informacje



Pokazywanie postów oznaczonych etykietą wybuchy. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą wybuchy. Pokaż wszystkie posty

poniedziałek, 16 grudnia 2019

1921 - Eksplozja w Oppau

Krater po eksplozji


W niemieckim Oppau (dziś część miasta Ludwigshafen), w latach 20. działał zakład produkujący nawozy sztuczne. Jednym z głównych produktów był nawóz azotowy zawierający azotan amonu  zmieszany z siarczanem. Azotan amonu jest jednak substancją niebezpieczną - podobnie jak inne saletry, w podwyższonej temperaturze rozkłada się, działając jak silny utleniacz. Saletra potasowa zmieszana ze związkami organicznymi, lub węglem i siarką, daje różnego typu masy wybuchowe. Bez tego organicznego dodatku nie powstanie na tyle dużo produktów gazowych, aby doszło do wybuchu.

Azotan amonu ma natomiast tę szczególną cechę, że potrafi utlenić sam siebie - w jonie azotanowym azot ma stopień utlenienia +5 zaś w amonowym -3. Oznacza to, że oba jony mogą zareagować wzajem ze sobą, wytwarzając produkty gazowe, głównie azot, tlen, tlenki azotu i wodę. Gwałtownie rozprężające się gazy po reakcji chemicznej, gorące wskutek dużej uwalnianej energii, to właśnie wybuch.

W niskich temperaturach spokojny rozkład azotanu prowadzi do powstania niemal czystego podtlenku azotu, czyli gazu rozweselającego, jest to jedna z metod otrzymywania. Podczas rozkładu wybuchowego, który następuje po przekroczeniu temperatury 420 stopni, ze względu na temperaturę i nadmiar tlenu sporo azotu przechodzi w różnego rodzaju tlenki, w tym tlenek II i dwutlenek w formie początkowo NO2, w niższych temperaturach jako pomarańczowy N2O4. Takie "spalanie" azotu pochłania część ciepła. Trochę więcej energii można by więc uzyskać, gdyby przeprowadzić te tlenki w azot. W tym celu trzeba jednak coś utlenić. W używanym na dużą skalę materiale kruszącym ANFO rolę akceptora tlenu spełnia niewielki, około 5-6%, dodatek oleju napędowego, który pochłania nadmiarowy tlen, sam przy okazji swojego spalania oddając trochę ciepła. Wtedy produktami gazowymi są woda, azot i dwutlenek węgla. Inne mieszaniny wybuchowe oparte na podobnej zasadzie to Amonal zawierająca sproszkowany glin, czy zastępujący dynamit Seismogel, w którym azotan amonu zżelowano azotanem metyloamonowym.

Generalnie więc w podwyższonej temperaturze azotan amonu staje się materiałem wybuchowym i wiele razy już doprowadzał do celowych lub niezamierzonych eksplozji. Ostatnio na przykład Breivik użył bomby z nawozów podczas swojego ataku w Oslo. Bomby azotanowej użyto też w zamachu na Bali w roku 2000. Czysty azotan jest w tym celu rzadko używany, ze względu na małą czułość i higroskopijność. Wybucha albo wskutek podgrzania do odpowiednio wysokiej temperatury, albo wskutek zastosowania inicjującego materiału o wysokiej prędkości spalania. Powstała podczas wybuchu spłonki lub wybuchu małej części masy azotanu fala uderzeniowa wywołuje detonację pozostałej saletry wskutek samej tylko kompresji.

Jednym z najgorszych przypadków takich wybuchów, była właśnie eksplozja w Oppau.
Zakład przechowywał saletrę w dużym budynku magazynowym na jednej kupie, w formie pryzm dochodzących do 20 metrów wysokości. W roku 1921 postanowiono ułatwić sobie zadanie, i nawóz dostarczano do magazynu bezpośrednio z aparatury do suszenia rozpyłowego. Stężony, gorący roztwór rozpylano w rurze, do której doprowadzono suche powietrze. Następowało zastyganie małych kropelek, które jako perełki wysypywały się na podajnik, rozrzucający materiał półkolem pośrodku magazynu. Perełki w momencie wpadania do magazynu były mimo to wciąż jeszcze nieco wilgotne i dosychając ostatecznie sklejały się w masę o twardości betonu, którą trudno było rozbić łopatą a nawet kilofem górniczym. Powstawał tak zwany "bunkier" który po pewnym czasie uniemożliwił dalsze nasypywanie produktu. W sierpniu 1921 podczas wybierania zapasów, w magazynie została półkolista pryzma obejmujący najbardziej stwardniałą część złoża, której nie dało się już wybrać.
Co też zrobić z taką ilością bardzo przecież potrzebnego produktu? A no rozwalić dynamitem.

Na pierwszy rzut oka wydaje się to szaleństwem, jednak zakład produkował nie czysty azotan amonu, lecz zmieszany z siarczanem amonu, siarczanem sodu i różnymi zanieczyszczeniami stałymi. Podczas krystalizacji z roztworu zawierającego podobne proporcje siarczanu i azotanu powstaje sól podwójna tworząca wspólny kryształ, o mniejszej wrażliwości chemicznej. Wcześniejsze próby pokazały, że jeśli ilość saletry amonowej w masie nie jest większa niż 60% to materiał jest dość bezpieczny, produkt składowany w magazynie miał około 50% tego składnika. Wiele razy zresztą już tak robiono, wysadzano góry stwardniałego od wilgoci nawozu, i nic się nie działo. Tym razem jednak stało się.
Co do przyczyn, opinie są różne.

 Produkowana masa nie miała stałego składu; w najbardziej stwardniałej warstwie mogła się znaleźć partia bardziej nasycona. Jeśli nawóz zsypywano mocno wilgotny mogło dojść do spłynięcia na dno pryzmy roztworu zawierającego więcej dobrze rozpuszczalnego azotanu. Sami nadzorujący prace niekoniecznie się trzymali reguły "nie więcej niż 50%", w zasadzie podejmowano już wysadzenia brył o składzie bliskim bezpiecznej granicy. Mogło być więc i tak, że inżynierowie wiedzieli, że partia nawozu zawiera dużo więcej azotanu niż powinna, ale mieli nadzieję, że tym razem też się uda. Na dodatek lato 1921 było w Niemczech wyjątkowo suche i gorące - zresztą, w Polsce podobnie, to wtedy zanotowano rekordowo wysoką temperaturę +40 koło Opola - sypki materiał naprawdę dobrze wysechł. W wysokiej temperaturze granulowania i suszenia utrudnione było powstawanie soli podwójnej azotano-siarczanu amonu, raczej powstała mieszanka czystych kryształków. Bezpieczna dotychczas procedura rozbijania twardych brył zaczęła przypominać tańczenie kankana nad przepaścią.

Krater w miejscu magazynu

Wysadzenie stwardniałej masy odbyło się dokładnie 21 września o godzinie 7:32. Wybuch objął jednak tylko część magazynowanego nawozu - wyparowało około dziesięciu procentów, pozostałe fragmenty zostały rozrzucone dokoła. Wciąż jednak było to około 500-600 ton azotanu, który pokazał swą moc.
Fala uderzeniowa zburzyła większość budynków w okolicy, wywołując zniszczenia do 30 kilometrów wokoło. Grom słyszano  aż w Monachium, trzysta kilometrów dalej, zaś wstrząs był wyczuwany w Zurychu. W miejscu magazynu powstał krater o długości 160 i szerokości 90 metrów, głęboki jeszcze na 20. Szybko zapełnił się wodą. W zakładzie przemysłowym i okolicznych miejscowościach zginęło około 560 osób a 6,5 tysiąca straciło dach nad głową.  Była to najgorsza katastrofa przemysłowa w historii Niemiec.

ze strony Oppau.info

-------
*  https://ffi-publikasjoner.archive.knowledgearc.net/bitstream/handle/20.500.12242/1259/16-01508.pdf?sequence=1&isAllowed=y
*  http://oppau.info/2011/09/14/explosionskatastrophe-1921/

sobota, 1 czerwca 2019

Burza w próbówce

Przygotowując się do pokazów chemicznych, jakie mam prowadzić w firmie na imprezie plenerowej, postanowiłem przetestować klasyczne doświadczenie, którego jakoś tak nie miałem okazji jeszcze oglądać gdzieś indziej. Tak zwana "burza w próbówce" to efektowna forma spalania, w której najbardziej interesujący jest właściwy utleniacz.

