informacje



Pokazywanie postów oznaczonych etykietą zdrowie. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą zdrowie. Pokaż wszystkie posty

niedziela, 14 stycznia 2018

Detoksy-Mistyfikacje

Panująca w ostatnich latach moda na oczyszczanie organizmu z bliżej nieokreślonych "toksyn", posiada dwie charakterystyczne cechy - wyolbrzymianie przyczyn i wyolbrzymianie efektów oczyszczenia. To pierwsze realizowane jest przez przypisanie aktualnie modnej przyczynie wszystkich ciężkich chorób, raz wszystkie choroby wywołują "robaki" kiedy indziej grzyby, raz są to metale ciężkie, kiedy indziej opryski rolnicze, raz szczepionki, kiedy indziej mleko. Do wyboru, do koloru, nie sposób trafić na człowieka, który z tym kontaktu nie miał.
Natomiast wyolbrzymiane skutków oprócz obietnicy wyleczenia z ciężkich chorób, oraz równie ważnego schudnięcia w dwa tygodnie, odbywa się też przez zaprezentowanie detoksu w efektownej wizualnie formie. Najlepiej byłoby, gdyby uwalniane toksyny było dobrze widać. Jeszcze lepiej, gdyby wyglądało to obrzydliwie i przypominało brud. Jeśli zaś toksyny nie chcą tak ładnie wyglądać, trzeba im jakoś pomóc...



Plastry czyli brunatnienie octu
Plastry detoksyfikujące wciąż jeszcze są dosyć popularne. Nakleja się je na stopy na noc i rano są całe zbrązowiałe, pokryte kleistą substancją i niemile pachną. I oczywiście ta brązowa substancja to toksyny z organizmu.

Problem w tym, że podobny efekt daje zwilżenie plastra. W ich składzie znajdują się substancje chłonące wilgoć i wyciągi roślinne o brązowym kolorze. W ciągu nocy plaster chłonie wilgoć ze skóry, zwłaszcza pot, więc rano są wilgotne a zawartość saszetki zabawia plaster na brązowo.
Ale, ale - przecież jeśli stosuje się je regularnie, to po pewnym czasie przestają brązowieć. Z czego to wynika? Jednym ze składników takich plastrów jest ocet drzewny otrzymywany ponoć z pędów bambusa. Kwas octowy działając kilka godzin na skórę przez kilkanaście dni, powoduje obkurczenie gruczołów potowych i przejściowe zmniejszenie potliwości na tym fragmencie skóry.

Robiono już testy z ochotnikami i po przeanalizowaniu składu plastrów nie stwierdzono, aby po całonocnym użytkowaniu pojawiały się w nim jakieś metale ciężkie czy znane substancje toksyczne.[1]

Wanna z błotkiem czyli elektroliza
Pod pewnym względem podobna wydaje się popularna zwłaszcza kilka lat temu metoda z wanienkami, mającymi wywoływać wydalenie toksyn przez stopy. Zanurzało się stopy w korytku, trzymało w rękach elektrody, a po pewnym czasie od włączenia urządzenia, woda robiła się brązowa i śmierdziała. Prowadzący zabieg tłumaczył, że oto pole elektryczne spowodowało wydalenie toksyn do wody i to brązowe w misce to nasze toksyny.

Urządzenie składa się przede wszystkim z miski na wodę i płaskich elektrod, koniecznie stalowych bo inaczej nie zadziała, zasilane jest najczęściej zasilaczem podobnym do tych do telefonów komórkowych, stosując niskie napięcie 12 V i bezpiecznie niskie natężenie.
Dlaczego elektrody muszą być stalowe? Bo inaczej nie zrobi się nam błotko. Nie jest potrzebne nawet wkładanie stóp, zrobi się samo byle płynął prąd.

W urządzeniu takim zachodzi prosta elektroliza wody, zwykle lekko posolonej dla lepszego przewodnictwa, z prądem stałym podłączonym w taki sposób, że na elektrodach w wodzie pojawia się ładunek dodatni. Pod wpływem takiego ładunku zachodzi reakcja utlenienia żelaza z elektrody, w pewnym stopniu też wydzielenie tlenu. Jony żelaza i tlen tworzą tlenki i wodorotlenki, tworzące ostatecznie brązowy osad, zaciemniający wodę i udający toksyny. Efekty wizualne zabiegu nie mają żadnego związku z detoksem.
Biorąc pod uwagę, że stale nierdzewne zawierają domieszki niklu i chromu, które mogą uwalniać się podczas zabiegu do roztworu, namaczanie w nim stóp może się okazać bardzo szkodliwe dla skóry. Nie od dziś wiadomo, że nikiel jest silnym alergenem a chrom wywołuje podrażnienia.

Teoretycznie puszczenie napięcia od rąk do stóp mogłoby spowodować migrację jonów z organizmu do wody, za sprawą jonoforezy, czyli ruchu jonów pod wpływem prądu elektrycznego. Jednak aby, jak to piszą wykonujący ten zabieg szarlatani, usuwać w ten sposób kationy metali ciężkich należałoby... podłączyć prąd dokładnie odwrotnie! Kationy, czyli jony o ładunku dodatnim, migrują do elektrody o ładunku ujemnym, bo przeciwieństwa (elektryczne) się przyciągają.
Ale jak się już domyślacie, podłączenie prądu odwrotnie nie będzie utleniało elektrod i barwiło wody na brązowo. Warto by więc rozważyć, czy przypadkiem podczas zabiegu nie dochodzi do elektroforetycznego wchłaniania do organizmu wspomnianych niklu i chromu z rozpuszczonej elektrody. Co byłoby dla nas dużo bardziej szkodliwe.

W 2012 roku wykonano zresztą eksperymenty z użyciem dostępnych komercyjnie zestawów "Jonowej Kąpieli Stóp". Najpierw badacze przygotowali roztwór soli w destylowanej wodzie, w ilości podanej przez producenta urządzenia i zbadali zawartość w nim kilkunastu pierwiastków. Następnie wlali do urządzenia i włączyli zgodnie z przepisem na 20 minut, bo tyle trwa normalny zabieg, ale nikt nie wkładał tam stóp. Chodziło o sprawdzenie, na ile skład wody zmienia samo działanie urządzenia. Po minięciu odpowiedniego czasu, pobrali wodę z urządzenia i zbadali zmiany zawartości pierwiastków. Wyniki wyglądają bardzo niepokojąco:
- w wodzie pojawił się arsen, kobalt, mangan i kadm, toksyczne pierwiastki
- zawartość wanadu wzrosła o 5800% (z 1 do 59 ug/l)
- zawartość niklu wzrosła o 750 000% (z 2 do 15 179 ug/l)
- zawartość molibdenu wzrosła o 6100% (z 50 do 3155 ug/l)
- zawartość chromu wzrosła o 590 000% (z 4 do 23 634 ug/l)
- zawartość żelaza wzrosła o 375 000% (z 31 do 116 000 ug/l)
- łączny wzrost zawartości składników mineralnych przekroczył milion procentów.

Nic dziwnego, że woda zrobiła się brązowa. A to wszystko po włączeniu wanienki bez wkładania nóg. Zresztą, strach wkładać do czegoś takiego nogę. Skład odpowiada zawartości metali w stali nierdzewnej wysokochromowej.


Zrobiono też jednak testy z ochotnikami, którzy byli poddawani zabiegowi w wanience kilkakrotnie w ciągu czterech tygodni, zgodnie z zalecaną przez producenta kuracją. Także badano zmiany zawartości pierwiastków w wodzie przed i po zabiegu, w moczu ochotników przed i po zabiegu oraz we włosach ochotników przed serią wielu zabiegów i po czterech tygodniach. Ilość metali ciężkich w wanienkach podczas zabiegów wzrastała bardzo podobnie, do wody uwalniane były te same pierwiastki w podobnej ilości - może tylko chromu i niklu było jeszcze więcej, wzrosty ich stężeń dochodziły do miliona procent, co mogło wynikać ze zużywania się elektrod w urządzeniu. Sprawdzano zresztą całkowitą ilość uwalnianych pierwiastków, stwierdzając że stopniowo spadała w miarę kolejnych eksperymentów na tym samym urządzeniu, a ostatecznie przeprowadzono ich 30, wykazując jak szybko rozpuszczają się elektrody.

Podczas badania moczu ochotników stwierdzono u jednego z nich wzrost ilości metali ciężkich w miarę kolejnych zabiegów, zaś w badaniu składu mineralnego włosów także gwałtowny wzrost zawartości metali ciężkich u jednego ochotnika. W przypadku pozostałych ludzi, zmiany ilości pierwiastków były bardzo małe i miały różny kierunek. Nie dało się więc potwierdzić usunięcia metali ciężkich z organizmu w miarę powtarzanych zabiegów w wanience, bo w przypadku pozostałych badanych ilości pierwiastków się nie zmieniły, natomiast wzrost zawartości metali w moczu i włosach jednego pacjenta sugerowałby raczej wzrost zawartości w organizmie, a więc przytrucie.[2]

Ten sam widowiskowy efekt był też wykorzystywany przez przedstawicieli handlowych sprzedających filtry do wody - na pokazach, na które zapraszano głównie naiwne starsze osoby, pokazywano elektrolizę żelaznych elektrod w wodzie wodociągowej, po czym porównywano z elektrolizą w wodzie destylowanej, która przewodzi prąd bardzo słabo i nie daje takich skutków.

Kamienie prawie żółciowe
Jednym z najpopularniejszych domowych sposobów oczyszczania wątroby, jest wypijanie mieszanki oliwy z sokiem cytrynowym. Efekty ponoć mają być spektakularne, zwłaszcza wydalanie kamieni żółciowych w ilościach hurtowych, zupełnie bez bólu i z możliwością ominięcia operacji. Niestety wielu mających problemy z kamieniami żółciowymi przekonało się już, że mimo poprawnego wykonania takiego zabiegu i wydalenia żółtawych grudek, ilość złogów w ich woreczkach wcale nie spadła. Skoro tak, to skąd się one biorą?

Prawdziwe ludzkie kamienie żółciowe typu cholesterolowych

Wątroba i trzustka produkują płyny obfitujące w enzymy trawienne, sole kwasów żółciowych, sole cholesterolu i związki mineralne. Powstała z ich zmieszania się w drogach żółciowych żółć, jest tymczasowo przechowywana w woreczku, oczywiście też żółciowym. Gdy receptory w jelicie w obszarze zakończenia przewodu żółciowego wyczują tłuszcz w treści jelita cienkiego, pobudzony pęcherzyk kurczy się, uwalniając żółć. Ma ona bardzo zasadowy odczyn więc neutralizuje kwas żołądkowy, oraz co ważniejsze, zawiera enzym lipazę który ma trawić tłuszcz. Lipaza rozbija cząsteczki tłuszczów, rozkładając je na kwasy tłuszczowe i glicerynę.
W dalszej kolejności kwasy tłuszczowe powinny zostać podczas trawienia wchłonięte, toteż w normalnej sytuacji kał nie zawiera zbyt dużo tłustych treści. Chyba, że zalejemy jelito dużą ilością tłuszczu i jeszcze popchniemy środkiem przeczyszczającym.

