. Wkrótce też stwierdzono że ten nowy związek w połączeniu z solami żelaza daje połączenie o intensywnie czerwonym kolorze, toteż przez analogię do cyjanków, nazwanych od koloru błękitu pruskiego, nowy związek nazwano rodankiem (od greckiego rhodon - czyli róża). W warunkach kwaśnych tworzy łatwo lotny tiocyjan, zaliczany do grupy pseudohalogenów - ma bowiem właściwości podobne do fluorowców: tworzy aniony jednoujemne, tworzy dimery jak Cl2 [tiocyjanogen (SCN)2] , jest lotny, po rozpuszczeniu w wodzie daje kwas, z metalami ciężkimi i srebrem daje nierozpuszczalne osady, roztwarzające się w nadmiarze odczynnika, w solach tworzy strukturę krystaliczną regularną. W zasadzie najbardziej jest podobny do jodu.
A jak rzecz się ma z tytułowym związkiem? Oczywiście jony żelaza tworzą z jonami tiocyjanianowymi sole, rzecz jest jednak bardziej skomplikowana jeśli zauważyć, że reakcję przeprowadza się w wodzie. Sposób rozpisywania dysocjacji soli, jakiego uczą w szkołach, jest bowiem dosyć mocno uproszczony - sole w takim zapisie rozpadają się na wolne jony tak, jakby rzecz zachodziła w próżni.
FeCl3 + → Fe3+ + 3 Cl−
W rzeczywistości czynnikiem wywołującym dysocjację jest woda, która oddziałując na sieć krystaliczną związku prowokuje jej pękanie. Cząsteczki wody, choć elektrycznie obojętne, mają jednak ładunek rozłożony nierównomiernie stając się dipolem z nieco bardziej ujemnym tlenem i nieco bardziej dodatnimi wodorami. Skoro tak, to mogą być przyciągane jednym lub drugim końcem przez posiadające ładunek kationy lub aniony, w efekcie jon zostaje szczelnie otoczony przez 4-8 cząsteczek wodyPonieważ ładunek kationu nadal występuje, a tylko rozłożył się na większą powierzchnię, do tej warstewki mogą przyłączać się kolejne, coraz bardziej nietrwałe i ruchliwe, aż do 4-5 warstw nazywanych łącznie otoczką solwatacyjną. W przypadku kationów żelaza połączenie z najbliższymi cząsteczkami wody przybiera formę kompleksu, zaś przenoszenie ładunku między cząsteczkami rozpuszczalnika i kationu skutkuje pomarańczową barwą roztworu *. Co to zaś ma do rodanku żelaza?
Gdy zmieszamy związek żelaza III z solą tiocyjanianową, kolejne aniony zastępują cząsteczki zsolwatowanej wody, tworząc skomplikowane kompleksy o barwie znacznie bardziej intensywnej, głównie Fe[(SCN)(H2O)5] 2+ i Fe[(SCN)3(H2O)3 ]0 grupujące się w wielocząsteczkowe agregaty.
Już dla niedużych stężeń roztwór przybiera kolor świeżej krwi:
Stąd zwyczajowa nazwa. Zresztą używa się takich roztworów (po dodaniu zagęstników) do produkcji sztucznej krwi o dużej trwałości. Barwa jest zauważalna jeszcze przy stężeniu 0,00001 % stąd jej wykorzystanie do bardzo czułego oznaczania obecności żelaza
Tiocyjaniany występują w naturze stosunkowo pospolicie. Jak to już opisywałem przy cyjankach, powstają w organizmie jako produkt naturalnej detoksykacji cyjanków, będąc od nich blisko 100 razy mniej toksyczne. Już w 1824 roku stwierdzono jego obecność w ślinie, zauważając że zmieszana z solami żelaza daje w kwaśnym środowisku różowe zabarwienie. Dosyć duże ilości tiocyjanianów zawierają rośliny z rodziny kapustowatych (dawniej Krzyżowe), a więc kapusta, gorczyca, rzeżucha, rzodkiewnik, rzodkiew, chrzan, wasabi i wiele innych, stanowiąc składnik olejków nadających im ostry, piekący smak. Produkowane przez nie glikozydy tiocyjanogenne głównie synigryna i sinalbina pod wpływem enzymów rozkładają się z wydzieleniem izotiocyjanianu allilu (CH2CHCH2NCS), nazywanego olejkiem gorczycowym, o bardziej intensywnym smaku. Rozkład zachodzi po uszkodzeniu rośliny co wraz z właściwościami drażniącymi wskazuje, że związki te są obroną przed roślinożercami. Powstają też podczas przetwarzania roślin, podpowiadając za smak musztardy, tartego chrzanu i kaparów. Mają też wyraźne właściwości przeciwbakteryjne i owadobójcze - olejek gorczycowy może być używane jako insektycyd.