Wykonanie nie jest skomplikowane, choć nie należy do zupełnie bezpiecznych. Do szklanej próbówki nalewa się niedużo (2-3 ml) stężonego kwasu siarkowego. Na tą ciecz pipetą, aby nie doszło do wymieszania, dodaje się alkohol etylowy; ja użyłem 96%. Powstają dwie przezroczyste warstwy o wyraźnie różnej gęstości. Następnie do próbówki nasypuje się szybko odrobinę (na koniec metalowej łopatki) suchego nadmanganianu potasu. Doświadczenie lepiej wychodzi, jeśli nadmanganian ma formę kryształków a nie drobnego proszku.
Kryształki przechodzą przez alkohol bez zmian, po czym wpadają w warstwę kwasu, która zabarwia się na brunatno. Po pewnym czasie z pogranicza faz zaczynają unosić się bąbelki, oraz pojawiać się rozbłyski światła, którym towarzyszy słyszalny trzask.

Efekt nie pojawił się od razu. Po wsypaniu pierwszej porcji bardzo drobnego pyłku, kwas się zabarwił na zielono, a trzaski pojawiały się bardzo rzadko, może raz na minutę. Byłem rozczarowany, więc sypnąłem więcej. Rozbłyski stały się nieco intensywniejsze. Dopiero użycie porcji kryształków odsianych, aby były nieco większe, dało efekt jak na filmie.

Jaki jest mechanizm? W często podawanych opisach po prostu nadmanganian w kwaśnym środowisku utlenia alkohol, a rozbłyski wywołują grudki na granicy faz, to jednak trochę za duże uproszczenie, nie tłumaczące czemu bardziej intensywne trzaski pojawiają się po pewnym czasie od wyraźnie widocznego przebicia faz i zatonięcia kryształków w samym kwasie.
Nadmanganian potasu to sól - kationem jest potas zaś anionem nadmanganian. Każdemu anionowi w soli powinien odpowiadać jakiś kwas, który po deprotonacji wytworzy ten anion. Czasem wolnych kwasów odpowiadających anionom nie da się wyizolować, bo są nietrwałe. Podobnie jest w tym przypadku.
W stężonym kwasie siarkowym jon nadmanganianowy tworzy kwas manganowy VII (HMnO4), ten jest jednak nietrwały i w stężonym kwasie siarkowym traci cząsteczkę wody. Powstaje więc tlenek manganu VII (Mn2 O7  ), nazywany też siedmiotlenkiem manganu, który formalnie jest bezwodnikiem tego kwasu.

Siedmiotlenek manganu to natomiast substancja bardzo interesująca. Mimo że jest tlenkiem metalu, w temperaturze pokojowej jest cieczą o głębokim, zielonym kolorze. Wypływa na wierzch mieszaniny kwasu siarkowego z nadmanganianem potasu tworząc oleistą, połyskującą warstewkę:

Jest też cząsteczką niezwykle silnie reaktywną. Powoli rozkłada się na tlen i niższe tlenki manganu, wydzielając też przy okazji niewielką ilość ozonu, wyczuwalną jako ostry zapach. W kontakcie z substancjami organicznymi wywołuje ich gwałtowny zapłon. Sam przebieg reakcji jest podkręcany tym, że powyżej temperatury 60 stopni wybucha, rozkładając się na tlen, ozon i tlenki manganu o niższym stopniu utlenienia.
Mechanizm powstawania burzy w próbówce jest więc następujący: kryształki nadmanganianu rozpuszczają się w kwasie,  powstaje siedmiotlenek manganu. Część z niego rozpuszcza się w kwasie tworząc zieloną parę jonową, część natomiast formuje krople, które przedostają się do interfazy, gdzie wchodzą w reakcję z alkoholem. W wyniku wysokiej temperatury utleniania alkoholu wybuchają.
Równie gwałtowny przebieg ma reakcja z dowolną inną materią organiczną. Tutaj przykład reakcji z papierem, w parowniczce, w której udało mi się uzyskać większą ilość tlenku:

Eksperyment w próbówce nie jest do końca bezpieczny. Nieco większa niż zazwyczaj kropla może rozbić próbówkę, a płonąca mieszanina alkoholu, tlenku manganu i stężonego kwasu siarkowego, to nie jest coś co chciałbym zobaczyć na którymkolwiek stole.
Pozostałości po reakcji należy szybko przelać do dużej zlewki z zimną wodą i zobojętnić.

poniedziałek, 2 lipca 2018

Chemiczne wieści (17.)

Nowy materiał wybuchowy podobny do trotylu
TNT czyli trinitrotrotyl, to dość stary związek, wciąż używany jako materiał wybuchowy ze względu na stabilność termiczną, niską wrażliwość na uderzenia oraz stosunkowo łatwe przerabianie w stanie stopionym. Niestety przy okazji jest toksyczny i wolno ulega degradacji w przyrodzie. Ostatnio doniesiono o odkryciu nowego materiału, który zachowując podobną stabilność i łatwotopliwość co TNT, a przy tym jest od niego silniejszy i mniej toksyczny.
Credit: LANL

Zaprezentowany związek to znitrowany bis-oksadiazol. Zmierzona siła wybuchowa jest około 50% większa niż TNT.[1]


Dagerotypy na nowo odczytane
Dagerotypia była pierwszą stosowaną praktycznie techniką fotograficzną rozwijaną od lat 30. XIX wieku. Potem wprawdzie wyparła ją technika kolodionowa, ale do tego czasu utrwalono degerotypowo wiele miejsc i osób, których nie dało się ponownie sfotografować. Dagerotyp był trwałym obrazem otrzymywanym na metalowej płytce, zwykle posrebrzanej miedzi. Gładką, dobrze wypolerowaną płytkę uczulano w oparach jodu lub bromu, przez co na powierzchni powstawała stała warstewka soli srebra. Następnie płytkę umieszczano w aparacie.
Ze względu na stosunkowo małą czułość suchego związku, oraz dość ciemne obiektywy (przez problemy z uzyskaniem dobrej ostrości wymagane było użycie wąskiej przesłony) naświetlanie mogło trwać dość długo. Na samym początku wykonanie zdjęcia portretowego wymagało siedzenia nieruchomo przez 15-20 minut, czasem dłużej, w ostrym, jasnym świetle. Na takich portretach często więc widać podpórki o które opierano głowę i ręce przez stosowny czas. Później lepsze, jaśniejsze obiektywy i modyfikacje chemiczne, umożliwiły skrócenie czasów, ale wciąż była to technika nadająca się do raczej statycznych ujęć.
Naświetlona płytka była wywoływana w oparach rtęci, która ujawniała ciemnym kolorem miejsca, na które padało światło. Podczas naświetlania część halogenku redukowała się do metalicznego srebra; rtęć tworzyła z tymi cząsteczkami amalgamat, o cząstkach większych rozmiarów, co ujawniało czarny obraz. Na koniec należało jeszcze utrwalić zdjęcie poprzez wypłukanie nienaświetlonego jodku srebra, który dociemniłby jasne miejsca, używano do tego tiosiarczanu sodu.

Otrzymywano w ten sposób pozytywowy obraz na metalicznym tle, którego nie dało się kopiować, zatem każdy dagerotyp był w pewnym sensie unikatowym egzemplarzem. Przy dobrych ustawieniach obiektywu pozwalał na uzyskanie wysokiej rozdzielczości obrazu.

