informacje



środa, 23 stycznia 2013

Katalityczna synteza kwasu adypinowego

Na jednych z ostatnich w tym semestrze zajęć z Chemii Proekologicznej, u prof. Lipińskiej, zajmowaliśmy się syntezą kwasu adypinowego.

Kwas adypinowy jest organicznym kwasem, zawierającym dwie grupy karboksylowe na końcach czterowęglowego łańcucha węglowodorowego. W niewielkich ilościach występuje w roślinach i mógłby być otrzymywany z buraków cukrowych, gdyby się to opłacało Jako słaby kwas bywa dodawany do żywności jako E 355, czasem też jako składnik roztworów buforowych, jednak głównym zastosowaniem jest produkcja Nylonu i innych podobnych polimerów. Z tego powodu rocznie na świecie produkuje się go 2,5 mln ton.

Niestety najpowszechniejsza metoda otrzymywania jest też bardzo kłopotliwa.

Podstawowym substratem jest tutaj cykloheksen - sześciowęglowy pierścień z jednym wiązaniem podwójnym. O jego otrzymywaniu już kiedyś pisałem. Rozerwanie tego wiązania i utlenienie węgli przy nim, da nam kwas adypinowy. Jednak z rozerwaniem wiązania, to nie jest taka prosta sprawa. Należy zastosować agresywne utleniacze - na przykład nadmanganian potasu ze stężonym kwasem siarkowym. Zaś metoda najpowszechniej stosowana polega na traktowaniu cykloheksenu stężonym kwasem azotowym.
Samo operowanie stężonym kwasem jest kłopotliwe, zaś w dodatku podczas reakcji powstają szkodliwe tlenki azotu, w tym podtlenek, będący gazem cieplarnianym. Stąd też biorą się próby stworzenia bardziej przyjaznej dla środowiska metody - jedną z nich zajmowaliśmy się na zajęciach.
W tej proekologicznej metodzie* do rozbicia wiązania cykloheksenu i utlenienia węgli wykorzystywany jest łatwo dostępny odczynnik - perhydrol czyli 30 % nadtlenek wodoru, zaś katalizatorem jest wanadan sodu. Jednakowoż taki układ wywołuje jeszcze dodatkową trudność - obie ciecze nie mieszają się ze sobą, a skoro tak, reakcja ograniczy się do wąskiej strefy kontaktu. Aby pokonać tą trudność stosujemy katalizator przejścia fazowego.

Katalizatory przejścia fazowego (PTC) są w większości czartorzędowymi aminami lub fosfinami, z przyłączonymi do atomu azotu lub fosforu długimi łańcuchami węglowodorowymi. Takie indywiduum dosyć chętnie rozpuszczałoby się w fazach oleistych, gdyby było elektrycznie obojętne, zwykle jednak samo w sobie jest dużym kationem organicznym. Dlatego przyłącza sobie z fazy wodnej jakiś anion i już może przejść do drugiej fazy. Jeśli ten anion zareaguje w drugiej fazie z innym substratem, na przykład jako nukleofil przyłączy się do benzenu i odłączy się od katalizatora, to ten, stając się naładowany, powróci do fazy wodnej dopóki nie znajdzie sobie nowego anionu.
W ten sposób katalizator cyklicznie zmieniając rozpuszczalność, przeciąga reagujące ze sobą cząsteczki z fazy do fazy. W tym przypadku był to związek CH3(C8H17)3N - nazywany Aliquat 336 - czyli sól tryoktylometyloamoniowa. Skoro zaś problem z głowy, opiszę pokrótce co też takiego wykonywałem:

Cykloheksen, mający postać bezbarwnej, oleistej cieczy, wlałem do kolby kulistej. Dodałem perhydrol i wanadan sodu - bezbarwny, nie interesujący proszek - do tego kroplę roztworu katalizatora PTC i mieszadełko magnetyczne i połączyłem kolbę z chłodnicą zwrotną. Całość ogrzewałem na łaźni olejowej na mieszadle grzejnym w temperaturze ponad 200 st. C:

Jeśli chodzi o sam proces, reakcja przebiegała bardzo spokojnie, choć obawiałem się, że z powodu nadtlenku może się zawartość kolby nagle zapienić. Jedynie co pewien czas zaglądaliśmy, czy warstwa organiczna jest jeszcze widoczna. Gdy ostatecznie z warstwy cykloheksenu został pierścień przy ściankach:

ogrzewanie przerwałem. Teraz należało ostrożnie oddzielić pipetą warstwę wodną od organicznej, ale starając się przy tym nie zaciągać stałego katalizatora z dna. Kwas adypinowy powinien wykrystalizować w niskiej temperaturze, toteż wziąłem z zamrażalnika lód, ściereczkę i młotek i naprodukowałem mieszaniny ochładzającej:

I rzeczywiście, już po chwili zawartość chłodzonej zlewki zgęstniała od drobnych kryształków produktu:

które pozostawało teraz jedynie odsączyć i wysuszyć. I tak oto powstał nam kwas adypinowy:




Proekologicznym aspektem jest oczywiście ograniczenie szkodliwych reagentów. Wydajność była wysoka, ale już nie pamiętam dokładnie jaka.

.--------
Sato K, Aoki M, & Noyori R (1998). A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide Science (New York, N.Y.), 281 (5383), 1646-7 PMID: 9733504

6 komentarzy:

  1. Gdzie jest haczyk?
    Reakcja prostsza, reagenty lepsze (nie tak agresywne jak stężony azotowy), nie wymaga wysokiej temperatury i otrzymuje się czysty produkt z wysoką wydajnością.
    Więc czemu ta metoda nie wypiera tej z nadmanganianem i azotowym? Jaką substancją jest PTC?

    OdpowiedzUsuń
    Odpowiedzi
    1. Kahzad

      1. Kwas azotowy jest znacznie tańszy niż nadtlenek wodoru
      2. W warunkach przemysłowych nie utlenia się kwasem azotowym cykloheksenu tylko mieszaninę cyklohesanolu i cykloheksanonu, która powstaje z utlenienia powietrzem cykloheksanu - tak jest taniej
      3. Mieszanie reagentów na dużą skalę może nie być tak efektywne w przypadku katalizy przeniesienia fazowego.

      Usuń
  2. No właśnie nie wiem w czym haczyk - synteza i jej modyfikacje są znane od kilkunastu lat, znalazłem nawet cztery patenty, a jak na razie nie znalazłem zakładu który to stosuje. Chyba trudno jest im przestawić się na całkiem inny tryb produkcji, i wolą przy starych zakładach budować instalacje zatrzymujące tlenki azotu, niż budować nowy zakład.

    OdpowiedzUsuń
  3. "czterowęglowego łańcuch"
    "nadmangianian potasu" - czasem warto poświęcić więcej uwagi wpisowi. Spokojnie, poczekamy na kolejne wpisy (niecierpliwie, ale poczekamy). :)
    "produkcja Nylonu i innych podobnych poliuretanów" - chyba poliamidów?

    I dołączam się do pytania - jaki związek stanowił tu PTC?

    OdpowiedzUsuń
    Odpowiedzi
    1. Dzięki. Z tego co pamiętam katalizator był ten sam co w publikacji - CH3(C8H17)3N, zresztą dopiszę.

      Usuń
  4. Odnośnie PTC- automatyczne skojarzenie z "purple benzene" :)

    OdpowiedzUsuń