W najpopularniejszej wersji metody używa się jednorazowych dawek oliwy rzędu szklanki czy półtora, wypijanych duszkiem na pusty żołądek, i doprawianych sokiem cytrusowym, często dla lepszego oczyszczenia po pewnym czasie wypija się roztwór soli z Epsom, soli glauberskiej czy jakiegoś innego środka poprawiającego wypróżnianie. Po takiej dawce oleju w jelitach tworzy się dość dużo wolnych kwasów tłuszczowych, które nie mają czasu zostać dalej strawione i  wchłonięte, zamiast tego zostają wydalone. W połączeniu z solami mineralnymi (zwłaszcza połkniętą solą z Epsom będącą siarczanem magnezu) kwasy te tworzą trudnorozpuszczalne mydła.
Tym, co zostaje ostatecznie wydalone, są grudki zawierające mydła, wolne kwasy tłuszczowe i składniki żółci, o kolorze od żółtego, przez żółtawozielony do wyraźnie zielonych (kolor zależy od składników oliwy, ilości żółci i treści jelit), uformowane przez ruchy robaczkowe w formę "kamyków".

Chorzy, którzy stosowali tą metodę wiele razy, donosili o liczbach rzędu setek a nawet tysięcy złogów, co przekracza pojemność woreczka żółciowego. Dlatego też szarlatani twierdzą, że dodatkowe ilości złogów schodzą z przewodów żółciowych czy nawet z wnętrza wątroby (wędrują przez miąższ organu?) i dlatego jest ich tak dużo. Jak łatwo się domyśleć, "kamyki" będą się pojawiały tak długo jak długo chory będzie pił oliwę a jego wątroba produkowała żółć. Chyba, że w trakcie "kuracji" woreczek się w końcu zatka a pacjent trafi do szpitala z ostrym zapaleniem.

W 2005 roku w czasopiśmie medycznym The Lancet opisano przypadek kobiety ze stwierdzonymi złogami w woreczku żółciowym, która chciała oczyścić się tą metodą. Prowadzący ją lekarze postanowili wykorzystać okazję i sprawdzić, czy to faktycznie działa. Pacjentka wypiła 600 ml oleju z oliwek i 300 ml soku z cytryny w kilku porcjach. Wydaliła wiele żółtozielonych "kamyczków", które wzięto do analizy. Złogi roztapiały się w gorącej wodzie, w ich składzie brakowało cholesterolu, bilirubiny i soli wapniowych kwasów żółciowych, a więc składników kamieni z woreczka żółciowego. Głównym składnikiem okazało się mydło kwasu oleinowego oraz długocząsteczkowe, trudnotopliwe kwasy tłuszczowe. Wnioskiem lekarzy było stwierdzenie, że wydalone złogi utworzyły się w wyniku trawienia oliwy w jelicie i nie pochodziły z dróg żółciowych.[3]
Wystarczy zresztą zastanowić się nad tym, w jaki sposób mogłoby wyglądać takie wydalanie - niektórzy opisują wydalenie tą metodą złogów o wielkości kilku centymetrów. Kanał żółciowy ma jednak ograniczoną szerokość, złóg większy niż kilka milimetrów po prostu go zatka. Masa tych rozmiarów, przesuwająca się wzdłuż żółciowodu, który jest przewodem dość dobrze unerwionym, musi skończyć się potwornym bólem, czyli atakiem kolki żółciowej. Jeśli więc ktoś nie czuł niczego szczególnego a wydalił centymetrową kulkę, to nie pochodzi ona z jego pęcherzyka.[4] Sól z Epsom nie poszerzy przewodu żółciowego aż tak bardzo (a tak twierdzą szarlatani), bo nie jest on zbyt elastyczny i się nie rozciągnie.

Ponieważ metoda przynosi efekty wyglądające spektakularnie, chętnie powołują się na nią różni dieto-uzdrawiacze. W Polsce najszerzej znana jest jako metoda Huldy Clark, od autorki książek na temat oczyszczania organizmu i leczenia raka, tytułującej się doktorem choć nie ukończyła nigdy medycyny. Inna nazwa to metoda dr Brouse, albo dr Kelley, albo dr. Moritza, bo wielu specjalistów od diety się pod nią podczepiało, z drobnymi modyfikacjami w rodzaju zastąpienia cytryny sokiem jabłkowym.
 Pisał o niej też Tombak a za nim, z lekkimi modyfikacjami, Słonecki, tylko u nich miała to być metoda na kamienie kałowe, rzekomo gromadzące się w człowieku w kilogramowych ilościach. Obecnie bez cytowania źródła wspominają o niej liczne portale lifestylowe, jest to więc jedna z najbardziej popularnych medycznych bzdur w temacie oczyszczania organizmu.

Kapsułki oszustwa
W świetnej książce reporterskiej "Nic nie zdarza się przypadkiem" autor, włoski dziennikarz Tiziano Terzani, opisuje kilka lat walki z nowotworem, podczas której równolegle do leczenia klasycznego jeździł po świecie od uzdrawiacza do uzdrawiacza, w pewien sposób dając obraz kultur poprzez ich podejście do zdrowia i śmierci.
W jednym z rozdziałów opisuje jak to został zaproszony na egzotyczną wyspę na dwutygodniową sesję oczyszczającą, polegającą na głodówce, zażywaniu witamin i saunie. Prowadzący zachęcał obecnych aby codziennie oglądali na sitku, czy wydalają z organizmu złogi i toksyny, mające mieć postać żelowatych grudek różnych kolorów. Dowodem na to, że organizm się oczyścił, miało być ich zniknięcie z wydalin, jeśli do końca kuracji nie znikały, można było ją przedłużyć.
 Po kilku dniach reporter zorientował się, że w skład suplementów witaminowych wchodził środek żelujący, a kolorowe kawałki to pozostałości osłonek kapsułek witamin. Gdy przestał je łykać, kolorowe grudki przestały się pojawiać.

Test burakowy
Nie jest to wprost metoda detoksyfikacji, a raczej wstęp do którejś z nich. Artykuły pseudodietetyków promują ten test jako metodę sprawdzenia stanu szczelności jelit. A jeśli jelita są nieszczelne, to organizm jest zatruty i trzeba go czyścić. Test polega bądź na zjedzeniu tartego buraka lub na wypiciu świeżego soku, jeśli po takiej potrawie mocz zabarwi się komuś na różowo lub czerwono, to znaczy, że ma nieszczelne jelita i kawałki treści jelit przedostają się mu do krwi. Bardzo obrazowy opis, trzeba przyznać.

W rzeczywistości zabarwienie moczu po burakach, czyli betaninuria, to stosunkowo częsty stan fizjologiczny, pojawiający się okresowo nawet u 10-15% ludzi. Wynika z wydalenia czerwonego barwnika buraka, betaniny, wraz z moczem po tym, jak został wchłonięty w jelitach. Nie następuje to u każdego i zawsze dlatego, bo zwykle betanina do jelita nie dociera. Barwnik ten jest dość wrażliwy na warunki, zwłaszcza kwasowość. Ulega rozpadowi do bezbarwnych produktów zarówno w środowisku zbyt kwaśnym (pH ok. 2 i mniejsze) jak i zbyt alkalicznym. W zasadzie zaczyna degradować już w warunkach obojętnych, zwłaszcza przy podgrzewaniu, stąd przy gotowaniu barszczu zawsze się go lekko zakwasza cytryną lub octem. Po drodze od ust do miejsca wchłonięcia, połknięty burak najpierw wpada do żołądka, który wytwarza kwas, po czym częściowo przetrawiona treść trafia do jelita cienkiego, gdzie zalewa ją dla odmiany bardzo zasadowa żółć. Ostatecznie więc w normalnych warunkach wchłania się niewielka ilość barwnika, niewystarczająca aby wpłynąć na kolor moczu.

Pojawienie się więc zabarwienia uryny oznacza, że po drodze warunki były dla buraka łagodniejsze niż zwykle - jeśli do żołądka trafiło dużo treści, jeszcze w dodatku popitej, barwnik nie był narażony na takie znów silne działanie kwasu. Jeśli ostatecznie posiłek nie był ciężkostrawny, to nie przebywał w żołądku zbyt długo. Z kolei na ilość wydzielonej żółci wpływ ma tłustość posiłku i jego pierwotna kwasowość. Gdy burak był mocniej zakwaszony sokiem z cytryny lub szczawiem, kwasy organiczne przeszkadzają żółci, działając jak bufor stabilizujący nieco kwaśniejsze warunki.
Nakładanie się tych dwóch efektów powoduje ostatecznie, że betanina nie zostaje zupełnie zdegradowana i wchłania się w dalszych odcinkach jelita dostatecznie, aby zabarwić mocz. W efekcie ta sama osoba może czasem doznawać zabarwienia a czasem nie, zależnie od kwasoty żołądka, obfitości posiłku, rodzaju posiłku i ilości buraka w porcji. Pewne badania sugerują częstsze pojawianie się betaninurii u osób z niedoborem żelaza, ale zjawisko jest zbyt mało specyficzne (jest za wiele sytuacji gdy efekt nie wynika z niedoboru żelaza tylko z rodzaju posiłku) aby służyło za test diagnostyczny.[5], [6]
----------
Źródła:
[1]  https://www.livestrong.com/article/130395-detox-foot-patches-work/
[2] Deborah A. Kennedy et al. Objective Assessment of an Ionic Footbath (IonCleanse): Testing Its Ability to Remove Potentially Toxic Elements from the Body, Journal of Environmental and Public Health Volume 2012 (2012), Article ID 258968, 13 pages
[3]  http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)66373-8/fulltext
[4] https://sciencebasedmedicine.org/would-you-like-a-liver-flush-with-that-colon-cleanse/
[5]  https://udel.edu/~mcdonald/mythbeeturia.html
[6] Eastwood, MA; Nyhlin, H (1995). "Beeturia and colonic oxalic acid"QJM. 88 (10): 711–7

poniedziałek, 24 kwietnia 2017

Chemiczne wieści (10.)



Aldehydy w elektronicznych papierosach
 Elektroniczne papierosy pojawiły się na rynku stosunkowo niedawno, i wciąż nie do końca znane są ich skutki zdrowotne. Na pewno, ze względu na brak substancji smolistych, nie są tak bardzo szkodliwe jak papierosy tytoniowe, jednak badań długotrwałego wpływu jest generalnie niewiele.
Chemicy wskazują, że skład mgiełki produkowanej przez te urządzenia, nie jest tak zupełnie bezpieczny, jak to się mogło wydawać.
Głównym składnikiem liquidów będących wkładem, jest gliceryna lub glikol propylenowy. Związki te są nieszkodliwe. Jednak podczas ich odparowywania na grzałce mogą zachodzić dodatkowe reakcje, prowadzące do powstawania reaktywnych aldehydów, głównie akroleiny, aldehydu mrówkowego i acetaldehydu. Wdychanie ich może zwiększać ryzyko chorób serca i układu krwionośnego. Dotychczasowe badania wskazywały, że mgiełka elektronicznych papierosów zawiera pewną niewielką ilość aldehydów, co jednak trudno było ocenić z powodu z powodu nietrwałości tych związków. Czasem pojawiały się pojedyncze badania wskazujące na wysokie stężenia, być może związane z niewłaściwą techniką poboru próbek (za wolne zaciąganie lub za duże grzanie).