Niestety po upływie bardzo wielu lat zauważalna stała się stopniowa degradacja obrazu, przez co wiele najstarszych dagerotypów, zwłaszcza tych przechowywanych w złych warunkach, jest już właściwie niewidocznych. Z jednej strony miejsca jasne są przyciemniane przez tworzenie się siarczków i tlenków na powierzchni srebra, z drugiej odparowywanie rtęci z amalgamatu rozjaśnia ciemne partie.
W ostatniej publikacji z Nature, grupa kanadyjskich badaczy z University of Western Ontario postanowiła przyjrzeć się nalotom na dagerotypach od strony chemicznej. Przy pomocy mikroskopowej fluorescencji rentgenowskiej byli w stanie określić skład i grubość warstw na powierzchni płytki, znajdując nakładające się osady organiczne, produkty utlenienia czy produkty reakcji podłoża ze szklanymi płytkami, którymi zakrywano dagerotypy, oraz ślady rtęci z pierwotnego obrazu. Spektroskop skanował płytkę z rozdzielczością 10 mikrometrów, co po nastawieniu promieniowania na długość fali najsilniej pochłanianą przez rtęć umożliwiło odtworzenie obrazu z całkiem niezłą jakością. Na dwóch przebadanych zdjęciach, na których gołym okiem widać było zarys postaci, ujawniono portrety mężczyzny i kobiety.

Przy okazji stwierdzono, że zasadniczo cząstki amalgamatu w dużej mierze dobrze się zachowały, potencjalnie więc płytkę dałoby się oczyścić z innych osadów bez niszczenia obrazu, po dobraniu odpowiednich odczynników. [2]

---------
[1] Pablo E. Guzmàn et al. Bis(1,2,4-oxadiazole)bis(methylene) Dinitrate: A High-Energy Melt-Castable Explosive and Energetic Propellant Plasticizing Ingredient. Organic Process Research & Development, 2018; 22 (6):
[2]  Kozacuk, Madalena S., Tsun-Kong Sham, Ronald R. Martin, Andrew J. Nelson, Ian Coulthard, John P. McElhone. “Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emmission.” Scientific Reports

środa, 30 marca 2016

Wybuch powietrza?

Co pewien czas w mediach pojawia się informacja o tym, że jakiś student używający sprężonego powietrza do czyszczenia komputera wywołał wybuch. I zawsze wówczas ludzie zaczynają się zastanawiać, jak to możliwe, że powietrze wybuchło. Cały problem polega bowiem na tym, że popularną, handlową nazwę produktu, utożsamia się ze składem - a to dwie różne rzeczy.

Tak zwane "sprężone powietrze" to zapuszkowany gaz pod ciśnieniem, zwykle skroplony, który po uwolnieniu tworzy szybki, suchy strumień z łatwością wydmuchujący kurz, okruchy kanapek i chipsów z różnych zakamarków sprzętów elektronicznych, nie wprowadzając jednak wilgoci mogącej wywołać spięcia i uszkodzenia.
Wśród rodzajów takich puszek znajdują się rzeczywiście puszki z powietrzem sprężonym do ciśnienia kilku atmosfer, te jednak nie starczają na zbyt długo, dlatego w większości używane są łatwe do skroplenia, niskowrzące gazy. Trudno byłoby użyć w tym celu skroplonego powietrza, które staje się ciekłe dopiero w temperaturach rzędu -110 °C a skroplenie go w temperaturze pokojowej wymaga na tyle dużego ciśnienia, że grubościenna butla ciśnieniowa byłaby cokolwiek nieporęczna. Dlatego większość tego typu produktów zawiera w sobie inne niż powietrze substancje i niektóre z nich są gazami palnymi.

Generalnie powinno się o takich produktach myśleć jak o dezodorantach tylko bez zapachu.

Rozprężenie i odparowanie zawartości puszki bardzo ochładza strumień gazu. Przy obchodzeniu się z takimi preparatami trzeba więc uważać, aby sobie czegoś nie odmrozić. Niekiedy konstrukcja opakowania powoduje, że przy niewłaściwym ustawieniu (na boku lub do góry nogami) z dyszy może wyciec skroplony gaz, a ten odparowując też może wywołać silne odmrożenia.

Propan, butan
Zdecydowanie najtańszym gazem pędnym używanym w puszkach "sprężonego powietrza" są lotne węglowodory w tym propan, butan i izobutan, oznaczane odpowiednio R290, R 600 i R 600a . Oznacza to, że równie dobrze można taką puszką napełniać zapalniczki. Jak łatwo się domyśleć, mieszanka jest skrajnie łatwopalna. Opróżnienie puszki w pomieszczeniu może w razie powstania iskry lub pojawienia się ognia wywołać wybuch mieszaniny z prawdziwym powietrzem, o czym już przekonało się kilka osób.

Przykładowe produkty oparte o tą mieszankę:
- Sprężone Powietrze Hart, AAB Cooling, Active Jet "Compressed Air",

Eter dimetylowy
Innym chętnie stosowanym gazem jest eter dimetylowy (R-E170), opisywany też jako tlenek dimetylu, gaz o specyficznym eterowym zapachu, skraplający się w temperaturze -22 °C. Jest łatwopalny, może być używany jako paliwo zamiast gazu LPG, w mieszankach z powietrzem może być wybuchowy

Przykładowe produkty:
Airduster Plus, Semicon "Dust Off"

HFC
Stosunkowo często używanym typem gazów pędnych są fluorowane węglowodory, przy czym ze względu na  temperatury skraplania są to najczęściej fluoroetany.
Gaz oznaczany na opakowaniach jako HFC-152a to 1,1-difluoroetan (C2H4F2 ). Pod normalnym ciśnieniem skrapla się w temperaturze −25 °C. Skierowany na otwarty ogień może się zapalić wydzielając fluorowodór. Jest też podejrzewany o wywoływanie zaburzeń rytmu serca u osób regularnie wdychających go w większych ilościach dla odurzenia.

Gaz oznaczany R-143a to 1,1,1-trifluoroetan (nazywany też po prostu trifluoroetanem) wrzący w temperaturze -43 stopni, nietoksyczny, mało palny.

Najmniej palnym gazem używanym w puszkach "sprężonego powietrza) jest R-134a czyli 1,1,1,2-tetrafluoroetan wrzący w temperaturze −26.3 °C, nietoksyczny gaz używany w instalacjach chłodniczych w zastępstwie freonów. Jest też używany jako rozpuszczalnik i gaz pędny w aerozolach, w tym w inhalatorach medycznych.

Przykładowe produkty:
- Active Jet "Compressed Non Flammable Air", Wurth "Sprężone powietrze w sprayu", Semicon "Dust Off"

Używając takich produktów należy zatem pamiętać o dobrym przewietrzeniu oraz uważać aby w pobliżu nie znalazł się otwarty ogień lub źródło iskier. Przy kupnie, jeśli chce się używać najmniej palnych, można kierować się wymienionymi oznaczeniami liczbowymi, lub szukać oznaczeń "non flammable". Warto też zwrócić uwagę na piktogramy na puszce. Na tych ze skrajnie łatwopalną zawartością powinien pojawić się odpowiedni znaczek:
I/lub litera F+
Sklepy sprzedające puszki sprężonego "powietrza" powinny zresztą posiadać i udostępniać karty charakterystyki zawierające informacje o niebezpiecznych składnikach


Zamrażacze
Zamrażacze służące do lokalnego schłodzenia elektroniki, bądź do wykrycia uszkodzonych złączy, to w większości bardzo podobne skroplone gazy, dla których konstrukcja zaworu ułatwia wypływ cieczy na zamrażaną powierzchnię. Gwałtowne odparowanie skroplonego gazu ochładza opryskany przedmiot, nieraz do bardzo niskich temperatur.
Jeśli chodzi o skład, z tego co znalazłem większość opiera się na mieszance propan/butan i na tetrafluoroetanie, jak zatem łatwo się domyśleć, są to materiały palne. I niestety tak jak nikomu nie przyszłoby do głowy, że "sprężone powietrze" może wywołać odmrożenia, tak rzadko któremu użytkownikowi zamrażaczy przychodzi go głowy, że zamrażacz może się zapalić. Chyba, że uważnie obejrzy etykietkę.
W wymrażaczach do brodawek i kurzajek zwykle stosowana jest mieszanka propanu i eteru dimetylowego, podczas odparowywania schładzająca lokalnie zmianę skórną do bardzo niskich temperatur, dlatego z nimi też warto uważać.

