informacje



Pokazywanie postów oznaczonych etykietą fluor. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą fluor. Pokaż wszystkie posty

niedziela, 25 września 2022

Chemiczne wieści (25.)

Witam po przerwie


Prostsza degradacja trwałych zanieczyszczeń

Zanieczyszczenia chemiczne odporne na degradację zwracają w ostatnich latach coraz większą uwagę. Niektóre substancje krążą w biosferze od dawna i jeszcze będą wypływać przez lata. W osadach rzecznych wielu krajów nadal tkwią chlorowane bifenole, wycofane w większości w latach 80. po wykazaniu ich toksyczności i wracają na powierzchnię podczas większych powodzi. 

Jedną taką grupą trwałych zanieczyszczeń są związki perfluorowane, to jest z wszystkimi atomami wodoru zamienionymi na fluor. Fluorowanie węglowodory są stosowane w powłokach wodoodpornych, farbach, materiałach nieprzemakalnych, opakowaniach żywności i materiałach izolacyjnych. Jeden z nich PFOA jest stosowany przy produkcji teflonu i stanowi pozostałość w produktach z teflonem nie przetwarzanym termicznie (przy produkcji patelni jest zgrzewany i zwykle w powłoce jest tego zanieczyszczenia mało) - ale trend jaki widzę w artykułach, aby wszystkie uwolnienia substancji perfluorowanych utożsamiać z produkcją teflonu przez jedną firmę, to nadmierne uproszczenie. 

Kwas perfluoromasłowy

 

Wpływ takich związków na zdrowie jest słabo poznany ale prawdopodobnie są toksyczne dla tarczycy.

Problem z ich uwalnianiem polega na tym, że są bardzo trwałe. Wiązanie węgiel - fluor ma dużą trwałość i nie jest rozbijane przez mikroorganizmy, trudno też je rozerwać przez czynniki fizyczne. Rozpad długich cząsteczek zwykle zaczyna się od wymiany podstawnika przy węglu na inny, wchodzący w różnorodne reakcje. Jeśli cała duża cząsteczka organiczna jest "pokryta" podstawnikami fluorowymi, czynniki środowiskowe nie mają jak jej naruszyć.  W związku z tym substancje takie trwają w środowisku niezmienione przez lata. Z drugiej strony ich usunięcie ze ścieków i odpadów przemysłowych jest trudne bo wymaga agresywnych warunków, które w dużej skali są drogie i niebezpieczne. Dla odpadów suchych i stałych główną metodą unieszkodliwiania jest spalanie, co ze względu na powstający fluorowodór wymaga specjalnej aparatury. Dla odpadów wodnych zawierających niewielką ilość PFAS jest mniej dostępnych technik. Testowane było w ostatnich latach rozwiązanie wykorzystujące wodę w stanie nadkrytycznym do utleniającej degradacji, przy wysokim ciśnieniu i temperaturze 400 stopni.  Zamiast tego gromadzenie odpadów płynnych i stałych z tymi związkami w beczkach i cysternach to nie jest rozwiązanie. Dlatego najnowsze odkrycie, że można je zdegradować do nietoksycznych produktów w dość łagodnych warunkach daje szansę na zmniejszenie uwalniania do środowiska.

Grupa badaczy z USA i Chin skupiła się na związkach perfluorowanych z grupą karboksylową na jednym z końców. Jest to w zasadzie jedyny punkt, w którym cząsteczka może z czymś reagować. Postanowiono wykorzystać znaną już wcześniej reakcję dekarboksylacji w warunkach zasadowych pod wpływem wodorotlenku sodu. Oczekiwano, że dojdzie do odszczepienia grupy -COOH, pozostanie perfluorowany ogon podstawiony grupą alkoholową, z możliwością utleniania i odczepiania węgla po węglu.

Efekty podczas pierwszych prób przeszły jednak oczekiwania. Zaszła szybka degradacja do małocząsteczkowych produktów. Z długiego łańcucha zaczęły nagle odpadać kolejne fluoru a pozbawiony ich ochrony związek utleniał się i rozpadał tworząc produkty z jednym, dwoma i trzeba atomami węgla. Bardzo ciekawe. Właściwie sprzeczne z teorią. Potrzeba było wielu analiz związków pośrednich i obliczeń mechanizmów prowadzących do postawienia i defluoryzacji aby zrozumieć co takiego dzieli cząsteczki od razu na kilka kawałków.