W nowych badaniach mgiełkę wytwarzaną przez dostępne na rynku urządzenia pochłaniano na podłożu z krzemionki pokrytej cząsteczkami alkilowej pochodnej hydroksyloaminy. Ta reagowała z aldehydami tworząc charakterystyczne oksymy, które są dużo trwalsze, dzięki czemu w dalszych analizach łatwiej było odtworzyć rzeczywiste stężenie aldehydów i sprawdzić od jakiś czynników zależy.
Okazało się, że urządzenia nowsze wytwarzają większe stężenia aldehydów niż starsze. Efekt ten był związany z mocniejszymi bateriami i mocniejszymi grzałkami; między mocą grzałki a aldehydami istniała wyraźna zależność. Pewien wpływ miał też czas zaciągania powietrza.
W dodatkowym badaniu przy pomocy techniki NMR sprawdzono powstawanie hemiacetali, mogących ukrywać faktyczne stężenia aldehydów. W przypadku jednego liquidu smakowego wykryto hemiacetale, ale bez przekroczenia bezpiecznych norm, u pozostałych badanych smakowych i bezsmakowych taka reakcja nie zachodziła.

W ostatecznym rozrachunku poziomy aldehydów w aerozolu z e-papierosów są dużo niższe niż w dymie papierosowym (z wyjątkiem przypadków tzw. "suchego zaciągu"), niemniej fakt że jednak w nim występują, oznacza że nie jest to używka dla zdrowia całkiem obojętna.[1]


Spolaryzowana fluorescencja
Fluorescencja to szybki proces w wyniku którego wzbudzone cząsteczki lub atomy wypromieniowują energię w postaci światła. Najbardziej znanym jest świecenie pod wpływem ultrafioletu, wykorzystywane w wybielaczach optycznych. Teraz przedstawiono nietypową tego procesu modyfikację - fluorescencję świecącą od razu światłem spolaryzowanym.

Czynnikiem świecącym były jony rzadkiego pierwiastka europu. Jego sól została rozpuszczona w cieczy jonowej, to jest płynnym związku złożonym tylko z jonów (w zasadzie są to ciekłe sole), w tym przypadku był to kation tetrabutyloamoniowy i anion proliny. Po naświetleniu ultrafioletem roztwór świecił światłem spolaryzowanym kołowo. Kierunek obrotu polaryzacji zależał od tego czy użyta prolina była prawoskrętna czy lewoskrętna. [2]


Ładna demonstracja równowag chemicznych
Czasopismo Journal of Chemical Education mogłoby być w zasadzie zaliczone do pedagogicznych, poświęcone jest bowiem nauczaniu chemii, jednak robi to w ciekawy sposób - większość artykułów to nie biadolenie nad poziomem nauczania, tylko bardzo konkretne propozycje co takiego można uczniom pokazać, aby lepiej wyjaśnić im daną kwestię. Dlatego w zasadzie jest to skarbnica propozycji doświadczeń. W jednym z ostatnich numerów najbardziej wizualnie spodobał mi się artykuł na temat pokazywania równowag kwasowo-zasadowych.

Do czterech próbówek z wodą wsypano kationit kwasowy - to jest granulki specjalnego polimeru, mającego na powierzchni reszty kwasu siarkowego, skłonne oddawać protony. W zasadzie trzeba o nim myśleć jak o kwasie siarkowym osadzonym w plastiku. Do wody dodano odczynnik kwasowo-zasadowy błękit tymolowy. W warunkach obojętnych przybiera kolor żółty. Wprawdzie na dnie znajduje się polimer o właściwościach kwasowych, ale wcale nie oddaje on swoich protonów tak chętnie, musi je podmienić na jakieś inne kationy. Do jednej z próbówek dodajemy więc roztwór soli kuchennej i po chwili obserwujemy jak od dna rozwija się coraz wyraźniejsza różowa barwa, świadcząca o warunkach silnie kwaśnych. Do drugiej dodajemy niedużą ilość roztworu wodorotlenku sodu - w alkalicznym środowisku odczynnik zmienia kolor na błękitny. Jednak wodorotlenek zawiera też kationy sodowe, które mogą podmienić protony w kationicie. Dlatego od dna roztwór zaczyna się zabarwiać na żółto, świadcząc o zakwaszeniu roztworu, a w warstwach najbliżej dna na różowo. Mamy więc roztwór z trzema kolorami - różowym na dole, żółtym powyżej i błękitnym u góry.
Kolorowa równowaga. Udostępnione przez ACS Publications.

Co ma tłumaczyć doświadczenie? W próbówce pojawiają się nam dwie równowagi - jedna to równowaga odłączania protonów od kationitu, zależna od stężenia kationów metali w roztworze. Druga to równowaga między trzema różnobarwnymi formami odczynnika, zależna od odczynu. Wreszcie przesuwająca się od dna granica między kolorami ukazuje naocznie szybkość dyfuzji jonów hydroniowych. Po pewnym czasie cały roztwór stanie się różowo-żółty ale wtedy można dodać wodorotlenku jeszcze raz, powtarzając cykl; dla zaproponowanej ilości substratów można tak zrobić do siedmiu razy.
Takie rzeczy powinni pokazywać w szkołach, a nie tylko kreda i tablica. [3]


--------
[1] Mumiye A. Ogunwale et al. Aldehyde Detection in Electronic Cigarette Aerosols, ACS Omega (2017). DOI: 10.1021/acsomega.6b00489
 
[2]  Ben Zercher and Todd A. Hopkins, Induction of Circularly Polarized Luminescence from Europium by Amino Acid Based Ionic Liquids, Inorg. Chem., 2016, 55 (21), pp 10899–10906
[3]  Ingo Eilks and Ozcan Gulacar, A Colorful Demonstration to Visualize and Inquire into Essential Elements of Chemical EquilibriumJ. Chem. Educ., 2016, 93 (11), pp 1904–1907

środa, 1 lutego 2017

Witamina lewa i prawa

Na temat witaminy C krąży bardzo wiele mitów i przekłamań. A ponieważ mają one w dużym stopniu oparcie w chemii, warto jest je tutaj szczegółowo rozjaśnić. Czy zatem może być tak, że witamina może być prawa i lewa?  Może i to w dodatku na bardzo różne sposoby.


Kwas askorbinowy to związek szczególny. Jest kofaktorem regulującym działanie wielu enzymów. Pomaga przy produkcji kolagenu, wpływając na stan naczyń krwionośnych i skóry. Jest ważnym przeciwutleniaczem neutralizującym wolne rodniki. A przy tym jest substancją jakiej nasz organizm nie może sam wytwarzać, co zresztą stanowi wśród zwierząt wyjątek. Takie na przykład szczury same go sobie wytwarzają i nigdy nie doznają niedoboru.
Jego brak wywołuje przykre i na dłuższą metę śmiertelne choroby, jak choćby szkorbut, nazywany też obrazowo gnilcem, co zanim poznano jego rolę w żywieniu stanowiło częstą przyczyną zgonów marynarzy, pozbawionych dostępu do świeżej żywności. Nic więc dziwnego, że witamina C została nazwana kwasem a-skorbinowym, to jest antyszkorbutowym.

Człowiek wynalazł kilka prostych sposobów jego syntezy tak, aby otrzymać cząsteczkę o budowie takiej samej jak naturalna. Zwykle surowcem jest cukier glukoza, która zostaje zredukowana wodorem, poddana fermentacji przez bakterie octowe, selektywnie utleniona i odwodniona. W ten sposób, bądź metodami z większym udziałem bakterii, produkuje się ją w ilościach niemal przemysłowych i zużywa głownie jako przeciwutleniacz w żywności, środek zapobiegający brązowieniu mrożonek czy ulepszacz do pieczywa.

Zasadniczo dobrze zbilansowana dieta powinna dostarczać go nam wręcz w nadmiarze, jednak niektórzy wolą go sobie dodatkowo uzupełniać w większych dawkach. I często wpadają w pułapkę marketingu. Specjaliści od suplementów mówią im "Nie kupujcie pigułek w aptece bo w ogóle nie działają, bierzcie wyciąg z X albo tabletki dla których specjalnie potwierdzono że to jest ten właściwy, przypadkiem mamy je w ofercie. Bierz tylko nasze".
Czemu tabletkowa witamina ma nie działać? Bo "prawdziwa" i naturalna jest ta lewoskrętna, więc jeśli na opakowaniu nie zostanie wprost to napisane, to niechybnie tabletki zawierają tą nieczynną prawoskrętną.

Każdy kto ma trochę większe pojęcie o chemii, wie jak zbudowana jest cząsteczka witaminy C i wie o co chodzi z tą skrętnością, czy lewością, uśmieje się słysząc takie rzeczy. Ale niestety przeciętny konsument nie wie. Więc ja mu rzecz krótko wyjaśnię

Asymetria
Asymetria to własność obiektu, która powoduje, że obracając go w przestrzeni, odbijając w wyimaginowanym "lustrze kształtów" czy przekształcając przez punkt nie otrzymamy identycznie wyglądającej bryły. No chyba, że obrócimy go o 360 stopni czy powtórzymy odbicia dwa razy, ale to tak jakbyśmy go z miejsca nie ruszali.
Chemicy już dawno odkryli, że cząsteczki związków chemicznych, będące ułożonymi w przestrzeniami skupiskami atomów, mogą bądź posiadać jakąś symetrię, bądź nie posiadać żadnej, i to właśnie te ostatnie okazały się najciekawsze. Jeśli cząsteczka związku jest asymetryczna, to bardzo często możliwe jest, że mogą istnieć jej dwie formy, podobne do siebie jak lustrzane odbicia ale nie nakładające się na siebie.
Obiektami o takich własnościach z jakimi często mamy do czynienia, są nasze ręce - jedna dłoń jest lustrzanie podobna do drugiej, ale jedna nie nałoży się na kształt drugiej, bo kciuki odchylają się w różne strony. Jeśli złożymy dłonie jak do modlitwy sytuacja będzie podobna, bo w różne strony będą zwrócone ich grzbiety. Z tego powodu matematycy bryły o takich właściwościach, a więc posiadające lustrzanie podobne formy "lewą" i "prawą" jak dłonie, nazwali chiralnymi, od greckiego "chira" to jest ręka. (a wróżenie z dłoni to chiromancja).

Jeśli cząsteczka związku chemicznego nie będzie posiadała elementów symetrii, takich jak środek symetrii, płaszczyzna czy osie inwersyjne, to także i dla niej możliwe będzie dla niej istnienie w dwóch formach, nazywanych izomerami optycznymi. Zazwyczaj dotyczy to związków organicznych, w których atom węgla tworzy cztery wiązania ułożone nie płasko, i wystarczy aby w którymkolwiek z węgli cząsteczki zdarzyło się, że do każdego wiązania będzie przyczepione coś innego.




Aby ten fakt opisać i jakoś odróżniać poza tym we wszystkim identyczne izomery, chemicy stworzyli szereg systemów klasyfikujących

R czy S?
Ten sposób klasyfikacji opiera się na rzeczywistej budowie związku. Aby sprawdzić jaka jest jego konfiguracja, sprowadzamy go do tego właśnie interesującego nas węgla, mającego cztery różne podstawniki, nazywanego asymetrycznym. Podstawnikom tym nadajemy pewne rangi, zależne od stopnia rozbudowania, całkowitej masy atomowej czy obecności cięższych atomów. No i otóż, jeśli ustawimy naszą cząsteczkę tak, że podstawnik najniższej rangi znajdzie się z tyłu, a trzy pozostałe będą skierowane w naszą stronę, to gdy przechodząc od podstawnika ważniejszego do mniej ważnych wykonujemy obrót w prawo, konfiguracja dla tego węgla wynosi R a gdy w lewo wynosi S.
Ten sposób klasyfikacji jest bardzo ścisły, po samej nazwie możemy ustalić jak przestrzennie są poustawiane grupy wokół tego atomu.