--------
* https://en.wikipedia.org/wiki/Gas_duster
* https://en.wikipedia.org/wiki/1,1,1,2-Tetrafluoroethane
* https://en.wikipedia.org/wiki/1,1,1,2-Tetrafluoroethane
* https://en.wikipedia.org/wiki/1,1-Difluoroethane
* https://en.wikipedia.org/wiki/Dimethyl_ether

sobota, 11 kwietnia 2015

Dlaczego sód wybucha w wodzie?

Czytelnik zwrócił jakiś czas temu moją uwagę na intrygujący artykuł ze styczniowego wydania The Nature*, sugerując że byłby to dobry temat na wpis. Po zapoznaniu się z tematem przyznałem mu rację. Bo to w sumie ciekawe, że tak znane i często wykonywane doświadczenie zawiera w sobie tak nietypowy i dopiero teraz poznany mechanizm.

Pierwiastki z grupy litowców to lekkie, miękkie metale o dużej aktywności, które reagują z powietrzem i wodą. W tym ostatnim przypadku reakcja jest silnie egzotermiczna doprowadzając często do zapalenia się powstającego wodoru zaś większe kawałki po prostu wybuchają, a dla najbardziej reaktywnych rubidu i cezu mamy do czynienia z detonacją wytwarzającą falę uderzeniową.
Tym jednak co zastanawiało badaczy, jest mechanizm wybuchu - eksplozja doprowadza często do rozdrobnienia reagującego kawałka, sądzono jednak że jej źródło jest zewnętrzne, a więc jest to wybuch wodoru na powierzchni, będący wynikiem gwałtownego przyspieszenia przebiegu reakcji. Jednak powierzchnia kontaktu metalu z wodą jest w tym przypadku raczej mała, zaś powstająca warstwa wodoru powinna raczej hamować proces niż przyspieszać - dla małych kawałków sodu powstający w reakcji gaz często jest w stanie unieść metal nad powierzchnię wody, działając niczym poduszka powietrzna.

Z dotychczasowych doświadczeń wynikało, że wybuch większych kawałków następuje gdy pod wpływem ciepła reakcji nastąpi częściowe stopienie, dlatego badacze z zespołu Pavela Jungwirtha z Czeskiej Akademii Nauk wybrali do badań stop sodu z potasem, będący eutektykiem ciekłym w temperaturze pokojowej. Wrzucenie kropli stopu do wody wywoływało natychmiastowy wybuch. Krople wkraplano do cylindra z wodą, filmując każdy wybuch bardzo szybką kamerą, przy czym upuszczano je z odpowiedniej wysokości, tak aby przerwać początkowo powstającą warstewkę gazu. Aby w obserwacjach nie przeszkadzało następujące później zapalenie się wodoru, cylinder napełniono gazem obojętnym.
Proces wybuchu kropli stopu okazał się bardzo szybki:
Rozpryskiwanie się bocznych strużek następuje już przy pierwszym kontakcie, zanim kropla zdąży zagłębić się w wodzie. Równocześnie podgląd od spodu ujawnił, że kropla rozpadła się na wiele drobnych igiełek ciekłego metalu. Kolejną ciekawą rzeczą jaką widać na zdjęciach jest fioletowy kolor rozprysku - sam sód jak i jego jony nie mają takiego koloru, dlatego najbardziej prawdopodobnym wyjaśnieniem było uznanie, że za kolor odpowiada krótko żyjące indywiduum - zsolwatowany elektron.

Solwatacja to proces otaczania jonu rozpuszczanego w roztworze przez cząsteczki rozpuszczalnika. Woda ma dość duży moment dipolowy i mimo obojętności elektrycznej jej cząsteczki są przyciągane przez pole elektryczne wokół jonu. Tak dzieje się przy rozpuszczaniu soli w wodzie, a wydzielanie się przy tym pewnej energii ma wpływ na łatwość rozpuszczania. Jon otoczony cząsteczkami rozpuszczalnika, to jon zsolwatowany:
W tym przypadku do wody został w dużych ilościach wprowadzony najmniejszy możliwy anion - wolny elektron. I na krótką chwilę, zanim nie doszło do reakcji redukcji wody, został on otoczony jej cząsteczkami. Ponieważ elektron może przyjmować w takiej postaci różne stany energetyczne, pochłania część światła widzialnego i nadaje wodzie fioletowy kolor. Znacznie trwalsze roztwory ze zsolwatowanym elektronem można otrzymać w ciekłym amoniaku i niektórych aminach, rozpuszczając w nich aktywne metale; roztwory takie mają kolor od niebieskiego co brunatnego a w dużych stężeniach elektronów zaczynają odbijać światło i wyglądają jak płynny metal.

Ale skończmy tą dygresję.
Było więc wiadomo że tuż po kontakcie sodu z wodą, zaczyna być on rozpryskiwany na wiele cienkich strużek metalu. Było też wiadome, że przy tym procesie do wody uwalniana jest tak duża ilość wolnych elektronów, że woda na krótko się zabarwia. Wiedząc o tym badacze mogli stwierdzić, że za owo rozpryśnięcie odpowiada znany już od dawna proces, znany dotychczas ze skali mikroskopijnej - eksplozja kulombowska.
Proces opisano teoretycznie już w XIX wieku ale w zasadzie dotyczył on dosyć małej skali.  Jeśli weźmiemy skrawek dowolnej materii i usuniemy elektrony z atomów, powstanie nam skupisko położonych blisko siebie jonów dodatnich. W normalnym przypadku elektrony nie tylko zobojętniają ale też spajają ze sobą atomy. Po ich usunięciu elektrostatyczne odpychanie jednakowych ładunków przeważa nad przyciąganiem i całe skupisko rozpada się na wszystkie strony.
Makroskopowym modelem może być często pokazywane doświadczenie fizyczne, w którym po umieszczeniu garści spreparowanego ryżu w silnym polu elektrycznym, ziarenka zaczynają strzelać we wszystkie strony, odpychane od naelektryzowanego stosiku:

Efekt ten bywa wykorzystywany w laserowej abrazji pewnych materiałów - naświetlenie powierzchni odpowiednio silnym impulsem lasera nadaje jej punktowo tak duża energię, że uciekają z niej elektrony. Pozostałe naładowane jony rozpryskują się i powstaje nam zagłębienie o rozmiarach możliwych do regulowania.
W nieco większej skali eksplozja kulombowska jest używana w technice elektrospreju, używanej w spektroskopii mas - kropelka roztworu umieszczona w silnym polu elektrycznym rozpryskuje się na jeszcze drobniejsze. Zjawisko to ma jeszcze znaczenie w oddziaływaniu promieniowania na materię - uderzenie wysokoenergetycznej cząstki jonizuje część atomów, doprowadzając do ich przemieszczenia i powstania uszkodzenia w strukturze materiału.

W przypadku kropli ciekłego metalu alkalicznego, proces zachodzi w dużej skali.
Gdy tylko kropla zaczyna się stykać z wodą, zachodzi szybka reakcja chemiczna połączona z oddawaniem elektronów wodzie. Ładunek dodatni na powierzchni metalu rośnie na tyle gwałtownie, że początkowe czysto mechaniczne nieregularności kształtu, zaczynają się zachowywać jak indywidualne naładowane cząstki. Odpychane statycznie porcje, zamieniają się w igły płynnego metalu, które są wystrzeliwane w otaczającą wodę w dużym rozdrobnieniu. W efekcie następuje taka sytuacja, do jakiej by doszło gdybyśmy zmieszali z wodą sód w formie drobnego pyłu - gwałtowne zwiększenie powierzchni reagującej powoduje, że w stosunkowo małej objętości wody wydzielonych zostaje bardzo dużo ciepła i gazowego wodoru. Rozprężający się powstały gaz powoduje eksplozję, która rozrzuca gorące cząstki metalu i krople wody. Gdy reakcja jest prowadzona w powietrzu, rozpryśnięte krople w kontakcie z powietrzem zapalają się jasnymi iskrami a od nich zapala się wodór, wywołując drugą eksplozję.
Jest to dokładnie objaśnione na poniższym filmie:


Bonus
A tak wygląda reakcja kilku ton sodu, wrzuconego w beczkach wprost do morza:


W taki sposób unieszkodliwiano pozostałości po pociskach zapalających.
---------
* Mason, P. E. et al., Coulomb explosion during the early stages of the reaction of alkali metals with waterNature Chem. (2015).

niedziela, 30 czerwca 2013

Do więzienia za eksperyment chemiczny? - nie jest jeszcze tak źle

Na sam koniec czerwca proponuję taką historyjkę z drugiej strony globu, która jest i straszna i śmieszna.