Kwestia właściwości bakteriobójczych izotiocyjanianu jest ciekawa, gdyż mechanizm ten jest wykorzystywany przez zwierzęta. Aniony SCN- wydzielane przez błony śluzowe dróg oddechowych, pod wpływem enzymu laktoperoksydazy, łączą się z nadtlenkami powstającymi jako uboczny skutek oddychania, tworząc hypotiocyjanian (OSCN) który atakuje bakterie prowadząc do ich śmierci. Równocześnie nie atakuje własnych komórek organizmu zwierzęcego, w przeciwieństwie do nadtlenków mających podobne właściwości. Hypotiocyjanian, wraz z lizozymem stanowi podstawowy czynnik broniący błony śluzowe przez zakażeniami, toteż występuje także w łzach, ślinie, wydzielinie z nosa i mleku. Największe poziomy tego związku stwierdzono w tzw. "siarze" - pierwszych porcjach mleka matki, pojawiających się niedługo po porodzie, której składniki mają zastępować niedojrzałą obronę układu pokarmowego dziecka. Z tego powodu mleko matki i mleko krowie dosłownie prosto z sutka, jest w zasadzie sterylne.
Jeśli u kogoś system ten szwankuje, staje się podatny na zakażenia płuc - takimi osobami są na przykład chorzy na mukowiscydozę. Genetyczne zmiany powodujące wydzielanie nadmiernej ilości gęstego śluzu, wywołują także zaburzenie mechanizmu izotiocyjanianowego, stąd częste zakażenia gronkowcem złocistym i innymi chorobami. Te zaburzenia może łagodzić suplementacja izotiocyjanianu i laktoperoksydazy. Nie znalazłem natomiast nic o tym, czy podobne złagodzenie braku odporności może dawać dieta bogata w rodanki.
Oprócz tych pozytywnych skutków, powodujących że rośliny zawierające rodanki powinny być spożywane, istnieje też pewien skutek negatywny. Tiocyjanian jest na tyle podobny do jodu, że organizm może pomylić obie te substancje. Gdy w diecie pojawia się zbyt dużo rodanków, są one wychwytywane przez tarczycę. Gdy tarczyca uzna że jest odpowiednio nasycona, przestaje wchłaniać jod. Jednak z rodanków nie da się wytworzyć hormonów tarczycowych więc w organizmie pojawia się niedobór, rekompensowany przez powiększenie organu. Jeśli więc u jakiejś osoby już zachodziła niedoczynność tarczycy, albo też jej dieta była uboga w jod, to zjadanie dużej ilości kapusty, gorczycy czy rzodkiewki może u niej spowodować powstanie wola. O produktach mających takie działanie mówi się, że są wolotwórcze.
Na koniec powrócę jeszcze do głównego tematu posta - do smoczej krwi. Reakcja powstawania kompleksu jest na tyle czuła, że używa się jej w analityce. Jedną z metod analizy strąceniowej jest oznaczanie chlorków metodą Volharda - do roztworu o nieznanym stężeniu chlorków dodaje się nadmiar soli srebra. Pozostała nie strącona ilość srebra jest odmiareczkowana przy pomocy rodanku amonu wobec dodatku soli żelaza. Dopóki w roztworze jest jeszcze srebro, tworzy z rodankiem biały osad. Gdy wytrąci się całe, kolejne porcje odczynnika reagują z żelazem dając nasz kompleks o wyraźnym zabarwieniu. Odejmując odmiareczkowany nadmiar od całkowitej ilości srebra w dodanym na początku roztworze, otrzymujemy ilość chlorków w roztworze badanym.