W jednej cząsteczce może być zawartych wiele takich atomów, ponieważ zaś każdy ma dwie możliwe konfiguracje, możliwych staje się wiele izomerów. Przykładowo glukoza ma cztery takie atomy o konfiguracji 2R,3S,4R,5R, będąc jednym z 16 możliwych izomerów aldoheksozy. Symetria takich cząsteczek jest bardziej skomplikowana i niekoniecznie chiralna, przykładowo związki w odmianie mezo zawierają asymetryczne atomy węgla ale o przeciwnej konfiguracji, co powoduje że cała cząsteczka nabiera symetrii i nie jest czynna optycznie.

D czy L?
Klasyfikacja D/L jest używana właściwie tylko do cukrów, polialkoholi i aminokwasów, także dla witaminy C. Jest to klasyfikacja względna, w której przypisanie związku do danej kategorii odbywa się poprzez porównanie konfiguracji z pewnym wzorcem.
Tą cząsteczką wzorcową był naturalnie występujący aldehyd glicerynowy, uznany z najprostszy przypadek, składał się bowiem z trzech węgli z czym jeden tylko był asymetryczny. Klasyfikacja odbywa się następująco - ustawiamy naszą cząsteczkę aby łańcuch węglowy był ustawiony pionowo, grupa aldehydowa lub ketonowa znalazła się na górze, a grupy boczne sterczały na boki, będąc zwrócone lekko w naszą stronę (co rysuje się w ten sposób, że ich wiązania wyglądają jak czarne trójkąty):
Jeśli w takim ustawieniu grupa -OH znajdzie się po prawej, to cząsteczkę zaliczymy do szeregu D a jeśli po lewej to do szeregu L. Jeśli nasza cząsteczka zawiera więcej węgli asymetrycznych, wtedy bierzemy pod uwagę tylko ten ostatni na dole.

Jak widzicie jest to klasyfikacja bardzo arbitralna.


+ czy -?
Ostatni sposób klasyfikacji nie jest wprost związany z budową cząsteczki, a bardziej z tym jak oddziałuje ze światłem. Otóż izomery geometryczne związków wpływają na światło spolaryzowane. Jeśli przez fiolkę ze związkiem przepuścimy światło spolaryzowane przy pomocy polaryzatora ustawionego w określonym kierunku, to po przejściu przez związek kierunek polaryzacji światła trochę się przekręci. Poznajemy to po tym, że ustawiając za fiolką drugi polaryzator widzimy że część światła z fiolki jest zatrzymywana i aby uzyskać pełną przepuszczalność, musimy drugi polaryzator trochę obrócić.
Obejrzyjcie świetną demonstrację tego zjawiska dla dwóch izomerów karwonu:


.
I teraz najważniejsze. Uznano, że jeśli płaszczyzna polaryzacji obróciła się w prawo, to mówimy o związku że jest prawoskrętny i przypisujemy mu znaczek plus (+) a jeśli w lewo to jest lewoskrętny i przypisujemy mu znaczek minus (-). Dwa izomery optyczne tej samej substancji skręcają światło spolaryzowane o taki sam kąt w przeciwne strony, dlatego zawsze jeden jest (+) a drugi (-). Ich mieszanina pół na pół jest nieaktywna bo przeciwne oddziaływania się znoszą.
Przy czym nie koniecznie znak skręcalności powiązany jest z konfiguracją R/S czy D/L. Wprawdzie dany określony izomer geometryczny ma zawsze dany określony znak skręcalności, ale różne związki o konfiguracji D czy R mogą skręcać światło spolaryzowane w różne strony. Na przykład D-glukoza jest prawoskrętna a D-fruktoza lewoskrętna.

A jaka jest witamina?
Kwas askorbinowy zawiera dwa węgle asymetryczne, w związku z czym możliwe są dla niego cztery izomery; kwas (R,S)-L-askorbinowy, (S,R)-D-askorbinowy; (S,S)-L-izoaskorbinowy i (R,R)-D-izoaskorbinowy

Aktywność biologiczną witaminy ma tylko jeden z nich, występujący naturalnie kwas (R,S) L-askorbinowy. Pozostałe nie mogą być nazywane witaminami, choć są podobnymi do niej przeciwutleniaczami..
A jak wygląda czynność optyczna? Otóż będący witaminą C naturalny kwas L-askorbinowy jest prawoskrętny. Czyli ma znaczek (+).

Zatem specjaliści od wciskania ludziom suplementów, którzy twierdzą, że witamina C powinna być lewoskrętna, pewnie pomylili się widząc znaczek L mówiący o względnej konfiguracji związku. Który to mówi nam jedynie, że jeśli zapiszemy cząsteczkę związku w określony sposób to grupa -OH na ostatnim węglu asymetrycznym będzie po lewej stronie rysunku, a to nie ma nic do skrętności.


...bo jak nie napisali L to na pewno jest D
Gdy świat alternatywnej medycyny pojął wreszcie istnienie dwóch odmian kwasu askorbinowego, zaczął przekonywać, że z pewnością absolutnie ta tabletkowa witamina, to jest właśnie ta nienaturalna D. Ze jeśli nie napiszą "kwas L-askorbinowy" to znaczy, że to musi być ten drugi. Ci którzy się na to nabierają zamawiają w hurtowniach wielkie wory kwasu L, nie ufając tabletkom, no bo przecież kto wie co sobie producenci napisali.
Dlaczego to bzdura?

Jak to już powyżej napisałem, kwas L-askorbinowy produkuje się z naturalnej glukozy otrzymując właściwą "naturalną" konfigurację. Wobec tego związek jest dosyć tani i dlatego bardziej opłaca się pchać go do tabletek, niż drugi izomer, produkowany w mniejszych ilościach przy pomocy innych, bardziej skomplikowanych metod. Kwas D-askorbinowy nie występuje w naturze a organizmy nie są przystosowane do jego wytwarzania, odpada więc bardzo ułatwiający produkcję mikrobiologiczny etap syntezy. Aby go otrzymać należałoby więc albo użyć drogich katalizatorów albo szeregu przemian dających mieszaninę izomerów, którą następnie należałoby rozdzielać. Ponieważ jednak izomer D nie jest wykorzystywany w medycynie, nikt go specjalnie nie produkuje. Czemu więc tabletki miałyby zawierać nie produkowany, znacznie droższy, nieaktywny izomer, gdy w zasięgu jest produkowany na dużą skalę aktywny L-izomer?

Inna kwestia to dozwolone nazewnictwo obu odmian. Nazwa handlowa "witamina C" oraz nazwa "kwas askorbinowy" są na mocy międzynarodowych przepisów zastrzeżone tylko dla kwasu L-(+)-askorbinowego, takiego jak naturalny. Producent nie może wsadzać w preparat inny stereoizomer i nazwać go witaminą. Ponieważ w świetle przepisów jest to w sumie jasne, producent tabletek nie musi pisać na opakowaniu, że tabletka zawiera kwas L-(+)-(4R,5S)-askorbinowy abyśmy byli pewni, że jest to taka cząsteczka jak naturalna, działająca biologicznie.

ps. 03.02 Dowiedziałem się, że w lutowym numerze Wiedzy i Życia także pojawił się artykuł o witaminie C. Jest dużo obszerniejszy i skupia się głównie na zastosowaniach medycznych ale o skrętności też wspomina. Polecam zajrzeć.

wtorek, 13 września 2016

Chemiczne wieści (9.)

Reakcja w kroplach nad rozgrzaną blachą
Efekt Leidenfrosta jest jednym z tych ciekawych zjawisk fizycznych, jakie z pewnością każdy miał okazję obserwować, tylko nie specjalnie zastanawiał się nad jego przyczyną. Upuszczenie kropli wody na bardzo rozgrzaną blachę, kuchenkę elektryczną czy patelnię powoduje, że zamiast zwyczajnie odparować przez pewien czas szybko śmiga niczym mały poduszkowiec.
Odpowiednio duża różnica temperatur powoduje, że rozgrzewanie całej kropli jest wolniejsze niż odparowanie porcji najbliżej blachy. Powstająca para wodna ma ciśnienie wystarczające, aby unieść nad gorącą powierzchnię całą kroplę, która nie ma bezpośredniego kontaktu, spowalniając wyparowanie kropli wielokrotnie.

Zespół amerykańskich naukowców z Purdue University wykorzystał ten efekt, tworząc z kropelek mikroreaktory do przeprowadzenia reakcji. Wcześniej znany był już efekt przyspieszania reakcji w kropelkach powstających przy rozpryskiwania roztworów techniką elektrospreju.  Prawdopodobnie na granicy faz następowała adsorpcja naładowanych reagentów, które wobec tego były tylko częściowo solwatowane przez rozpuszczalnik. Niecałkowita otoczka solwatacyjna obniżała energię aktywacji reakcji między składnikami roztworu. Ze względu na mikroskopijne rozmiary powstających kropelek, stosunek objętości do powierzchni był bardzo korzystny. Z drugiej strony efekt obserwowano w bardzo niewielkiej ilości mieszaniny reakcyjnej, przez co trudno bylo zjawisko w jakiś sposób zastosować.

Tutaj pomysł był podobny, tylko kropelki większe, bo otrzymywane przez efekt Leidenfrosta. Za modelową reakcję posłużyła kondensacja ketonu z pochodną hydrazyny. Reagenty rozpuszczono w rozpuszczalniku i upuszczono po kropli na rozgrzane szkiełko zegarkowe, utrzymując kropelkę przez dwie minuty w stanie lewitacji. Po zbadaniu roztworu stwierdzono, że reakcja zachodziła z nawet pięćdziesięciokrotnie większą szybkością. Tą metodą można poddawać reakcji miligramowe iloci reagentów, możliwe, że nawet większe jeśli udałoby się zbudować układ w którym krople mogłyby odpowiednio długo wędrować jedna za drugą. [1]


Najsilniejszy niefluorowy utleniacz
Utlenianie to w rozumieniu chemików reakcja polegająca na odebraniu reagującemu atomowi elektronów (dezelektronacja). Tlen i zawierające go związki są dość dobrymi utleniaczami, ale nie jedynymi, przykładowo gazowy chlor reagując z metalicznym sodem odbiera mu elektron, utleniając do kationu sodowego; sam redukuje się więc do anionu chlorkowego i tworzy związek chlorek sodu, czyli sól kuchenną.

W roli utleniacza zadziałać może też elektroda z przyłożonym odpowiednim napięciem. W procesie elektrolizy jedne składniki roztworu są utleniane a inne redukowane, lecz materiał elektrody nie ulega w tych procesach przemianom, jest jedynie przekaźnikiem elektronów które są przez potencjał elektryczny bądź wyciągane bądź wpychane w reagującą cząsteczkę. Oczywiście aby doszło do reakcji i aby elektron przeskoczył z miejsca na miejsce, należy użyć odpowiednio dużej energii, a w tym przypadku przyłożyć do elektrody odpowiednio duże napięcie, poniżej którego reakcja nie zajdzie.
Dzięki temu badając napięcie przy którym na elektrodzie następuje dana reakcja, można porównać związki i ich skłonności do oddawania lub przyjmowania elektronów, a tym samym moc różnych reduktorów lub utleniaczy. Zajście reakcji utlenienia przy pomocy danego utleniacza, to odpowiednik potencjału X woltów. Stąd biorą się tabele potencjałów standardowych, jakie zapewne widzieliście w podręcznikach. Z tego jaką wielkość mają potencjały dwóch substancji i jaka jest między nimi różnica, można zgadnąć czy zajdzie nimi reakcja redoks i w którą stronę. Ten który ma potencjał bardziej dodatni, będzie utleniaczem, ten który będzie miał potencjał bardziej ujemny będzie reduktorem. Im większy jest między nimi odstęp, tym energiczniej zachodzi reakcja, a więc tym chętniej.
Dla układów pośrodku skali potencjałów (standardowo za 0 przyjmuje się potencjał reakcji redukcji kationów wodorowych), substancje zależnie od tego z czym się spotkają mogą być utleniaczami lub reduktorami. Na dodatnich i ujemnych krańcach skali znajdują się związki i jony pierwiastków, które zwykle traktuje się po prostu jak utleniacze lub reduktory zawsze, bo na przykład osiągnęły maksymalną wartościowość której już nie zwiększą albo nie bardzo mają okazję przereagować z czymś silniejszym (ale czasem mają - nadtlenek wodoru, generalnie utleniacz, w reakcji z jonami srebra redukuje je do obojętnego metalu, a sam utlenia się do... tlenu).