Po licznych i bardzo tragicznych atakach w amerykańskich szkołach, prawo bardzo obostrzyło kwestę przynoszenia do szkoły różnych rzeczy. W większości szkół i uczelni nie można nosić przy sobie noży, ani tym bardziej broni palnej. Tego typu zakazy są zresztą krytykowane przez lobbystów ze stowarzyszeń strzeleckich, uważających naiwnie że przynajmniej studenci powinni mieć ze sobą broń na terenie kampusu i na zajęciach, aby bronić się przed podobnymi napaściami. Połączenie strachu przed strzelaniną, zamiłowania do broni i polityki "zero tolerancji" doprowadza z czasem do takich absurdów, jak zawieszenie dwójki uczniów, którzy przynieśli na zajęcia kolorowe, plastikowe pistolety-zabawki bo nauczyciel poprosił o przyniesienie ulubionych zabawek[1]
- bądź takich sytuacji jak niedawna panika, jaką wywołał w szkolnym autobusie pewien 6-latek, po pokazaniu kolegom miniaturowego, plastikowego karabinu maszynowego, z zestawu klocków Lego[2]

Ofiarą tego zamieszania stała się też niedawno 16-letnia Kiera Wilmot, która za namową znajomego, przeprowadziła na placu przed szkołą Bartow High School pewien eksperyment. Do plastikowej butelki wrzuciła kilka kawałków folii aluminiowej, i dodała rozcieńczony środek do czyszczenia toalet, po czym lekko przykręciła korek. Środki tego typu są zwykle zawierają silne kwasy, gdy więc zostaną zmieszane z takimi reaktywnymi metalami, jak cynk czy glin, będą wydzielały gazowy wodór. Tak też stało się w tym przypadku. Mieszanka rozgrzała się, a butelka rozdęła się, zaś korek wystrzelił z głośnym hukiem. Poszło nawet trochę pary wodnej, wyglądającej jak dym.
Nie wiedzący co się stało uczniowie wpadli w panikę, a policja została poinformowana o wybuchu bomby na terenie szkoły. Nasza nieszczęsna eksperymentatorka została wktótce aresztowana pod zarzutem wniesienia na teren szkoły broni, i detonacji urządzeń pirotechnicznych. W myśl obowiązujących przepisów została wyrzucona ze szkoły.[3]

Gdyby dzisiejsze przepisy obowiązywały sto temu, William Thompson nie mógłby przeprowadzać w trakcie wykładów swego ulubionego doświadczenia z wahadłem balistycznym, podczas którego strzelał ze sztucera do worka z piaskiem. Wedle anegdoty zdarzyło się, że nie trafił, a kula przeszła przez drzwi prowadzące do sąsiedniej sali wykładowej. Gdy przestraszony wbiegł tam, okazało się że wbiła się w ścianę nad głową przerażonego wykładowcy, zas studenci krzyknęli "Proszę spróbować jeszcze raz - może pan trafi!".

W obronie nastolatki stanęli uczniowie i nauczyciele. Krążący po internecie list poparcia podpisało 150 tysięcy osób. Media wyśmiewały nadgorliwość policji, mylącej butelkę detergentów z bombą. Wreszcie wziął ją pod obronę Homer Hickam - inżynier NASA, znany autor książek na temat kosmosu. Młody Homer, będąc jeszcze młodszy od niej, zbudował niewielką rakietę na paliwo karmelkowe i wystrzelił ją z łąki niedaleko domu. Od rakiety zajęła się sucha trawa, toteż został zaaresztowany za wandalizm. Jego nauczyciel fizyki obronił go, tłumacząc że był to skutek eksperymentu naukowego, dzięki czemu chłopiec nie stracił zapału do nauki.
Przy tak mocnej obronie, policji nie pozostawało nic innego, jak ogłosić że doszło do pomyłki i wycofać zarzuty. Wilmot została też przywrócona do szkoły, a także zaproszona na letni obóz naukowy w Kosmicznej Akademii, w ramach rekompensaty za niemiłe zdarzenia.[4]
W zasadzie więc wszystko skończyło się dobrze a morałem jest, że głupota nie może powstrzymać naukowej ciekawości.

Żeby wam jednak nie było za wesoło, opowiem jak mogłaby się skończyć ta historia, gdyby zdarzenia potoczyły się nieco inaczej. Gdyby butelka rozgrzała się już porządnie i ciśnienie wewnątrz odpowiednio wzrosło, butelka mogłaby rozstać rozerwana, opryskując dziewczynę gorącą, żrącą mieszanką. Wówczas w mediach zapewne pojawiłyby się przestrogi przed podobnymi eksperymentami, często niebezpiecznymi, i robionymi przez nastolatki bez świadomości zagrożeń.
Nawet w kontrolowanych warunkach w szkole, doświadczenia mogą być niebezpieczne. W Legnicy, podczas pokazów w ramach festiwalu nauki kilka osób zostało rannych w wybuchu chemikaliów[5]. Więc może nie przesadzajmy z pochwałą amatorskich eksperymentatorów.
-------
[1] http://www.nydailynews.com/news/national/students-suspended-nerf-gun-article-1.1363552
[2] http://www.nydailynews.com/news/national/lego-gun-panic-school-bus-article-1.1357236
[3] http://www.alternet.org/civil-liberties/16-year-old-girl-arrested-and-charged-felony-science-project-mistake
[4] http://www.good.is/posts/people-are-awesome-teen-arrested-for-science-experiment-now-heading-to-space-camp
[5] http://natablicy.pl/legnica-wybuch-podczas-eksperymentu-na-festiwalu-nauki-chemik-stracil-palec,artykul.html?material_id=4c9b23497233c7d478000000#zamknij

niedziela, 27 stycznia 2013

Anegdoty o chemikach i ich wypadkach

Garść anegdotek o tym, ci się może człowiekowi przydarzyć w laboratorium. Zwłaszcza gdy ten człowiek jest bardzo ciekawski...

Wybuch w gębie
Gdy wcześni chemicy odkrywali nowe substancje, oprócz takich spraw jak wykorzystanie czy możliwość zarobienia na produkcji, interesował ich także wpływ na zdrowie człowieka. Czasem było to dla badacza bardzo szkodliwe - Davy stracił zdrowie przez próby z wdychaniem chloru i gazu świetlnego. Czasem przynosiło pozytywne skutki, jak odkrycie znieczulających właściwości gazu rozweselającego. A czasem...

Francuski chemik i nauczyciel Jean-François de Rozier Pilâtre  zajmował się badaniem procesu oddychania, a ponadto pasjonował się dopiero co odkrytymi lotami balonowymi. Budując swój balon postanowił napełnić go wodorem, zdecydowanie lżejszym od gorącego powietrza, lecz niestety bardzo łatwopalnym. Podczas jednego z pierwszych swobodnych lotów poleciał swym balonem na wysokość trzech kilometrów, lądując 52 kilometry od Paryża, skąd odbywał się start, co było jak na tamte czasy niebywałym osiągnięciem. W tym samym czasie stwierdził, że zawieszone  powietrzu pyły i dymy źle działają na zdrowie, proponując zakładanie materiałowych maseczek - prototypów masek respiratorowych. W którymś momencie dwie pasje się spotkały, i de Rozier postanowił sprawdzić jak wpłynie na niego wdychanie wodoru. Napełnił pęcherz gazem i wziął kilka głębokich oddechów, mieszając gaz z powietrzem. Nie stwierdził jakiś specjalnych objawów.
Faktycznie - gazowy wodór jest nietoksyczny, bardzo słabo się wchłania i jedyne niebezpieczeństwo pojawia się gdy gaz wypiera z pomieszczenia powietrze. Tak więc nic się nie działo. Po zrobieniu kilku wdechów nasz naukowiec postanowił sprawdzić, ile jeszcze jest go w jego płucach i bez zastanowienia dmuchnął na świecę.
"Myślałem, że zęby wylecą mi z korzeniami"
 - pisał potem. Mieszaniny wodoru z tlenem są wybuchowe, o czym niech pamiętają ci, którzy próbują go dziś wykorzystać jako tańszy zamiennik helu do podwyższania tonu głosu. Później de Rozier udoskonalił doświadczenie do formy salonowego pokazu, w którym wydmuchiwał zapalony wodór przez szeroką rurkę, co było bardziej bezpieczne:

Swoistą tragiczną ironią losu jest to, że podczas próby przelotu nad kanałem La Manche w roku 1785, za pomocą balonu o podwójnej czasy, zawierającego komorę na wodór i komorę na ciepłe powietrze, w wyniku wycieku i zapłonu gazu spadł i wraz z towarzyszącym mu Pierre Romainem stał się pierwszą na świecie ofiarą wypadku lotniczego.[1]

Rtęć w oku
Amerykański chemik Thomas Midgley był nieszczęsnym geniuszem. Jak wiadomo, niektóre substancje mają właściwości bardzo korzystne zaś inne bardzo negatywne. I ktoś je kiedyś musiał odkryć. Midgley był akurat odkrywcą dwóch takich substancji, w dodatku szeroko potem rozpowszechnionych - wynalazł zastosowanie dla tetraetylenku ołowiu, używanego jako dodatek przeciwstukowy do benzyny, i freony, używane w chłodnictwie. Ten pierwszy wraz z rozwojem motoryzacji przyczynił się do skażenia ołowiem polowy planety, zaś ten drugi niszczy powłokę ozonową i będzie to robił jeszcze przez kilka następnych dekad. Stąd też został zapamiętany jako jeden z tych, który niechcący o mało nie zniszczyli świata. Wynalazki ekstrakcji bromu z wody morskiej, czy produkcji gumy, która krócej się wulkanizowała, zostały mniej zapamiętane. Ale nie o tym.
Gdy pracował dla Du Pont szukając czynnika chłodzącego, przydarzył mu się przykry wypadek - nadmierne ciśnienie rozerwało zbiornik z gazem, powodując że drobne odłamki metalowej przegrody wbiły mu się w rogówkę oka, wywołując ciągły stan zapalny. Lekarz wyjął co większe kawałki, ale drobnych opiłków nie dawało się usunąć, nie były magnetyczne a przeszczep rogówki nie był jeszcze wtedy znany. Dlatego nie mając innego pomysłu, Midgley poradził sobie w sposób nietypowy - przez dwa tygodnie przemywał oczy czystą rtęcią.
To zaskakujące, ale nie zaszkodziło mu to, bo tą drogą pierwiastkowa rtęć prawie się nie wchłania. Sam Midgley wiele lat później ucierpiał od zatrucia wynalezioną przez siebie pochodną ołowiu. Pod koniec życia zachorował na Polio wskutek czego doznał częściowego paraliżu. Aby zyskać choć trochę samodzielności zbudował z linek i wielokrążków zestaw pozwalający mu na  wstawanie z łóżka. Podczas jednego z takich poranków w 1944 roku zaplątał się w linki, zsunął z łóżka i udusił.[2]

Gdzie się podział fartuch?
Niemiecki chemik Christian Friedrich Schönbein lubił był czasami prowadzić doświadczenia w domu. Oprócz takich odkryć jak wytworzenie ozonu i pierwsze próby z ogniwami paliwowymi, prowadziło to często do zniszczeń w mieszkaniu, dlatego żona zabroniła mu takich rzeczy. Zdarzyło się jednak w roku 1845, że żona musiała wyjechać do krewnych. Upewniwszy się, że jest już daleko, przyniósł do domu trochę chemikaliów, aby móc w spokoju pobadać to i owo. I oczywiście od razu nabroił.
Postawiona na szafce flaszka z mieszaniną kwasów azotowego i siarkowego przewróciła się, zaś żrąca mieszanka wylała się na podłogę. Zalał ją wodą i wytarł dokładnie bawełnianym fartuchem żony, który następnie powiesił przy piecu, aby wysechł. Gdy materiał był już suchy, padła na niego drobna iskierka, od której fartuch buchnął ogniem tak gwałtownie, że w ciągu kilku chwil zgorzał do cna. Zaciekawiony tym powtórzył doświadczenie z innymi kawałkami bawełny, stwierdzając, że pod wpływem mieszaniny kwasów stają się niezwykle łatwopalne. Prędkość spalania tak odkrytej nitrocelulozy była na tyle duża, że można ją było zastosować jako materiał wybuchowy. I faktycznie, pod nazwą bawełny strzelniczej stała się składnikiem prochu bezdymnego, nie powodującego powstawania ogromnych ilości szarego dymu i sadzy, co niejednokrotnie utrudniało prowadzenie bitew. Historia milczy w sprawie prawdopodobnego rabanu, jaki sprawiła mu żona.
Spalanie bawełny strzelniczej

Cóż za smród!
Niektóre związki chemiczne śmierdzą bardzo. Czasem tak, że trudno z nimi pracować - niestety bywa że ktoś mimo to musi, co siłą rzeczy prowadzi do rozmaitych konfliktów z otoczeniem.

Do związków najbardziej smrodliwych należą pochodne organiczne siarki oraz niektóre związki selenu i telluru. Siarkowe merkaptany znane są z silnego zapachu, jako jeden ze składników wydzieliny skunksa. Niejednokrotnie zdarzało się, że zapach nowo otrzymanej pochodnej przekraczał wyobrażenia eksperymentatorów. Gdy w 1936 po raz pierwszy zsyntetyzowano diselenek węgla (analog dwusiarczku węgla, używanego jako rozpuszczalnik) odór był tak silny, że nie tylko ewakuowano laboratorium, ale i pobliską wioskę leżącą po zawietrznej. Praca dotycząca syntezy podobno opisuje tą sytuację bardzo barwnie, ale bez opłat mogłem obejrzeć tylko stronę z abstraktem. aż szkoda.
Gdy w 1889 roku z zakładach chemicznych we Freiburgu próbowano otrzymać tioaceton z cyklicznego trimeru, smród był tak nieziemski, że ewakuowano część miasta, bo mieszkańcy w odległości mili mdleli na ulicach. Zastanawiano się potem jaką właściwie substancję wówczas otrzymano, gdyż produkty były bardziej nawet śmierdzące niż sam tioaceton.[3] Próba powtórzenia doświadczenia doprowadziła do podobnego wypadku w Oxfordzie w 1960 roku. Podobno jedna kropla związku pod dygestorium wystarczała, aby zapach było czuć ćwierć mili od laboratorium.

Merkaptany należą do substancji na które ludzki nos jest najbardziej wyczulony - dla niektórych czułość sięga ilości jednej części na miliard. Ma to uzasadnienie ewolucyjne - powstają podczas gnicia materii organicznej, toteż wyczulenie na nie pozwala wyczuć, że jedzenie jest nieświeże. Wykorzystuje się ten fakt bardzo szeroko do nawaniania gazu ziemnego, który sam w sobie jest bezwonny. to co czuć jako zapach gazu, to w rzeczywistości zapach śladowych ilości tioli. U nas najczęściej używa się do tego tetrahydrotiofenu, na świecie zazwyczaj jest to merkaptan tertbutylowy lub butylotiol. W ilościach używanych do nawaniana zapach nie jest specjalnie nieprzyjemny, natomiast większe ilości potrafią pokazać swą moc. W wyniku wycieku nawaniacza - metylotiolu - z zakładów chemicznych w Rouen, chmura smrodu rozeszła się po całej północnej Francji, zahaczając o Paryż, a po dwóch dniach dotarła do Anglii, będąc wyczuwalną w Londynie.[4] Wedle relacji zapach przypominał połączenie potu, zgniłych jaj i cebuli.
Zresztą może jeden z kolejnych wpisów poświęcę tym najbardziej smrodliwym chemikaliom.