Wydedukowano a potem potwierdzono przez wykrycie związków pośrednich mechanizm który za to odpowiada. W pierwszym etapie następuje normalna dekarboksylacja jak to oczekiwano. Tuż po usunięciu grupy karboksylowej w jej miejscu na chwilę pozostaje ładunek ujemny. Powstaje karboanion organiczny. Chętnie łączy się on z dowolnym protonem jaki tylko znajdzie i w szybkiej reakcji tworzy związek z jednym wodorem zamiast fluoru. Jednak w takich warunkach jak prowadzone i takim rozpuszczalniku karboanion ma większą trwałość. Część cząsteczek zostaje w takiej formie a te które złapały jakiś proton zaraz go tracą z powodu jego kwasowości (równowaga reakcji jest silnie przesunięta). Skoro więc dużo związku pozostaje dłużej w takiej formie, jest czas aby zaszedł proces znany z chemii węglowodorów - ładunek ujemny wędruje po cząsteczce tworząc i zrywając wiązania. Następujące przegrupowanie tworzy wiązania podwójne węgiel - węgiel przez co konieczne jest odrzucenie fluoru. Powstający nienasycony związek nie jest już taki odporny na reakcję. Następuje przyłączenie grupy OH do wiązania podwójnego z powstaniem kolejnego karboanionu. A ten jest stabilizowany przez warunki, zachodzi przegrupowanie, odszczepienie fluoru, powstanie wiązania podwójnego, które reaguje z grupą OH... I tak dalej wiele razy aż łańcuch popęka. Ostatecznie głównymi produktami degradacji jest dwutlenek węgla, szczawiany sodu, jony fluorkowe i fluorooctan sodu. A z ich usunięciem już umiemy sobie radzić.   

Proponowany mechanizm degradacji z suplementów do publikacji

Etapem limitującym szybkość reakcji jest początkowa dekarboksylacja, zachodząca w temperaturze 120 stopni. Startując z pierwszego związku pośredniego z jednym atomem azotu, dalszą degradację da się przyprowadzić w temperaturze 40 stopni. 

Wiązania w benzenie poprawione 

Benzen to jedna z najważniejszych cząsteczek w historii chemii organicznej. Na jego przykładzie rozwiązano kilka ważnych problemów związanych z budową cząsteczek, jego pierścień jest też składową wielu cząsteczek naturalnych lub syntetycznych. Dlatego ważne jest aby znać jego właściwości jak najdokładniej. Ostatnie badania naukowców z Korei Południowej dołożyły jeszcze jedną cegiełkę. Normalny benzen zawiera sześć atomów węgla połączonych z sześcioma atomami wodoru. Wodór jednakowoż występuje naturalnie w odmianach izotopowych, jako prot i deuter, chemicznie identycznych ale różniących się masą i odrobinę właściwościami fizycznymi. Dotychczasowe badania sugerowały, że w obu wersjach długości wiązań C-H i C-D są takie same i tak to przedstawiała literatura. Z drugiej jednak strony, spodziewać się można było jakiegoś jednak efektu izotopowego. W końcu różnica masy jądra między deuterem a protem jest aż dwukrotna, więc równowagowe, średnie położenie takiej masy na końcu oscylującego wiązania powinno być nieco inne.

W nowszym badaniu użyto specjalnej, odpowiednio dostrojonej odmiany analizy widm Ramana, pozwalającej badać właściwości wiązań dzięki obserwacji rozpraszania światła na rotujących cząsteczkach. Dokładność określenia długości wiązań została dzięki temu znacznie poprawiona i udało się znaleźć różnicę między wiązaniami - to z deuterem jest o 11,5 mÅ krótsze niż to z wodorem. Efekt jest bardziej zgodny z obliczeniami kwantowymi niż dotychczas. 


 

Potencjalnie bardziej precyzyjne dane o tym ile wynosi długość tego wiązania w cząsteczkach aromatycznych poprawi jakość symulacji dynamiki molekularnej lub jakość udokładnienia struktury krystalograficznej związków deuterowanych. 

* Mass-Correlated High-Resolution Spectra and the Structure of Benzene, I Heo et al, J. Phys. Chem. Lett., 2022, 13, 8278 (DOI: 10.1021/acs.jpclett.2c02035)