Generalnie w takim ujęciu za utleniacze silne uznaje się już układy o potencjale standardowym powyżej +2 V. Utleniaczem silnym jest więc na przykład nadsiarczan sodu (E0= +2 V), od niego silniejszy jest pierwiastkowy fluor (E0= +2,8 V), kwas ksenonowy (+2,5 V), i różne układy oparte o fluor lub chlor. Do najsilniejszych należy rodnik fluorowy, który w reakcji z kationem wodoru utlenia go z potencjałem +3,87 V i difluorek kryptonu KrF2 o potencjale +3,27 V.
Fluor pojawia się tutaj nieprzypadkowo - pierwiastek ten ma wysoką elektroujemność, co oznacza że trudno go zjonizować, oraz ze chętnie przyciąga elektrony. Najsilniejsze znane utleniacze są więc związkami fluoru. Przynajmniej aż do teraz.

Grupa badaczy z Uniwersytetu Warszawskiego opublikowała niedawno wyniki eksperymentów z otrzymaniem bardzo silnego utleniacza, jakim okazały się kationy srebra II. Jest to dla srebra stan utleniania bardzo nietrwały, stąd duża energiczność reakcji dzięki której może przejść w bardziej trwały kation srebra I. W specyficznych warunkach stężonego oleum, które wpływają na przebieg reakcji, utlenienie przy pomocy srebra II osiąga potencjał standardowy +2,9 i jest najwyższą znaną wartością dla utleniaczy nie zawierających fluoru. Prawdopodobnie kationy metalu są solwatowane przez cztery cząsteczki kwasu, co ma duże znaczenie dla potencjału utleniania. Utleniacz o takiej sile mógłby być użyty do rozkładu niektórych trudnych do przetworzenia zanieczyszczeń.[2]

Niskotemperaturowa synteza amoniaku
Jednym z najbardziej znanych procesów przemysłowych, wykorzystywanym na gigantyczną skalę, jest synteza amoniaku z azotu, pozwalająca na otrzymanie związków azotowych, zużywanych potem głównie do produkcji nawozów sztucznych. Najpospoliciej stosowaną obecnie jest metoda Habera-Bosha, polegająca na reakcji wodoru i azotu pod ciśnieniem kilkuset atmosfer i temperaturze 500 stopni, z użyciem katalizatora żelazowego. Mimo tych ekstremalnych warunków metoda jest opłacalna. Wcześniej próbowano takich reakcji jak otrzymywanie azotku magnezu i rozpuszczanie go w kwasach, czy hydroliza cyjanamidu wapniowego (tzw. azotniak).

Jednak ostatnia praca chińskich badaczy z Dalian Institute of Chemical Physics pokazuje że potencjalnie możliwe jest przeprowadzenie tego procesu w bardziej łagodnych warunkach.

Zespół pierwotnie zajmował się badaniem materiałów do pochłaniania i przechowywania wodoru. Podczas cykli wygrzewania oprócz wodoru powstawały też pewne ilości amoniaku, wskutek niepożądanej reakcji ubocznej. Dość przypadkowo, podczas symulacji sprawdzających przebieg tej reakcji, badacze stwierdzili że proces uwodornienia azotu jest sam w sobie dość obiecujący. Zachodzące podczas syntezy procesy obejmują adsorpcję azotu na metalu, aktywizację cząsteczki, przyłączenie wodoru i dysocjację. Idealny katalizator powinien dobrze aktywować azot ale też słabo wiązać aktywowaną cząsteczkę. niestety w przypadku metali przejściowych dobre wiązanie i aktywizowanie azotu wiązało się też z trudnym odłączaniem zaktywizowanej formy. Właśnie konieczność odłączenia cząsteczki od katalizatora powodowała, że potrzebna była tak wysoka temperatura.
Pomysł Chińczyków był generalnie dość prosty - należy użyć dodatkowego katalizatora. Tym katalizatorem okazał się wodorek litu.

Centrum reakcyjne ma postać drobnych plamek wodorku litu na powierzchni katalizatora metalicznego. Cząsteczka azotu przyłącza się w pobliżu, w związku z utworzeniem wiązania azot-metal zostaje zaktywizowana. Pobliski wodorek litu jest reduktorem, oraz odszczepia bardzo reaktywny anion wodorkowy. W efekcie pobliska cząsteczka azotu zostaje zredukowana i odszczepiona, równocześnie z przyłączeniem wodoru. Powstający amidek litu reaguje z wodorem, odnawiając wodorek litu i odłączając amoniak.
Taki podwójnie katalizowany proces może być przeprowadzony w dużo łagodniejszych warunkach. Dla katalizatora żelaznego z domieszką wodorku litu proces zachodził wydajnie już w temperaturze 150 stopni Celsiusza. [3]

Rośliny oczyszczają domowe powietrze
Powietrze w domach i mieszkaniach różni się od tego napływającego z zewnątrz. Nie dość, że dostają się do niego związki wydzielane przez nas samych, uwalniane podczas gotowania czy codziennej toalety, to jeszcze swoje dokładają lotne składniki farb, materiałów budowlanych, mebli i elementów wystroju wnętrz. Niektóre z nich mogą mieć działanie szkodliwe, dlatego dobrze jest co jakiś czas wietrzyć mieszkanie. Zaleganie toksycznych oparów w pomieszczeniach, uwalnianych przez ściany i sprzęty domowe, jest niekiedy wiązane z "zespołem chorego budynku" powodującego różne, często trudne do określenia dolegliwości, jak bóle głowy, alergie, napady astmy, uczucie zmęczenia.
Do sposobów unikania tego zjawiska należy polepszenie wentylacji i napływu powietrza z zewnątrz lub stosowanie filtrów pochłaniających. Znane były też badania sugerujące, że pewne związki mogą pochłaniać z powietrza rośliny doniczkowe.

Zespół amerykańskich badaczy postanowił precyzyjniej porównać zdolności oczyszczania powietrza przez różne gatunki w tej samej przestrzeni. Wzięto pięć gatunków często używanych jako rośliny doniczkowe i sprawdzano jak ich obecnośc wpływa na stężenia lotnych związków w specjalnie przygotowanej komorze. Były to: zielistka, dracena, bromelia guzmania, grubosz (znany też jako drzewko szczęścia) i kaktus Consolea.
Przetestowano ich aktywność na ośmiu przykładowych związkach, stwierdzając że pewne gatunki mają wyjątkowo dużą skłonność do wchłaniania niektórych. Przykładowo dracena wchłaniała 90% acetonu obecnego w powietrzu. Najlepszą z badanych okazała się bromelia, która dla sześciu lotnych związków eliminowała 80% obecnej ilości.[4]


Prosta i tania metoda otrzymywania
Wiele substancji znajdujących ciekawe zastosowania bądź występuje w naturze zbyt rzadko aby możliwe było tanie ich pozyskanie, bądź nie występuje w niej w ogóle. Dlatego trzeba je otrzymywać przy pomocy metod syntetycznych. Jednak w przypadku niektórych skomplikowanych cząsteczek, synteza przestaje być tak dobrą alternatywą, jeśli jest złożona z wielu etapów w których zużywa się wiele różnorodnych reagentów, tym bardziej, że im więcej etapów pośrednich tym mniejsza wydajność końcowa. 10 etapów o wydajności 80% przekłada się na wydajność całkowitą 10%
Dlatego też chemicy szukają sprytnych sposobów aby konstruować cząsteczki w mniejszej ilości etapów, szybciej i z mniejszą ilością reagentów. Takimi prostymi skokami omijającymi parę etapów są reakcje wieloskładnikowe, gdy to reakcję przeprowadzamy na mieszaninie kilku składników, które w trakcie tego samego procesu reagują ze sobą w określonej konfiguracji; reakcje kaskadowe gdy odpowiednio skonstruowana cząsteczka ulega serii wewnętrznych przekształceń, oraz reakcje rednoreaktorowe (one pot) gdy kolejne etapy są dokonywane dolewając następne reagenty do mieszaniny po poprzedniej reakcji, bez często żmudnego procesu izolowania czystych produktów pośrednich.

Przykładem może być praca jaka wpadła mi w oko, opisująca nową metodę syntezy (-)-ambroksanu, terpenoidu będącego głównym składnikiem zapachowym naturalnej ambry. Ta naturalna jest rzadka i droga i nie sposób zwiększyć jej pozyskania*, dlatego główny pachnący związek otrzymuje się syntetycznie.
Związkiem wyjściowym jest sklareol, otrzymywany z olejku eterycznego szałwii muszkatołowej, bo to najtańsze źródło. Cząsteczka jest generalnie bardzo podobna do ambroksanu, należy jedynie zamknąć trzeci pierścień w formie eteru i odrzucić niepotrzebne dwa węgle, ale bez zmiany konfiguracji jednego centrum stereogenicznego:
Opisano kilka metod przeprowadzenia takiej reakcji, które są wykorzystywane w przemyśle, mają one jednak tą wadę, że są przeprowadzane w kilku etapach. Czyli substancja wyjściowa jest poddawana reakcji, po której półprodukt jest oddzielany i używany do następnego etapu. Każdy taki proces następuje ze skończoną wydajnością, sumą kilku procesów jest bardzo mała wydajność końcowa, do tego dochodzą koszty zużytych w każdym etapie odczynników. Dlatego nowa metoda w której używa się tylko dwóch odczynników a całą reakcję przeprowadza się w jednym etapie bez oddzielania związków pośrednich z pewnością wzbudzi zainteresowanie przemysłu.

Sklareol jest rozpuszczany w dioksanie, dodawany jest utleniacz czyli 30% nadtlenek wodoru i katalizator będący fosfomolibdenianem alkiloamoniowym, mieszanina jest ogrzewana najpierw przez dwie godziny w temperaturze 70 stopni a potem godzinę w 90 stopniach. I tyle.  Wydajność to nieco ponad 20%, jest więc jedynie nieco wyższa niż w poprzednich metodach, ale być może da się to jeszcze usprawnić.
Reakcja przebiega prawdopodobnie poprzez utworzenie epoksydu, który cyklizuje i ulega przegrupowaniu.[5]


------
* Ambra to grudki masy będącej zastygniętymi wymiocinami kaszalota, który najadł się zbyt dużo kałamarnic olbrzymich żyjących w głębinach oceanów. Jak na razie nikomu nie udało się ich pod tym kątem tresować.