Rozlało się
Praca z niebezpiecznymi chemikaliami wymaga ostrożności a czasem i pewnej ręki. Pół biedy, gdy kropla stężonego kwasu wypali dziurę w fartuchu (zdarzyło mi się kilka razy), a rozbita flaszeczka z roztworem amoniaku zasmrodzi cały pokój, czasem jednak konsekwencje takiego rozlania, mogą być znacznie groźniejsze.
Przekonali się o tym niedawno pracownicy i studenci Politechniki w Hamburgu. Pewnemu studentowi zdarzyło się przewrócić dwa odkręcone pojemniki z rozpuszczalnikiem acetonitrylem, przez co rozlał około ośmiu litrów. Bojąc się konsekwencji zamiast poinformować pracowników i straż, zebrał rozlaną ciecz i wylał do kanalizacji. To czego nie zebrał i to co wydostawało się ze zlewu parowało. A acetonitryl jako bardzo lotny rozpuszczalnik po dostaniu się do organizmu rozkłada się na cyjanek. W efekcie już wkrótce kilku studentów i doktorantów oraz pracowników laboratorium poczuło się źle. Do szpitala trafiło 11 osób, z czego dwóch studentów i czterech doktorantów wylądowało na OIOM-ie.[5]
Gdy kilka lat temu likwidowano jedno z lokalnych laboratoriów SANEPiD-u w bodaj Radzyniu, jedna z pracownic wzięła kilka litrów zbędnego kwasu azotowego, z zamiarem wypalenia chwastów na działce. Kanistry którymi go przewoziła nie były jednak szczelne, toteż w trakcie podróży służbowym samochodem, kwas zaczął chlupotać w bagażniku, przeżerając podwozie.

----------
[1] http://www.ebooksread.com/authors-eng/james-smith/the-panorama-of-science-and-art-tim/page-38-the-panorama-of-science-and-art-tim.shtml
[2] Thomas Midgley Jr. - Biographical Memoir
[3] http://fds.oup.com/www.oup.co.uk/pdf/bt/orgchem/chapter01.pdf
[4] http://www.reuters.com/article/2013/01/22/us-france-gasleak-idUSBRE90L03M20130122
[5] http://www.mopo.de/nachrichten/gift-unfall-an-der-tu-harburg-riesen-schlamperei-im-chemie-labor,5067140,8689786.html

Kilka innych wypadków

poniedziałek, 3 grudnia 2012

Ekstrakcja nadkrytycznym CO2 i kilka eksplozji

Na jednej z ostatnich pracowni Chemii proekologicznej zajmowaliśmy się rzeczą wprawdzie z punktu widzenia chemii niespecjalnie interesującą, ale jak się okazało w wykonaniu niechcący efektowną - mianowicie ekstrakcją nadkrytycznym dwutlenkiem węgla. Było też trochę wybuchów.

Stan nadkrytyczny to dosyć specyficzny stan. Coś jakby ciecz ale nie ciecz; a trochę jakby gaz ale też nie zupełnie. Aby rzecz objaśnić należy zacząć od kwestii stanów skupienia materii.
To w jakim stanie występuje materia jest wynikiem kompromisu pomiędzy energią atomów, chcącą wyrwać je daleko w przestrzeń, a oddziaływaniami pomiędzy nimi, niejako sklejającymi je ze sobą. W ciele stałym wiązania chemiczne, siły Van deer Walsa i inne podobne utrzymują cząsteczki ciała blisko siebie, z możliwością ruchu ograniczoną do drgania w miejscu, lub co najwyżej obrotu czy poślizgu dla ciał plastycznych, podobnie jak to obserwuje się w bardzo ciasnym tłumie.
Jeśli jednak nadamy tym cząsteczkom odpowiednio dużo energii, będą mogły wyrwać się ze ścisku, tworząc strukturę mniej uporządkowaną, w ramach której będą mogły przesuwać się w sposób bliżej nieokreślony, wciąż jednak będą ze sobą oddziaływały, nie pozwalając całej masie odfrunąć w siną dal. W takim stanie nasza materia nazywana jest cieczą - w stałej temperaturze ma określoną objętość, którą niechętnie zmienia, kształt określony naczyniem, lepkość i napięcie powierzchniowe.
Jeśli podgrzejemy naszą materię jeszcze bardziej cząsteczki uwolnią się z wzajemnych ograniczeń, i gdyby nic ich nie ograniczało, rozpierzchłyby się na wszystkie strony, jak spłoszone konie. To oczywiście gaz., który możemy sprężać i rozprężać.

Ten ładny i prosty obraz, przekazywany w szkołach nieco się komplikuje, jeśli uświadomimy sobie jak przejścia między fazami wyglądają w skali mikro. W ciele stałym oddziaływania między cząsteczkami utrzymują je w miejscu, jednak zgodnie z rozkładem Maxwella nawet poniżej temperatury topnienia pewna ilość cząstek ma wystarczającą energię aby móc przełamać ograniczenia, i jeśli akurat będą to cząstki na powierzchni to nam odgazują lub odtopią się. Z drugiej strony w tej porcji po wielu zderzeniach może znaleźć się nieco takich cząstek, które zderzywszy się w powierzchnią ponownie zostają złapane. W istocie pewna ilość cząstek przechodzi nieustannie z fazy do fazy, osiągając jakiś stan równowagi, zależny od warunków. Tymi warunkami są przede wszystkim temperatura i ciśnienie.
Temperatura warunkuje średnią ilość energii przypadającej na ogół cząsteczek w fazie, natomiast ciśnienie warunkuje liczbę cząsteczek zderzających się z fazą. Podwyższenie temperatury pozwala części cząstek oderwać się z fazy; podwyższenie ciśnienia powoduje ze odparowane cząstki częściej są wpychane z powrotem, zaś te które mogłyby odparować, przez zderzenia z innymi cząstkami mogą utracić nadmiar energii. Obie te siły wywołują więc przeciwstawne skutki. To jaka faza jest możliwa zależy od warunków.
Pod normalnym ciśnieniem lód może być trwały w temperaturach ujemnych skali Celciusza, w temperaturze zera stopni bez dodawania i ujmowania energii pozostaje w równowadze z fazą ciekłą; powyżej niej lód nie może być trwały i w całości przechodzi w ciecz trwałą aż do temperatury 100 stopni, powyżej której musi przejść w parę. Zmiany ciśnienia przy stałej temperaturze przesuwają te granice - pod odpowiednio niskim ciśnieniem woda wrze w temperaturze 70 czy 50 stopni, toteż w wysokich górach trudno zaparzyć mocną kawę bez ciśnieniowego samowaru. Dla odmiany pod wysokim ciśnieniem woda pozostaje płynna w temperaturze 120-150 stopni. W przypadku topnienia/krzepnięcia zwykle zmiany temperatur wyglądają podobnie, jednak dla wody anomalne zachowanie lodu daje o sobie znać, gdyż wzrost ciśnienia nieco obniża temperaturę topnienia.
Dla odpowiednio niskiego ciśnienia woda ciekła nie może być trwała i w ujemnych temperaturach lód przechodzi bezpośrednio w parę. Niech rzecz objaśni taki fajny obrazek:

Skala nie zachowana. Linie określają warunki równowagi między fazami a więc i temperatury przemian faz. Zaznaczyłem warunki punktu potrójnego, w którym trzy fazy pozostają w równowadze.

A co oznacza punkt K?

Zastanówmy się nad warunkami panującymi na linii ciecz/gaz. W takich warunkach ciało stałe przechodzi w ciecz lub odwrotnie, pozostając w równowadze. W miarę podwyższania temperatury rosnąć musi też ciśnienie, stąd krzywa wzrasta. Wzrost temperatury za sprawą rozszerzalności cieplnej powoduje, że ciecz staje się coraz mniej gęsta. Wzrost ciśnienia niespecjalnie wpływa na gęstość cieczy ale zwiększa gęstość gazu. Pamiętając o tym poruszajmy się po krzywej w górę.
Coraz mniej gęsta ciecz przechodzi w coraz gęstszy gaz aż wreszcie dochodzimy do punktu - nazywanego krytycznym - gdy obie gęstości się zrównują. Zanika różnica między jedną fazą a drugą, zanika granica pomiędzy nimi zaś ciśnieniowy pojemnik zaczyna wypełniać substancja o własnościach pośrednich - gęstość mniejsza od cieczy ale większa od gazu, lepkość mniejsza od cieczy ale większa od gazu. Brak napięcia powierzchniowego. Czasem dla odróżnienia od cieczy, nazywa się takie substancje płynami.