Podczas pierwszych lekcji analityki, gdzie omawialiśmy między innymi tą reakcję, dokonałem przypadkowego odkrycia - kropla roztworu barwnika, kapnięta na kartkę papieru zeszytowego, odbarwiła się całkowicie w ciągu kilku sekund. Zaciekawiony wydarłem z zeszytu pasek papieru i wrzuciłem do próbówki pełnej roztworu (nie tej ze zdjęcia) stwierdzając że kilka centymetrów kwadratowych kartki wystarczy aby odbarwić ok 10 ml roztworu. Nie bardzo wiedziałem jednak na czym polega reakcja. Albo zachodziła adsorpcja barwnika przez włókna papieru lub drobinki wypełniacza - co mogłem odrzucić, bo papier się nie barwił. Mogło być też, że wspomniane agregaty cząstek kompleksu ulegały rozbiciu po adsorpcji na papierze i na tyle osłabła ich barwa, że przestała być widoczna - co jednak odrzuciłem, bo reakcja zachodziła też w wodzie w której moczył się papier. Musiała być to zatem reakcja z czymś rozpuszczalnym. Początkowo obstawiałem, że może być to klej użyty do wzmocnienia masy papierowej, zważywszy że używa się w tym celu głównie dekstryn podobnych co skrobii, a skrobia może kompleksować jod, do którego rodanki są bardzo podobne. Inną możliwością było natomiast, że żelazo zawarte w kompleksie zostało przez coś zredukowane, dając nietrwały i bezbarwny kompleks rodanku żelaza II. Aby to sprawdzić na kolejnych zajęciach kapnąłem kroplę wody chlorowej na to miejsce zeszytu, gdzie wcześniej robiłem próby z kompleksem, i na powrót pojawiło się słabe, różowe zabarwienie - co mogłoby potwierdzać teorię, choć woda chlorowa jako agresywny odczynnik mogla oddziaływać też na kompleks rodanko-dekstrynowy. Niestety nie miałem jak dotąd okazji aby tę kwestię dokładniej przebadać, choć jak teraz sądzę czynnikiem sprawczym jest tutaj ditionian, dodawany jako reduktor do masy papierowej aby wolniej żółkła.
-------
* żeby nie wdawać się w poboczne wątki - pomarańczowy kolor to wynik kompleksów częściowo zhydrolizowanych, zamiast jednej-trzech cząsteczek wody zawierających aniony OH-, pełny akwajon jest słabo liliowy lub bezbarwny co można zauważyć w roztworach silnie kwaśnych gdzie hydroliza zostaje odwrócona - więcej na tej stronie.
Nieco informacji o związku:
http://www.md-institute.com/cms/ressorts/hygiene-antiseptik/Anorganische-Thiocyanate.pdf
Na pokazach robiliśmy tak sztuczną krew. Dzieciom bardzo się podobało. :)
OdpowiedzUsuńWitam
OdpowiedzUsuńZnalazłem namiary do Ciebie na blogu pewnego endokrynologa i poleciłeś artykuł ze strony fundacji Westona Price o debacie o jodzie. Artykuł jest już po polsku.
"Mimo, że doktor Weston Price znalazł zdrowe populacje, które spożywały stosunkowo mało jodu, to badania wykazują, że współcześnie większość ludzi najlepiej radzi sobie przy górnej granicy skali, przyjmując około 1000 mcg na dzień. Często zapomina się o tym, że wiele czynników we współczesnej diecie wpływa negatywnie na pracę tarczycy i zwiększa nasze zapotrzebowanie na jod – nie tylko ekspozycja na halogeny takie jak fluor, chlor i brom, ale także niedobory w witaminie A, B6, selenie i magnezie. Zmniejszona ekspozycja na halogeny i obfite zażywanie tych kluczowych składników zmniejsza nasze zapotrzebowanie na jod.
W latach 70. badacze brali pod uwagę kwas linolowy omega-6 jako lekarstwo na nadczynność tarczycy.
Jod na skórę jest świetnym lekarstwem na zmiany przednowotworowe, pieprzyki, keloidy i inne problemy skórne. Wg doktora Davida Derry,
„…skłonność jodu do wywoływania naturalnej śmierci komórek (apoptoza) czyni go efektywnym przeciwko zmiano przednowotworowym, a prawdopodobnie także wielu nowotworowym. Dany obszar wymieniany jest na zdrową skórę.”
Jod może być pomocny również w leczeniu innych rodzajów raka, ponieważ indukuje apoptozę – zaprogramowaną śmierć komórek. Apoptoza jest kluczowa dla wzrostu i rozwoju (palce u dłoni płodu kształtują się właśnie przez apoptozę tkanki pomiędzy nimi), a także dla niszczenia komórek, które stanowią zagrożenie dla integralności organizmu, jak komórki rakowe czy komórki zainfekowane wirusami. W pewnym eksperymencie, ludzkie komórki raka płuc, które połączono z genami stymulującymi wychwytywanie i zużycie jodu, przeszły apoptozę i zmniejszyły się gdy dodano jod – tak w przypadku in vitro (poza ciałem) jak i w przypadku wszczepienia ich do żywych myszy. Niektórzy przewidują więc szersze wykorzystanie jodu w leczeniu raka."
Wielka debata o jodzie - Sally Fallon Morell