[1] Bain RM, Pulliam CJ, Thery F, Cooks RG. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets, Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10478-82
[2] Połczyński P.,Jurczakowski R., Grochala W., Stabilization and strong oxidizing properties of Ag(II) in a fluorine-free solvent, Chem. Commun., 2013,49, 7480-7482
[3] Peikun Wang et al, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nature Chemistry (2016).
[4] https://www.acs.org/content/acs/en/pressroom/newsreleases/2016/august/selecting-the-right-house-plant-could-improve-indoor-air-animation.html
[5] Yang, S. et al. One-pot synthesis of (−)-Ambrox. Sci. Rep. 6, 32650; doi: 10.1038/srep32650 (2016).

poniedziałek, 31 sierpnia 2015

Soda na raka czyli ciastko z trucizną i komórka która gryzie

Pomysł walki z rakiem przy pomocy sody mieszanej z miodem jest w ostatnim czasie bardzo popularny w internecie. I pełen manipulacji. Dlatego też warto się z nim tutaj, po chemicznemu, rozprawić.



Cała "terapia" opiera się na kilku założeniach realnych i kilku wnioskach nie prawdziwych. Po pierwsze jak wiadomo, wewnątrz guza nowotworowego często pojawia się istotne zakwaszenie. Wynika to stąd, że komórki nowotworowe rosną szybko i potrzebują dużo tlenu i środków odżywczych. W centrum guza potrzeby stają się za duże w stosunku do podaży z krwią, przez co komórki guza stają się niedotlenione i zaczynają w pewnym stopniu przechodzić na metabolizm beztlenowy. Ich metabolity zakwaszają wnętrze guza.
Po drugie wiadomo, że komórki odżywiają się głównie glukozą, którą przetwarzają na energię. To jest jeszcze względnie prawdziwe. Ale problem zaczyna się z resztą punktów, które są już wnioskami.

Otóż teoretycy tej "terapii" mylą przyczynę ze skutkiem i twierdzą, że jeśli wewnątrz guza jest kwaśno, to znaczy że guzy biorą się z zakwaszenia. Aha. Czyli jeśli w marskości wątroby pojawia się wodobrzusze, to znaczy, że marskość jest wywoływana przez picie wody. Fajnie.
I opierając się na tym błędnym wniosku budują kolejny - skoro rak się bierze z zakwaszenia to można go zabić odkwaszeniem. Konkretnie przez spożywanie sody oczyszczonej zmieszanej z syropem klonowym.

Komórka która gryzie
Ciąg rozumowania jest tutaj następujący: komórki rakowe bardzo chętnie chłoną cukier. Więc jeśli połkniemy mieszankę cukru z sodą, to komórki przy okazji wchłaniana cukru wchłoną sodę. Ot tak mimochodem. Bo otworzą wakuole na glukozę i się im ta soda przypałęta.
Problem polega na tym, że pochłanianie glukozy przez komórkę to nie jest taki prosty mechanizm. Komórka nie ma na powierzchni żadnych "porów" które wyczuwszy, że w pobliżu jest dużo cukru otwierają się szerzej i dzięki temu może wpaść coś jeszcze. A dokładnie tak to tłumaczą artykuły - że gdy rak poczuje we krwi glukozę, to nabiera "superwchłanialności" i zaczyna tak szybko zaciągać cukier, że wsysa coś jeszcze.

Brzmi to zupełnie tak, jakby komórka pobierała substancje kęsami. Jeśli podsuniemy jej smakowite ciastko z kapsułką trucizny, to połknie kęs i się otruje bo ta kapsułka się w środku zawieruszyła. No niestety, ale to zupełnie nie tak.

Żołądek i to co po drodze
Etap który zwykle jest w tym rozumowaniu pomijany to kwestia trawienia. W "terapii" używana jest mieszanka sody z syropem klonowym lub miodem, zależnie od wersji w formie gęstego kleiku, roztworu w szklance wody czy też syropku otrzymanego przez gotowanie syropu z sodą. I mieszanka ta jest połykana, po czym w niezmienionym składzie ma się magicznie pojawiać w okolicach guza.
Tylko, że niestety każda połknięta substancja trafia do żołądka. A w żołądku jest niestety całkiem kwaśno.
Gdy nasza mieszanka znajdzie się w żołądku, soda przereaguje z kwasem żołądkowym i ulegnie zobojętnieniu. Powstanie chlorek sodu a reszta, czyli rozwodniony syrop, przejdzie do jelita, gdzie zostanie wchłonięta. Wizja sody, która w jakimś dziwnym połączeniu z cukrem niezmieniona przejdzie do krwi jest zatem błędna.
Zresztą - gdybyśmy nawet zażyli tak duże ilości sody, że zupełnie zobojętnilibyśmy kwas żołądkowy, to i tak mało prawdopodobne aby zaczęła ona przenikać do krwi i być rozprowadzaną po całym organizmie. Krew aby mogła prawidłowo odżywiać organizm, musi mieć ściśle określony odczyn, około pH 7,35-7,45. Gdyby do krwi dostała się soda, zalkalizowałaby krew wywołując groźną dla życia zasadowicę. Z którą organizm zacząłby walczyć przez spłycenie oddechu. Mniejsze wyrzucanie dwutlenku węgla z płuc zakwasza krew, nadmiar węglanów się rozkłada i sytuacja wraca do normy. Dodatkowo wykrycie przez organizm nadmiaru wodorowęglanów w osoczu powoduje wzmożone wydalanie ich do moczu przez nerki, w ten sposób soda jest wydalana zanim zdąży dotrzeć do jakiegoś tam nowotworu.

Jak komórka wchłania cukry
Wchłanianie jakichkolwiek cząsteczek do wnętrza komórki nie jest sprawą łatwą, ze względu na błonę komórkową. Błona ta zasadniczo jest lipofilowa, czyli przypomina nieco tłuszcz. A glukoza w tłuszczach się nie rozpuszcza. Dlatego aby jej tak pożądane cząsteczki mogły być wchłonięte, muszą być do komórki wciągnięte.
Gdy cząsteczka glukozy zbliża się do błony komórki, łączy się ze specjalnym białkiem nazywanym transporterem glukozy (GLUT). Białko to rozpoznaje cząsteczkę glukozy i owija się dokoła niej, po czym wciąga ją przez błonę kanałem jonowym.



Przy czym zauważmy, że białko transportowe chwyta tylko za cząsteczkę glukozy. Nic więcej nie zostanie wciągnięte. Gdyby wciągnięcie czegokolwiek innego "przy okazji" było możliwe, to wtedy do komórki trafiałyby różne przypadkowe cząsteczki, w tym także te niepotrzebne. Organizm jednak tak skonstruował kanał transportowy, że nie jest to możliwe.
Zamiast bowiem otworku w błonie, czy jakiegoś "poru" kanał transportowy ma postać szpulki białka tkwiącej w warstwie lipidowej. Wchłaniana cząsteczka ma rozmiary porównywalne z grubością łańcuchów białkowych, te zaś przylegają do siebie i na dodatek cały czas drgają termicznie. Zamiast połykania kęsa przypomina to raczej wpychanie kluski do zlewu zapchanego makaronem:
Struktura vSLGT z pracy Faham S et al.: Science 321(8): 810, 2008
Żeby zaś lepiej to zobrazować - przypomina to próbę dostania się na koncert, na który ma dodatkową wejściówkę nasza znajoma z obsługi koncertu, przez bramę przed którą czeka tłum fanów. Koleżanka dostrzega nas w tłumie, łapie za rękę i wymachując wejściówkami przeciąga nas przez tłum, składający się z osobników wprawdzie nie połączonych, ale dostatecznie ściśle przylegających, aby nie było to łatwe. Po przepchnięciu się łokciami trafiamy więc pod bramę, gdzie ochroniarz wpuszcza nas i tylko nas do środka. Żadna soda się za naszymi plecami nie prześlizgnie.

Glukoza zanim dostanie się do docelowej komórki przechodzi zresztą tą drogę trzy razy. Naczynia krwionośne oplatające jelito cienkie nie mają bowiem z nim bezpośrednego połączenia, zwykle od wnętrza jelita oddziela je przynajmniej jedna warstwa komórek nabłonka płaskiego. Glukoza z jelita zostaje zatem najpierw wchłonięta do komórek nabłonka za pomocą innego białka transportującego SGLT, stamtąd transporterem GLUT jest transportowana do krwi. Gdy znajdzie się we krwi, do kolejnej komórki, tej potrzebującej, jest ponownie wciągana białkiem GLUT.
 


Tak że wygląda na to, że cała ta "terapia" oparta jest na totalnym niezrozumieniu fizjologii człowieka i zadziała najwyżej jako placebo.
---------
* http://www.pepsieliot.com/krotka-kuracja-leczenia-raka-wg-vernona-johnstona/
* https://en.wikipedia.org/wiki/Alkalosis
* Salem Faham, Akira Watanabe, Gabriel Mercado Besserer, Duilio Cascio, Alexandre Specht, Bruce A. Hirayama, Ernest M. Wright, Jeff Abramson, The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar SymportScience 8 August 2008:
Vol. 321 no. 5890 pp. 810-814

czwartek, 23 lipca 2015

Dlaczego pokrzywa parzy?

Kiedy zadano mi kiedyś to pytanie odpowiedziałem "Bo ma w sobie kwas mrówkowy". Ale potem poszukałem na ten temat informacji i stwierdziłem, że jednak trochę nie do końca.

Pokrzywa zwyczajna jest bardzo pospolitą rośliną z rodziny pokrzywowatych. Chętnie porasta śmietniki i wilgotne nieużytki, niejednokrotnie tworząc wysoki po pierś parzący, gęsty gąszcz. Może być jadana, bywa używana jako zioło, dostarcza też dobrej jakości włókna. Jednak najbardziej charakterystyczną jej cechą jest zdolność do wywoływania "oparzeń" będących w rzeczywistości stanem zapalnym skóry, ze swędzeniem, zaczerwienieniem i powstaniem bąbli. Odpowiedzialne są za to woski parzące, będące właściwie ostrymi igłami. Każdy włosek to wyspecjalizowana, silnie wydłużona komórka o ściankach nasyconych krzemionką. Przy dotknięciu, końcówka włoska odłamuje się, zaś reszta wbija się płytko w skórę. Lekkie nadciśnienie wewnątrz włoska wstrzykuje ok. 0.0004 mg silnie drażniącego soku.
Co zaś powoduje tak wyraźną reakcję?

Jad zawarty we włoskach parzących pokrzywy jest bardzo przemyślnie skomponowaną mieszanką. Zawiera substancje drażniące w tym kwas mrówkowy i kwasy żywiczne,  substancje wywołujące stan zapalny jak histaminę, czynniki stymulujące układ odpornościowy jak leukotrieny a na dodatek zawiera neuroprzekaźniki takie jak serotonina czy acetylocholina, dzięki czemu wszystkie te nieprzyjemne odczucia odbierane są jeszcze efektywniej i silniej.[1] Przy czym jeśli chodzi o kwas mrówkowy, ma on małe znaczenie - w badaniach roślin znaleziono go w śladowych ilościach, w niektórych próbkach w ogóle nie znaleziono, dlatego sądzi się że głównymi czynnikami drażniącymi są kwasy żywiczne, możliwe też że kwas szczawiowy i winowy[2]. Być może czynnikiem podrażniającym jest peptyd moroidyna wywołujący silne odczyny zapalne.
W efekcie wstrzyknięcia takiej mieszanki, w skórze rozwija się miejscowy stan zapalny, zaś drażnienie zakończeń nerwowych produkuje kłujący ból i swędzenie. Drapanie oparzonego miejsca tylko pogarsza sytuację. U osób z astmą, poparzenie pokrzywą może wywołać atak - co ciekawe, wyciągi z ziela są polecane jako ziołowy lek na tą chorobę.