Płyny nadkrytyczne dzięki możliwości bardzo płynnych zmian właściwości okazują się bardzo przydatne. Przykładowo woda w takim stanie zachowuje zdolność rozpuszczania polarnych substancji, ale za sprawą mniejszej gęstości i braku napięcia powierzchniowego łatwiej wnika w drobne pory ziaren nierozpuszczalnych i znacznie łatwiej rozpuszcza substancje. A po zmniejszeniu ciśnienia łagodnie, bez pienienia, zamienia się w parę. Dlatego ciecze nadkrytyczne są bardzo ciekawymi rozpuszczalnikami.
Akurat woda jest w tym celu rzadko stosowana ze względu na ekstremalne warunki nadkrytyczne - temperatura prawie 300 st.C i ciśnienie 22 MPa. Jest jednak inna substancja, łatwo dostępne i nietoksyczna, dla której warunki te są dogodniejsze - dwutlenek węgla.

Dwutlenek węgla pod ciśnieniem atmosferycznym zamienia się w ciało stałe dopiero w -78 st. C, bez skraplania. Sublimuje dosyć szybko bez topnienia, skąd popularna nazwa "suchy lód". Dopiero w podwyższonym ciśnieniu może zamieniać się w ciecz. W jego przypadku warunki stanu krytycznego to 30 st.C i ciśnienie 7 MPa. Jeszcze łagodniejsze są warunki dla propanu i butanu, ale stosowanie ich ogranicza palność.
Nadkrytyczny CO2 może zastępować rozpuszczalniki organiczne, jak heksan, chlorek metylenu czy aceton, wówczas gdy pragnie się uniknąć zanieczyszczenia produktu finalnego ich śladami. Zresztą w ogóle dąży się teraz w przemyśle do ograniczania stosowania tych często bardzo toksycznych rozpuszczalników. Jednym z ciekawszych zastosowań jest bezwodne pranie delikatnych tkanin - po przepuszczeniu płynu przez tkaninę, zmniejszenie ciśnienia oddziela gaz od wypłukanych stałych zanieczyszczeń.
Na skalę przemysłową ekstrakcja płynowa jest wykorzystywana do dekofeinizacji kawy - czyli wypłukania kofeiny. Wypłukana kofeina może być stosowana w medycynie, zaś przepłukana kawa jest potem sprzedawana jako bezkofeinowa. Dotychczas używane metody wymagały użycia rozpuszczalników organicznych, zaś te polegające na powolnej ekstrakcji wodą, wpływały na aromat. Inny proces to wyodrębnianie ekstraktu z szyszek chmielowych, służącego do produkcji piwa i leków. Mieszanka tlenu i wody nadkrytycznej może służyć do zgazowywania biomasy i utleniania odpadów.

No dobrze, już wszystko wyjaśniłem, ale co ja właściwie robiłem na zajęciach?

Warunki nadkrytycznie dwutlenku węgla są na tyle łagodne, że na niewielką skalę można wytworzyć je w przeciętnie zasobnej sprzętowo pracowni chemicznej a nawet w domu. Wystarczy plastikowa próbówka z mocnym korkiem i suchy lód. Stały dwutlenek stopniowo paruje, podwyższając ciśnienie wewnątrz wystarczająco, aby po niewielkim ogrzaniu przeprowadzić się w płyn. Ten zaś płyn może na niewielką skalę wystarczać, aby przeprowadzić krótką ekstrakcję. Tak przynajmniej rzecz wygląda w teorii, natomiast praktyka okazała się nieprzewidywalna.

Aby w ogóle moć przeprowadzać doświadczenie, trzeba było najpierw zdobyć suchy lód. Uniwersytet nie przechowywał go w żadnej chłodni, trzeba było więc wytworzyć go na miejscu. Udaliśmy się więc do składziku z butlami sprężonego gazu, na wylot założyliśmy drewnianą skrzynkę ze szczelinami uszczelnionymi tkaniną i odkręciliśmy na ful:

Sprężony dwutlenek podczas gwałtownego rozprężania ochładzał się wystarczająco, aby zestalić się w skrzynce:
 Suchy lód należało teraz ostrożnie wyskrobać i rozdrobnić metalową łyżką. Konsystencją przypominał zbity śnieg. W kontakcie z powietrzem sublimował wytwarzając mgiełkę. Drobne kawałki upadające na płytki stołu śmigały nad powierzchnią jak małe poduszkowce, utrzymywane nad powierzchnią przez wydzielany gaz.

Należało też utrzeć na drobno kawałek skórki od pomarańczy. Naszym zadaniem było przeprowadzić ekstrakcję olejków eterycznych. Dzięki niskiej temperaturze powinniśmy wyodrębnić składniki łatwo lotne, ulatujące podczas innych metod.:

Teraz wystarczyło włożyć skórkę do małego, metalowego koszyczka, ten do plastikowej, wytrzymałej próbówki i napchać suchego lodu aż pod sam koreczek. A potem szczelnie zatkać. I tu pojawił się problem - ciśnienie wewnątrz było na tyle duże, że żadem koreczek sam z siebie nie mógł tego wytrzymać. Musieliśmy więc przytrzymywać całość w czymś w rodzaju niedużego imadełka, ściskającego z obu stron:

Po czym taki zestaw zanurzaliśmy w plastikowej zlewce wypełnionej ciepłą wodą. Tam stopniowo rosło ciśnienie zaś suchy lód wydawał się topnieć:

W jego miejsce pojawiało się coś w rodzaju "płynnej mgły" przez którą widać było koszyczek ze skórkami:

był to znak że ekstrakcja się zaczęła, doświadczenie się udało a próbówkę należy wyjąć aby odlać wyekstrahowany olejek. I wówczas zazwyczaj następowała eksplozja...

Niestety mimo imadełka wszelkie możliwe koreczki z czasem ześlizgiwały się z nasadki, dosyć zresztą luźno chodzącej, zaś nadkrytyczny płyn w kawałkami pomarańczy strzelał w wodę, rozpryskując ją po całym wyciągu. Kawałki stałego dwutlenku, powstające przy tak nagłej dekompresji, burzyły wodę białą mgłą. Zaś doświadczenie należało zaczynać od nowa.
Ponieważ jednak chemicy zasadniczo lubią wybuchy zabawy było co nie miara. Jeśli dobrze pamiętam na 12 prób tylko dwa razy udało się w porę wyjąć próbówkę, bardzo łagodnie rozszczelnić, wyjąć koszyczek i wypłukać ekstrakt chlorkiem metylenu. Tak powstały roztwór miał pójść do badań na GC-MS. Z racji pasji fotograficznej raz dostałem rykoszetem w nos. Ponieważ jak dotyczczas nie mieliśmy wybuchów na zajęciach, to teraz jak sądzę zużyliśmy cały przypadający na przeciętnego pechowca zapas na ładnych kilka lat.

To było dwa tygodnie temu. Zaś tydzień temu było jeszcze ciekawiej. Ja sam co prawda robiłem pewną ciekawą syntezę w mikrofalach, ale druga grupa robiła obok to właśnie ćwiczenie. Ponieważ imadełko nie bardzo już się nadawało do użytku, próbówka była ściskana łapą laboratoryjną. W związku z tym była położona poziomo, z wylotem głębiej zanurzonym pod wodę, zaś kolejne  wywalenia korka były w związku z tym bardziej efektowne.
Postanowiłem nakręcić jeden taki przypadek i gdy koledzy włożyli następną próbkę podszedłem bliżej i włączyłem w aparacie opcję filmowania. Tym razem wynik doświadczenia zaskoczył wszystkich:
Zlewka wyskoczyła z pod wyciągu upadając mi na nogę, zaś ramię łapy odpadło całkiem i brzęknęło o szybę dygestorium. Z wrażenia wyłączyłem filmowanie nieco za wcześnie. Jaka szkoda że nie sfotografowałem miny kolegów.

 Takiej zabawy jeszcze nie mieliśmy.