Jak można sobie poradzić z takim oparzeniem?
Cóż, skoro kwas mrówkowy nie jest głównym czynnikiem parzącym, to polecane środki o odczynie zasadowym, a więc soda, cebula, mleczko magnezowe czy wapno, nie będą skuteczne. Trudno też ocenić skuteczność szczawiu, cytryny czy babki pospolitej - choć w tym ostatnim przypadku wykazano pewną skuteczność w leczeniu pokrzywek[3]. Wydaje się więc, że poza powstrzymywaniem się od drapania, pozostają żele chłodzące z mentolem, lub żele łagodzące antyhistaminowe, takie same jak używane przy pokrzywkach i ukąszeniach owadów.

Ale pokrzywa to nie jedyna parząca roślina. Do rodziny pokrzywowatych należy też australijski rodzaj Dendrocnide, tak zwane "parzące drzewa", wywołujący niebezpieczne oparzenia. Liście tego niewysokiego drzewa pokryte są włoskami, które wbijają się w skórę i odłamują. Zawierają sok z dużą ilością moroidyny - krótkiego peptydu powodującego powstawanie silnych połączeń między histaminą a białkami zawierającymi tryptofan. W efekcie poparzony czuje nieznośny ból i swędzenie, które zależnie od wielkości oparzenia potrafią utrzymywać się kilka dni, tygodni a w szczególnych przypadkach do kilku miesięcy.
W miejscu oparzenia tworzą się drobne, czerwone plamy, często łączące się, i masywne obrzęki. Zdarzały się przypadki śmiertelne wśród ludzi i zwierząt. W razie poparzenia ważne jest aby szybko wyjąć ze skóry wbite włoski, zwykle odrywa się je taśmą klejącą lub płatkami z woskiem, ból może też złagodzić przemycie skóry rozcieńczonym kwasem solnym. Poza tym stosuje się preparaty antyhistaminowe.[4]
Na Nowej Zelandii rośnie inny krzew z rodzaju pokrzywa - Urtica ferox, nazywany też Ongaonga.
 Ten niski krzew o charakterystycznych lancetowatych, postrzępionych liściach posiada długie kolce na brzegu blaszki liściowej. Przy dotknięciu wstrzykują trujący sok o składzie podobnym do jadu pokrzywy, ale o silniejszym działaniu. Notowano już zgony w przypadku poparzenia dużej powierzchni ciała.[5]

Liczne rośliny parzące występują w Ameryce. Najbardziej znane to trujący bluszcz, sumak jadowity i trujący dąb - należące do rodzaju Toxicodendron. Do tego ostatniego rodzaju należy też drzewo lakowe, nazywane sumakiem japońskim (dawniej uważano że należy do rodzaju Sumak, podobnie jak sadzony u nas w parkach Sumak octowiec, ale okazało się że rośliny nie są spokrewnione). Wszystkie te rośliny zawierają substancję Urushiol będący polifenolem, pochodną katecholu podstawionego wielonienasyconym łańcuchem alifatycznym.

Mieszanina podobnych związków występuje w soku rośliny i na powierzchni liścia jako oleista warstewka. W drzewie lakowym stanowi główny składnik mlecznego soku. Po wystawieniu na powietrze polimeryzuje tworząc odporną na ścieranie, nie rozpuszczalną w wodzie i rozpuszczalnikach, połyskliwą masę. Właśnie z mlecznego soku sumaka japońskiego wytwarzano w dawnych wiekach lakę, używaną w Japonii do pokrywania drobnych przedmiotów, parawanów, skrzynek na biżuterię, mebli czy nawet ubrań. Znana jest zwłaszcza laka czerwona, oraz przedmioty pokrywane reliefową różnobarwną laką.[6]
Urusihol w kontakcie ze skórą wywołuje reakcje alergiczne objawiające się świądem, wysypką, zaczerwieniami a u osób wrażliwych także powstawaniem pęcherzy jak przy poparzeniach. Wysypka i świąd zwykle ustępują w ciągu dwóch tygodni, po pęcherzach mogą pozostawać blizny. Częste narażenie może prowadzić do uwrażliwienia oraz silniejszych odczynów alergicznych.
Wchłonięty przez skórę Urusihol łączy się z białkami komórek naskórka. Część po utlenieniu do formy chinonowej wędruje drogami limfatycznymi do węzłów chłonnych, gdzie aktywizuje limfocyty. W efekcie limfocyty zaczynają atakować komórki naskórka w miejscu dotknięcia. W przypadku spożycia reakcje stają się uogólnione.
W przypadku kontaktu skóry z trującym bluszczem, zaleca się możliwie szybkie zmycie skóry wodą z mydłem, w razie pojawienia się wysypki stosuje się maści łagodzące i ściągające, kremy antyhistaminowe a w cięższych stanach także leki steroidowe.[7]

Podobne związki pojawiają się też w innych roślinach z rodziny nanerczowatych, na przykład w skorupce orzecha nerkowca zawarty jest kwas anakardiowy (anacardic acid) będący pochodną kwasu salicylowego i wywołujący podobne reakcje alergiczne. Dlatego też w handlu dostępne są bądź orzechy nerkowca łuskane bądź prażone. Z oddzielonych skorupek orzechów wyodrębnia się kardanol, używany do utwardzania żywic epoksydowych i do tworzenia odpornych na ścieranie powłok.[8]




Zbliżone związki można znaleźć też w liściach mango i pistacji, nie ma ich natomiast w owocach. Związek o podobnym działaniu zawiera też zielona osnówka nasion Miłorzębu.

Całkiem inny mechanizm parzący dotyczy znanego w ostatnim czasie Barszczu Sosnowskiego. Roślina zawiera dużą ilość furanokumaryn, związków pochłaniających ultrafiolet, które po wchłonięciu przez naskórek powodują uwrażliwienie skóry na światło i ciężkie oparzenia słoneczne. Kontakt z barszczem nie powoduje początkowo zauważalnych objawów, nie odczuwa się parzenia, kłucia czy swędzenia. Dopiero po kilku godzinach pojawia się swędzenie i ból, na skórze pojawiają się zaczerwienienia, w cięższych formach rozległe pęcherze i oparzenia do III stopnia. Przy rozległych poparzeniach pojawia się wstrząs. W przypadku pojawienia się oparzeń, na skórze mogą pozostawać blizny, natomiast przy lżejszych stanach po zniknięciu zaczerwienień skóra staje się ciemniejsza i bardziej wrażliwa na światło. Ogółem objawy bardzo przypominają silne poparzenia słoneczne.[9]

W tym przypadku po kontakcie z barszczem skórę należy umyć wodą i mydłem, oraz osłonić przed działaniem światła na co najmniej dobę lub dwie. W razie pojawienia się zaczerwienień, należy stosować żele łagodzące i maści z hydrokortyzonem, opuchliznę zmniejszają preparaty ściągające jak Altacet.

Podobne substancje mogą występować też w innych roślinach z rodzaju Selerowatych, zwłaszcza w liściach pasternaku i selera, a także w arcydzięglu, jednak w tym przypadku nie są tak niebezpieczne. Furanokumaryny występują też w olejkach ze skórki owoców cytrusowych.

------------
Źródła
[1] http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.1956.tb01051.x/pdf
[2] http://www.pubfacts.com/detail/16675601/Identification-of-oxalic-acid-and-tartaric-acid-as-major-persistent-pain-inducing-toxins-in-the-stin
[3] http://pelagiaresearchlibrary.com/european-journal-of-experimental-biology/vol4-iss3/EJEB-2014-4-3-311-314.pdf
[4]  http://www.antoranz.net/CURIOSA/ZBIOR13/C3250/3296_QZE11059_gympie-gympie.HTM
[5] http://www.terrain.net.nz/friends-of-te-henui-group/plants-native-botanical-names-r-to-z/tree-nettle-urtica-ferox.html
[6] https://en.wikipedia.org/wiki/Toxicodendron_vernicifluum
[7] https://en.wikipedia.org/wiki/Urushiol-induced_contact_dermatitis
[8] https://en.wikipedia.org/wiki/Anacardic_acids
[9] https://pl.wikipedia.org/wiki/Barszcz_Sosnowskiego

https://en.wikipedia.org/wiki/Urtica_dioica
* https://en.wikipedia.org/wiki/Urushiol
* https://en.wikipedia.org/wiki/Contact_dermatitis
* https://en.wikipedia.org/wiki/Irritant_contact_dermatitis
* https://en.wikipedia.org/wiki/Phytophotodermatitis

poniedziałek, 15 czerwca 2015

Pytania czytelników

Od czasu do czasu dostaję pytania od czytelników bloga. Część pojawia się w komentarzach, i tam staram się na nie odpowiadać co można zobaczyć pod popularnymi postami. Część osób woli jednak drogę bardziej bezpośrednią, używając maila kontaktowego, jaki można znaleźć w opisie profilu, i odpowiedzi na te pytania nie są już powszechnie dostępne. Ponieważ zaś część pytań się powtarza, a niektóre są przecież dość ciekawe, uznałem że warto zebrać je w jednym miejscu, abym nie musiał się powtarzać


Aluminium w glinkach kosmetycznych
O tą rzecz pytano mnie już kilka razy, dlatego warto chyba odpowiedzieć publicznie.

Glina to formalnie rzecz biorąc, skała osadowa. Bardzo miękka a w stanie wilgotnym dająca się formować w rękach, ale skała. Aby osad mógł być zaliczony do glin, musi zawierać odpowiednio dużą ilość minerałów ilastych, przemieszanych z drobnym pyłem kwarcowym i skaleniowym. Tlenki żelaza i manganu nadają glinom kolor od żółtawego, przez rdzawoczerwony, brunatny, szary do ziemisto-zielonego. Glinki z małą ilością metali mogą być też białe.
Minerały ilaste, uwalniane ze skał podczas wietrzenia, wypłukiwane w formie najdrobniejszego mułu czy wywiewane przez wiatr jako kurz, stanowią grupę krzemianów warstwowych, składających się z warstw połączonych tetraedrów tlenku krzemu SiO4 i tlenku glinu AlO4. Tlenek glinu jest izomorficzny z tlenkiem krzemu i może go naśladować, włączając się w krzemianową strukturę bez zmian. Poszczególne warstwy glinokrzemianowe są połączone wiązaniami wodorowymi, częściowo jonowymi, i potrafią wchłaniać między siebie inne substancje organiczne i nieorganiczne. Duży stopień uwodnienia powoduje, że warstwy mogą się względem siebie przesuwać, przez co glina staje się plastyczna. Właśnie zawartość tego pierwiastka w glinie stała się podstawą do zastąpienia w polskiej nomenklaturze łacińskiego aluminium nazwą glin.

Struktura warstwy kaolinu:

Wśród krzemianów warstwowych, najczęściej spotykamy się z talkiem, kaolinem będącym głównym składnikiem porcelany i montmorylonitem będącym głównym składnikiem bentonitu. Gliny zawierają mieszankę różnych glinokrzemianów ale niektóre posiadają przewagę jednego, konkretnego, stąd wyróżnia się białą glinkę kaolinową, glinkę pałygorskitową i inne.

A jak jest z tym aluminium?
Aby glin mógł być uwalniany z gliny, powinien być rozpuszczalny w wodzie. A gliny nie są. Nie dość, że zupełnie nierozpuszczalny w wodzie jest tlenek glinu, to w glinokrzemianach dodatkowo stabilizuje go włączenie w sieć krzemianową
Kwestia ta była zresztą szczegółowo badana, zwłaszcza z uwagi na używanie ceramiki jako naczyń kuchennych, oraz używanie glinokrzemianów jako dodatków do żywności. Wydaje się, że w warunkach odczynu obojętnego uwalnianie glinu nie zachodzi. Dopiero warunki kwaśne są w stanie uwolnić część jonów. W pewnym badaniu stwierdzono dla kwasowości pH 3 (sok pomarańczowy) minerały uwalniały dość niskie poziomy aluminium, ale tylko z bardzo cienkiej (3,5 mikrometra) warstwy powierzchniowej, co sugeruje, że w przypadku naczyń ceramicznych po pewnym czasie powstanie wypłukana warstewka powstrzymująca dalsze uwalnianie. Najsłabsze wymywanie stwierdzono dla kaolinu i montmorylonitu[1]. Uwolnienie ilości mających jakieś znaczenie toksykologiczne, zachodzi dopiero pod wpływem mocniejszych kwasów.
Glinki kosmetyczne nie mają tak kwaśnego odczynu, więc uwalniania aluminium nie ma co się obawiać.W dodatku czyste glinki, przepłukane dla wymycia zanieczyszczeń, jak to zwykle jest z glinkami kosmetycznymi, mają raczej skłonność do pochłaniania rozpuszczalnych jonów glinu niż do uwalniania.

W obszernym raporcie na temat bezpieczeństwa glinokrzemianów i tlenków glinu używanych w kosmetyce, nie stwierdzono negatywnych skutków dla minerałów ilastych. [2]

Podobne pytanie dotyczyło spożywania glinek na odtruwanie - tutaj także nie ma niebezpieczeństwa, kwasy żołądkowe są bowiem dosyć rozcieńczone. Jedynym istotnym wpływem jaki stwierdzono, jest zmniejszone wchłanianie żelaza u osób zażywających glinę, bowiem absorbowała żelazo z treści żołądkowej.

Aluminium w szczepionkach
Ze względu na popularny post o ałunie jestem chyba brany za eksperta od aluminium, skoro dotyczy tego koleje pytanie zadawane mi dwa razy.
Jak wiadomo, w niektórych szczepionkach dziecięcych pojawiają się związki aluminium. Podobno zawartość w jednej nie przekracza norm bezpieczeństwa. A co jakby zsumować zawartość we wszystkich - czy wtedy mogłoby zajść jakieś niebezpieczeństwo?

Wodorotlenek glinu pojawia się w szczepionkach jako nośnik białek lub polisacharydów mających wywołać reakcję organizmu. Normy z reguły uważają za najwyższą dopuszczalną dawkę glinu 60 mg/ kg. masy ciała dziennie. Z badań na zwierzętach wynika też, że najniższe dawki mające negatywny wpływ na płody i rozwijające się młode (u szczurów) to 45 mg/kg masy ciała dziennie.

Spośród szczepionek w kalendarzu szczepień, glin zawierają:
- EUVAX B 0,25 mg w jednej dawce lub ENGERIX B też 0,25 mg w jednej dawce (stosowane wymiennie)
- DTP 0,7 mg na dawkę
-IPV 0,5 mg na dawkę
Jak łatwo zauważyć, całkowita zawartość w jednej dawce jest kilkadziesiąt razy mniejsza od najniższych dawek toksycznych. Nawet gdyby wstrzyknąć wszystkie wymienione w ciągu jednego dnia, to nie doszłoby do przekroczenia choćby dziesiątej części toksycznej dawki.

Toksyczność ałunu
Czytelnik pytał o bezpieczeństwo ałunu dla dzieci. Chodziło mu o sytuację gdyby dziecko znalazło kawałek ałunu z pękniętego sztyftu i polizało lub połknęło.
Ałun potasowy i amonowy mają działanie drażniące na błony śluzowe, dlatego pierwszą reakcją w razie połknięcia będą zapewne wymioty. Po polizaniu dziecko pewnie straci ochotę na kolejny liz, ałun ma bowiem bardzo cierpki, nieprzyjemny smak i działanie ściągające. W razie połknięcia najlepiej dać dziecku dużo wody do wypicia i skontaktować się z lekarzem. W razie polizania też dać wody, ale lekarz pewnie nie będzie potrzebny.
Toksyczność ostra związku jest niska - dawka śmiertelna to 6 g/kg masy ciała

Co takiego rozpuszcza DMSO?
Pewien dociekliwy czytelnik zainteresowany medycznymi zastosowaniami DMSO dopytywał mnie o kwestie tego co się w tym rozpuszcza, a co nie i czy ma on zastosowania medyczne.

Dimetylosulfotlenek, czyli w skrócie DMSO to cenny rozpuszczalnik, używany w medycynie i chemii organicznej. Wykazuje dużą skłonność do wnikania w tkanki organizmu, na tyle, że trzeba uważać przy pracy z nim bo po wchłonięciu metabolizuje do związków o zapachu czosnku. Ponieważ rozluźnia strukturę lipidową skóry, może ułatwiać wchłonięcie przezskórnie różnych substancji, w tym wielu leków, dlatego czyni się próby z wykorzystaniem do terapii bez konieczności zastrzyków. Sam w sobie ma zresztą działanie przeciwzapalne.
Bywa rozpuszczalnikiem środków na grzybicę stóp, które zwykle dość słabo przenikają przez zrogowaciały naskórek na podeszwach, może być też składnikiem maści przeciwbólowych do działania miejscowego, może rozmiękczać skórę przy twardzinie i przerastających bliznach. Robiono na ten temat badania [3]

Drugie pytanie dotyczyło możliwości rozpuszczania chondroityny przez DMSO i smarowania tym stawów jako alternatywy dla suplementacji doustnej.

Chondroityna to mukopolisacharyd będący składnikiem chrząstek stawowych i w formie siarczanu stanowiący wraz z glukozaminą jeden z czynników zapewniających lepszy poślizg. W związku z tym powstał pomysł, że jeśli zbyt mała ilość mazi stawowej i mała elastyczność chrząstek stawu powodują bóle, to zażywanie chondroityny i dostarczanie jej do organizmu, powinno leczyć bądź powstrzymywać rozwój schorzeń stawów poprzez dostarczenie organizmowi składnika do wytworzenia większej ilości mazi. Na tym też opiera się potężna gałąź przemysłu suplemenciarskiego.
Niestety w niedawno opublikowanej potężnej metaanalizie wielu badań wykazano, że w porównaniu z placebo zażywanie chondroityny lub glukozaminy lub obu tych środków razem, nie zmniejsza bólów ani innych objawów[4]
Wygląda na to, że samo dostarczenie organizmowi składników potrzebnych do wytworzenia czegośtam w którymś organie, wcale nie musi go pobudzać aby tą substancję jednak wytworzyć, zwłaszcza że niedostateczne wydzielanie tej substancji wcale nie musi być wynikiem niedoboru podstawowego składnika, może być skutkiem innych czynników, w tym genetycznych. Dlatego jeśli przyjrzycie się emitowanym obecnie reklamom takich pigułek, zauważycie że wcale nie stwierdzają one wprost, iż zażycie tego składnika powstrzyma chorobę. Zamiast tego zawierają ogólniki, typu "glukozamina jest składnikiem chrząstki stawowej" i "maź stawowa ma decydujące znaczenie w zapewnieniu elastyczności  stawu" i na koniec, że ich pigułka zawiera podwójną czy potrójną dawkę, zaś konstrukcję logiczną "skoro to jest składnikiem chrząstki a chrząstka jest potrzebna w stawach, to pomoże mi na stawy" widz musi sam sobie przeprowadzać, w czym udanie pomaga mu sugestia pokazywanego w reklamie pana którego bolą stawy, który bierze ich tabletki a potem wygląda na mniej cierpiącego.

Ale wróćmy do pytania - czy chondroityna rozpuszcza się w DMSO? Cóż - wedle obszernego podsumowania rozpuszczalności różnych substancji w tym rozpuszczalniku, chondroityna jest nie rozpuszczalna. Słabo rozpuszcza się chlorowodorek glukozaminy, natomiast bardzo dobrze przeciwbólowy Ibuprofen.[5]
Tak że raczej nie tędy droga.

Gdzie zbadać wodę?
Miałem też pytania o to gdzie można samemu zbadać wodę ze studni, źródła czy ujęcia.
Z tego co się orientuję, takie badania oferują jednostki Sanepidu, zbadają one zawartość metali ciężkich, czystość bakteriologiczną i własności fizyczne, jak zamulenie, obecność kwasów humusowych, zażelazienie itp. Oczywiście są to badania płatne.
Próbkę wody może pobrać wysłany pracownik, ale można ją też pobrać samemu. Warszawska stacja podaje na swojej stronie specyfikację sposobu pobierania próbek, aby nadawały się do badania.[6]


Dezodorant z podbiałem

Świadoma konsumentka zadała mi pytanie w sprawie używanego dezodorantu, który zawierał w swoim składzie podbiał pospolity. Chcąc dowiedzieć się czegoś o tym składniku, dowiedziała się że roślina zawiera uszkadzające wątrobę alkaloidy. I stąd powstało pytanie, czy taki alkaloid może wchłaniać się przez skórę?

Podbiał to cenne zioło lecznicze, lecz dopiero w ostatnich latach zorientowano się, że może zawierać alkaloidy pirolizydynowe, o działaniu hepatotoksycznym, które w wyniku zażywania dłuższym niż dwa miesiące mogą powodować toksyczną niewydolność wątroby. Ich zawartość w surowcach zbieranych w Europie jest jednak bardzo niska - w polskim badaniu stwierdzono poziomy rzędu 0,0013%[7]

W jednym badaniu na szczurach stwierdzono minimalne wchłanianie przezskórne alkaloidów żywokostu, w ilości 20 razy mniejszej niż przy podaniu doustnym. Stwierdzono też, że przy chłonięciu przeskórnym, nie dochodzi do zamiany nietoksycznego N-tlenku w toksyczną formę zredukowaną, co zwykle następowało w jelitach po spożyciu.[8] Zatem wydaje się, że kosmetyków z roślin zawierających te alkaloidy można używać bezpiecznie.

Czy to cyjanek?
Dwa lata temu czytelnik przesłał mi zdjęcie białego proszku, z pytaniem czy to cyjanek potasu. Cóż mogłem odpowiedzieć... Spektroskopu w oczach nie mam. Odpisałem, że może to być cyjanek albo soda, albo sól morska, albo cokolwiek innego bo bardzo wiele soli tak wygląda. Nie wiem o co chodziło.

----------
[1] http://www.clays.org/journal/archive/volume%2026/26-6-434.pdf
[2] http://www.ncbi.nlm.nih.gov/pubmed/12851164
[3] http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460663/
[4] http://www.bmj.com/content/341/bmj.c4675
[5] http://www.gaylordchemical.com/uploads/images/pdfs/literature/102B_english.pdf
[6] http://www.wsse.waw.pl/PageContent.aspx?SubMenuID=100
[7]  https://depot.ceon.pl/bitstream/handle/123456789/1121/hp%2058%204%202012%2062.pdf?sequence=1&isAllowed=y
[8] http://www.ncbi.nlm.nih.gov/pubmed/7128756?dopt=Abstract